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ABSTRACT

We study offline reinforcement learning (RL) with trajectory preferences, where
the RL agent does not receive explicit rewards at each step but instead receives
human-provided preferences over pairs of trajectories. Despite growing interest
in preference-based reinforcement learning (PbRL), contemporary works cannot
robustly learn policies in offline settings with poor data coverage and often lack
algorithmic tractability. We propose a novel Model-based Conservative Planning
(MCP) algorithm for offline PbRL, which leverages a general function class and
uses a tractable conservative learning framework to improve the policy upon an
arbitrary reference policy. We prove that, MCP can compete with the best policy
within data coverage when the reference policy is supported by the data. To the best
of our knowledge, MCP is the first provably sample-efficient and computationally
tractable offline PbRL algorithm under partial data coverage, without requiring
known transition dynamics. We further demonstrate that, with certain structural
properties in PbRL dynamics, our algorithm can effectively exploit these structures
to relax the partial data coverage requirement and improve regret guarantees. We
evaluate MCP on a comprehensive suite of human-in-the-loop benchmarks in
Meta-World. Experimental results show that our algorithm achieves competitive
performance compared to state-of-the-art offline PbRL algorithms.

1 INTRODUCTION

Reinforcement learning (RL) has become a prominent framework for addressing sequential decision-
making problems. Most of the existing RL algorithms typically assume access to a well-defined
reward function that guides policy optimization. However, in many practical applications, the design
of an appropriate reward function poses a significant challenge. This difficulty arises from the
complexity of accurately capturing human intent, the susceptibility to reward hacking, and the risk
of inducing unintended behaviors due to mis-specified objectives [Wirth et al., 2017]. To tackle
the problems, the framework of the preference-based reinforcement learning (PbRL) has emerged
as a possible solution. Rather than relying on numerical reward signals, PbRL leverages relative
preferences obtained from human experts or large language models, thereby avoiding explicitly
modeling the reward function [Christiano et al., 2017]. This framework has proven particularly
effective in various domains, including games [MacGlashan et al., 2017; Christiano et al., 2017;
Warnell et al., 2018], large language models [Ziegler et al., 2019; Stiennon et al., 2020; Wu et al.,
2021; Nakano et al., 2021; Ouyang et al., 2022; Glaese et al., 2022; Bai et al., 2022; Ramamurthy
et al., 2022; Liu et al., 2023], and robotics [Brown et al., 2019; Shin et al., 2023].

Many existing PbRL algorithms rely on online interaction with the environment, raising concerns
regarding sample efficiency and safety [Christiano et al., 2017; Levine et al., 2020]. In contrast,
offline PbRL operates on pre-collected datasets annotated with preference information, providing a
more practical solution in scenarios where environment interaction is limited or costly [Shin et al.,
2023; An et al., 2023; Kim et al., 2023; Hejna & Sadigh, 2023; Choi et al., 2024]. Despite its potential,
much of the prior work in offline PbRL requires that the offline data be fully explored and often lacks
sample-efficient guarantees [Zhan et al., 2023a]. The situation becomes even more challenging in
scenarios where the offline data distribution only partially covers the trajectory distributions induced
by some (but not all) comparator policies—that is, under partial coverage [Jin et al., 2021; Cheng
et al., 2022]. In such cases, PbRL algorithms generally fail to learn a good policy with near-optimal
regret in a polynomial sample complexity.
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Recent efforts have sought to address the above-mentioned challenges under function approximation
settings. Zhu et al. [2023] proposes a principled algorithm with sample complexity guarantees
under partial coverage; however, their algorithm and theoretical guarantee are restricted to linear
reward models. Zhan et al. [2023a]; Pace et al. [2024] extends this framework to the general
function approximation setting by explicitly modeling the confidence sets and performing conservative
learning. Nevertheless, constructing and optimizing over such confidence sets makes their algorithm
computationally intractable in practice. Most recently, a concurrent work [Kang & Oh, 2025]
introduces a sample-efficient approach which is able to be implemented in practice. Their algorithms
either assume known transition dynamics or require fitting an extra value function that depends on
the learned transition model via Bellman recursion to perform conservatism. This allows the value
function to locally smooth over gaps in data coverage—if the value function is well-approximated.
However, this smoothing-based mitigation strategy intrinsically requires the realizability condition
on the value function and does not guarantee near-optimal regret under partial coverage [Yu et al.,
2020a]. We refer the readers to Table 1 for detailed comparisons to prior works.
Table 1: Comparison of MCP and its two variants with existing methods in terms of data coverage
assumptions, additional structural properties, probably approximately correct (PAC) guarantees with
polynomial sample complexity, and computational tractability for practical implementation. MCP
refers to our algorithm developed for general function approximation. The superscript ⋆ indicates that
the partial coverage condition is effectively refined by MCP through additional structural properties
of the dynamics, resulting in improved regret bounds.

Methods Partial Coverage Additional Structure PAC Guarantee Tractable Implementation

Principled-RLHF [Zhu et al., 2023] ✓ Linear function approximation ✓ ✓
FREEHAND [Zhan et al., 2023a] ✓ - ✓ ✗
OPRL [Shin et al., 2023] ✗ - ✗ ✓
Sim-OPRL [Pace et al., 2024] ✓ - ✓ ✗
APPO [Kang & Oh, 2025] ✓ Known transition dynamics/value function realizability ✓ ✓
IPL [Hejna & Sadigh, 2023] ✗ - ✗ ✓

MCP ✓ - ✓ ✓

MCP-Factored⋆ ✓ Factored model ✓ ✓

MCP-KNR⋆ ✓ Kernelized nonlinear regulators ✓ ✓

Motivated by the aforementioned challenges, we study the problem from a model-based learning
perspective and propose an implicit way for encoding conservatism that is compatible with PbRL
under general function approximation, without requiring known transition dynamics. Specifically,
we relax the stringent full coverage assumption and instead assume that the offline data only needs
to cover the trajectory distribution induced by the (optimal) comparator policy. We introduce
MCP: Model-based Conservative Planning, which learns a policy through a tractable conservative
learning and model-based planning procedure. The resulting policy matches the performance of any
comparator policy that is covered by the offline data. MCP addresses the intractability inherent in
existing methods that rely on explicitly constructing confidence sets to encode conservatism, and it
avoids additional value function modeling by leveraging a purely model-based planning approach.
To the best of our knowledge, MCP is the first offline PbRL algorithm that is both provably sample-
efficient and computationally tractable under partial data coverage, without assuming access to
the true transition dynamics. When instantiated within specialized PbRL structures, MCP further
refines the concentrability coefficient in a tighter manner, leading to improved regret guarantees. In
environments with factored dynamics, the regret bound of MCP scales with the number of factors
and the size of their parent sets, thereby avoiding the exponential dependence on the state dimension
present in non-factored models. Moreover, our analysis shows that the regret bound is adaptive to the
offline data distribution and remains valid even when the state space is infinite when MCP is applied
in kernelized nonlinear regulators (KNRs). Experimentally, we find that MCP achieves competitive
performance compared to state-of-the-art offline PbRL methods, using real human feedback across 8
different Meta-World tasks [Yu et al., 2020b]. In addition, the conducted ablation studies demonstrate
the robustness and sample efficiency of the proposed algorithm.

2 PRELIMINARIES

Markov Decision Processes. We consider a finite-horizon time-inhomogeneous Markov Decision
Processes(MDP), denoted as a tuple M = (S,A, r, {Ph}H−1

h=0 , H, s0). Here S represents the state
space, andA denotes the action space. Ph : S ×A → ∆(S) is the transition dynamics at time step h ,
where ∆(S) denotes the set of probability distributions over states. r : T → [0, Rmax] is the reward
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function, where T = (S ×A)H represents the set of all trajectories of horizon length H . s0 is the
initial state. We use r⋆ to denote the ground-truth reward function, {P ⋆h}

H−1
h=0 to denote the ground-

truth transition dynamics. The agent follows a history dependent policy π := {πh}H−1
h=0 , where

each πh : (S × A)h−1 × S → ∆(A), specifies a distribution over actions at step h ∈ [0 : H − 1],
conditioned on the entire past trajectory. Let Π denote the set of all such history-dependent policies.
Given a generic reward function r and transition dynamics P = {Ph}H−1

h=0 , the expected cumulative
reward is defined as J(π; r, P ) := EdπP [r(τ)], where dπP denotes the distribution over trajectories
induced by executing policy π under transition model P . We denote EdπP [r(τ)|s

0] as the expected
return of trajectories starting from initial state s0. The state-action visitation distribution at step h is
defined as: dπh(s, a) = PπP (sh = s, ah = a),∀h ∈ [0 : H − 1], where PπP represents the probability
distribution over trajectories generated by executing policy π under transition model P . Additionally,
we denote the trajectory-level distribution under the ground-truth model P ⋆ as dπ(τ).

Offline PbRL. Offline PbRL is a variant of reinforcement learning that deals with situations
where the reward function is not directly available and instead must be inferred from human pref-
erences over trajectory pairs. Offline PbRL focuses on learning from a dataset of trajectory pairs
D = {(τn,0, τn,1, yn)}Nn=1, which contains i.i.d trajectory pairs τn,0 = {sn,0h , an,0h }

H−1
h=0 , τ

n,1 =

{sn,1h , an,1h }
H−1
h=0 sampled from reference policy µ and binary labels yn. Given a pair of trajectories

(τ0, τ1), a human annotator provides a binary preference label y ∈ {0, 1}, where y = 1 indicates that
trajectory τ1 is preferred over τ0, and y = 0 indicates the opposite.

To model the preference feedback between trajectories, we introduce a link function Φ : R→ [0, 1],
which is a monotonically increasing function. Given a pair of trajectories (τ0, τ1), the preference
model assumes that the probability of preferring trajectory τ1 over τ0 is given by:

P(y = 1|τ0, τ1) = P(τ1 preferred over τ0) = Φ(r⋆(τ1)− r⋆(τ0))

One of the most commonly adopted link functions is the sigmoid function σ(x) = (1 + exp(−x))−1.
This link function is associated with the Bradley-Terry-Luce (BTL) model [Bradley & Terry,
1952], which effectively models the relative preference between trajectories. And we define
κ := (infx∈[−Rmax,Rmax] Φ

′(x))−1 to measure the non-linearity of the link function Φ. The goal of
offline PbRL is to learn a high-performing policy πALG ∈ Π which satisfies the following guarantee:
J(π; r⋆, P ⋆) − J(πALG; r⋆, P ⋆) ≤ ϵ. Here, π denotes a comparator policy that the learned policy
aims to match or surpass in performance. For the remainder of the paper, we abuse notation by
referring to J(π)− J(πALG) as the regret.

General Function Approximation. In this work, we consider general function approximation for
offline PbRL. Specifically, we model the reward and transition dynamics using a family of transition
function classes {Ph}H−1

h=0 and a reward function class R. These classes are expressive enough to
capture complex dynamics and reward structures through the use of linear approximators or neural
networks. To quantify the complexity of the transition and reward model classes, we adopt the
1/N -bracketing number metric, denoted as NP(1/N) and NR(1/N), respectively [Geer, 2000].

3 PREFERENCE-GUIDED CONSERVATIVE PLANNING

In this section, we present a novel sample-efficient and computationally tractable offline PbRL
algorithm, Model-based Conservative Planning (MCP). The developed algorithm integrates model-
based planning with implicitly encoded conservatism to guarantee the learned policy can compete
with any (best) comparator polices within data coverage.

3.1 ALGORITHM FORMULATION

We begin by presenting the motivation that underpins the design of our algorithm. The major challenge
in offline PbRL is that directly performing policy learning based on the learned reward and transition
models for agreement with preference feedback is inaccurate and may result in overestimation issues.
To get rid of this problem, the existing works heavily rely on constructing explicit confidence sets to
perform conservative learning, which is often not computationally tractable. This motivates us to
develop an algorithm that alternates between encoding the conservatism into the learned reward and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

transition models and learning the policy via a model-based planning procedure upon the worst-case
models that remain consistent with the observed preferences in offline data.

In MCP, we formulate the main objective to identify a policy π that performs favorably relative to a
reference distribution µref , a common choice is the distribution to induce offline data. Specifically,
we aim to maximize the performance difference between the candidate policy and the reference
distribution. This relative performance evaluation encourages policy improvement upon the reference
policy while avoiding reliance on potentially inaccurate absolute value estimates. Moreover, the
evaluation can be easily performed through a model-based planning procedure, and avoids extra value
function modeling.

max
π

J(π; r, {Ph}H−1
h=0 )− Eτ∼µref [r(τ)].

