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Abstract

Human-in-the-loop interactive learning has001
been shown to be effective for best solution002
selection tasks. Bayesian Optimisation (BO)003
reduces the amount of user interaction required004
but has so far relied on shallow models rather005
than end-to-end deep learning. This paper lever-006
ages recent advances in Bayesian deep learning007
(BDL) to more accurately identify the best solu-008
tion from a few rounds of interaction. We apply009
our approach to community question answer-010
ing (cQA), finding that our BDL approach sig-011
nificantly outperforms existing methods while012
remaining robust to noise in the user feedback.013

1 Introduction014

Selecting the correct, multi-sentence answer to a015

complex question poses a challenge for cQA sys-016

tems (Tran et al., 2015; Rücklé et al., 2019; Deng017

et al., 2020). They can be assisted by human-in-the-018

loop interactive learning, which presents the user019

with pairs of candidate answers, and asks them020

to select the most appropriate answer in each pair021

(Simpson et al., 2020). This kind of pairwise la-022

belling (Thurstone, 1927) reduces the user’s cogni-023

tive burden compared with rating candidates (Yang024

and Chen, 2011). To minimise the number of in-025

teractions required, Simpson et al. (2020) use BO026

(Močkus, 1975), which actively chooses promising027

candidates for the user to compare. However, their028

model uses Gaussian process preference learning029

(GPPL), which relies on fixed embeddings of ques-030

tions and answers as input that cannot be fine-tuned031

to the task in hand. Besides, the Bayesian approach032

relies on estimating the epistemic or model uncer-033

tainty due to the inability to determine exact values034

for the model’s parameters from a finite training035

set. However, GPPL ignores model uncertainty in036

the question and answer representations.037

While deep neural networks (DNNs) are pow-038

erful representation learners, standard DNN prob-039

abilities are not well-calibrated, especially when040

generalising out of training distribution (Guo et al., 041

2017), and do not account for model uncertainty. 042

We therefore turn to BDL, which measures model 043

uncertainty, and improves calibration and general- 044

isation while keeping the representation learning 045

ability of neural networks (Maddox et al., 2019). 046

In this work, we propose a BDL method with 047

interactive preference learning for non-factoid an- 048

swer selection. Our approach leverages pretrained 049

models to embed text and can be fine-tuned end- 050

to-end with user feedback. An example output 051

is shown in Table 1. Experiments on an English 052

cQA dataset (Rücklé et al., 2019) show that BDL 053

outperforms the shallow GPPL and non-Bayesian 054

DNN with only 4 interactions, achieving on av- 055

erage a 15% improvement in accuracy over the 056

non-Bayesian method. We also show that the BDL 057

approach is robust to noise in the user feedback 058

and compare two recent BDL approaches, Monte 059

Carlo Dropout (MCD) (Gal and Ghahramani, 2016) 060

and stochastic weight averaging Gaussian (SWAG) 061

(Maddox et al., 2019), finding that MCD performs 062

best with limited computational costs. We will 063

make all code publicly available on acceptance. 064

2 Related Work 065

Many previous works on interactive learning, such 066

as P.V.S and Meyer (2017), Lin and Parikh (2017) 067

and Peris and Casacuberta (2018) use uncertainty 068

sampling to select unlabelled data to query users 069

for labels, but measure uncertainty using conven- 070

tional DNNs, which are miscalibrated and over- 071

confident (Guo et al., 2017), or measure predic- 072

tive rather than model uncertainty (Ein-Dor et al., 073

2020). Siddhant and Lipton (2018) conducted a 074

large empirical study of deep active learning across 075

multiple tasks, showing deep Bayesian active learn- 076

ing significantly outperforms classical uncertainty 077

sampling. For text ranking, Simpson et al. (2020) 078

replaced uncertainty sampling with BO to find the 079

best solution from a pool of candidates, achiev- 080
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Q1: Why is an album in Apple Music marked with an " E " and grayed out ?
A1 (GPPL): If you want your music to be uploaded to iCloud , you must sign up for iTunes Match. Make sure you’re
running the latest version of OS X and iOS. ( El Capitan - iOS 9 are the stable releases right now, although you can get the
public beta of macOS Sierra and iOS 10 ). Then make sure the Apple ID you’ve entered in the Music App on iOS is the ...
