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Abstract

Human-in-the-loop interactive learning has
been shown to be effective for best solution
selection tasks. Bayesian Optimisation (BO)
reduces the amount of user interaction required
but has so far relied on shallow models rather
than end-to-end deep learning. This paper lever-
ages recent advances in Bayesian deep learning
(BDL) to more accurately identify the best solu-
tion from a few rounds of interaction. We apply
our approach to community question answer-
ing (cQA), finding that our BDL approach sig-
nificantly outperforms existing methods while
remaining robust to noise in the user feedback.

1 Introduction

Selecting the correct, multi-sentence answer to a
complex question poses a challenge for cQA sys-
tems (Tran et al., 2015; Riicklé et al., 2019; Deng
et al., 2020). They can be assisted by human-in-the-
loop interactive learning, which presents the user
with pairs of candidate answers, and asks them
to select the most appropriate answer in each pair
(Simpson et al., 2020). This kind of pairwise la-
belling (Thurstone, 1927) reduces the user’s cogni-
tive burden compared with rating candidates (Yang
and Chen, 2011). To minimise the number of in-
teractions required, Simpson et al. (2020) use BO
(Mockus, 1975), which actively chooses promising
candidates for the user to compare. However, their
model uses Gaussian process preference learning
(GPPL), which relies on fixed embeddings of ques-
tions and answers as input that cannot be fine-tuned
to the task in hand. Besides, the Bayesian approach
relies on estimating the epistemic or model uncer-
tainty due to the inability to determine exact values
for the model’s parameters from a finite training
set. However, GPPL ignores model uncertainty in
the question and answer representations.

While deep neural networks (DNNs) are pow-
erful representation learners, standard DNN prob-
abilities are not well-calibrated, especially when

generalising out of training distribution (Guo et al.,
2017), and do not account for model uncertainty.
We therefore turn to BDL, which measures model
uncertainty, and improves calibration and general-
isation while keeping the representation learning
ability of neural networks (Maddox et al., 2019).
In this work, we propose a BDL method with
interactive preference learning for non-factoid an-
swer selection. Our approach leverages pretrained
models to embed text and can be fine-tuned end-
to-end with user feedback. An example output
is shown in Table 1. Experiments on an English
cQA dataset (Riicklé et al., 2019) show that BDL
outperforms the shallow GPPL and non-Bayesian
DNN with only 4 interactions, achieving on av-
erage a 15% improvement in accuracy over the
non-Bayesian method. We also show that the BDL
approach is robust to noise in the user feedback
and compare two recent BDL approaches, Monte
Carlo Dropout (MCD) (Gal and Ghahramani, 2016)
and stochastic weight averaging Gaussian (SWAG)
(Maddox et al., 2019), finding that MCD performs
best with limited computational costs. We will
make all code publicly available on acceptance.

2 Related Work

Many previous works on interactive learning, such
as P.V.S and Meyer (2017), Lin and Parikh (2017)
and Peris and Casacuberta (2018) use uncertainty
sampling to select unlabelled data to query users
for labels, but measure uncertainty using conven-
tional DNNs, which are miscalibrated and over-
confident (Guo et al., 2017), or measure predic-
tive rather than model uncertainty (Ein-Dor et al.,
2020). Siddhant and Lipton (2018) conducted a
large empirical study of deep active learning across
multiple tasks, showing deep Bayesian active learn-
ing significantly outperforms classical uncertainty
sampling. For text ranking, Simpson et al. (2020)
replaced uncertainty sampling with BO to find the
best solution from a pool of candidates, achiev-



Q1: Why is an album in Apple Music marked with an " E " and grayed out ?

A1l (GPPL): If you want your music to be uploaded to iCloud , you must sign up for iTunes Match. Make sure you're
running the latest version of OS X and iOS. ( El Capitan - iOS 9 are the stable releases right now, although you can get the
public beta of macOS Sierra and iOS 10 ). Then make sure the Apple ID you’ve entered in the Music App on iOS is the ...

A2 (non-Bayesian deep ranker): In my experience, the cover photo is simply the first photo in the album. When you ’re
within an album, hit the button in the upper-right corner to manipulate the photos; then tap and hold a photo until it "inflates",
at which point you can drag it to move it around. You ’ll just have to be happy with your album cover being the first photo...
A3 (Bayesian deep ranker): The E symbol means ' Explicit ''. You can enable or disable explicit content within Settings
on your device . You'll find the "TALLOW MUSIC; PODCASTS RATED "option under General — > Restrictions — >
Music Podcasts . You may need to enter a PIN code to access the Restrictions settings. You can disable the ...