MCP then takes two realizable hypothesis classes for the reward and transition kernels—i.e., r⋆ ∈ R
and P ⋆h ∈ Ph for all h ∈ [0 : H − 1]—which consist of potential data-consistent candidate models as
input, and computes the maximum likelihood models r̂ and P̂h using the given offline dataset D. It
then formulates a minimax objective function.

max
π∈Π

min
r∈R,{Ph∈Ph}H−1

h=0

J(π; r, {Ph}H−1
h=0 )− Eτ∼µref [r(τ)] + λ1E1(r;D) + λ2E2({Ph}H−1

h=0 ;D),

(3.1)
where the conservatism is implicitly encoded via regularizing the empirical absolute discrepancy
between the learning targets, i.e., r and Ph, and the data-consistent models r̂ and P̂h:

E1(r;D) =
1

N

N∑
n=1

∥∥(r(τn,1)− r(τn,0))− (r̂(τn,1)− r̂(τn,0))∥∥ ,
E2({Ph}H−1

h=0 ;D) =
1

N

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥Ph(sn,ih+1|s
n,i
h , an,ih )− P̂h(sn,ih+1|s

n,i
h , an,ih )

∥∥∥ .
This minimax formulation effectively searches for a reward function r and transition model Ph
within the data-consistent model class by avoiding large discrepancy from maximum likelihood
models, and then performs model-based planning using the searched conservative models. In (3.1),
the parameters λ1 and λ2 are user-specified and control the degree of conservatism encoded in
the learned models. Notably, MCP remains tractable—unlike existing approaches that encode
conservatism through the unmeasurable width of confidence sets via constrained optimization, which
often leads to intractability.

3.2 ALGORITHM IMPLEMENTATION

In this section, we present the details of the implementation of the MCP algorithm, building upon
the above-formulated objective function. We will establish the rigorous theoretical guarantees for
Algorithm 1 later.

Model Estimation (Lines 2–3). The algorithm begins by estimating the reward model r̂ and the
transition model P̂h through maximizing the log-likelihood function based on the offline dataset D.

Conservative Planning via Relative Performance (Line 5). In this step, MCP enforces consistency
with the offline data by regularizing the discrepancy between the learned reward and transition models
and their maximum likelihood estimators. It then implicitly encodes conservatism by performing
conservative evaluation—planning under the worst-case model based on the relative performance of
the distributions induced by πt and the reference policy. This model-based evaluation avoids learning
an additional value function, improving computational efficiency.

Policy Improvement (Line 6). MCP improves the policy without explicitly searching over a policy
function class Π. Instead, it performs a mirror descent update, which is often utilized in online
settings [Haarnoja et al., 2018; Geist et al., 2019], which bridges the gap between the policy space and
the reward and transition model classes. As a result, the policy is no longer searched independently
ofR and {Ph}H−1

h=0 .
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Algorithm 1 Model-based Conservative Planning (MCP)
Input: Offline data D, regularization parameters λ1, λ2, learning rate η, reference distribution µref

1: Initialize policy π1 as the uniform policy.
2: Learn reward: r̂ = argmaxr∈R

∑N
n=1 logPr(o = on|τn,1, τn,0).

3: Learn transition kernel:
P̂h = argmaxPh∈Ph

N∑
n=1

1∑
i=0

logPh(s
n,i
h+1|s

n,i
h , an,ih ), ∀h ∈ [0 : H − 1].

4: for t = 1, 2, . . . , T do
5: Obtain the conservative models: rt, {P th}

H−1
h=0 ,

rt, {P th}H−1
h=0 ← argmin

r∈R,{Ph∈Ph}H−1
h=0

J(πt; r, {Ph}H−1
h=0 )− Eτ∼µref [r(τ)]

+ λ1E1(r;D) + λ2E2({Ph}H−1
h=0 ;D).

6: Update πt by: πt+1(a|s) ∝ πt(a|s) exp
(
ηEdπt

{Pt
h
}H−1
h=0

[rt(τ)|s, a]
)

.

7: end for
8: Output πALG := MixIter({πt}Tt=1). ▷ mixing π1, . . . , πT over all iterations uniformly

4 THEORETICAL ANALYSIS

In this section, we establish the regret guarantee for the policy returned by MCP in Algorithm 1 under
the partial coverage condition and general function approximation. To start with, we introduce the
notation of the concentrability coefficient to characterize the condition for the partial data coverage.
For comprehensive technical details regrading this section, please refer to Appendix B.
Definition 1 (Concentrability Coefficient for Reward). For a comparator policy π, we define the
concentrability coefficient w.r.t. the reward function classR, and a reference policy µref :

CR(π) = sup
r∈R

Eτ1∼dπ,τ0∼µref
[∥∥(r(τ1)− r(τ0))− (r⋆(τ1)− r⋆(τ0))

∥∥]
Eτ1∼µ,τ0∼µ [∥(r(τ1)− r(τ0))− (r⋆(τ1)− r⋆(τ0))∥]

.

Definition 2 (Concentrability Coefficient for Transition). For a comparator policy π, we define the
concentrability coefficient w.r.t. the transition function class {Ph}H−1

h=0 , and a reference policy µref :

CP (π) = max
h∈[0:H−1]

sup
Ph∈Ph

E(s,a)∼dπh [DTV (Ph(·|s, a), P ⋆h (·|s, a))]
E(s,a)∼µh [DTV (Ph(·|s, a), P ⋆h (·|s, a))]

.

We should note that the finite concentrability coefficients implies the single-policy concentrability
that offline data covers a single good comparator policy (e.g., the optimal policy). The single-policy
concentrability is the minimum condition for the offline data coverage [Chen & Jiang, 2022; Zhan
et al., 2022] in existing literature. In addition, when the reference distribution µref is set to µ, the
coefficients CP (π) and CR(π) is upper bounded by the vanilla density ratio-based concentrability
coefficients, i.e., CP (π) ≤ sup(s,a,h)

dπh(s,a)
µh(s,a)

and CR(π) ≤ supτ∈T
dπ(τ)
µ(τ) , respectively. Before we

present the main results, we impose some regular assumptions on the function classes.
Assumption 1 (Realizability). r⋆ ∈ R and P ⋆h ∈ Ph,∀h ∈ [0 : H − 1].
Assumption 2 (Boundedness). 0 ≤ r(τ) ≤ Rmax, ∀r ∈ R, τ ∈ T .

Theorem 4.1. Suppose Assumptions 1 and 2 hold. We set the learning rate η =
√
log |A|/(2R2

maxT )

and set the regularization coefficients λ1 = O(CR(π)) and λ2 = O(Rmax

√
CP (π)MP ). Then, for

any comparator policy π ∈ Π with finite CR(π) and CP (π), with probability at least 1− δ, the return
policy πALG yielded by Algorithm 1 after T iterations satisfies that

J(π)− J(πALG) ≤ O

(
Rmax

√
log |A|
T

)
+O

(
κRmaxCR(π)

√
log(NR(1/N)/δ)

N

)

+O

(
Rmax(CP (π) +MP )H

√
log(NP(1/N)/δ)

N

)
,
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where MP is to measure the distributional shift between dπth and µh under the sequence of policies
yielded in the mirror-descent trajectory of Algorithm 1 for t = [1 : T ] and h = [0 : H − 1]:

MP = max
t∈[1:T ]

max
h∈[0:H−1]

E(s,a)∼dπth
[DTV (P

t
h(·|s, a), P ⋆h (·|s, a))]

E(s,a)∼µh [DTV (P th(·|s, a), P ⋆h (·|s, a))]
.

Theorem 4.1 implies that the policy πALG is the “best-effort” policy in single-policy concentrability,
which can compete with any good comparator policy (including the optimal policy if it is covered by
offline data). In the upper bound of Theorem 4.1, the regret can be split into three parts. The last two
terms correspond to the statistical errors, which are amplified by the coverage of the offline dataset. In
general, the small CP (π) and CR(π) results in better statistical error guarantee. In contrast, the large
ones potentially pay high variance and statistical errors. Interestingly, we find that the distributional
shift measurement MP influences the regret, indicating that the mirror-descent trajectory indeed
matters in Algorithm 1. Note that the first term, i.e., the optimization error O(Rmax

√
log |A|/T ),

can be reduced with the increase of the iterations T . Since the optimization error is well-controlled,
this regret guarantee is mainly determined by the last two statistical errors.

In many high-stakes applications, the safe policy improvement guarantees are of concern, i.e., the
return policy πALG is no worse than the behavior policy for generating offline data [Levine et al.,
2020]. In the following, we show that Algorithm 1 guarantees the safe policy improvement.
Corollary 4.2 (Safe policy improvement). Under the conditions of Theorem 4.1, we run Algorithm 1
many iterations, i.e., T is sufficiently large, with probability at least 1− δ, the regret J(πb)−J(πALG)
is upper bounded by

O

(
Rmaxκ

√
log(NR(1/N)/δ)

N

)
+O

(
RmaxHMP

√
log(NP(1/N)/δ)

N

)
.

Next, we study the sample complexity of MCP and demonstrate that our algorithm achieves improved
performance in comparison to prior works.
Corollary 4.3 (Sample complexity). Under the conditions of Theorem 4.1, the πALG in Algorithm 1
satisfies J(π)− J(πALG) ≤ Rmaxε with probability at least ≥ 1− δ, if the sample size attains

O
(
κ2C2

R(π) log(NR(1/N)/δ)

ϵ2
+
H2(CP (π) +MP )

2 log (NP(1/N)/δ)

ϵ2

)
.

In comparison to some prior works, Kang & Oh [2025] requires sample complexity:

O
(
max

{
R4

maxH
5 log |A| log(H|F|/δ)

ϵ4
,
R2

maxH
2 log(H|P|/δ)
ϵ2

}
+

C2
TRκ

2H log(|R|/δ)
ϵ2

)
,

where | · | denotes the cardinality of the value function class, CTR = supτ∈T
dπ(τ)
µ(τ) . This implies that

the results in Kang & Oh [2025] are restricted to finite classes, but we can handle the infinite classes.
Moreover, the bound in Kang & Oh [2025] is dependent on an extra model class F , and we avoid this
additional complexity via leveraging a relative-performance model-based planning procedure. Also,
the MCP is more sample efficient, i.e., O(ϵ−2) vs O(ϵ−4). In comparison to the work Zhan et al.
[2023a], they attain a sample complexity of the same order as ours, but it requires explicitly solving
for the confidence set radius, which is computationally intractable. In contrast, MCP achieves both
statistical efficiency and computational efficiency by avoiding constructing explicit confidence sets.

5 SPECIALIZED STRUCTURES ON DYNAMICS

In the previous section, the results were established for general function approximation. In the
following, we consider structured dynamics and show that MCP can exploit additional structural
properties to refine the model-based concentrability coefficients into more interpretable and natural
quantities, leading to improved regret bounds. Specifically, we analyze two representative examples:
(1) Kernelized nonlinear regulators (KNRs [Kakade et al., 2020]), which capture smooth nonlinear
dynamics common in control and robotics, and (2) Factored model [Kearns & Koller, 1999], particu-
larly effective in dealing with high-dimensional environments, e.g., via conditional independence.
For comprehensive technical details regrading this section, please refer to Appendix D and E.
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5.1 KERNELIZED NONLINEAR REGULATORS

A kernelized nonlinear regulator is a model that assumes the next state is a linear transformation
of a nonlinear embedding of the current state and action, corrupted by Gaussian noise [Kakade
et al., 2020]. Formally, the transition model is given by: s′ = W ∗ϕ(s, a) + ϵ, ϵ ∼ N (0, ζ2I),
where ζ ∈ R, s ∈ Rd′ , a ∈ Rda , and ϕ : S ×A → Rd is a nonlinear feature mapping. The true
model is parameterized by the unknown weight matrix W ∗, and the corresponding class of models is
indexed by W , so that each candidate model is denoted by PW . To establish the regret guarantee
for MCP in the KNRs setting, we define a new concentrability coefficient that takes advantage of
the structure of KNRs. Let Σπ = E(s,a)∼dπ [ϕ(s, a)ϕ(s, a)

⊤], Σµ = E(s,a)∼µ[ϕ(s, a)ϕ(s, a)
⊤] and

Σn =
∑n
i=1 ϕ(si, ai)ϕ

⊤(si, ai) + λI . We define the relative condition number as:

CKP (π) = sup
x∈Rd

(
x⊤Σπx

x⊤Σµx

)
.

We should note that DTV (PW (·|s, a), PW∗(·|s, a)) = c (∥(W −W ∗)ϕ(s, a)∥2) [Devroye et al.,
2018], where c is a universal constant. It is easy to show that CP (π) is upper-bounded by the relative
condition number CKP (π). We now tailor Algorithm 1 to the KNR setting. We need to modify the
maximum likelihood estimator of the transition model to a kernelized nonlinear regularized variant,
i.e.,

Ŵ = argmin
W∈Rd′×d

ED[∥Wϕ(s, a)− s′∥22] + λ∥W∥2F ,

where ∥W∥F is the Frobenius norm of W . Now we are prepared to state the regret bound for MCP
in the KNR setting.