A2 (non-Bayesian deep ranker): In my experience, the cover photo is simply the first photo in the album. When you ’re
within an album, hit the button in the upper-right corner to manipulate the photos; then tap and hold a photo until it "inflates",
at which point you can drag it to move it around. You ’ll just have to be happy with your album cover being the first photo...
A3 (Bayesian deep ranker): The E symbol means " Explicit ". You can enable or disable explicit content within Settings
on your device . You’ll find the "ALLOW MUSIC; PODCASTS RATED "option under General − > Restrictions − >
Music Podcasts . You may need to enter a PIN code to access the Restrictions settings. You can disable the ...

Table 1: Example outputs for different methods after 4 interactions. Only A3 is correct.

ing state-of-the-art performance in both interactive081

cQA and summarisation. However, their shallow082

GPPL ranker cannot fine-tune the embeddings nor083

quantify the model uncertainty in the embeddings.084

3 Background085

BO with Expected Improvement (EI) BO aims086

at finding the maximum or minimum of a function.087

For text ranking tasks, this function maps an in-088

put text, x to a score, f(x), called the utility. BO089

uses an acquisition function to decide which input090

should be evaluated next. In effect, BO is an ac-091

tive learning process that focuses on finding the092

extremum, rather than learning the function.093

Here, we adopt EI as the acquisition function,094

which outperformed other acquisition functions for095

answer selection (Simpson et al., 2020). To com-096

pute EI, first estimate the posterior distribution over097

the utility of each candidate, N (µ(x),C). Then,098

find the current best candidate µ∗ = max{µ(x)}.099

For each candidate x, use C to compute the vari-100

ance v of (f(x) − f∗) and the normalised differ-101

ence, z = µ(x)−µ∗
√
v

, then use this to compute EI:102

aEI(x) =
√
vzΦ(z) +

√
vN (z; 0, 1) (1)103

EI selects candidates with both a high expected104

utility, µ(x), and high uncertainty, v, and therefore105

trades off exploitation and exploration.106

Monte Carlo Dropout EI requires us to esti-107

mate posteriors over utilities, but standard DNN108

inference outputs point estimates rather than dis-109

tributions. Gal and Ghahramani (2016) proposed110

Monte Carlo Dropout (MCD), a computationally111

efficient approximate Bayesian inference method.112

MCD samples T times from a variational poste-113

rior distribution over model weights as follows.114

For each weight j in the ith layer, sample zi,j ∼115

Bernouilli(pi) to determine whether dropout is116

applied to that weight. Then compute Wi =117

Mi · diag(zi), where Mi represents the weight ma- 118

trix before dropout and Wi is a sample of weights 119

with dropout applied. We use each sample, Wi, to 120

predict the utilities, thereby generating samples of 121

utilities. We then compute the empirical mean and 122

variance of these sample utilities to estimate the 123

posterior distribution over the utilities. 124

SWAG Another variational inference method, 125

SWAG can provide a better approximation to the 126

posterior than MCD (Maddox et al., 2019). It cal- 127

culates the first two moments of an approximate 128

Gaussian distribution over the weights using SGD 129

iterates. To estimate the mean of the Gaussian, it 130

adopts SWA (Izmailov et al., 2018), which aver- 131

ages the weights at selected SGD iterations. SWAG 132

approximates the covariance by summing a diag- 133

onal covariance and a low-rank covariance term, 134

also computed from the sampled weights. To esti- 135

mate the posterior over the utilities, sample from 136

the Gaussian weight posterior, predict the utilities 137

with each sample of weights, then compute the em- 138

pirical mean and variance of the predicted utilities. 139

4 Problem Definition 140

As shown in Figure 1, for a given question and 141

multiple candidate answers, the model needs to 142

return the best matched answer to a user after sev- 143

eral rounds of interaction. During each interaction, 144

the query strategy selects a pair of candidates for 145

the user to compare. Once the user’s feedback is 146

obtained, it is added into the training set to train 147

the surrogate model. The process will be repeated 148

a predefined number of times. To solve the cold 149

start problem, a warm start phase is introduced to 150

pretrain the model using in-domain data. 151

5 Proposed Bayesian Surrogate Model 152

The architecture (Appendix A) consists of a pre- 153

trained encoder (distilRoBERTa (Liu et al., 2019)), 154

two fully connected layers and one output layer. A 155
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Figure 1: Workflow of our Proposed Approach

