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Abstract
Inverse problems aim to reconstruct unseen
data from corrupted or perturbed measurements.
While most work focuses on improving recon-
struction quality, generalization accuracy and ro-
bustness are equally important, especially for
safety-critical applications. Model-based architec-
tures (MBAs), such as loop unrolling methods, are
considered more interpretable and achieve better
reconstructions. Empirical evidence suggests that
MBAs are more robust to perturbations than black-
box solvers, but the accuracy-robustness tradeoff
in MBAs remains underexplored. In this work, we
propose a simple yet effective training scheme for
MBAs, called SGD jittering, which injects noise
iteration-wise during reconstruction. We theo-
retically demonstrate that SGD jittering not only
generalizes better than the standard mean squared
error training but is also more robust to average-
case attacks. We validate SGD jittering using
denoising toy examples, seismic deconvolution,
and single-coil MRI reconstruction. Both SGD
jittering and its SPGD extension yield cleaner
reconstructions for out-of-distribution data and
demonstrates enhanced robustness against adver-
sarial attacks.

1. Introduction
Inverse problems (IPs) aim to recover the underlying signal
x ∈ Rn from corrupted observation y ∈ Rm, where m is
often less than n, leading to non-unique solutions. IPs are
typically modeled as:

y = Ax+ z, (1)

where A ∈ Rm×n is a known forward model for linear IPs,
and z represents unknown noise in the observation.
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Machine learning algorithms show significantly better re-
constructions than classical optimization methods. Most of
the work in the field aims to promote reconstruction quality
using different deep-learning models, such as transformers
(Fabian et al., 2022) and diffusion models (Whang et al.,
2022). In particular, model-based architectures (MBAs)
such as loop unrolling (LU) networks inspired by classical
optimization methods, unroll the objective function into a
sequence of trainable iterative steps with the forward model
A involved in every iteration. MBAs are considered to be
more interpretable than neural networks that learn a direct
inverse without using A (Monga et al., 2021), and achieve
state-of-the-art reconstructions in different fields, such as
natural image restoration (Gilton et al., 2021) and medical
image reconstruction (Bian, 2024).

While reconstruction quality is crucial, robustness and gen-
eralization accuracy are equally important for IPs. Robust-
ness refers to the model’s ability to handle unwanted noise,
while generalization accuracy measures how well the model
performs on unseen data. For example, in medical image
reconstruction, a model must generalize well to detect subtle
details like small bone fractures and be robust enough to
eliminate artifacts caused by measurement noise. Despite
their importance, robustness and generalization have not
been thoroughly explored in the context of IPs, particularly
in MBAs. While some studies provide empirical assess-
ments of robustness (Gilton et al., 2021; Genzel et al., 2022),
there is a noticeable lack of theoretical analysis (Gottschling
et al., 2025).

In this work, we model MBA training as a bilevel optimiza-
tion problem without making specific assumptions about
neural network architectures. We theoretically analyze its
generalization and robustness risks in solving denoising
problems and demonstrate that standard mean squared error
(MSE) training may perform poorly in both metrics.

Technologies like adversarial training (AT) (Fawzi et al.,
2016; Gilmer et al., 2019; Kannan et al., 2018) and input
noise injection (Fawzi et al., 2016; Gilmer et al., 2019;
Kannan et al., 2018) are commonly used to enhance robust-
ness, while approaches such as weight perturbation (Wu
et al., 2020), stochastic training (Hardt et al., 2016) and
sharpness-aware minimization (Foret et al., 2021) are de-
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signed to improve generalization. However, there is often
a tradeoff between robustness and accuracy (Tsipras et al.,
2019; Zhang et al., 2023; Gottschling et al., 2025; Krainovic
et al., 2023). Strategies like careful loss function design
(Pang et al., 2022; Kannan et al., 2018; Zhang et al., 2019;
Zheng et al., 2021), data augmentation (Zhang et al., 2018),
and robust architectural choices such as dropout (Yang et al.,
2020) and teacher-student models (Zhao et al., 2024) have
been explored to mitigate this tradeoff in classification tasks,
but the challenge of balancing accuracy and robustness in
IP solvers still remains an open question (Gottschling et al.,
2025). Recent work by Krainovic et al. (2023) introduces
jittering in y for black-box IP neural networks, achieving a
comparable level of worst-case robustness to AT but with
significant accuracy loss.

To bridge this gap, this work aims to improve robustness
through a novel training scheme for MBAs, while main-
taining generalization accuracy for IPs. Note that while
specially designed architectures can also improve robust-
ness or generalization, they are not discussed here as this
work focuses on investigating different training schemes.