Theorem 5.1 (PAC Bound in KNRs). Under the conditions of Theorem 4.1, suppose ∥ϕ(s, a)∥2 ≤ 1,
∥W∥22 = O(1), ζ2 = O(1), λ = O(1), and ∥W∥F ≤ cW hold. We set λ1 = O(CR(π)) and

λ2 = O(Rmax

√
CP (π)MK

P ). For any good comparator policy π, with probability at least 1− δ, the

yielded πALG by the KNR-modified Algorithm 1 satisfies that

J(π)− J(πALG) ≤ O

(
Rmax

√
log |A|
T

)
+O

(
κRmaxCR(π)

√
log(NR/δ)

N

)

+O

(
Rmax(C

K
P (π) +MK

P )Hξ

(
λΣ−1

n

√
log(HNP/δ)

N
+ Γ(N, δ)

))
,

where the coefficients λΣ−1
n

=
√
λmax(Σ

−1
n ), MK

P = max
t∈[1:T ]

sup
x∈Rd

(
x⊤Σπtx

x⊤Σµx

)
, Γ(N, δ) =√

rank(Σµ){log (exp (rank (Σµ)) /δ)}/N , and ξ = ∥W ∗∥2 + d′ min(d, rank(Σµ)(rank(Σµ) +
log(1/δ))) log(1 +N). The complexity of the function class in the KNR settings is characterized as
NP = rank(Σµ)d

′ log(1 + 2cWN), NR = d′ log(1 + 2N).

In comparison to Theorem 4.1, the main contribution of the modified algorithm MCP-KNR is on
exploiting the KNR structures and improving the regret bound. In particular, the appearance of
rank(Σµ) in the bound, instead of the feature dimension d, ensures that the result adapts to the
complexity of the data distribution. Notably, the bound holds even when d is infinite, provided that
the data concentrates on a low-dimensional subspace.

5.2 FACTORED MODELS

Factored models provide a compact representation for large-scale MDPs by exploiting structure in
the state space [Osband & Van Roy, 2014]. Let d ∈ N+ and B be a small finite set. Rather than
modeling the full transition probability over all state variables, they decompose the state s ∈ Rd
into components and assume that each component s[i] of the next state depends only on a small
set of parent variables Pi ⊆ [1 : d]. This yields a transition function of the form P (s′|s, a) =∏d
i=1 Pi(s

′[i]|s[Pi], a), significantly reducing the number of parameters compared to the unfactored
case. This factorization drastically reduces the model complexity: the number of parameters for the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

transition function becomes Lp :=
∑d
i=1 |A| · |B|1+|Pi|, as opposed to the exponential size O(Bd)

in the fully connected case, enabling more sample-efficient learning from limited data. To adapt
Algorithm 1 to this structured setting and formulate a new algorithm—MCP-Factored—we modify
the maximum likelihood estimation step by estimating each transition component Pi separately
via P̂i = argmaxP ED [logP (s′[i]|s[Pi], a)] , and reconstruct the full transition model as P̂ =∏d
i=1 P̂i. Before we present the regret guarantee for MCP-Factored, let us define a new concentrability

coefficient. Instead of using the density ratio over the full state space, we measure it locally for each
factor of the transition model. Specifically, for any comparator policy π, we define

CFP (π) = max
i∈[1:d]

E(s,a)∼µ

[(
dπ(s[Pi], a)

µ(s[Pi], a)

)2
]
.

We should note that this factored concentrability coefficient CFP (π) relaxes the density ratio-based
single-policy concentrability coefficient, i.e., CFP (π) ≤ sup(s,a,h)

dπh(s,a)
µh(s,a)

. We now present the regret
bound for the MCP-Factored algorithm.

Theorem 5.2 (PAC Bound in Factored Models). Under the conditions of Theorem 4.1, we set

λ1 = O(CR(π)), λ2 = O(Rmax

√
CP (π)MF

P ). For any good comparator policy π, with probability

at least 1− δ, after sufficiently large number of iterations, the yielded πALG by the Factored-modified
Algorithm 1 satisfies that the regret J(πb)− J(πALG) is upper bounded by

O

(
κCR(π)Rmax

√
log(rLr/δ)

N

)
+O

((
CFP (π) +MF

P

)
HRmax

√
dLp log(LpNd/δ)

N

)
.

Here, MF
P = max

t∈[1:T ]
max
i∈[1:d]

E(s,a)∼µ

[(
dπ(s[Pi],a)
µ(s[Pi],a)

)2]
and Lr =

∑d
i=1 |A| · |B|1+|Uai |, where Uai

denotes the effective dimension of the state variables on which the reward model depends.

The key observation in Theorem 5.2 is as follows: Instead of depending on the full state space as
in the results for general function approximation, MCP-Factored leverages the structure of factored
models and therefore the PAC bound scales with the number of factors and the sizes of their parent
sets, summarized by the complexity term Lp and Lr. This avoids the exponential dependence on the
state dimension d seen in the non-factored models.

6 EXPERIMENTS

Benchmarks and Evaluation. We evaluate the algorithmic performance of MCP on Meta-World
benchmark datasets with preference feedback [Yu et al., 2020a; Kang & Oh, 2025]. We refer the
readers to the Appendix F for details of benchmarks. In Table 2, we summarize the success rates
of MCP and several competitive baselines, including Oracle (IQL [Kostrikov et al., 2021] trained
on ground-truth explicit rewards), MR [Kim et al., 2023], PT [Kim et al., 2023], DPPO [An et al.,
2023], IPL [Hejna & Sadigh, 2023], and APPO [Kang & Oh, 2025]. Most notably, MCP achieves the
best mean performance for 8 tasks with varying sizes of preference samples. Another noteworthy
observation is that MCP overwhelmingly outperforms APPO for the majority of the tasks. Although
MCP and APPO are all model-based algorithms, APPO leverages the extra value function modeling
to locally smooth over gaps in data coverage. This smoothing-based mitigation is still not sufficient to
guarantee robustness in poor data coverage scenarios. Due to page limits, we provide the additional
empirical results and implementation details in Appendix G.

Effect of Dataset Size. To evaluate the performance of MCP under varying amounts of preference
data—especially in small-data regimes—we train the model using different numbers of preferences,
ranging from 100 to 2000, as shown in Figure 1(a). Notably, even with extremely limited data, i.e.,
N = 100, MCP maintains a relatively high success rate, highlighting its potential for applications
with small preference datasets, such as those in medicine and finance.
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Table 2: Below reports the success rates on the Meta-World medium-replay benchmark using 500
and 1000 preference-based feedback samples, averaged across three distinct random seeds. Baseline
results are from the respective papers. Note that the top two algorithms in each experiment are
highlighted in bold, with the best-performing algorithm additionally shaded in light gray.

Dataset & Methods Oracle MR PT DPPO IPL APPO MCP

BPT-500 88.33±4.76 10.08±7.57 22.87±9.06 3.93±4.34 34.73±13.9 53.52±13.9 56.00±14.1

box-close-500 93.40±3.10 29.12±11.3 0.33±1.16 10.20±11.5 5.93±5.81 18.24±15.60 7.20±3.87

sweep-500 98.33±1.87 86.96±6.93 43.07±24.6 10.47±15.8 27.20±23.8 26.80±5.32 11.47±9.93

BPT-wall-500 56.27±6.32 0.32±0.30 0.87±1.43 0.80±1.51 8.93±9.84 64.32±21.0 64.53±10.6

dial-turn-500 75.40±5.47 61.44±6.08 68.67±12.4 26.67±22.2 31.53±12.5 80.96±4.49 38.67±7.65

sweep-into-500 78.80±7.96 28.40±5.47 20.53±8.26 23.07±7.02 32.20±7.35 24.08±5.91 33.07±4.71

drawer-open-500 100.00±0.00 98.00±2.32 88.73±11.6 35.93±11.2 19.00±13.6 87.68±10.0 98.67±0.94

lever-pull-500 98.47±1.77 79.28±2.95 82.40±22.7 10.13±12.2 31.20±18.5 75.76±7.17 80.27±3.10

Average Rank -500 – 3.000 3.500 5.250 4.000 2.875 2.375

BPT-1000 88.33±4.76 8.48±5.80 18.27±10.6 3.20±3.04 36.67±17.4 59.04±19.0 62.93±17.8

box-close-1000 93.40±3.10 27.04±14.5 2.27±2.86 9.33±6.90 6.73±8.41 34.24±18.5 10.53±5.78

sweep-1000 98.33±1.87 87.52±7.87 29.13±14.8 8.73±16.4 38.33±24.9 17.36±12.4 20.80±11.91

BPT-wall-1000 56.27±6.32 0.48±0.47 2.13±2.96 0.27±0.85 14.07±11.5 62.96±18.4 69.73±15.1

dial-turn-1000 75.40±5.47 69.44±7.00 68.80±5.50 36.40±21.9 43.93±13.4 81.44±6.73 48.40±5.82

sweep-into-1000 78.80±7.96 26.00±5.53 20.27±7.84 23.33±7.30 30.40±7.74 18.16±11.1 34.13±3.27

drawer-open-1000 100.00±0.00 98.40±2.82 95.32±4.26 36.47±7.90 28.53±18.4 98.56±2.68 99.07±0.38

lever-pull-1000 98.47±1.77 88.96±3.28 72.93±10.2 8.53±9.96 40.40±17.4 76.96±4.40 83.33±5.51

Average Rank -1000 – 2.750 4.125 5.375 3.875 2.750 2.125

Average Rank – 2.875 3.812 5.312 3.938 2.813 2.250

Figure 1: (a) Model performance varying with dataset size, i.e., the number of preference feedback,
ranging from 100 to 2000. (b) Training curves for drawer-open with 1000 preferences. We evaluate
the results over three seeds, and the horizontal lines indicate the baseline performance summarized in
Table 2.

Training Dynamics. We study the training dynamics of MCP for drawer-open with 1000 preferences
in Figure 1(b). We evaluate the training performance every 5000 steps. Figure 1(b) demonstrates that
MCP achieves comparable performance with state-of-the-art baselines in the task. Also, it shows that
MCP maintains stability in the policy improvement process, especially after sufficient training steps.

Ablation Study. We investigate the contribution of each design component of MCP on the lever-
pull task with 1000 preferences in Figure 2(a). The figure compares the full MCP algorithm with
several variants obtained by removing the reward regularization (λ1 = 0), removing the transition
regularization (λ2 = 0), dropping the relative performance term (“No Relative Performance”), and
replacing the model-based planner with a value-based variant (“Value-based MCP”). We evaluate
the success rate every 5000 training steps and report the mean and standard deviation over three
seeds. Figure 2(a) shows that full MCP rapidly reaches a high success rate and clearly outperforms
all ablated variants. In particular, the variants without reward or transition regularization make little
progress, indicating that the conservative modeling terms are essential for avoiding over-optimistic
and unstable policies. The “No Relative Performance” variant exhibits large variability and unstable
learning, which is consistent with the lack of the safe policy improvement guarantee provided by
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the relative-performance objective. The “Value-based MCP” variant improves in the early stage
but then degrades, suggesting that relying solely on value-based updates introduces significant bias
from model errors. Overall, these results confirm that all four model components are crucial for
guaranteeing the consistent policy improvement.

Figure 2: (a) Ablation of MCP design components on lever-pull-1000. (b) Robustness to label noise
on drawer-open-1000 (performance vs. label-flipping probability).
Robustness to Label Noise. We further examine the robustness of MCP to noisy preference labels
on the drawer-open task in Figure 2(b). Starting from a dataset with 1000 preferences, we introduce
synthetic noise by independently flipping each pairwise label with probability p and vary p over
several levels. The figure reports the resulting success rates of MCP and MR, averaged over three
seeds. As the label-flipping probability increases, the performance of both methods degrades, but
MCP consistently maintains higher success rates and exhibits a slower decay than MR. This result
demonstrates that the conservative design of MCP provides improved robustness to label noise.
Table 3: Sensitivity of MCP to regularization hyperparameters on drawer-open-1000 and sweep-into-
1000.