Siamese architecture with margin ranking loss is156

used to learn a utility function for each candidate157

from pairwise comparisons:158

L(f1, f2, y) = max(0,−y(f1 − f2 +m)), (2)159

where f1 and f2 represent predicted utilities of two160

input texts and y ∈ {−1, 1}, indicates which input161

should be ranked higher, where y = 1 means can-162

didate 1 ranks higher. We use MCD and SWAG to163

approximate posteriors over utilities. For prior dis-164

tributions over the neural network weights, recent165

experiments provide strong evidence that vague166

Gaussian priors can induce useful inductive bias167

(Dmitry et al., 2020). Therefore, we add L2 regu-168

larisation to the loss function since it can be inter-169

preted as a Gaussian prior.170

6 Experiments171

Datasets We conduct experiments on an English172

cQA dataset consisting of questions posted on173

StackExchange in the communities Apple, Cook-174

ing and Travel (Rücklé et al., 2019). For a given175

question, there is one accepted answer marked by176

the user and 99 candidate answers collected from177

answers to similar questions. For the questions,178

the dataset retains only the title and discards the179

detailed description in the question body. For the180

interaction phase, we use the original test set (Ta-181

ble 2). To train the initial model in the warm start182

phase, we use the original training and part of the183

original validation set, while the remainder is used184

to tune hyperparameters in the interaction phase185

(Table 3).186

Topics #questions #accepted
answers

#candidate
answers

Apple 1,250 1,250 125,000
Cooking 792 792 79,200
Travel 766 766 76,600

Table 2: Statistics for the dataset at the interaction phase.

Topics Train Warm start
validation

Interaction phase
validation

Apple 5,831 1,249 831
Cooking 3,692 791 692
Travel 3,572 765 572

Table 3: Number of questions in the datasets for the
warm start and interaction phase hyperparameter tuning.

Simulate Users Here, we follow previous work 187

(Simpson et al., 2020; Gao et al., 2019) to simu- 188

late user preferences with the user-response model 189

(Viappiani and Boutilier, 2010). Given utilities of 190

two candidates, fa and fb, the simulated user will 191

prefer document a with probability: 192

p(ya,b|fa, fb) =
1

1 + exp(fa − fb)/t
, (3) 193

where t controls the noise in the user’s preferences. 194

We set the default value of t to 0.3, as per Simpson 195

et al. (2020) and investigate its effect in Section 6.2. 196

We estimate the utilities fa and fb with ROUGE-L, 197

which calculates the longest common subsequence 198

between candidates and gold answers. 199

Evaluation Metrics We compute matching accu- 200

racy, which is the fraction of top-ranked answers 201

that match the gold answers, and normalized dis- 202

counted cumulative gain (NDCG@5), which com- 203

pares the ROUGE-L score of the top five candidates 204

to the gold answer. 205

Hyperparameters We set the margin m (Equa- 206

tion 2) to 0.1 and tuned hyperparameters at both 207

the warm start and interaction phases (Appendix B). 208

As shown in table 5, doubling the number of MCD 209

samples led to a small improvement in accuracy, 210

while doubling computation time. Given limited 211

compute time in interactive settings, we fixed the 212

number of samples to 20. SWAG requires suffi- 213

cient epochs before starting sampling to accurately 214

approximate the posterior. Therefore, maintaining 215

the same computation time for SWAG as MCD 216

limited us to using only three epochs to compute 217

the weight posteriors in only the last four layers, 218

since the entire model has over 82M parameters. 219

All models are trained incrementally. 220
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Model Query
Strategy

Cooking
Acc NDCG@5

Apple
Acc NDCG@5

Travel
Acc NDCG@5

Initial ranker with no interactions 0.539 0.64 0.458 0.593 0.643 0.667

Non-Bayesian deep ranker UNC 0.685 0.683 0.417 0.614 0.686 0.634
GPPL EI 0.573 0.644 0.465 0.647 0.702 0.691
Bayesian deep ranker with SWAG EI 0.692 0.67 0.540 0.637 0.713 0.668
Bayesian deep ranker with MCD EI 0.736 0.683 0.677 0.654 0.833 0.702

Table 4: Results of different interactive ranking methods for cQA with 4 interactions.