Table 1: Example outputs for different methods after 4 interactions. Only A3 is correct.

ing state-of-the-art performance in both interactive
cQA and summarisation. However, their shallow
GPPL ranker cannot fine-tune the embeddings nor
quantify the model uncertainty in the embeddings.

3 Background

BO with Expected Improvement (EI) BO aims
at finding the maximum or minimum of a function.
For text ranking tasks, this function maps an in-
put text, x to a score, f(x), called the utiliry. BO
uses an acquisition function to decide which input
should be evaluated next. In effect, BO is an ac-
tive learning process that focuses on finding the
extremum, rather than learning the function.

Here, we adopt EI as the acquisition function,
which outperformed other acquisition functions for
answer selection (Simpson et al., 2020). To com-
pute EI, first estimate the posterior distribution over
the utility of each candidate, N (u(x), C). Then,
find the current best candidate * = maz{u(x)}.
For each candidate x, use C to compute the vari-
ance v of (f(z) — f*) and the normalised differ-

ence, z = % then use this to compute EI:

apr(z) = Vvz®(z) + VoN(20,1) (1)

EI selects candidates with both a high expected
utility, p(x), and high uncertainty, v, and therefore
trades off exploitation and exploration.

Monte Carlo Dropout EI requires us to esti-
mate posteriors over utilities, but standard DNN
inference outputs point estimates rather than dis-
tributions. Gal and Ghahramani (2016) proposed
Monte Carlo Dropout (MCD), a computationally
efficient approximate Bayesian inference method.
MCD samples 7' times from a variational poste-
rior distribution over model weights as follows.
For each weight j in the ith layer, sample z; ; ~
Bernouilli(p;) to determine whether dropout is
applied to that weight. Then compute W; =

M; - diag(z;), where M; represents the weight ma-
trix before dropout and W; is a sample of weights
with dropout applied. We use each sample, W, to
predict the utilities, thereby generating samples of
utilities. We then compute the empirical mean and
variance of these sample utilities to estimate the
posterior distribution over the utilities.

SWAG Another variational inference method,
SWAG can provide a better approximation to the
posterior than MCD (Maddox et al., 2019). It cal-
culates the first two moments of an approximate
Gaussian distribution over the weights using SGD
iterates. To estimate the mean of the Gaussian, it
adopts SWA (Izmailov et al., 2018), which aver-
ages the weights at selected SGD iterations. SWAG
approximates the covariance by summing a diag-
onal covariance and a low-rank covariance term,
also computed from the sampled weights. To esti-
mate the posterior over the utilities, sample from
the Gaussian weight posterior, predict the utilities
with each sample of weights, then compute the em-
pirical mean and variance of the predicted utilities.

4 Problem Definition

As shown in Figure 1, for a given question and
multiple candidate answers, the model needs to
return the best matched answer to a user after sev-
eral rounds of interaction. During each interaction,
the query strategy selects a pair of candidates for
the user to compare. Once the user’s feedback is
obtained, it is added into the training set to train
the surrogate model. The process will be repeated
a predefined number of times. To solve the cold
start problem, a warm start phase is introduced to
pretrain the model using in-domain data.

5 Proposed Bayesian Surrogate Model

The architecture (Appendix A) consists of a pre-
trained encoder (distilIRoBERTa (Liu et al., 2019)),
two fully connected layers and one output layer. A
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Figure 1: Workflow of our Proposed Approach

Siamese architecture with margin ranking loss is
used to learn a utility function for each candidate
from pairwise comparisons:

L(flvf?ay) = maX(O? _y(fl - f2 +m))7 (2)

where f1 and fo represent predicted utilities of two
input texts and y € {—1, 1}, indicates which input
should be ranked higher, where y = 1 means can-
didate 1 ranks higher. We use MCD and SWAG to
approximate posteriors over utilities. For prior dis-
tributions over the neural network weights, recent
experiments provide strong evidence that vague
Gaussian priors can induce useful inductive bias
(Dmitry et al., 2020). Therefore, we add L2 regu-
larisation to the loss function since it can be inter-
preted as a Gaussian prior.