λ1 1e-1 3e-1 1 3 1e1

drawer-open-1000 94.8± 3.85 97.60± 2.33 99.07± 0.38 94.53± 4.03 86.27± 10.31
sweep-into-1000 32.4± 5.85 34.13± 3.27 30.67± 4.71 24.0± 9.27 19.87± 7.92

λ2 3e-3 1e-2 3e-2 1e-1 1

drawer-open-1000 90.93± 7.30 95.47± 4.10 99.07± 0.38 89.60± 9.53 80.13± 15.19
sweep-into-1000 20.8± 10.32 23.6± 5.85 28.27± 7.08 34.13± 3.27 25.73± 6.15

Hyperparameter sensitivity. We conduct a hyperparameter sensitivity analysis for the regulariza-
tion weights λ1, λ2 on the drawer-open-1000 and sweep-into-1000 tasks over three seeds. As shown
in Table 3, across several orders of magnitude for each parameter, the success rate of MCP changes
only mildly, indicating that our method is not highly sensitive to the exact choice of λ1, λ2.

7 DISCUSSION

In this work, we present the first provably sample-efficient and computationally tractable offline PbRL
under partial data coverage without known dynamics. The developed algorithm implicitly encodes
the conservatism into a relative performance model-based planning procedure, and guarantees the
algorithmic traceability. The learned policy is able to compete with any policies within the data
coverage, making it robust even in scenarios with poor data coverage. We further extend and refine
the theoretical results with general function approximation under specialized dynamic structures.
As a potential research direction, it is interesting to extend the Bradley–Terry–Luce framework for
modeling human preferences by incorporating alternative preference models, e.g., Thurstone model.
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A RELATED WORK

Offline Preference-based Reinforcement Learning. Recent advancements in offline PbRL have
investigated a variety of methods for incorporating preference feedback into policy learning. Some
of these approaches rely on explicit reward modeling, while others aim to bypass it altogether. For
instance, OPRL [Shin et al., 2023] introduces an active querying mechanism over offline data to infer
a reward model from preferences, which is subsequently used in standard offline RL pipelines. PT
[Kim et al., 2023] proposes a transformer-based reward model designed to capture non-Markovian
dependencies in human feedback. In contrast, IPL [Hejna & Sadigh, 2023] avoids reward modeling
entirely by directly optimizing a Q-function aligned with preferences through the inverse Bellman
operator. Similarly, DPPO [An et al., 2023] formulates preference learning as a contrastive objective,
enabling direct policy optimization based on preference data without estimating an intermediate
reward function. While these methods demonstrate promising empirical performance, they generally
lack sample complexity guarantees, which raises concerns about their theoretical robustness.

To overcome these limitations, recent works have proposed offline PbRL algorithms with theoretical
guarantees under partial data coverage. For instance, [Zhu et al., 2023] provides the first sample
complexity results under linear reward models, while subsequent works [Zhan et al., 2023a; Pace et al.,
2024] extend these to general function approximation using confidence-set-based policy optimization.
Yet, constructing and optimizing over such sets is often computationally intensive. In the recent work
[Kang & Oh, 2025], their algorithms either assume known transition dynamics or require fitting an
extra value function that depends on the learned transition model via Bellman recursion to perform
conservatism. This allows the value function to locally smooth over gaps in data coverage—if the
value function is well-approximated. However, this smoothing-based mitigation strategy intrinsically
requires the realizability condition on the value function and does not guarantee near-optimal regret
under partial coverage.

In contrast, our work proposes a model-based offline PbRL framework that encodes conservatism
implicitly via relative performance objectives, avoiding confidence set construction and value function
estimation. By learning both the reward and transition models from offline data and using them for
conservative planning, our approach achieves PAC guarantees under general function approximation,
without assuming known dynamics. Moreover, when applied to structured settings (e.g., kernelized
nonlinear regulators or factored models), it yields refined generalization guarantees.

Preference-based Reinforcement Learning. Unlike traditional RL, which relies on explicit nu-
merical rewards for each state-action pair, preference-based RL infers a reward function by collecting
pairwise preferences over trajectories [Wirth et al., 2017; Akrour et al., 2012]. Various strategies have
been proposed for eliciting preferences, typically assuming access to either a known transition model
or an environment that supports interaction or rollouts [Brown et al., 2020; Christiano et al., 2017;
Chen et al., 2022; Pacchiano et al., 2021; Sadigh et al., 2017; Zhan et al., 2023b; Lindner et al., 2021;
Stiennon et al., 2020; Park et al., 2022; Hejna III & Sadigh, 2023]. While effective in interactive or
online settings, these assumptions limit the applicability of many PbRL methods in the offline setting,
where the agent must learn solely from a fixed dataset without further interaction.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Offline RL. Offline RL has gained attention because it allows learning policies without interacting
with the environment, which is important in areas where safety concerns or data collection costs make
interaction difficult [Levine et al., 2020]. However, offline RL is also difficult because the available
data may not cover all relevant state-action pairs. This lack of coverage can cause errors during policy
learning. To address this issue, many algorithms have been proposed that introduce conservative
learning strategies to ensure reliable performance under limited data coverage [Zhan et al., 2022; Xie
et al., 2021; Liu et al., 2020; Jin et al., 2021; Kumar et al., 2020; Uehara & Sun, 2021b; Rashidinejad
et al., 2021; Shi et al., 2022; Li et al., 2024; Kidambi et al., 2020; Yu et al., 2021; Nachum et al.,
2019].

B TECHNICAL PROOFS FOR GENERAL FUNCTION APPROXIMATION

To begin with, we will introduce some technical notations used in this section to facilitate reading.

Summarization of Notations:

• We useR to represent the function class for the reward model, {Ph}H−1
h=0 to represent the

function class for transition dynamics. We use NR(1/N) to represent the 1/N -bracket
number for reward model function class R, and NP(1/N) to represent the 1/N -bracket
number for transition dynamics function class {Ph}H−1

h=0 .

• We use r⋆ to denote the ground-truth reward model, {P ⋆h}
H−1
h=0 to denote the ground-truth

transition dynamics at time steps h ∈ [0 : H − 1]. We use r̂ and {P̂h}H−1
h=0 to denote their

corresponding MLE estimators, respectively.
• Concentrability coefficient for reward:

CR(π) = sup
r∈R

Eτ1∼dπ,τ0∼µref
[∥∥(r(τ1)− r(τ0))− (r⋆(τ1)− r⋆(τ0))

∥∥]
Eτ1∼µ,τ0∼µ [∥(r(τ1)− r(τ0))− (r⋆(τ1)− r⋆(τ0))∥]

.

• Concentrability coefficient for transition:

CP (π) = max
h∈[0:H−1]

sup
Ph∈Ph

E(s,a)∼dπh [DTV (Ph(·|s, a), P ⋆h (·|s, a))]
E(s,a)∼µh [DTV (Ph(·|s, a), P ⋆h (·|s, a))]

.

• Empirical regularizer for reward model:

E1(r;D) =
1

N

N∑
n=1

∥∥(r(τn,1)− r(τn,0))− (r̂(τn,1)− r̂(τn,0))∥∥ .
• Empirical regularizer for transition dynamics:

E2({Ph}H−1
h=0 ;D) =

1

N

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥Ph(sn,ih+1|s
n,i
h , an,ih )− P̂h(sn,ih+1|s

n,i
h , an,ih )

∥∥∥ .
Lemma B.1. Let M =

(
{PhM}

H−1
h=0 , rM

)
, M ′ =

(
{PhM ′}H−1

h=0 , rM ′
)

be two MDPs defined over the
same state-action space and initial state. We define JM (π) := J(π; rM , {PhM}

H−1
h=0 ). For any policy

π : S → ∆(A) ∈ Π. By Assumption 2, we have

JM (π)− JM ′(π)

≤Rmax

H−1∑
h=0

Es,a∼dπ
Ph
M

[
DTV (P

h
M (·|s, a), PhM ′(·|s, a))

]
+ Eτ∼dπ

{Ph
M

}H−1
h=0

[rM (τ)− rM ′(τ)] .

Proof of Lemma B.1. To analyze the difference JM (π)− JM ′(π), we begin by expressing it as the
sum of two terms: one corresponding to the difference in rewards under the same dynamics, and
another capturing the difference induced by the change in transition dynamics. Specifically, we write

JM (π)− JM ′(π) = Eτ∼dπ
{Ph
M

}H−1
h=0

[rM (τ)]− Eτ∼dπ
{Ph
M′ }

H−1
h=0

[rM ′(τ)]
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= Eτ∼dπ
{Ph
M

}H−1
h=0

[rM (τ)− rM ′(τ)]︸ ︷︷ ︸
(A)

+

(
Eτ∼dπ

{Ph
M

}H−1
h=0

[rM ′(τ)]− Eτ∼dπ
{Ph
M′ }

H−1
h=0

[rM ′(τ)]

)
︸ ︷︷ ︸

(B)

.

Term (A) remains unchanged. Now we aim to bound term (B). By Lemma 9 in Uehara & Sun [2021a],
we have

|(B)| ≤ Rmax

H−1∑
h=0

Es,a∼dπ
Ph
M

[
DTV (P

h
M (·|s, a), PhM ′(·|s, a)

]
.

This completes the proof.

Lemma B.2. Zhan et al. [2023a] For any reward model r ∈ R, with probability at least 1− δ, we
have

Eτ0∼µ,τ1∼µ[∥(r(τ1)− r(τ0))− (r⋆(τ1)− r⋆(τ0))∥2] ≤
cκ2 log(NR(1/N)/δ)

N
,

where c > 0 is a universal constant, κ := 1
infx∈[−rmax,rmax] Φ′(x) measures the nonlinearity of the link

function.

Lemma B.3. Zhan et al. [2023a] With probability at least 1− δ, for all h ∈ [0 : H−1], it holds that

E(s,a)∼µh

[∥∥∥P ⋆h (·|s, a)− P̂h(·|s, a)∥∥∥2
TV

]
≤ c log(HNP(1/N)/δ)

N
,

where c > 0 is a universal constant.

Lemma B.4. Let {P th}
H−1
h=0 be the transition models selected at line 5 of Algorithm 1 corresponding

to πt, for iterations t ∈ [1 : T ]. Then with probability at least 1− δ, we have

E2({P th}H−1
h=0 ;D) ≤

cHRmaxMP

λ2

√
log(HNP (1/N)/δ)

N
+ E2({P ⋆h}H−1

h=0 ;D),

where c > 0 is a universal constant.

Proof of Lemma B.4. Recall that in line 5 in Algorithm 1, the transition model {P th}
H−1
h=0 is selected

as minimizers of

J(πt; r, {Ph}H−1
h=0 )− Eτ∼µref [r(τ)] + λ1E1(r;D) + λ2E2({Ph}H−1

h=0 ;D),

where πt is the policy at iteration t. So we have

J
(
πt; rt, {P th}H−1

h=0

)
− Er∼µref [rt(τ)] + λ1E1(rt;D) + λ2E2({P th}H−1

h=0 ;D)
= min
r∈R,{Ph∈Ph}H−1

h=0

(
J
(
πt; r, {Ph}H−1

h=0

)
− Er∼µref [r(τ)] + λ1E1(r;D) + λ2E2({Ph}H−1

h=0 ;D)
)

≤ J
(
πt; rt, {P ⋆h}H−1

h=0

)
− Er∼µref [rt(τ)] + λ1E1(rt;D) + λ2E2({P ⋆h}H−1

h=0 ;D).

Rearrange the equation above, and we have

J
(
πt; rt, {P th}H−1

h=0

)
− J

(
πt; rt, {P ⋆h}H−1

h=0

)
≤ λ2E2({P ⋆h}H−1

h=0 ;D)− λ2E2({P
t
h}H−1
h=0 ;D)

≤ λ2E2({P ⋆h}H−1
h=0 ;D). (B.1)
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We also have

J
(
πt; rt, {P th}H−1

h=0

)
− Er∼µref [rt(τ)] + λ1E1(rt;D) + λ2E2({P th}H−1

h=0 ;D)
= min
r∈R,Ph∈Ph

(
J
(
πt; r, {Ph}H−1

h=0

)
− Er∼µref [r(τ)] + λ1E1(r;D) + λ2E2({Ph}H−1

h=0 ;D)
)

≤ J
(
πt; rt, {P̂h}H−1

h=0

)
− Er∼µref [rt(τ)] + λ1E1(rt;D) + λ2E2({P̂h}H−1

h=0 ;D).