#Samples 10 20 30 40

Accuracy 0.828 0.836 0.838 0.841
Time per interaction (s) 7 14 21 28

Table 5: Number of MCD samples on the validation set.

Baselines We compared our models with a non-221

Bayesian deep ranker and GPPL (using the imple-222

mentation of Simpson et al. (2020)). BO cannot be223

used for the non-Bayesian ranker because it does224

not compute the variance of the utility, so we use an225

established uncertainty sampling approach (P.V.S226

and Meyer, 2017) (UNC). For each candidate, a,227

we compute unc(a) = 0.5 − |p(a) − 0.5|, where228

p(a) = (1+ exp(−fa))
−1 is the probability that a229

is a good candidate and fa is the predicted utility230

of a. We query the candidate pair (a, b) with the231

highest uncertainty values, unc(a) and unc(b).232

6.1 Results: Performance Comparison233

Table 4 shows that all Bayesian methods outper-234

form the non-Bayesian deep ranker in most cases.235

For the topic Apple, the accuracy of the deep ranker236

with MCD is 26% higher than that of the non-237

Bayesian deep ranker. This gain comes from the238

ability to quantify uncertainty in the model weights239

due to a lack of knowledge, which enables us to240

apply BO to find the optimal candidate as quickly241

as possible. In contrast, the non-Bayesian ranker242

does not quantify model uncertainty, but selects243

predicted utilities close to zero, so may select mid-244

dling candidates and thereby waste labelling effort.245

As shown in Table 4, MCD outperforms SWAG246

under our computation time constraints. For247

SWAG, the weight covariance obtained from just248

three samples is relatively small, so the posterior249

tends to be sharply peaked. Moreover, with SWAG250

we only update the posteriors for the last four lay-251

ers, while MCD is applied to all layers. The vari-252

ance is thereby underestimated, impeding EI from253

exploring new points. Therefore, when computa-254

tion time is limited MCD appears more effective. 255

6.2 Noisy User Experiment 256

To test the robustness of our proposed models, we 257

vary the noise level t in the simulated labels (Equa- 258

tion (3)) and observe the accuracy of the Bayesian 259

deep ranker with MCD for the topic Travel. Table 260

6 shows that as noise increases, the matching ac- 261

curacy decreases, but there is no significant drop 262

when the noise parameter t rises from 0.3 to 2.5. 263

This indicates that the Bayesian deep ranker with 264

MCD is robust under noisy circumstances. 265

Noise Level 0.3 1 2.5
Accuracy 0.833 0.828 0.795

Table 6: Effect of simulated user noise on the Bayesian
deep ranker with MCD.

6.2.1 Computational Cost 266

The time per round of interactive learning increases 267

from ~2 seconds on a single NVIDIA RTX2080Ti 268

GPU with the non-Bayesian method, to ~16 sec- 269

onds with MCD or SWAG due to weight sampling. 270

7 Conclusion 271

We proposed an interactive Bayesian deep learning 272

method for cQA, which keeps the strong repre- 273

sentation learning ability of neural networks while 274

considering the uncertainty in the model itself. Our 275

method can be generalised to any interactive rank- 276

ing task whose aim is to select the best candidate. 277

Experiments showed our method achieves state-of- 278

the-art performance compared with a non-Bayesian 279

deep ranker and a shallow Bayesian method, and 280

is robust to noise in the user feedback. We also 281

showed when approximating posterior distributions 282

under tight compute time constraints, MCD can out- 283

perform SWAG. Evaluation with real users remains 284

a task for future work, along with parallel sampling 285

from posteriors to speed up Bayesian inference. 286
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8 Ethical Considerations287