6 Experiments

Datasets We conduct experiments on an English
cQA dataset consisting of questions posted on
StackExchange in the communities Apple, Cook-
ing and Travel (Riicklé et al., 2019). For a given
question, there is one accepted answer marked by
the user and 99 candidate answers collected from
answers to similar questions. For the questions,
the dataset retains only the title and discards the
detailed description in the question body. For the
interaction phase, we use the original test set (Ta-
ble 2). To train the initial model in the warm start
phase, we use the original training and part of the
original validation set, while the remainder is used
to tune hyperparameters in the interaction phase
(Table 3).

#accepted  #candidate

Topics #questions

answers answers
Apple 1,250 1,250 125,000
Cooking 792 792 79,200
Travel 766 766 76,600

Table 2: Statistics for the dataset at the interaction phase.

Tobi Trai Warm start  Interaction phase
opies T Validation validation
Apple 5,831 1,249 831
Cooking 3,692 791 692
Travel 3,572 765 572

Table 3: Number of questions in the datasets for the
warm start and interaction phase hyperparameter tuning.

Simulate Users Here, we follow previous work
(Simpson et al., 2020; Gao et al., 2019) to simu-
late user preferences with the user-response model
(Viappiani and Boutilier, 2010). Given utilities of
two candidates, f, and f3, the simulated user will
prefer document a with probability:

1

faafb) = 1+exp(fa_fb)/t’ (3)

where ¢ controls the noise in the user’s preferences.
We set the default value of t to 0.3, as per Simpson
et al. (2020) and investigate its effect in Section 6.2.
We estimate the utilities f,; and f;, with ROUGE-L,
which calculates the longest common subsequence
between candidates and gold answers.

p(ya,b

Evaluation Metrics We compute matching accu-
racy, which is the fraction of top-ranked answers
that match the gold answers, and normalized dis-
counted cumulative gain (NDCG@5), which com-
pares the ROUGE-L score of the top five candidates
to the gold answer.

Hyperparameters We set the margin m (Equa-
tion 2) to 0.1 and tuned hyperparameters at both
the warm start and interaction phases (Appendix B).
As shown in table 5, doubling the number of MCD
samples led to a small improvement in accuracy,
while doubling computation time. Given limited
compute time in interactive settings, we fixed the
number of samples to 20. SWAG requires suffi-
cient epochs before starting sampling to accurately
approximate the posterior. Therefore, maintaining
the same computation time for SWAG as MCD
limited us to using only three epochs to compute
the weight posteriors in only the last four layers,
since the entire model has over 82M parameters.
All models are trained incrementally.



Model Query Cooking Apple Travel

ode Strategy Acc NDCG@5 Acc NDCG@5  Acc NDCG@5
Initial ranker with no interactions 0539 0.64 0458 0593 0.643 0.667
Non-Bayesian deep ranker UNC 0.685 0.683 0417 0.614 0.686 0.634
GPPL EI 0573 0.644 0465 0.647 0.702  0.691
Bayesian deep ranker with SWAG EI 0.692 0.67 0540 0.637 0.713 0.668
Bayesian deep ranker with MCD EI 0.736 0.683 0.677 0.654 0.833  0.702

Table 4: Results of different interactive ranking methods for cQA with 4 interactions.

#Samples 10 20 30 40
Accuracy 0.828 0.836 0.838 0.841
Time per interaction (s) 7 14 21 28

Table 5: Number of MCD samples on the validation set.

Baselines We compared our models with a non-
Bayesian deep ranker and GPPL (using the imple-
mentation of Simpson et al. (2020)). BO cannot be
used for the non-Bayesian ranker because it does
not compute the variance of the utility, so we use an
established uncertainty sampling approach (P.V.S
and Meyer, 2017) (UNC). For each candidate, a,
we compute unc(a) = 0.5 — |p(a) — 0.5|, where
p(a) = (14 exp(—f,)) "t is the probability that a
is a good candidate and f, is the predicted utility
of a. We query the candidate pair (a, b) with the
highest uncertainty values, unc(a) and unc(b).