By rearranging the equation above, we can obtain

λ2E2({P th}H−1
h=0 ;D)

≤
∣∣∣J (πt; rt, {P th}H−1

h=0

)
− J

(
πt; rt, {P̂h}H−1

h=0

)∣∣∣
=
∣∣∣J (πt; rt, {P th}H−1

h=0

)
− J

(
πt; rt, {P ⋆h}H−1

h=0

)
+ J

(
πt; rt, {P ⋆h}H−1

h=0

)
− J

(
πt; rt, {P̂h}H−1

h=0

)∣∣∣
≤

∣∣∣∣∣λ2E2({P ⋆h}H−1
h=0 ;D) +Rmax

H−1∑
h=0

Es,a∼dπth
[
DTV (P̂h(·|s, a), P ⋆h (·|s, a))

]∣∣∣∣∣
≤ λ2E2({P ⋆h}H−1

h=0 ;D) +HRmaxMP

√
c log(HNP (1/N)/δ)

N
,

where MP = max
t∈[1:T ]

max
h∈[0:H−1]

E
(s,a)∼dπt

h
[DTV (P th(·|s,a),P

⋆
h (·|s,a))]

E(s,a)∼µh [DTV (P
t
h(·|s,a),P

⋆
h (·|s,a))]

, the third step is by equation (B.1)

and Lemma B.1. This completes the proof.

Lemma B.5. Let r⋆ ∈ R denote the ground -truth reward model, and let r̂ denote the maximum
likelihood estimator. Then with probability at least 1− δ, we have

E1(r⋆;D) =
1

N

N∑
n=1

∥∥(r⋆(τn,1)− r⋆(τn,0))− (r̂(τn,1)− r̂(τn,0))∥∥
≤ c
√
κ2 log(NR(1/N)/δ)

N
+ cRmax

√
log(NR(1/N)/δ)

N
,

where c > 0 is a universal constant.

Proof of Lemma B.5. By Assumption 2, both r⋆ and r̂ are bounded by Rmax, so for any pair of
trajectories, we have∥∥∥(r⋆(τ (1))− r⋆(τ (0)))− (r̂(τ (1))− r̂(τ (0)))∥∥∥ ≤ 4Rmax.

Define fr =
(
r⋆(τ (1))− r⋆(τ (0))

)
−
(
r̂(τ (1))− r̂(τ (0))

)
.

By Hoeffding’s inequality and union bound, we obtain

P

(∣∣∣∣∣ 1N
N∑
n=1

∥fr∥ − E[∥fr∥]

∣∣∣∣∣ ≥ ϵ
)
≤ 2NR(1/N) exp

(
− 2Nϵ2

(4Rmax)2

)
.

Now solve for ϵ such that the RHS≤ δ, we get

ϵ = 4Rmax

√
log(2NR(1/N)/δ)

2N
.

Meanwhile, from Lemma B.2, by Jensen’s inequality, we also have

E[∥fr∥2] ≤
ck2 log(NR(1/N)/δ)

N
⇒ E[∥fr∥] ≤

√
ck2 log(NR(1/N)/δ)

N
.
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Putting everything together, we obtain

E1(r⋆;D) ≤ c
√
κ2 log (NR(1/N)/δ)

N
+ cRmax

√
log(NR(1/N)/δ)

N
,

where c > 0 is a universal constant. This completes the proof.

Lemma B.6. Let {P ⋆h}
H−1
h=0 denote the ground-truth transition dynamics at time steps h ∈ [0 : H−1]

and let {P̂h}H−1
h=0 denote the maximum likelihood estimator. Then, with probability at least 1− δ, we

have

E2({P ⋆h}H−1
h=0 ;D) =

1

N

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥P ⋆h (sn,ih+1|s
n,i
h , an,ih )− P̂h(sn,ih+1|s

n,i
h , an,ih )

∥∥∥
≤cH

√
log(HNP(1/N)/δ)

N
,

where c > 0 is a universal constant.

Proof of Lemma B.6. Since the N trajectory pairs are sampled i.i.d, we first take expectation over
the data distribution µh, and average over n

E[E2({P ⋆h}H−1
h=0 ;D)] =

H−1∑
h=0

1∑
i=0

E(sh,ah)∼µi,h

[∥∥∥P ⋆h (· | sh, ah)− P̂h(· | sh, ah)∥∥∥] .
By Lemma B.3 and Jensen’s inequality, summing over all h and i we obtain

E[E2({P ⋆h}H−1
h=0 ;D)] ≤ cH

√
log(HNP(1/N)/δ)

N
,

where c > 0 is a universal constant. Applying Hoeffding’s inequality and union bound over the
transition dynamics function class

P

(∣∣∣∣∣ 1N
N∑
n=1

E2({P ⋆h}H−1
h=0 ;D)− E[E2({P ⋆h}H−1

h=0 ;D)]

∣∣∣∣∣ ≥ ϵ
)
≤ 2HNP(1/N) exp

(
−Nϵ

2

2H2

)
.

Solve for ϵ such that the RHS is bounded by δ, we obtain

ϵ = H

√
2 log(2HNP(1/N)/δ)

N
.

By applying Lemma B.4, we have

E2({P th}H−1
h=0 ;D)

≤cHRmaxMP

λ2

√
log(HNP (1/N)/δ)

N
+ cH

√
log(HNP(1/N)/δ)

N
.

This completes the proof.

Lemma B.7. Let πt denote the policy at iterations t ∈ [1 : T ]. For the associated reward function rt,
transition dynamics {P th}

H−1
h=0 selected in line 5 of the Algorithm 1, we have

J(πt) ≥ J
(
πt; rt, {P th}H−1

h=0

)
− Eτ∼µref [rt(τ)] + Eτ∼µref [r⋆(τ)]

− λ1E1(r⋆;D)− λ2E2({P ⋆h}H−1
h=0 ;D).
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Proof of Lemma B.7. Please recall that J(πt) = J(πt; r
⋆, {P ⋆h}

H−1
h=0 ). So we have

J(πt) = J(πt)− Eτ∼µref [r⋆(τ)] + λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D) + Eτ∼µref [r⋆(τ)]

− λ1E1(r⋆;D)− λ2E2({P ⋆h}H−1
h=0 ;D)

≥ min
r,{Ph}H−1

h=0

(
J(πt; r, {Ph}H−1

h=0 )− Eτ∼µref [r(τ)] + λ1E1(r;D)

+λ2E2({Ph}H−1
h=0 ;D)

)
+ Eτ∼µref [r⋆(τ)]− λ1E1(r⋆;D)− λ2E2({P ⋆h}

H−1
h=0 ;D)

= J
(
πt; rt, {P th}H−1

h=0 )
)
− Eτ∼µref [rt(τ)] + λ1E1(rt;D) + λ2E2({P th}H−1

h=0 ;D)

+ Eτ∼µref [r⋆(τ)]− λ1E1(r⋆;D)− λ2E2({P ⋆h}
H−1
h=0 ;D)

≥ J
(
πt; rt, {P th}H−1

h=0

)
− Eτ∼µref [rt(τ)] + Eτ∼µref [r⋆(τ)]

− λ1E1(r⋆;D)− λ2E2({P ⋆h}H−1
h=0 ;D),

where the third step is by the optimality of the rt and {P th}
H−1
h=0 . This completes the proof.

Now we want to make some modifications to the Lemma B.1 to serve for proof of the main theorem
later.

Lemma B.8. Let π ∈ Π be an arbitrary policy. Then, for the reward model rt selected in Line 5 of
Algorithm 1 corresponding to πt, with probability at least 1− δ, for all t ∈ [1 : T ], we have

Eτ1∼dπ,τ0∼µref [
∥∥rt(τ1)− rt(τ0)− (r⋆(τ1)− r⋆(τ0))

∥∥] ≤ cCR(π)√κ2 log(NR(1/N)/δ)

N
,

where c > 0 is a universal constant.

Proof of Lemma B.8.

Eτ1∼dπ,τ0∼µref [
∥∥rt(τ1)− rt(τ0)− (r⋆(τ1)− r⋆(τ0))

∥∥]
≤ CR(π)Eτ1∼µ,τ0∼µ[

∥∥rt(τ1)− rt(τ0)− (r⋆(τ1)− r⋆(τ0))
∥∥]

≤ cCR(π)
√
κ2 log(NR(1/N)/δ)

N
,

where the second step is by Lemma B.2. This completes the proof.

Lemma B.9. Let π ∈ Π be an arbitrary policy. Then, for the transition model {P th}
H−1
h=0 selected in

Line 5 of Algorithm 1 corresponding to πt, with probability at least 1− δ, for all t ∈ [1 : T ], we have

H−1∑
h=0

Edπh
[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
≤ cCP (π)H

(
RmaxMP

λ2

√
log(HNP (1/N)/δ)

N
+

√
log(HNP(1/N)/δ)

N

)
,

where c > 0 is a universal constant.

Proof of Lemma B.9.
H−1∑
h=0

Edπh
[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
≤ CP (π)

H−1∑
h=0

Eµh
[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
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≤ CP (π)

H−1∑
h=0

Eµh
[∥∥∥P th(·|s, a), P̂h(·|s, a)∥∥∥

TV

]
︸ ︷︷ ︸

(a)

+Eµh
[∥∥∥P ⋆h (·|s, a), P̂h(·|s, a)∥∥∥

TV

]
︸ ︷︷ ︸

(b)

 .

The bound for term (b) can be obtained from Lemma B.3. Now we want to bound term (a) by
Hoeffding’s inequality and apply the union bound

P

(∣∣∣∣∣ 1N
N∑
n=1

E2({P th}H−1
h=0 ;D)−

H−1∑
h=0

Eµh
[∥∥∥P th(·|s, a), P̂h(·|s, a)∥∥∥

TV

]∣∣∣∣∣ ≥ ϵ
)

≤ 2HNP(1/N) exp

(
−Nϵ

2

2H2

)
,

where the bound for E2({P th}
H−1
h=0 ) can be obtained from Lemma B.6. Solving for ϵ such that the

RHS is at most δ

ϵ = H

√
2 log(2HNP(1/N)/δ)

N
.

Combining all the equations above completes the proof.

We are now ready to establish the proof of the main theorem. Before we start, we define JMt(π) :=

J(π, rt, {P th}
H−1
h=0 ), where rt and {P th}

H−1
h=0 are conservatively estimated models corresponding to

πt and please recall that J(π) = J(π; r⋆, {P ⋆h}
H−1
h=0 ).

Proof of Theorem 4.1.

J(π)− J(πALG)

=
1

T

T∑
t=1

(J(π)− J(πt))

≤ 1

T

T∑
t=1

(
J(π)−

(
Eτ∼µref [r⋆(τ)]− Eτ∼µref [rt(τ)]

)
− JMt(πt)

)
+ λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1

h=0 ;D)

≤ 1

T

T∑
t=1

(JMt
(π) +Rmax

H−1∑
h=0

E(s,a)∼dπh [DTV (P
t
h(·|s, a), P ⋆h (·|s, a))]

+Eτ∼dπ [r⋆(τ)− rt(τ)]− (Eτ∼µref [r⋆(τ)]− Eτ∼µref [rt(τ)])− JMt
(πt)

)
+ λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1

h=0 ;D)

≤ 1

T

T∑
t=1

(JMt
(π) +Rmax

H−1∑
h=0

E(s,a)∼dπh [DTV (P
t
h(·|s, a), P ⋆h (·|s, a))]

+ Eτ1∼dπ,τ0∼µref [
∥∥r⋆(τ1)− rt(τ1)− (r⋆(τ0)− rt(τ0)

∥∥]− JMt
(πt))

+ λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D)

≲
1

T

T∑
t=1

(JMt
(π)− JMt

(πt)) + λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D))

+HRmaxCP (π)

(
RmaxMP

λ2

√
log(HNP (1/N)/δ)

N
+

√
log(HNP(1/N)/δ)

N

)

+ CR(π)

√
κ2 log(NR(1/N)/δ)

N

≲ Rmax

√
log |A|
T

+ λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D)
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+HRmaxCP (π)

(
RmaxMP

λ2

√
log(HNP (1/N)/δ)

N
+

√
log(2HNP(1/N)/δ)

N

)

+ CR(π)

√
κ2 log(NR(1/N)/δ)

N

≲ Rmax

√
log |A|
T

+ λ1

(√
κ2 log (NR(1/N)/δ)

N
+ 4Rmax

√
log (2NR(1/N)/δ)

2N

)

+ λ2

(
H

√
log(HNP(1/N)/δ)

N
+H

√
2 log(2HNP(1/N)/δ)

N

)

+HRmaxCP (π)

(
RmaxMP

λ2

√
log(HNP (1/N)/δ)

N
+

√
log(2HNP(1/N)/δ)

N

)

+ CR(π)

√
κ2 log(NR(1/N)/δ)

N
,

where the second step is by Lemma B.7, the third step is by Lemma B.1, the fifth step is by Lemma
B.9, Lemma B.8. the sixth step is by Lemma C.4, the seventh step is by Lemma B.5, Lemma B.6.
Substituting λ1 = O (CR(π)), λ2 = O

(
Rmax

√
CP (π)MP

)
completes the proof.

