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Abstract

Human perception involves discerning objects based on attributes such as size,
color, and texture, and making predictions about their movements using features
such as weight and speed. This innate ability operates without the need for con-
scious learning, allowing individuals to perform actions like catching or avoiding
objects when they are unaware. Accordingly, the fundamental key to achieving
higher-level cognition lies in the capability to break down intricate multi-object
scenes into meaningful appearances. Object-centric representations have emerged
as a promising tool for scene decomposition by providing useful abstractions. In
this paper, we propose a novel approach to unsupervised video prediction leverag-
ing object-centric representations. Our methodology introduces a two-component
model consisting of a slot encoder for object-centric disentanglement and a feature
extraction module for masked patches. These components are integrated through a
cross-attention mechanism, allowing for comprehensive spatio-temporal reasoning.
Our model exhibits better performance when dealing with intricate scenes charac-
terized by a wide range of object attributes and dynamic movements. Moreover, our
approach demonstrates scalability across diverse synthetic environments, thereby
showcasing its potential for widespread utilization in vision-related tasks.

1 Introduction

Human-level intelligent system requires an understanding of the environments and spatio-temporal
interactions of the surrounding objects [6]. This proficiency holds paramount importance as it under-
pins the human ability to perceive visual scenes as a geometric composition of objects’ components,
thereby recognizing objects in a dynamically changing world [10]. Recently, object-centric learning
has emerged with the aim of modeling the compositional structure of a scene into a set of object
representations. The advent of object-centric learning has demonstrated value in scenarios where
the set of objects encountered may be diverse and constantly changing, or even not previously
encountered. Accordingly, it has presented remarkable performance across a wide range of domains
such as unsupervised scene understanding [9, 20, 21], object tracking [8, 26], and reinforcement
learning [29, 30]. Particularly, object-centric representations have shown promising results in video
prediction tasks, as they not only predict future frames but also learn spatio-temporal dynamics of
object interactions on the basis of their motion and appearance.

Despite the recent success of object-centric models for processing spatio-temporal dynamics, ef-
fectively capturing the intricate properties of objects (i.e., appearance and motion) in both simple
and synthetic environments remains a significant challenge [13, 26]. This challenge arises not only
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from the object-centric learning mechanism itself but also from how it is employed and executed
in downstream tasks. For instance, previous approaches have faced limitations in training on large
image and video datasets due to architectural complexities or have found object-centric models to be
insufficient in extracting crucial information for object-related tasks [12, 21, 26]. Overcoming these
limitations is crucial, as it allows us to leverage extensive amounts of images and videos, leading
to stronger spatio-temporal interactions between objects. This, in turn, enhances scalability and
promotes generalization to complex environments.

In this paper, we propose a method called Object-centric Slot Patch Transformer, which is a dynamics
learning mechanism that predicts future frames in an object-centric way. Specifically, we employ
cross-attention based on cross-covariance attention [1] to fuse features extracted from two distinct
components: (1) Slot Attention module, which disentangles scenes into a set of object-centric rep-
resentations (a.k.a. slots), and (2) Masked patch extraction module, in which we randomly mask
patches of the scene. The cross-attention mechanism that combines two separate embeddings signifi-
cantly advances our understanding of the spatio-temporal arrangement and relationships between
objects in the scene. Furthermore, our proposed cross-attention mechanism with object-centric
representations notably reduces the overall computation of the attention layer in the transformer,
thereby enhancing the efficiency of the model, particularly in tasks relying on large visual data.
We empirically demonstrate the effectiveness of our proposed method in both simple and synthetic
environments, and underscore its feasibility under complex environments, such as MOVi datasets [5],
involving various object appearances and motions (i.e., collision, attraction, or repulsion). Notably,
our proposed method achieves comparable performance to existing approaches in both simple and
complex environments.