Our Contributions In this work, we propose a stochastic
gradient descent (SGD) jittering scheme in training MBAs.
This method unrolls the objective function for solving IPs us-
ing a gradient descent algorithm, with small, random noises
added to the gradient updates at each iteration to improve the
training process. During inference, these jittering noises are
removed, allowing the model to perform as it would in stan-
dard evaluation settings. This technique has demonstrated
greater robustness and better generalization than traditional
MSE training, while also being more time-efficient than AT.
Our contribution can be summarized as follows,

• Network Assumptions: We investigate the performance
of MBAs with general non-convex neural networks,
where training often results in non-unique parameters.
This analysis is crucial for demonstrating improve-
ments across various metrics, particularly in robustness
and generalization accuracy.

• Robustness: We theoretically prove that SGD jitter-
ing implicitly promotes average-case robustness than
regular MSE training. In the experiments, we further
demonstrate the effectiveness of SGD jittering under
worst-case attacks.

• Generalization: To the best of our knowledge, this
is the first work to formally analyze generalization
accuracy in inverse problems under small perturbations
in the test data, by reformulating the generalization
risk specific to inverse problems. This goes beyond
the commonly observed heuristic that a flatter loss
landscape implies better generalization.

2. Related Work
Robustness and Generalization for IPs Several strate-
gies have been proposed to improve robustness in solving in-
verse problems, including training-time exposure to diverse
perturbations such as noise injection and data augmentation
(Krainovic et al., 2023; Zhou et al., 2019), and adversar-
ial training (Calivá et al., 2021), enabling models to better
handle noise during inference. Other approaches focus on
architectural innovations—for example, diffusion models
have shown inherent robustness to noise in MRI reconstruc-
tion (Güngör et al., 2023), while PINN (Peng et al., 2022)
embed domain knowledge to enhance stability without com-
promising interpretability. To improve generalization in IPs,
methods like data augmentation with synthetic perturbations
(Guan et al., 2024) and domain adaptation via techniques
such as CycleGAN (Zhu et al., 2017) have been used to
expand the training distribution and improve adaptability
to unseen data. Additionally, incorporating geometric con-
straints, as in (Jiang et al., 2022) for electrocardiographic
image reconstruction, has shown improved generalization
by embedding prior knowledge into the learning process.
While these approaches typically target either robustness or
generalization, achieving both simultaneously remains an
open and challenging problem.

Analysis of Robustness Smoothness is closely related to
the robustness of neural networks. Works like Salman et al.
(2019); Cohen et al. (2019); Lecuyer et al. (2019); Li et al.
(2018) show that regularization in smoothness promotes the
robustness of classifiers. On the other hand, the analysis
of IP is very different from classifications. Krainovic et al.
(2023) analyzes the worst-case robustness for IPs using
a simple linear reconstruction model and directly solves
for robustness risk. However, optimizing a convex model
results in a solution that excels in only one metric (accuracy
or robustness). In this work, we explore nonlinear MBAs
in their general forms, demonstrating improvements across
both metrics.

Analysis of Generalization Demonstrating better gener-
alization of classifiers often involves showing larger classi-
fication margins (Cao et al., 2019; Kawaguchi et al., 2022;
Lim et al., 2021), but the proof for IPs is very different.
A common but indirect approach shows an algorithm can
regularize the Hessian of loss landscape with respect to the
network parameters. Models that converge to flat minima
in the loss landscape tend to generalize better in practice
(Jiang* et al., 2020; Keskar et al., 2017; Neyshabur et al.,
2017; Foret et al., 2021), although the precise theoretical
mechanism underlying this phenomenon remains unclear.
Many studies have shown that regularizing the Hessian of
the loss landscape (Xie et al., 2021; Keskar et al., 2017;
Foret et al., 2021) leads to flatter minima and have directly
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linked this to reduced generalization error, but this connec-
tion still lacks comprehensive theoretical justification. In
this work, rather than focusing on the connection to flat
landscapes, we proposed a new generalization risk for IPs,
and demonstrate that SGD jittering results in a smaller gen-
eralization risk than regular MSE training.