C OPTIMIZATION ERROR

For simplicity, we assume that the transition model P th is homogeneous across all steps h ∈ [0 : H−1].
That is, we write Pt := P th for all h. This simplification is made only for notational clarity and does
not affect the correctness of the result.

For each iteration t ∈ [1 : T ], the algorithm proceeds as follows:

Step 1. Model Selection:

Let the reward model r̂t and transition models Pt be selected by solving the following penalized
objective

rt, Pt =min
r,P

J
(
πt; r, P

)
− Eτ∼µref [r(τ)] + λ1E1(r;D) + λ2E2(P ;D).

Step 2. Policy Improvement:

Update the policy using an exponentiated update rule based on the estimated reward signal

πt+1(a|s) ∝ πt(a|s) exp
(
ηEdπtPt

[
rt(τ)|s, a

])
.

Let JMt
(π) denote the expected return under reward model rt and transition dynamics Pt. We define

the cumulative regret over T iterations as

RT := max
π∈Π

T∑
t=1

(JMt
(π)− JMt

(πt)) .

Additionally, define the entropy-like regularization function

ψs(π) :=
1

η

∑
a∈A

π(a|s) log π(a|s).

Lemma C.1. Let π : S → ∆(A) ∈ Π be an arbitrary policy. Then for any state s ∈ S , the following
inequality holds

T∑
t=1

〈
πt+1(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π1) ≥

T∑
t=1

〈
π(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π).
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Proof of Lemma C.1. We prove the results via mathematical induction over T by following [Xie
et al., 2021]. When T = 0, both sides of the inequality are zero. This holds because no iterations are
executed, and we define ψs(π1) to be the entropy of the initial uniform policy. Thus, the inequality
trivially holds.

Assume the statement holds for T = T ′. That is,

T ′∑
t=1

〈
πt+1(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π1) ≥

T ′∑
t=1

〈
π(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π).

We want to prove it for T = T ′ + 1. Consider:
∑T ′+1
t=1

〈
πt+1(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π1).

We can decompose this as

T ′+1∑
t=1

〈
πt+1(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π1)

=

T ′∑
t=1

〈
πt+1(·|s),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π1) +

〈
πT ′+2(·|s),Edπt+1

Pt+1

[r̂T ′+1(τ)|s, ·]
〉

≥
T ′∑
t=1

⟨π,EdπtPt [r̂t(τ)|s, ·]⟩ − ψs(πT ′+2) +

〈
πT ′+2(·|s, ·),Edπt+1

Pt+1

[r̂T ′+1(τ)|s, ·]
〉

=

T ′+1∑
t=1

⟨π,EdπtPt [r̂t(τ)|s, ·]⟩ − ψs(πT ′+2)

≥
T ′+1∑
t=1

⟨π,EdπtPt [r̂t(τ)|s, ·]⟩ − ψs(π),

where the second step is by the induction hypothesis, the fourth step is by the optimality of πT ′+2(·|s),

i.e, πT ′+2 = argmaxπ′

{〈
π′(·|s),E

d
πt+1
Pt+1

[r̂T ′+1(τ)|s, ·]
〉
− ψs(π′)

}
. The proof is completed.

Lemma C.2. Let π ∈ Π be an arbitrary policy. For any state s ∈ S , The following inequality holds

T∑
t=1

⟨π(·|s)− πt(·|s),EdπtPt
[
rt(τ)|s, ·

]
⟩ ≤

T∑
t=1

⟨πt+1(·|s)− πt(·|s),EdπtPt
[
rt(τ)|s, ·

]
⟩ − ψs(π1).

Proof of Lemma C.2. We begin by writing the LHS as

T∑
t=1

〈
π(·|s)− πt(·|s),EdπtPt [rt(τ)|s, ·]

〉
=

T∑
t=1

(〈
π(·|s),EdπtPt [rt(τ)|s, ·]

〉
−
〈
πt(·|s),EdπtPt [rt(τ)|s, ·]

〉)
=

T∑
t=1

〈
πt+1(·|s)− πt(·|s),EdπtPt [rt(τ)|s, ·]

〉
+

T∑
t=1

〈
π(·|s)− πt+1(·|s, ·),EdπtPt [rt(τ)|s, ·]

〉
≤

T∑
t=1

〈
πt+1(·|s)− πt(·|s, ·),EdπtPt [r̂t(τ)|s, ·]

〉
− ψs(π1),

where the last inequality is by Lemma C.1. This completes the proof.
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Lemma C.3. Let π ∈ Π be an arbitrary policy. Then for any state s ∈ S , if we set the learning rate

η =
√

log |A|
2R2

maxT

T∑
t=1

⟨π(·|s)− πt(·|s),EdπtPt
[
rt(τ)|s, ·

]
⟩ ≤ 2Rmax

√
2 log |A|T .

Proof of Lemma C.3. We define the surrogate objective accumulated over t iterations as

Fs,t(π) :=
T∑
t=1

⟨π(·|s),EPt [rt(τ)|s, ·]⟩ − ψs(π).

Let BFs,t(·∥·) denote the Bergman divergence with respect to Fs,t. By the definition of Bergman
divergence, we have

Fs,t(πt) = Fs,t(πt+1) +
〈
πt(·|s)− πt+1(·|s),∇Fs,t(π)|π=πt+1

〉
+BFs,t(πt∥πt+1)

≤ Fs,t(πt+1) +BFs,t(πt∥πt+1)

= Fs,t(πt+1)−Bψs(πt∥πt+1)

⇒ Bψs(πt∥πt+1) ≤ Fs,t(πt+1)−Fs,t(πt)

≤
〈
πt+1(·|s)− πt(·|s),EdπtPt [rt(τ)|s, ·]

〉
,

where the second step is because πt is the maximizer of Fs,t, and the gradient term is non-positive,
the third step is because both Fs,t and ψs(π) are linear and convex, we have: BFs,t(πt∥πt+1) =
−Bψs(πt∥πt+1).

To convert the Bergman divergence into a squared norm, we follow [Xie et al., 2021] by applying the
second-order Taylor expansion

Bψs(πt∥πt+1) =
1

2
∥πt(·|s)− πt+1(·|s)∥2Hψs (π′

t)
,

where π′
t := απt + (1− α)πt+1 for some α ∈ [0, 1], and Hψs is the hessian of ψs.

Using Cauchy–Schwarz inequality〈
πt+1 − πt,EdπtPt [rt(τ)|s]

〉
≤ ∥πt+1 − πt∥Hψs (π′

t)
·
∥∥∥EdπtPt [rt(τ)|s, ·]∥∥∥H−1

ψs
(π′
t)
.

From the Hessian of ψs, it is known that∥∥∥EdπtPt [rt(τ)|s]∥∥∥H−1
ψs

≤ √η
∥∥∥EdπtPt [rt(τ)|s]∥∥∥∞ ≤ √ηRmax.

Combining everything〈
πt+1 − πt,EdπtPt [rt(τ)|s, ·]

〉
≤
√

2Bψs(πt∥πt+1) ·
√
ηRmax

⇒
〈
πt+1 − πt,EdπtPt [rt(τ)|s, ·]

〉
≤
√
2
〈
πt+1 − πt,EdπtPt [rt(τ)|s, ·a]

〉
· √ηRmax

⇒
〈
πt+1 − πt,EdπtPt [rt(τ)|s, ·]

〉
≤ 2ηR2

max

T∑
t=1

〈
πt+1 − πt,EdπtPt [rt(τ)|s, ·]

〉
≤ 2ηR2

maxT.

By Lemma C.2, we have
T∑
t=1

⟨π − πt,EdπtPt [rt(τ)|s, ·]⟩ ≤
T∑
t=1

⟨πt+1 − πt,EdπtPt [rt(τ)|s, ·]⟩ − ψs(π1)
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≤ 2ηR2
maxT +

log |A|
η

,

where the second step is because π1 is the uniform policy. Choosing η =
√

log |A|
2R2

maxT
concludes the

proof.

Lemma C.4. Let πALG = argmaxπ:S→∆(A)

∑T
t=1 JMt(π)−JMt(πt) and η =

√
log |A|
2R2

maxT
, we have

RT ≤ 2Rmax

√
2T log |A|.

Proof of Lemma C.4. Please recall that JMt(π) = J(π, rt, Pt). We apply the standard performance
difference Lemma Kakade & Langford [2002], which gives

RT =

T∑
t=1

JMt
(πALG)− JMt

(πt) =

T∑
t=1

E
dπ

ALG
Pt

[
E
dπ

ALG
Pt

[rt(τ)|s, ·]− E
dπ

ALG
Pt

[rt(τ)|s, ·]
]

=

T∑
t=1

E
dπ

ALG
Pt

[
⟨πALG(·|s)− πt(·|s),EdπALG

Pt

[rt(τ)|s, ·]⟩
]

≤ 2Rmax

√
2T log |A|,

where the last step is by Lemma C.3. This completes the proof.

D TECHNICAL PROOFS FOR KNRS

In the Kernelized Nonlinear Regulator (KNR) setting, the structural constraint is imposed on the
transition probability model, rather than the reward model. Consequently, we focus on modifying the
related Lemmas on the transition model accordingly. Before we begin, let’s recall some definitions
and notations for better readability.

Summarization of Notations:

• We use d to represents the dimension of the feature mapping ϕ(s, a), while d′ denotes the
dimension of the state space S .

• Σn =
∑n
i=1 ϕ(si, ai)ϕ

⊤(si, ai) + λI , Σπ = E(s,a)∼dπ [ϕ(s, a)ϕ(s, a)
⊤], and Σµ =

E(s,a)∼µ[ϕ(s, a)ϕ(s, a)
⊤].

• Relative condition number: CKP (π) = supx∈Rd
(
x⊤Σπx
x⊤Σµx

)
.

Lemma D.1. Let ϕ : S ×A → Rd be a feature mapping with ∥ϕ(s, a)∥2 ≤ 1, and define the KNR
transition model class

FKNR := {fW (s, a) =Wϕ(s, a) : ∥W∥F ≤ L} , W ∈ Rd
′×d,

where d′ is the dimension of the state space.

The following cover number bounds hold

logN∞({Ph}H−1
h=0 , 1/N) ≤ rank(Σµ)d

′ log (1 + 2LN) := NP .

logN∞(R, 1/N) ≤ rank(Σµ) log (1 + 2N) := NR.

Proof of Lemma D.1. We begin with the observation that for any W ∈ Rd′×d, the function
fW (s, a) :=Wϕ(s, a) is linear in ϕ(s, a).

LetHµ := Im(Σµ) ⊆ Rd be the image of Σµ, and let r = dim(Hµ) = rank(Σµ). By the definition
of image, we have

Hµ = Span {ϕ(s, a) : (s, a) ∈ ∆(µ)} .
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Hence, every ϕ(s, a) lies inHµ, and there exists an orthonormal matrix U ∈ Rd×r whose columns
form a basis forHµ, such that

ϕ(s, a) = Uz(s, a), z(s, a) ∈ Rr.
Substituting into the function expression, we obtain

fW (s, a) =Wϕ(s, a) =WUz(s, a).

Define W̃ :=WU ∈ Rd′×r. Then we can rewrite

fW (s, a) = W̃z(s, a).

Because U has orthonormal columns, we have

∥W̃∥F = ∥WU∥F ≤ ∥W∥F · ∥U∥2 = ∥W∥F ,

where ∥U∥2 = 1. Therefore, if ∥W∥F ≤ L, then ∥W̃∥F ≤ L.

Thus, the function class FKNR is equivalent to the reduced class

F̃ :=
{
(s, a) 7→ W̃z(s, a) : W̃ ∈ Rd

′×r, ∥W̃∥F ≤ L
}
.

By Example 5.8 in Section 5 of Wainwright [2019], we have that

logN (F̃ , ϵ) ≤ rd′ log
(
1 +

2L

ϵ

)
.

This completes the proof.

Lemma D.2. With probability at least 1− δ, we have

E2({P ⋆h}H−1
h=0 ;D) =

1

N

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥P ⋆h (sn,ih+1|s
n,i
h , an,ih )− P̂h(sn,ih+1|s

n,i
h , an,ih )

∥∥∥
≤ c1ξ

ζ

(
HλΣ−1

n

√
log (2HNP/δ)

N
+HΓ(N, δ)

)
,

where ξ = c1
√
∥W ∗∥2 + d′rank(Σµ){rank(Σµ) + log(c2/δ)} log(1 +N), Γ(N, δ) =√

rank[Σµ]{rank[Σµ]+ln(c2/δ)}
N , c1 and c2 are universal constants.