2 Related work

Unsupervised video prediction for dynamics modeling. Unsupervised video prediction is a task
that predicts future frames or sequences with the absence of auxiliary annotations [4]. This task
leverages the inherent temporal consistency in video data to learn meaningful representations of visual
appearances, interactions between objects, and dynamic changes in the scene. Earlier methods utilize
encoder-decoder architectures, with recurrent or transformer-based modules, to model the underlying
spatio-temporal relationships [16, 22, 24]. Other works adapt transformer models for video prediction
[26, 27], but the challenges lie in designing robust models that handle complex scenes and diverse
motions, as they lack understanding of objects’ intrinsic properties. In contrast to the previous
works, our method performs unsupervised object-centric video prediction in complex environments
by modeling both extrinsic and intrinsic properties of objects for a higher-level understanding of
video scenes.

Object-centric representation learning. Recent work on unsupervised object-centric representation
learning decomposes visual scenes into a set of vectors named slots, which are a set of representations
that capture the compositional properties of visual scenes, via a mechanism named Slot Attention
[14]. Slot Attention has shown remarkable performance in diverse vision-based tasks such as object
discovery [11, 19], scene reconstruction [13, 20, 21], dynamics learning [26], or even solving certain
types of RL problems [29]. Among these, our work focuses on dynamics learning by treating it as a
video prediction problem and applies Slot Attention to extract object-centric representations from
the video. While existing work on unsupervised video prediction with object-centric representations
models long-term interactions, it has shown limitations in handling complex environments, where an
adoption of traditional transformers appears to be a contributing factor [26].

Cross-covariance attention. Transformers have gained recognition for their effectiveness in handling
sequential data [23]. The self-attention mechanism in transformers enables precise localization
and segmentation of objects in static scenes. Accordingly, transformers in dynamics modeling,
with a particular emphasis on object-centric representations, predict objects’ motion in simple
visual scenes over a sequence of frames [7, 21]. However, the self-attention mechanism has shown
limitations in processing dense visual data, particularly in object-centric scene decomposition and
prediction [12, 26]. In order to reduce the complexity of the self-attention mechanism, Ali et al.
[1] introduced Cross-Covariance Attention mechanism, which replaces the self-attention layer with
a cross-covariance attention block. Our method performs unsupervised object-centric dynamics
modeling with the aid of cross-covariance attention, which operates across feature channels rather
than tokens, allowing efficient processing of large datasets (i.e., high-resolution images or videos).
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Figure 1: Main architecture overview. Our method computes cross-attention (dotted box) between
slots (left part in the dotted box) and masked patches (right part in the dotted box) to acquire
representations of future frames.

3 Object-centric Slot Patch Transformer

In this section, we propose the autoregressive dynamics prediction model that captures the spatial
and temporal relationships between objects, which we call the Object-centric Slot Patch Transformer.
As illustrated in Figure 1, our method performs cross-attention between two components: slots and
image patches, described in Section 3.1 and Section 3.2, respectively. The two features are passed
through the cross-attention mechanism along with slots, which enables a deeper spatio-temporal
understanding of objects and its environment, as explained in Section 3.3. Finally, Section 3.4
describes the overall autoregressive training procedure, as we re-use the prediction output as an input
in the next training step.

3.1 Slot-based object representation

We build on the Slot Attention [14] to extract slots from video sequences. Given a set of T video
frames {vt}Tt=1, we employ Convolutional Neural Network (CNN) [18] encoder to extract image
features. These embedded features are enriched with positional encoding. The resulting embeddings,
which contain content and positional information of the scene, are then flattened into a set of vectors
ht = RNslot×Dslot , where Nslot is the size of the flattened feature and Dslot is the CNN feature
dimension. Then our object-centric module initializes slots based on the set of vectors ht, and
performs Slot Attention fSA to update the set of slot representations St = {s1, ..., sN} via iterative
Scaled Dot Product Attention.