Noise Injections Noise injection serves as an implicit
regularization technique during training to enhance model
robustness and generalization. When applied to input data,
it can be viewed as a data augmentation strategy. This ap-
proach has been extensively studied in classification tasks
(Fawzi et al., 2016; Gilmer et al., 2019; Rusak et al., 2020)
and has recently demonstrated effectiveness in improving
robustness for IPs (Krainovic et al., 2023). Layer-wise noise
injection (Lim et al., 2021) in a recurrent network has been
shown to generalize better for classifiers. Weight injec-
tion perturbs network parameters during training, which is
shown to help escape from local minima (Zhu et al., 2019;
Nguyen et al., 2019) and promote smooth solutions (Orvieto
et al., 2023; Liu et al., 2021; Orvieto et al., 2022). Weights
can also be perturbed before parameter updates to enhance
generalization, as in stochastic gradient descent (SGD). We
will explore SGD in detail in the next subsection. In a
similar vein, Renaud et al. (2024) adds noise to plug-and-
play algorithms during evaluation to enhance in-distribution
performance, though it does not address its impact on ro-
bustness and generalization accuracy.

Connection to SGD Training SGD training is effective
in promoting generalization through implicit regularization
(Smith et al., 2021). In large overparameterized models with
non-unique global solutions, SGD favors networks with flat
minima (Hochreiter & Schmidhuber, 1997). The implicit
regularization properties of SGD have been explored in con-
texts such as linear regression (Zou et al., 2021), logistic
regression (Ji & Telgarsky, 2019), and convolutional net-
works (Gunasekar et al., 2018). Unlike SGD training, which
adds noise to network parameters, the proposed SGD jit-
tering method introduces noise at each iterative update of
the reconstructions in the lower-level optimization. Despite
its name, SGD jittering is structurally similar to layer-wise
noise injection within MBAs.

3. Definition of Robustness and Generalization
We formally define average-case robustness and generaliza-
tion risks for a learned inverse mapping Hθ : y 7→ x in
IPs. Average-case robustness is also known as the “natu-
ral” robustness for average performance (Rice et al., 2021;
Hendrycks & Dietterich, 2019), which is equally impor-
tant as in worst-case. During evaluation, a small vector g
sampled from the distribution Pg is added to a data point
x ∈ D. The new ground-truth becomes xg = x+ g, with

the corresponding observation yg = Axg + z = y +Ag.

Definition 3.1. The average-case robustness risk of Hθ

measures the distance between the unperturbed x to the
recovered signal x̂g = Hθ(yg) with the presence of g,

Re(θ) = Ex,y∼D,g∼Pg ||x−Hθ(yg)||22. (2)

Definition 3.2. The generalization risk of Hθ measures the
distance between the actual ground-truth xg to the recovered
signal x̂g = Hθ(yg) with the presence of g,

G(θ) = Ex,y∼D,g∼Pg ||xg −Hθ(yg)||22. (3)

Robustness measures how close the reconstruction is com-
pared to the data within the dataset, and the generalization
accuracy measures how well the reconstruction obeys the
physics of the IP even for out-of-distribution (OOD) data.
Defining generalization in regression is not straightforward,
but for IPs, we can achieve this using the underlying for-
ward models. Typically, a tradeoff between robustness and
accuracy exists for classical feedforward neural networks
(Zhang et al., 2019; Yang et al., 2020; Stutz et al., 2019). We
aim to illustrate that the SGD jittering technique enhances
robustness and accuracy for MBAs without incorporating
explicit regularization.

4. Model-based Architecture Overview
MBAs draw inspiration from classical optimization tech-
niques, where the underlying signal x is estimated via,

x̂ = argmin
x

1

2
||y −Ax||22 + r(x),

where r is an arbitrary regularization function to ensure the
uniqueness of the reconstruction. When r is differentiable,
the optimal solution can be solved via gradient descent
(GD) algorithm, iterating through steps k = 1, 2, 3... with a
constant step-size η,

xk+1 = xk − ηA⊤(Axk − y)− η∇r(xk). (4)

In a loop unrolling (LU) architecture using GD, the gradient
∇r is replaced by a neural network, denoted by fθ. The
process begins with an initial estimate x0, which is itera-
tively updated using (4) with a fixed number of iterations,
denoted by K. The final output xK represents the predicted
reconstruction and is compared to the desired ground-truth.
The weights θ are then updated through end-to-end back-
propagation. Different variants of LU are summarized in
Monga et al. (2021).