Proof of Lemma D.2. By the definition of the regularization term, we have

E2({P ⋆h}H−1
h=0 ;D) =

1

N

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥P ⋆h (sn,ih+1|s
n,i
h , an,ih )− P̂h(sn,ih+1|s

n,i
h , an,ih )

∥∥∥ .
Substitute the KNR matrix into the equation above

E2({P ⋆h}H−1
h=0 ;D) ≤

1

Nζ

N∑
n=1

H−1∑
h=0

1∑
i=0

∥(W ⋆ − Ŵ )ϕ(sn,ih , an,ih )∥2

≤ 1

Nζ

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥(W ⋆ − Ŵ )Σ1/2
n

∥∥∥
2
·
∥∥∥ϕ(sn,ih , an,ih )

∥∥∥
Σ−1
n

≤ ξ

Nζ

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥ϕ(sn,ih , an,ih )
∥∥∥
Σ−1
n

,

where the first step is by Lemma 13 in Uehara & Sun [2021b], the second step is by Cauchy-Schwarz
inequality, and the last step is by Lemma 12 in Uehara & Sun [2021b], i.e.,∥∥∥(W ⋆ − Ŵ

)
(Σn)

1/2
∥∥∥
2
≤ c1

√
∥W ∗∥2 + d′ rank(Σµ){rank(Σµ) + log(c2/δ)} log(1 +N) = ξ.
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We assume that: Zϕ :=
∑H−1
h=0

∑1
i=0

∥∥∥ϕ(sn,ih , an,ih )
∥∥∥
Σ−1
n

, so we have

E2({P ⋆h}H−1
h=0 ;D) ≤

ξ

ζ

1

N

N∑
n=1

Zϕ.

We also assume: Each ϕ(s, a) ∈ Rd satisfies ∥ϕ(s, a)∥2 ≤ 1, so we have

∥ϕ(s, a)∥Σ−1
n
≤
√
λmax(Σ

−1
n ) · ∥ϕ(s, a)∥2 =

√
λmax(Σ

−1
n ) := λΣ−1

n
.

From theorem 21 in Chang et al. [2021], with probability at least 1− δ, we have

E(s,a)∼µ[∥ϕ(s, a)∥Σ−1
n
] ≤ c1

√
rank[Σµ]{rank[Σµ] + ln(c2/δ)}

N
= c1Γ(N, δ).

By applying Hoeffding’s inequality and union bound, we have

P

(∣∣∣∣∣ 1N
N∑
n=1

Z
(n)
ϕ − E[Zϕ]

∣∣∣∣∣ ≥ ϵ
)
≤ 2HNP · exp

(
− Nϵ2

2H2λ2
Σ−1
n

)
,

ϵ = HλΣ−1
n

√
2 log (2HNP/δ)

N
.

By Lemma B.4, we have

E2({P th}H−1
h=0 ;D)

≤ cHRmaxM
K
P

λ2

√
log (HNP/δ)

N
+
cξ

ζ

(
HλΣ−1

n

√
log (HNP/δ)

N
+HΓ(N, δ)

)
.

This completes the proof.

Now we want to modify Lemma B.1 to the KNR setting. Specifically, we only need to modify the
first term because that is the constraint of the KNR method, i.e, now we want to bound the term

H−1∑
h=0

E(s,a)∼dπh [DTV (P
t
h (·|s, a), P ⋆h (·|s, a))].

Lemma D.3. Let π be an arbitrary policy that belongs to Π. Then for the transition model {P th}
H−1
h=0

selected in Line 5 of Algorithm 1 corresponding to πt, with probability at least 1− δ, the following
holds

H−1∑
h=0

E(s,a)∼dπh

[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
≤ cHCKP (π)

(
RmaxM

K
P

λ2

√
log (HNP/δ)

N
+
ξ

ζ

(
λΣ−1

n

√
log (HNP/δ)

N
+ Γ(N, δ)

))
,

where c > 0 is a universal constant.

Proof of Lemma D.3. We can start by decomposing the term above
H−1∑
h=0

E(s,a)∼dπh

[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
≤ CKP (π)

H−1∑
h=0

E(s,a)∼µh
[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
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≤ CKP (π)

H−1∑
h=0

(
E(s,a)∼µh

[∥∥∥P th(·|s, a)− P̂h(·|s, a)∥∥∥
TV

]
+E(s,a)∼µh

[∥∥∥P ⋆h (·|s, a)− P̂h(·|s, a)∥∥∥
TV

])
.

We already have the bound for the second term, so what we need to do now is to achieve a bound for
the first term. By Hoeffding’s inequality and combined with Lemma D.2, we have

E(s,a)∼µh

[∥∥∥P th(·|s, a)− P̂h(·|s, a)∥∥∥
TV

]
≤cRmaxM

K
P

λ2

√
log (HNP/δ)

N
+
cξ

ζ

(
λΣ−1

n

√
log (HNP/δ)

N
+ Γ(N, δ)

)
,

where MK
P = max

t∈[1:T ]
sup
x∈Rd

(
x⊤Σπtx

x⊤Σµx

)
. This completes the proof.

Here is the proof of Theorem 5.1.

Proof of Corollary 5.1.
J(π)− J(πALG)

=
1

T

T∑
t=1

(J(π)− J(πt))

≲
1

T

T∑
t=1

(JMt(π)− JMt(πt)) + λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D)

+ CR(π)

√
κ2 log(NR(1/N)/δ)

N

+HRmaxC
K
P (π)

(
RmaxM

K
P

λ2

√
log (HNP/δ)

N
+
ξ

ζ

(
λΣ−1

n

√
log (HNP/δ)

N
+ Γ(N, δ)

))

≲ Rmax

√
log |A|
T

+ λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D)

+ CR(π)

√
κ2 log(NR(1/N)/δ)

N

+HRmaxC
K
P (π)

(
RmaxM

K
P

λ2

√
log (2HNP/δ)

N
+
ξ

ζ

(
λΣ−1

n

√
log (2HNP/δ)

N
+ Γ(N, δ)

))

≲ Rmax

√
log |A|
T

+ λ1

(√
κ2 log (NR/δ)

N
+Rmax

√
log (2NR/δ)

2N

)

+ λ2
ξ

ζ

(
HλΣ−1

n

√
log (HNP/δ)

N
+HΓ(N, δ)

)

+ CR(π)

√
κ2 log(NR(1/N)/δ)

N

+HRmaxC
K
P (π)

(
RmaxM

K
P

λ2

√
log (HNP/δ)

N
+
ξ

ζ

(
λΣ−1

n

√
log (HNP/δ)

N
+ Γ(N, δ)

))
,

where the second step is by Lemma B.7, Lemma B.1, the third step is by Lemma C.4, Lemma
B.8, Lemma D.3, and The last step is by Lemma D.2, Lemma B.5. Substituting λ1 = O(CR(π)),
λ2 = O(Rmax

√
CKP (π)MK

P ) completes the proof.
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E TECHNICAL PROOFS FOR FACTORED MODELS

To begin with, we will introduce some notations that will be used in the proofs that follow.

Summarization of Notations:

• Number of parameters for the transition functions Lp =
∑d
i=1 |A| · |B|1+|Pi|.

• Modified Concentrability Coefficient CFP (π) = maxi∈[1:d] E(s,a)∼µ

[(
dπ(s[Pi],a)
µ(s[Pi],a)

)2]
.

Lemma E.1. Let P ⋆h be the ground-truth transition dynamics at time steps h ∈ [0 : H − 1], with
probability at least 1− δ, we have

E2({P ⋆h}H−1
h=0 ;D) =

1

N

N∑
n=1

H−1∑
h=0

1∑
i=0

∥∥∥P ⋆h (sn,ih+1|s
n,i
h , an,ih )− P̂h(sn,ih+1|s

n,i
h , an,ih )

∥∥∥
≤ cH

√
log(HdL/δ)

N
+ cH

√
dL log(LNd/δ)

N
,

where c > 0 is a universal constant.

Proof of Lemma E.1. To start with, the following inequality holds

H−1∑
h=0

E(s,a)∼µh [DTV (P̂h(·|s, a), P ⋆h (·|s, a))]

=

H−1∑
h=0

E(s,a)∼µh [
∑
i

DTV (P̂i,h(·|s[Pi], a), P
⋆
i,h(·|s[Pi], a))]

≤
H−1∑
h=0

∑
i

√
E(s,a)∼µ[DTV (P̂i,h(·|s[Pi], a), P ⋆i,h(·|s[Pi], a))2]

≤cH
√
dL log(LNd/δ)

N
,

where the second and third steps are by the definition of Factored models, and the last inequality is
adapted from section C.5 in Uehara & Sun [2021b].

Define: Yn :=
∑H−1
h=0

∑1
i=0

∥∥∥P ⋆h (·|sn,ih , an,ih )− P̂h(·|sn,ih , an,ih )
∥∥∥ ∈ [0, 4H].

By Hoeffding’s inequality and apply union bound, we have

Pr

(∣∣∣∣∣ 1N
N∑
n=1

Yn − E[Yn]

∣∣∣∣∣ ≥ ϵ
)
≤ 2HdL exp

(
−2Nϵ2

(4H)2

)
⇒ ϵ = 4H

√
log(2HdL/δ)

2N
.

Then with probability at least 1− δ

E2({P ⋆h}H−1
h=0 ;D) ≤ cH

√
log(HdL/δ)

N
+ cH

√
dL log(LNd/δ)

N
.

Then by Lemma B.4, we have

E2({P th}H−1
h=0 ;D)

≲
HMF

P Rmax

λ2

√
log(HdL/δ)

N
+H

√
log(HdL/δ)

N
+H

√
dL log(LNd/δ)

N
.

This completes the proof.
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Lemma E.2. Let π be an arbitrary policy that belongs to Π. Then, for any transition dynamics
{P th}

H−1
h=0 selected in Line 5 of Algorithm 1 corresponding to πt, with probability at least 1− δ, the

following holds
H−1∑
h=0

Edπh
[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
≤ cHCFP (π)

(
RmaxM

F
P

λ2

√
log(HdL/δ)

N
+

√
log(HdL/δ)

N
+

√
dL log(LNd/δ)

N

)
,

where c > 0 is universal constant.

Proof of Lemma E.2. We start by decomposing the term above
H−1∑
h=0

Edπh
[
DTV (P

t
h(·|s, a), P ⋆h (·|s, a))

]
≤ CFP (π)

H−1∑
h=0

(
E(s,a)∼µh

[∥∥∥P th(·|s, a)− P̂h(·|s, a)∥∥∥
TV

]
+E(s,a)∼µh

[∥∥∥P ∗
h (·|s, a)− P̂h(·|s, a)

∥∥∥
TV

])
,

where CFP (π) = maxi∈[1:d] E(s,a)∼µ

[(
dπ(s[Pi],a)
µ(s[Pi],a)

)2]
.

By Hoeffding’s inequality and combined with Lemma E.1

E(s,a)∼µh

[∥∥∥P th(·|s, a)− P̂h(·|s, a)∥∥∥
TV

]
≤ cMF

P

λ2

√
log(HdL/δ)

N
+ c

√
log(HdL/δ)

N
+ c

√
dL log(LNd/δ)

N
,

where MF
P = max

t∈[1:T ]
max
i∈[1:d]

E(s,a)∼µ

[(
dπt (s[Pi],a)
µ(s[Pi],a)

)2]
. Combining all the terms above, we have

E(s,a)∼dπh

[∥∥P th(·|s, a)− P ⋆h (·|s, a)∥∥TV ]
≤ CFP (π)

(
cRmaxM

F
P

λ2

√
log(HdL/δ)

N
+ c

√
log(HdL/δ)

N
+ c

√
dL log(LNd/δ)

N

)
.

This completes the proof.

Now we present the proof of the PAC bound for Factored Models.

Proof of Theorem 5.2.