3.2 Masked patch extraction

Simultaneously, we conduct feature extraction that outputs masked patches, which are fed into the
cross-attention mechanism along with the extracted slots. The intuition behind this approach is to
preserve the properties of representations so that the model does not learn incorrect dynamics during
the initial stages of training, which is a phenomenon often observed when solely relying on the Slot
Encoder. Specifically, the incorporation of masked patches guides the model to focus on specific
regions, preventing it from prematurely learning unreliable patterns. This focused attention, combined
with the extracted slots, enables the model to capture nuanced information and relationships within
the visual observation.
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Given a set of T video frames {vt}Tt=1, we apply a patch-aligned random masking strategy for each
frame. We split each frame x ∈ RH×W×C , where (H,W ) is the input image resolution and C

corresponds to the number of channels, into a sequence of non-overlapping patches {xp
n}

Npatch

n=1 with a
size of P × P . The image patches of dimension Dpatch are then linearly projected pt ∈ R(P 2C)×Dpatch

and randomly masked with a hyper-parameter λ, which are then replaced with a learnable embedding.
This results in a final output of masked image patches Pt, which are linearly projected to match the
dimension of the cross-attention transformer.

3.3 Cross-attention mechanism

Our method computes in a form of cross attention [2, 15] between extracted slots from the Slot
Attention encoder, as queries, and masked patch embeddings as keys and values.

Priorly, we perform pretraining on the Slot Attention model using reconstruction loss on videos
from the target data. This pretraining process attains enhanced accuracy and comprehensiveness
of the object-centric representation as it ensures that the learned slots adeptly capture the visual
characteristics of both foreground objects and background objects within the scene.

We then compute the cross-attention mechanism. First, we linearly project input sequences of slots
and masked patches to a set of latent space, St = Linear(st) and Pt = Linear(pt), respectively.
Following SlotFormer Wu et al. [26], we apply positional embeddings at a temporal level to maintain
the frame order and permutation equivariance. Then, cross-attention transformer operates along
the latent slots St ∈ RNslot×Dslot over masked patch tokens Pt ∈ RNpatch×Dpatch . In detail, each slot
representation is updated by performing cross-attention of its original slot representation over the
attended value representation obtained from the masked patch sequence. Unlike the traditional
transformer, where we scale down the weights by the dimensions of key vectors, inspired by cross-
covariance attention [1], we use a temperature parameter τ that adjusts the inner products prior to
applying the Softmax operation.

Mathematically, the cross-attention(CA) mechanism can be described as:

q = StWq, k = PtWk, v = PtWv, (1)

A = softmax(
k⊤ · q

τ
), CA(st) = A · v⊤ (2)

The implementation of the cross-attention module yields object-centric representations that are
effective and contextually meaningful. Consequently, the model demonstrates proficiency in capturing
dependencies and interrelationships among objects.

3.4 Model training

Our model is trained by taking the last N output features of the transformer T and feeding them to a
linear layer to update the slots at the next timestep ŜT+1. For consequence future predictions, ŜT+1

is fed as input along with the ground-truth slots, and the transformer is applied to generate and predict
longer frames in an autoregressive manner. As our model aims to predict future frames, we train to
minimize slot reconstruction loss and image reconstruction loss as follows:

L = Lslot + λLimage (3)

The slot reconstruction loss Lslot is the L2 loss between the ground-truth slot ST+1 and the recon-
structed slot ŜT+1. For image reconstruction loss Limage, we use frozen SAVi [11] decoder fsavi

θ to
convert predicted slots ŜT+k to image, and then match with the ground-truth image xT+k.

Empirical evidence supporting this claim is presented in Section 4, where we experimentally show
that cross-attention outperforms alternative approaches, particularly on complex scenes.
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Figure 2: Generation results on OBJ3D. We train the baseline model (top) and our model (bottom)
with 6 frames and generate 10 frames, which is claimed sufficient for the model to learn accurate
dynamics as described in Wu et al. [26].

G-SWM SlotFormer Ours
Dataset Complexity LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

OBJ3D simple 0.10 31.43 0.08 32.26 0.06 32.82
CLEVRER simple 0.16 28.42 0.17 31.34 0.14 32.38
MOVi-A complex 0.46 23.57 0.30 25.42 0.28 24.46
MOVi-C complex 0.69 15.50 0.66 19.34 0.42 20.97

Table 1: Evaluation of visual quality on the datasets, ordered based on level of difficulty. Details of
the datasets with figures in Appendix A.