6.1 Results: Performance Comparison

Table 4 shows that all Bayesian methods outper-
form the non-Bayesian deep ranker in most cases.
For the topic Apple, the accuracy of the deep ranker
with MCD is 26% higher than that of the non-
Bayesian deep ranker. This gain comes from the
ability to quantify uncertainty in the model weights
due to a lack of knowledge, which enables us to
apply BO to find the optimal candidate as quickly
as possible. In contrast, the non-Bayesian ranker
does not quantify model uncertainty, but selects
predicted utilities close to zero, so may select mid-
dling candidates and thereby waste labelling effort.

As shown in Table 4, MCD outperforms SWAG
under our computation time constraints. For
SWAG, the weight covariance obtained from just
three samples is relatively small, so the posterior
tends to be sharply peaked. Moreover, with SWAG
we only update the posteriors for the last four lay-
ers, while MCD is applied to all layers. The vari-
ance is thereby underestimated, impeding EI from
exploring new points. Therefore, when computa-

tion time is limited MCD appears more effective.

6.2 Noisy User Experiment

To test the robustness of our proposed models, we
vary the noise level ¢ in the simulated labels (Equa-
tion (3)) and observe the accuracy of the Bayesian
deep ranker with MCD for the topic Travel. Table
6 shows that as noise increases, the matching ac-
curacy decreases, but there is no significant drop
when the noise parameter ¢ rises from 0.3 to 2.5.
This indicates that the Bayesian deep ranker with
MCD is robust under noisy circumstances.

Noise Level 0.3 1 2.5
Accuracy 0.833 0.828 0.795

Table 6: Effect of simulated user noise on the Bayesian
deep ranker with MCD.

6.2.1 Computational Cost

The time per round of interactive learning increases
from ~2 seconds on a single NVIDIA RTX2080Ti
GPU with the non-Bayesian method, to ~16 sec-
onds with MCD or SWAG due to weight sampling.

7 Conclusion

We proposed an interactive Bayesian deep learning
method for cQA, which keeps the strong repre-
sentation learning ability of neural networks while
considering the uncertainty in the model itself. Our
method can be generalised to any interactive rank-
ing task whose aim is to select the best candidate.
Experiments showed our method achieves state-of-
the-art performance compared with a non-Bayesian
deep ranker and a shallow Bayesian method, and
is robust to noise in the user feedback. We also
showed when approximating posterior distributions
under tight compute time constraints, MCD can out-
perform SWAG. Evaluation with real users remains
a task for future work, along with parallel sampling
from posteriors to speed up Bayesian inference.



8 Ethical Considerations

There is a risk with automatic answer selection and
recommender systems that the content directed can
have undesirable effects, for instance if the user
receives conspiracies or propaganda as answers
to a question. This may happen unintentionally
when user goals diverge from system goals, such
as distributing advertisements. To some extent,
interactive systems, such as that proposed here,
hand more control to users and could reduce these
issues. Nonetheless, further investigation is needed
to determine the effect of interactive cQA systems
on the answers that users get to see, to determine
how this biases their content consumption or to
identify other negative consequences.

Our experiments evaluate the method on English
cQA data as an initial investigation into the po-
tential for BDL in answer selection tasks. The
proposed method can be applied to other languages
and tasks, but will require further evaluation to de-
termine whether users can provide suitable labels
in such domains, how many interactions are needed
for the chosen language, and whether the mode of
interaction is equally accessible and to users of
different backgrounds.
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Figure 2: Architecture of the proposed surrogate model

Figure 2 shows the architecture of the deep
ranker used as a surrogate model in the interactive
learning process. All weights are shared between
candidates 1 and 2 (Siamese architecture) and the
architecture is used for both the Bayesian and non-
Bayesian deep rankers.

B Appendix: Hyperparameter Tuning

For hidden sizes of our model, we followed the
setup of previous work to make our work com-
parable as shown in table 7. At the warm start
stage, we use the AdamW optimizer for the deep

ranker which includes implicit L2 regularization us-
ing weight decay. For the SWAG-based model, we
use SGD with momentum as the optimizer since it
will update the parameters of posterior distributions
along the SGD trajectory.