J(π)− J(πALG)

=
1

T

T∑
t=1

(J(π)− J(πt))

≲
1

T

T∑
t=1

(JMt
(π)− JMt

(πt)) + λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D)

+HRmaxC
F
P (π)

(
RmaxM

F
P

λ2

√
log(HdL/δ)

N
+

√
log(HdL/δ)

N
+

√
dL log(LNd/δ)

N

)

+ CR(π)

√
cκ2 log(rL1/δ)

N
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≲ Rmax

√
log |A|
T

+ λ1E1(r⋆;D) + λ2E2({P ⋆h}H−1
h=0 ;D)

+HRmaxC
F
P (π)

(
RmaxM

F
P

λ2

√
log(HdL/δ)

N
+

√
log(HdL/δ)

N
+

√
d
L log(LNd/δ)

N

)

+ CR(π)

√
κ2 log(rL1/δ)

N

≲ Rmax

√
log |A|
T

+ λ1

(√
κ2 log (rL/δ)

N
+Rmax

√
log (rL/δ)

N

)

+ λ2

(
H

√
log(dL/δ)

N
+H

√
dL log(LNd/δ)

N

)

+HRmaxC
F
P (π)

(
RmaxM

F
P

λ2

√
log(HdL/δ)

N
+

√
log(HdL/δ)

N
+

√
dL log(LNd/δ)

N

)

+ CR(π)

√
κ2 log(rL1/δ)

N
,

where the second step is by Lemma B.7, Lemma B.1, Lemma B.8, Lemma E.2, the third step is
by Lemma C.4, and the last step is by Lemma B.5, Lemma E.1. Substituting λ1 = O(CR(π)),
λ2 = O(Rmax

√
CFP (π)M

F
P ) completes the proof.
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F EXPERIMENTAL SETUP

F.1 CODE

Our implementation of Algorithm 2 is available at anonymous GitHub page:

https://anonymous.4open.science/r/Anonymous_ICLR/README.md

F.2 DATASETS

Our method is assessed using the Meta-World datasets introduced by Yu et al. [2020a], specifically
the medium-replay curated by Choi et al. [2024]. The primary set of experiments focuses on the
medium-replay dataset. A key advantage of these datasets is that policies cannot achieve good
performance when trained with incorrect reward signals (e.g., random or constant), making them
particularly well-suited for evaluating offline reinforcement learning approaches. This is important
because some offline RL agents may still exhibit seemingly successful behavior even under faulty
reward supervision. Further dataset-related information is available in Choi et al. [2024].

Note that the abbreviation BPT indicates button-press-topdown.

The medium-replay dataset used in our study, originally introduced by Choi et al. [2024], comprises
replay buffers created using SAC agents [Haarnoja et al., 2018], which exhibit an average success
performance around 50%. Detailed information on dataset sizes is provided in Table 4.

Table 4: The sizes of Meta-World medium-replay datasets [Yu et al., 2020a].

Dataset BPT box-close dial-turn sweep BPT-wall sweep-into drawer-open lever-pull

Size (×105) 3.0 24.0 9.0 21.0 4.5 3.0 3.0 9.0

F.3 COMPUTATIONAL RESOURCES

Our experiments are conducted on a computational cluster equipped with an Intel(R) Xeon(R)
Platinum 8470Q CPU and an Nvidia GeForce RTX 5090 GPU. Each training session consists of
100,000 gradient steps, taking approximately 50 minutes to complete (with evaluation).

32

https://anonymous.4open.science/r/Anonymous_ICLR/README.md
https://anonymous.4open.science/r/Anonymous_ICLR/README.md


1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G IMPLEMENTATION DETAILS

G.1 EXPERIMENTAL DETAIL OF BENCHMARKS

The Table 5 provides a comprehensive summary of the reward model configuration used across
benchmark implementations, along with the key experimental settings for algorithms including IQL
(represented as Oracle in the table), MR, PT, DPPO, IPL, and APPO. These settings cover essential
implementation details such as network architecture, optimizer type, learning rates, batch sizes, and
the number of training epochs, ensuring transparency and fairness in reproduction and comparison.

Table 5: Implementation details of the reward model and the baselines.

Algorithm Component Value

Optimizer Adam Kingma & Ba [2014]
Learning rate 1e-3
Batch size 512
Q 100
Hidden layer dim 128

Reward model Hidden layers 3
Activation function ReLU
Final activation Tanh
Epochs 300
# of ensembles 3
Reward from the ensemble models Average

Optimizer Adam Kingma & Ba [2014]
Critic, Actor, Value hidden dim 256
Critic, Actor, Value hidden layers 2
Critic, Actor, Value activation function ReLU

IQL Kostrikov et al. [2021] Critic, Actor, Value learning rate 0.5
Mini-batch size 256
Discount factor 0.99
β 3.0
τ 0.7

Neural networks (Q,V, π) 3-layers, hidden dimension 256
Activation ReLU for hidden activations
Q,V, π optimizer Adam with learning rate 3e-4

MR Lee et al. [2021] Batch size 256
Target network soft update 0.005
β (IQL advantage weight) 3.0
τ (IQL expectile parameter) 0.7
Discount factor 0.99

Optimizer AdamW Loshchilov & Hutter [2017]
# of layers 1

PT Kim et al. [2023] # of attention heads 4
Embedding dimension 256
Dropout rate 0.1

Preference predictor The same as PT Kim et al. [2023]
DPPO An et al. [2023] Smoothness regularization ν 1.0

Smoothness sigma m 20
Regularization λ 0.5

Optimizer Adam Kingma & Ba [2014]
Regularization λ 3e-4

IPL Hejna & Sadigh [2023] Q,V, π arch 3x256d
β 4.0
τ 0.7
Subsample s 16

Neural networks (Q,V, π) 3-layers, hidden dimension 256
Activation LeakyReLU for hidden activations
Q,V, α optimizer Adam with learning rate 3e-4

APPO Kang & Oh [2025] π optimizer Adam with learning rate 3e-5
Batch size 256 transitions and 16 trajectory pairs
Target network soft update 0.001
Discount factor 0.99
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G.2 BASIC EXPERIMENTAL DESIGN

The preference dataset is constructed by randomly drawing pairs of trajectory fragments, each
consisting of 25 time steps. Preference labels are assigned using the true reward: a label of (0,1) is
used if the total rewards of the two trajectories differ by more than 12.5; otherwise, both segments
receive an equal preference label of (0.5, 0.5). Performance is quantified by task-specific success
rates, which reflect whether the agent manages to complete the intended task. We report the average
performance and standard deviation of the policies of the last 5 training steps across 3 random seeds.

G.3 TRAINING DETAILS

In the following, we talk about the details of the model implementation. We firstly represent the
dynamics model as an ensemble of neural networks that output a Gaussian distribution over the next
state given the current state and action:

P̂ (s′ | s, a) = N
(
µ(s, a),Σ(s, a)

)
.

Following previous works Rigter et al. [2022]; Sun [2023], during the initial maximum likelihood
model training (Line 3 of Algorithm 2) we train an ensemble of 7 such dynamics models and pick the
best 5 models based on the validation error on a held-out test set of 10000 transitions from the offline
dataset D. Each model in the ensemble is a 4-layer feedforward neural network with 200 hidden units
per layer. We summarize the details of the algorithm in Algorithm 2.

Algorithm 2 Model-based Conservative Planning (MCP)
Input: Offline dataset D; regularization parameters λ1, λ2, λb; rollout length l; sub-trajectory length
h:

1: Initialize the policy π1 as the uniform policy.
2: Learn reward: r̂ = argmaxr∈R

∑N
n=1 logPr(o = on | τn,1, τn,0).

3: Learn transition kernel: for all h ∈ {0, . . . ,H − 1},

P̂h = argmax
Ph∈Ph

N∑
n=1

1∑
i=0

logPh(s
n,i
h+1 | s

n,i
h , an,ih ).

4: for t = 1, 2, . . . , T do
(a) Model update:

(i) Initialize the reward model r and transition kernel {Ph}H−1
h=0 with the MLE models r̂ and

{P̂h}H−1
h=0 .

(ii) Collect a sub-trajectory τ sub from ssub of length h and compute r(τ sub).
(iii) Roll out πt from ssub under {Ph ∈ Ph}H−1

h=0 for l steps to obtain τ eval.
(iv) Solve for rt and {P th}

H−1
h=0 :

min
r,{Ph}

E d
πt

{Ph}H−1
h=0

[
r(τ eval) | ssub

]
− r(τ sub) + λ1 E1(r;D) + λ2 E2

(
{Ph}H−1

h=0 ;D
)
.

(b) Policy update:
(i) Initialize π ← πt.

(ii) Sample a batch of (s, a) from D and draw a′ ∼ πt(· | s).
(iii) Obtain πloc

t by

argmax
π

〈
π(· | s), E d

πt

{Pt
h
}H−1
h=0

[
rt(τ) | s, ·

]〉
− λb (a′ − a)2.

(iv) Align πloc
t (· | s) with πt(· | s) by minimizing the KL divergence to obtain πt+1.

5: end for
6: Output: πALG = πT .

In (a)(iii), we follow TD3-BC [Fujimoto & Gu, 2021] to include a regression–style behavior cloning
loss to push the policy towards favoring actions contained in the dataset. In (b)(iv), we leverage the
subtle decremental training for KL-divergence trust region updating to avoid πloc

t getting too close
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to πt. To ensure a fair comparison with baseline methods, we follow the official implementation
provided by Choi et al. [2024] for training our reward model. Specifically, the reward model is
implemented as an ensemble of three fully connected neural networks, each consisting of three hidden
layers with 128 units per layer. ReLU is used as the activation function for all hidden layers, and a
Tanh activation is applied to the final output. The ensemble prediction is computed as the average of
the individual network outputs.

Table 6: Model architecture and hyperparameters.

Component Value
Neural networks (r, P, π) 3-layers, hidden dimension 256
Activation ReLU for hidden activations

Our work

π optimizer Adam with learning rate 1e-4
Batch size 256 transitions and 256 trajectory pairs
λ1 1⋆

λ2 0.01⋆

λb 1⋆

Rollout length l 3⋆

Sub-trajectory length h 5⋆

no. of model networks 7
no. of elites 5
model learning rate 3e-4

⋆ The data marked with asterisks are only approximate values and need to be adjusted according to
different datasets.

Table 7: Regularization hyperparameters used for MCP on each Meta-World task.

Task λ1 λ2 λb

BPT 1e1 1e-5 3
box-close 1e-1 3e-3 3
sweep 1e1 1e-3 3
BPT-wall 1e1 1e-1 1
dial-turn 1e1 1e-2 3
sweep-into 3e-1 1e-1 3
drawer-open 1 3e-2 1
lever-pull 1 1e-2 1e-2
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H VISUALIZATION OF TRAINING DYNAMICS

Figure 3 illustrates the training progress corresponding to the experiments summarized in Table
2. Each algorithm undergoes training for a total of 100,000 gradient update steps, during which
performance evaluations are performed at regular intervals of every 5,000 steps. To derive the final
success rate reported in the tables, we compute the average and standard deviation over the results
from three random seeds, offering a more stable and representative performance estimate. This figure
is generated from the mean, standard derivation of the success rates.

Figure 3: Learning curves from the experiments in Table 2 of main text.

I THE USE OF LLM

The authors used a large language model (LLM) to edit and polish the writing (grammar, wording,
and clarity). All ideas, analyses, and conclusions are the authors’ own.

J ADDITIONAL EXPERIMENTAL RESULTS
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Generalization to high-dimensional environments. To evaluate the performance of MCP in
more complex environments with significantly larger state–action spaces, we construct new offline
PbRL datasets based on the MuJoCo tasks Ant [Schulman et al., 2015] and Humanoid [Tassa et al.,
2012]. These two tasks have high-dimensional states and actions: Ant has a state space of dimension
105 (about 3 times larger than MetaWorld) and an action space of dimension 8 (about 2 times the
action dimension of MetaWorld), while Humanoid has a state space of dimension 348 (about 9 times
larger than MetaWorld) and an action space of dimension 17 (about 4 times the action dimension of
MetaWorld). Table 8 reports the average total return over three seeds for each method. As shown in
Table 8, MCP consistently outperforms MR and APPO on both high-dimensional tasks, demonstrating
its potential in complex environments.

Table 8: Performance on high-dimensional MuJoCo tasks.

Algorithm Oracle MR APPO MCP

Humanoid 2672.48 1586.31 1365.34 1731.47
Ant 3007.22 1940.87 1638.42 2213.85

Runtime analysis. We measure the time required to perform 100k training steps using a single
NVIDIA RTX 5090 GPU. As reported in Table 9, MCP is slightly slower than MR but still faster
than APPO, while achieving better performance than both. Table 10 further decomposes the MCP
runtime into the conservative planning step (line 5 of Algorithm 1) and the policy update step (line 6).

Table 9: Running time for 100k training steps.

Method MR APPO MCP

Total time (min) 22.7 36.8 33.5

Table 10: Decomposition of MCP runtime for 100k training steps.

Method MCP-step5 MCP-step6 MCP-total

Total time (min) 24.2 9.3 33.5

Hyperparameter sensitivity. We conduct a hyperparameter sensitivity analysis for the behavior
cloning weights λb on the drawer-open-1000 and sweep-into-1000 tasks over three seeds.

Table 11: Sensitivity of MCP to regularization hyperparameters on drawer-open-1000 and sweep-
into-1000.

drawer-open-1000 92.0± 5.66 97.20± 2.04 99.07± 0.38 96.40± 3.81 89.87± 9.92
sweep-into-1000 22.53± 7.39 26.8± 4.25 29.2± 6.76 34.13± 3.27 31.6± 5.02
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