4 Experiments

4.1 Implementation details

Models and datasets. We compare our method with two baseline models: G-SWM [12] and
SlotFormer [26]. Both of these models excel in object reasoning tasks, leveraging object-centric
representations to gain profound insights into intricate visual scenes. These approaches enable the
model to process and reason about their attributes and interactions in a structured manner. We
evaluate our approach on five different datasets, encompassing a range of complexities from simple to
synthetic video datasets: OBJ3D [12], CLEVRER [28], and a variety of MOVi datasets implemented
using Kubric [5]. Further details are provided in Appendix A.

Metrics. We compare the visual quality of generated videos using PSNR [25] and LPIPS [31].
As highlighted in Zhang et al. [32] and Sara et al. [17], PSNR and SSIM metrics do not closely
correspond to human perception. In contrast, LPIPS exhibits a more reliable correlation with human
perceptual judgments, leveraging learned deep features. Consequently, our comparative analysis
predominantly centers around the LPIPS metric, and PSNR for reference only.

4.2 Video prediction

Table 1 summarizes the generation results of our model and the baseline models. While SlotFormer
exhibits the capacity to generate future frames in the OBJ3D and CLEVRER datasets, our approach
outperforms the baselines in terms of LPIPS scores and achieves competitive results in terms of
PSNR.Notably, while our model yields a similar PSNR score to the baseline model for OBJ3D,
Figure 2 illustrates that it predicts future frames with a consistent appearance and motion compared
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Figure 3: Evaluation on masking ratios with our model across all datasets using LPIPS metric.

to the baseline model. For example in SlotFormer, starting from t = 36, the pink ball moves in an
incorrect direction, despite an earlier observation of it colliding with the yellow cube around t = 30.
In contrast, our model demonstrates consistent prediction of object appearance and motion over time.
This observation underscores that PSNR may not be the most robust metric for assessing generation
quality. In the case of MOVi-A and MOVi-C, our model generates consistent frames and achieves
superior results compared to both baseline models. This underscores the robustness of our approach
in handling complex environments characterized by changes in object appearance and motion over
time.

4.3 Detailed analyses

Image reconstruction with cross-attention mechanism. We further evaluate the capability of image
decomposition and reconstruction ability on OBJ3D to verify that the integration of slots from the
slot encoder and masked patches from the feature extraction module, facilitated by the cross-attention
mechanism, does not impede the unsupervised video prediction task. Our findings confirm that the
cross-attention mechanism successfully segments objects within the scene. Generation results of
image reconstruction and decomposition on OBJ3D are provided in Appendix B.

Training sequence length. In our study, SlotFormer serves as the reference for determining exper-
imental setting across OBJ3D and CLEVRER datasets. In the case of MOVi-A and MOVi-C, we
conducted training with a carefully chosen set of hyperparameters, taking into consideration both
computational resources and the setup implemented in SlotFormer. For a detailed and comprehensive
overview of the specific hyperparameters used for each dataset, we direct readers to Appendix A.

Masked image patches. We conducted a performance evaluation of our model across various
masking ratios on each dataset, spanning from 20% to 60%. Masking ratios below 20% yielded
results nearly identical to the original image, while ratios above 60% rendered meaningless patches
that masked out a majority of the important object components. As shown in Figure 3, we evaluated
based on LPIPS score. We observed a notable improvement in performance at a specific ratio for
each dataset, and thus, opted to use the particular ratios for our training.

5 Conclusion and future work

In this paper, we propose a new dynamics prediction mechanism with object-centric representations.
Our model captures intricate relationships between objects, encompassing both appearance and
motion characteristics, in an unsupervised way. Experimental results demonstrate that our model
predicts better object appearance and motion compared to the baselines in complex environments.
This distinction arises from our model’s ability to comprehend spatial and temporal patterns of objects
facilitated by two components we propose, as opposed to existing architectures that primarily focus
on modeling explicit scene-level object interactions. Additionally, our approach introduces a cross-
attention mechanism with object-centric representations, which operates over a set of feature vectors
for each image embedding. This significantly reduces computation demands of the traditional self-
attention mechanism, thereby accelerating training speed, making it well-suited for tasks involving
dynamics prediction and video generation.