Layer name # Hidden size
DistilRoBERTa orignial size
Fully-connected layer 1 100
Fuly-connected layer 2 10
Output layer 1

Table 7: Hidden size for different layers in our model

We empirically set the search space of
learning rate € {2e — 5,5¢ — 5} for conven-
tional deep learning, {le — 4,5¢ — 5} for the
SWAG-based model, batch size € {16,32} and
weight decay € {0.01,0.001}. We exhaustively
searched these combinations to find the optimal
combination and the results are shown in Appendix
for different topics. For other hyperparameters, the
training epoch is fixed to 3 epochs for conventional
deep ranker and 6 epochs for SWAG-based ranker.
The Dropout rate is the default value, 0.1.

At the interaction stage, we empirically set both
the number of iteration rounds and updating epochs
to 4. The optimizer we used here is SGD with
momentum. Early stopping is applied. Learning
rate, weight decay, and the number of sampling
from posterior distributions are tunable parameters.
The search space of these parameters is as follows.

Parameters Value ranges
learning rate [1e-4, 5e-5]
sampling nums  [10, 20, 40]
weight decay  [0.01, 0.001]

Table 8: Search Space of hyperparameters at the inter-
action stage
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. . . lidation A
Learning rate  Batch size  Weight decay Vanva idation Accuracy

illa ranker SWAG ranker
5e-5 16 0.001 0.964 0913
5e-5 32 0.001 0.964 0.923
2e-5(1e-4)! 16 0.001 0.969 0.932
2e-5(1e-4) 32 0.001 0.968 0.958
5e-5 16 0.01 0.970 0.954
5e-5 32 0.01 0.967 0.957
2e-5(1e-4) 16 0.01 0.969 0.943
2e-5 32 0.01 0.970 0.955

Table 9: Validation Accuracy of different combinations of hyperparameters of different
models on Topic Cooking

! hyperparameters in parentheses are tuned for the SWAG-based model

Learning rate  Batch size Weight decay Van Validation Accuracy

illa ranker SWAG ranker
5e-5 16 0.001 0.936 0.921
5e-5 32 0.001 0.936 0.916
2e-5(le-4)! 16 0.001 0.941 0.922
2e-5(1e-4) 32 0.001 0.943 0.913
5e-5 16 0.01 0.929 0.912
5e-5 32 0.01 0.938 0.920
2e-5(1e-4) 16 0.01 0.939 0914
2e-5(1e-4) 32 0.01 0.935 0.922

Table 10: Validation Accuracy of different combinations of hyperparameters of
different models on Topic apple

! hyperparameters in parentheses are tuned for the SWAG-based model

. . . lidation A
Learning rate Batch size Weight decay Vanva idation Accuracy

illa ranker SWAG ranker
5e-5 16 0.001 0.975 0.548
5e-5 32 0.001 0.974 0.889
2e-5(1e-4)! 16 0.001 0.981 0.541
2e-5(1e-4) 32 0.001 0.981 0.968
5e-5 16 0.01 0.977 0.968
5e-5 32 0.01 0.979 0.837
2e-5(1e-4) 16 0.01 0.981 0.971
2e-5(1e-4) 32 0.01 0.980 0.967

!hyperparameters in parentheses are tuned for the SWAG-based model

Table 11: Validation Accuracy of different combinations of hyperparameters of
different models on Topic travel



Acc of Bayesian deep ranker

Learning rate ~ Weight decay Acc of Non-Bayesian deep ranker

Dropout SWAG
le-4 0.01 0.777 0.71 0.7
le-4 0.001 0.765 0.73 0.71
Se-5 0.01 0.74 0.70 0.698
5e-5 0.001 0.749 0.72 0.715

Table 12: Results of different combinations of hyperparameters on Topic Cooking

Acc of Bayesian deep ranker

Learning rate ~ Weight decay Acc of Non-Bayesian deep ranker

Dropout SWAG
le-4 0.01 0.644 0.524 0.451
le-4 0.001 0.656 0.552 0.437
Se-5 0.01 0.641 0.551 0.44
Se-5 0.001 0.633 0.541 0.432

Table 13: Results of different combinations of hyperparameters on Topic Apple

Acc of Bayesian deep ranker

Learning rate ~ Weight decay Acc of Non-Bayesian deep ranker

Dropout SWAG
le-4 0.01 0.836 0.75 0.68
le-4 0.001 0.833 0.751 0.668
Se-5 0.01 0.831 0.744 0.675
Se-5 0.001 0.833 0.76 0.678

Table 14: Results of different combinations of hyperparameters on Topic Travel