There is a risk with automatic answer selection and288

recommender systems that the content directed can289

have undesirable effects, for instance if the user290

receives conspiracies or propaganda as answers291

to a question. This may happen unintentionally292

when user goals diverge from system goals, such293

as distributing advertisements. To some extent,294

interactive systems, such as that proposed here,295

hand more control to users and could reduce these296

issues. Nonetheless, further investigation is needed297

to determine the effect of interactive cQA systems298

on the answers that users get to see, to determine299

how this biases their content consumption or to300

identify other negative consequences.301

Our experiments evaluate the method on English302

cQA data as an initial investigation into the po-303

tential for BDL in answer selection tasks. The304

proposed method can be applied to other languages305

and tasks, but will require further evaluation to de-306

termine whether users can provide suitable labels307

in such domains, how many interactions are needed308

for the chosen language, and whether the mode of309

interaction is equally accessible and to users of310

different backgrounds.311

References312

Yang Deng, Wai Lam, Yuexiang Xie, Daoyuan Chen,313
Yaliang Li, Min Yang, and Ying Shen. 2020. Joint314
learning of answer selection and answer summary315
generation in community question answering. In316
Proceedings of the AAAI Conference on Artificial317
Intelligence, volume 34, pages 7651–7658.318

Ulyanov Dmitry, Andrea Vedaldi, and Lempitsky Victor.319
2020. Deep image prior. International Journal of320
Computer Vision, 128(7):1867–1888.321

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch,322
Lena Dankin, Leshem Choshen, Marina Danilevsky,323
Ranit Aharonov, Yoav Katz, and Noam Slonim. 2020.324
Active Learning for BERT: An Empirical Study. In325
Proceedings of the 2020 Conference on Empirical326
Methods in Natural Language Processing (EMNLP),327
pages 7949–7962, Online. Association for Computa-328
tional Linguistics.329

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a330
Bayesian approximation: Representing model uncer-331
tainty in deep learning. In international conference332
on machine learning, pages 1050–1059. PMLR.333

Yang Gao, Christian M Meyer, and Iryna Gurevych.334
2019. Preference-based interactive multi-document335
summarisation. Information Retrieval Journal, pages336
1–31.337

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein- 338
berger. 2017. On calibration of modern neural net- 339
works. In International Conference on Machine 340
Learning, pages 1321–1330. PMLR. 341

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, 342
Dmitry Vetrov, and Andrew Gordon Wilson. 2018. 343
Averaging weights leads to wider optima and bet- 344
ter generalization. In Conference on Uncertainty in 345
Artificial Intelligence. 346

Xiao Lin and Devi Parikh. 2017. Active learning for 347
visual question answering: An empirical study. arXiv 348
preprint arXiv:1711.01732. 349

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 350
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 351
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 352
Roberta: A robustly optimized bert pretraining ap- 353
proach. arXiv preprint arXiv:1907.11692. 354

Wesley J Maddox, Pavel Izmailov, Timur Garipov, 355
Dmitry P Vetrov, and Andrew Gordon Wilson. 2019. 356
A simple baseline for Bayesian uncertainty in deep 357
learning. Advances in Neural Information Process- 358
ing Systems, 32:13153–13164. 359
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A Appendix: Architecture409

Pretrained model
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Fully connected layer

Fully connected layer
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Pretrained model
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Fully connected layer