A future improvement of this work could be to enhancing its potential for longer dynamics prediction
and generalization to diverse datasets. These advancements hold significant promise in expanding
our model to various downstream tasks, including visual question answering, action planning, and
even in the domain of autonomous navigation.
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A Implementation details

A.1 Hyperparameters

Dataset OBJ3D CLEVRER MOVi-A MOVi-C

Slot Encoder Training steps 80k 200k 150k 150k
module Base model SAVi SAVi SAVi SAVi

Number of slots 7 8 11 11
Slot size 128 128 128 128
Batch size 64 64 32 32
Input size 64×64 64×64 64×64 64×64

Patch Extraction Patch size 4×4 4×4 4×4 4×4
module Masking ratio 40% 40% 30% 30%

Input size 64×64 64×64 64×64 64×64

Transformer Training steps 200k 400k 200k 200k
module Conditioned frames 6 6 6 6

Predicted frames 10 10 10 10
Batch size 64 64 32 32
Learning rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Transformer layers 4 4 8 8
Embedding size 128 256 256 256
Dimension size 256 256 128 128
Loss weight λ 1 1 0.7 0.7

Table 2: List of hyperparameters for each dataset.

A.2 Dataset details

Figure 4: Overview of the datasets. (a) OBJ3D and (b) CLEVRER datasets are considered simple as
the objects move on a flat surface. (c) MOVi-A, and (d) MOVi-C are challenging due to the diversity
of objects’ motion, where objects are tossed on the surface.

OBJ3D is crafted to address tasks related to the comprehension and manipulation of 3D objects [12].
It encompasses a diverse array of objects distinguished by their varying shapes, textures, and visual
attributes, each accompanied by corresponding object-centric annotations. Each object is annotated
with its 3D spatial orientation, geometric form, and semantic classification.

CLEVRER dataset incorporates temporal aspects by presenting videos of dynamic scenes wherein
objects exhibit motion, collision, and interaction. It comprises artificially generated images com-
posed of 3D objects, constructed using basic geometric shapes, diverse colors, materials, and spatial
configurations. Annotations offer detailed information regarding object characteristics, interrelation-
ships, and physical attributes, facilitating the comprehension and deduction of insights from intricate
visual scenes. Notably, to enable an unsupervised evaluation of performance, the annotations are
intentionally excluded from the training and prediction phases.

MOVi-A derived from the CLEVR dataset, encompasses a wider range of complex visual content.
This dataset encompasses variations in lighting conditions, background complexity, occlusions, and
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object appearances. The scenes in MOVi-A consist of 3 to 10 randomly positioned objects situated
on a gray floor. The camera’s position remains stationary, directed towards the origin point.

MOVi-C is comprised of genuine video sequences that displays moving objects situated within a
range of backgrounds, characterized by diverse lighting conditions and contextual arrangements. In
contrast to MOVi-A, which utilizes elementary shapes with uniform coloring, MOVi-C incorporates
authentic objects obtained from the Google Scanned Objects (GSO) dataset [3]. The backgrounds are
randomly generated from Poly Haven, which also serves as the ground surface.

A.3 Baseline details

G-SWM [12] is a leading-edge model in the domain of dynamics prediction from images, placing par-
ticular emphasis on object-centric representations. It excels in breaking down scenes into foreground
and background components, while also disentangling object appearances. This unique capability
allows G-SWM to model object interactions and dynamics. Through the adoption of object-centric
representations, G-SWM acquires a nuanced understanding of how individual objects influence the
overall dynamics, making it a powerful tool for tasks like video prediction and scene understanding.

SlotFormer [26] is a state-of-the-art model designed for dynamics prediction from images via
object-centric representations. It employs Slot Attention, a mechanism that isolates and extracts a set
of slots representing various components of a visual scene. These slots encapsulate information about
object attributes and their spatial relationships. SlotFormer provides a comprehensive understanding
of how objects interact and move within a given scene.

B Image decomposition and reconstruction result on OBJ3D

Figure 5: Unsupervised image decomposition and reconstruction performance on OBJ3D dataset
trained on 6 slots. We show ground truth in the first column and the reconstructed image of the
predicted slots in the subsequent columns.
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