Fully connected layer

utility

Shared 




Weights

Margin ranking loss
function

Figure 2: Architecture of the proposed surrogate model

Figure 2 shows the architecture of the deep410

ranker used as a surrogate model in the interactive411

learning process. All weights are shared between412

candidates 1 and 2 (Siamese architecture) and the413

architecture is used for both the Bayesian and non-414

Bayesian deep rankers.415

B Appendix: Hyperparameter Tuning416

For hidden sizes of our model, we followed the417

setup of previous work to make our work com-418

parable as shown in table 7. At the warm start419

stage, we use the AdamW optimizer for the deep420

ranker which includes implicit L2 regularization us- 421

ing weight decay. For the SWAG-based model, we 422

use SGD with momentum as the optimizer since it 423

will update the parameters of posterior distributions 424

along the SGD trajectory. 425

Layer name # Hidden size
DistilRoBERTa orignial size

Fully-connected layer 1 100
Fuly-connected layer 2 10

Output layer 1

Table 7: Hidden size for different layers in our model

We empirically set the search space of 426

learning rate ∈ {2e − 5, 5e − 5} for conven- 427

tional deep learning, {1e − 4, 5e − 5} for the 428

SWAG-based model, batch size ∈ {16, 32} and 429

weight decay ∈ {0.01, 0.001}. We exhaustively 430

searched these combinations to find the optimal 431

combination and the results are shown in Appendix 432

for different topics. For other hyperparameters, the 433

training epoch is fixed to 3 epochs for conventional 434

deep ranker and 6 epochs for SWAG-based ranker. 435

The Dropout rate is the default value, 0.1. 436

At the interaction stage, we empirically set both 437

the number of iteration rounds and updating epochs 438

to 4. The optimizer we used here is SGD with 439

momentum. Early stopping is applied. Learning 440

rate, weight decay, and the number of sampling 441

from posterior distributions are tunable parameters. 442

The search space of these parameters is as follows. 443

Parameters Value ranges

learning rate [1e-4, 5e-5]
sampling nums [10, 20, 40]
weight decay [0.01, 0.001]

Table 8: Search Space of hyperparameters at the inter-
action stage
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Learning rate Batch size Weight decay
Validation Accuracy

Vanilla ranker SWAG ranker
5e-5 16 0.001 0.964 0.913
5e-5 32 0.001 0.964 0.923

2e-5(1e-4)1 16 0.001 0.969 0.932
2e-5(1e-4) 32 0.001 0.968 0.958

5e-5 16 0.01 0.970 0.954
5e-5 32 0.01 0.967 0.957

2e-5(1e-4) 16 0.01 0.969 0.943
2e-5 32 0.01 0.970 0.955

Table 9: Validation Accuracy of different combinations of hyperparameters of different
models on Topic Cooking
1 hyperparameters in parentheses are tuned for the SWAG-based model

Learning rate Batch size Weight decay
Validation Accuracy

Vanilla ranker SWAG ranker
5e-5 16 0.001 0.936 0.921
5e-5 32 0.001 0.936 0.916

2e-5(1e-4)1 16 0.001 0.941 0.922
2e-5(1e-4) 32 0.001 0.943 0.913

5e-5 16 0.01 0.929 0.912
5e-5 32 0.01 0.938 0.920

2e-5(1e-4) 16 0.01 0.939 0.914
2e-5(1e-4) 32 0.01 0.935 0.922

Table 10: Validation Accuracy of different combinations of hyperparameters of
different models on Topic apple
1 hyperparameters in parentheses are tuned for the SWAG-based model

Learning rate Batch size Weight decay
Validation Accuracy

Vanilla ranker SWAG ranker
5e-5 16 0.001 0.975 0.548
5e-5 32 0.001 0.974 0.889

2e-5(1e-4)1 16 0.001 0.981 0.541
2e-5(1e-4) 32 0.001 0.981 0.968

5e-5 16 0.01 0.977 0.968
5e-5 32 0.01 0.979 0.837

2e-5(1e-4) 16 0.01 0.981 0.971
2e-5(1e-4) 32 0.01 0.980 0.967

1 hyperparameters in parentheses are tuned for the SWAG-based model

Table 11: Validation Accuracy of different combinations of hyperparameters of
different models on Topic travel
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Learning rate Weight decay
Acc of Bayesian deep ranker

Acc of Non-Bayesian deep ranker
Dropout SWAG

1e-4 0.01 0.777 0.71 0.7
1e-4 0.001 0.765 0.73 0.71

5e-5 0.01 0.74 0.70 0.698
5e-5 0.001 0.749 0.72 0.715

Table 12: Results of different combinations of hyperparameters on Topic Cooking

Learning rate Weight decay Acc of Bayesian deep ranker Acc of Non-Bayesian deep rankerDropout SWAG

1e-4 0.01 0.644 0.524 0.451
1e-4 0.001 0.656 0.552 0.437

5e-5 0.01 0.641 0.551 0.44
5e-5 0.001 0.633 0.541 0.432

Table 13: Results of different combinations of hyperparameters on Topic Apple

Learning rate Weight decay Acc of Bayesian deep ranker Acc of Non-Bayesian deep rankerDropout SWAG

1e-4 0.01 0.836 0.75 0.68
1e-4 0.001 0.833 0.751 0.668

5e-5 0.01 0.831 0.744 0.675
5e-5 0.001 0.833 0.76 0.678

Table 14: Results of different combinations of hyperparameters on Topic Travel
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