5. MBA Training Scheme Overview
In this section, we summarize some common training
schemes for general regression problems, adapted here for
MBA training. Following this, we introduce the proposed
SGD jittering method.
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Regular MSE Training Mean-squared error (MSE) is the
most commonly used training loss for regression and IPs.
In particular, the goal of training a MBA is to minimize the
following risk w.r.t. θ,

R(θ) = Ex,y∼D||x− x̂||22 where,

x̂ = argmin
x

1

2
∥y −Ax∥22 + rθ(x)

(5)

Notice that MBAs do not directly learn r, but instead learn
its gradient ∇r using a neural network fθ. We denote rθ to
highlight its dependency of θ. The lower-level optimization
is implemented using iterative steps, where each iteration
corresponding to a single module in a MBA. For LU archi-
tecture, with a finite and fixed number of iterations K, MSE
training minimizes the squared distance between the output
xK and the ground-truth x. However, this training scheme
can overfit to patterns in training data, potentially making
the model more vulnerable to variations in y.

Adversarial Training AT is widely recognized as one of
the most effective methods for training robust neural net-
works (Wang et al., 2019). AT finds the worst-case attack for
each training instance and adds it to the input data designed
to deceive the model. By learning from these challenging
examples, AT improves the model’s robustness. For MBA
training, AT aims to minimize the worst-case robustness risk
as follows,

Rϵ(θ) = Ex,y∼D

 max
e:||e||2≤ϵ

||x− x̂||22

s.t. x̂ = argmin
x

1

2
∥y + e−Ax∥22 + rθ(x)

 .

(6)
Fast gradient sign method and projected gradient descent
(ProjGD) are common methods to find the attack vector
e, where Athalye et al. (2018) demonstrates that ProjGD
adversarial attacks are more robust. However, AT is slow
as it requires iterative solvers for the attack vector (Shafahi
et al., 2019).

AT might suffer from poor generalizations. Imagine in
noiseless IPs where y = Ax, and assume the inverse A−1

exists. The goal of AT is to learn an inverse mapping Hθ

such that Hθ(y + e) is close to x, for non-zero vector e.
However, the true estimated is A−1(y + e) = x+A−1e.
AT learns to ignore the latter term, thus introducing errors
that can degrade generalization accuracy.

Input Jittering Noise injection to the input is widely used
in general ML tasks to promote robustness (Salman et al.,
2019; Cohen et al., 2019; Lecuyer et al., 2019). In IPs that
aim to map from y to x, Krainovic et al. (2023) proposes
adding a zero-mean random Gaussian vector w to y as
input to a neural network that learns a direct reconstruction.
They demonstrate that, with careful selection of the jittering
variance, this training scheme can attain a comparable level
of worst-case robustness to that achieved by AT. In MBAs,

the input jittering approach minimizes,

JI
σw

(θ) = Ew,(x,y)∼D||x− x̂||22 where,

x̂ = argmin
x

1

2
∥y +w −Ax∥22 + rθ(x).

(7)

This method learns an inverse mapping from y +w to x,
which might suffer from generalization issues in the same
way as AT. In fact, Krainovic et al. (2023) demonstrates a
significant accuracy loss using input jittering for black-box
neural networks.

6. Proposed Training Scheme
Another line of work injects noises layer-wise into the neu-
ral network, where Hodgkinson et al. (2021); Jim et al.
(1996); Liu et al. (2020) model this layer-wise injection as a
stochastic differential equation, demonstrating its role in im-
plicit regularization for robustness. Additionally, Lim et al.
(2021) introduces noise into recurrent neural networks and
shows improved generalization for classification tasks. In
this work, we propose adding random zero-mean Gaussian
noises, wk, to the gradient updates fθ(xk), with the noise
re-sampled independently for each iteration k = 1, 2, 3, ....
The noisy gradients are unbiased, i.e., E[fθ(x) + wk] =
E[fθ(x)] for all x. Let w̄ = {w1, ...,wK}. The estimated
reconstruction is solved iteratively using this noisy gradi-
ent descent, which is essentially stochastic gradient descent
(SGD). Thus, with step size η, the learning objective to
minimize the following risk,

JSGD
σwk

(θ) = Ew̄,(x,y)∼D||x− x̂||22 where,

x̂ = lim
k→∞

xk − η
(
A⊤(Axk − y) + fθ(xk) +wk

)
.

(8)
The jittering noise satisfy the following assumption.
Assumption 6.1. (SGD noises) Assume that at each gra-
dient descent iteration k = 1, 2, 3, ..., noise wk ∼
N (0, σ2

wk
/nI) is independently sampled from an i.i.d. zero-

mean Gaussian distribution, where E||wk||22 = σ2
wk

.

In AT and input jittering training, the noise vectors are
added to y throughout the entire inversion, introducing a
bias to the reconstruction compared to the actual ground-
truth. In contrast, the lower-level objective for SGD jittering
is the same as in regular MSE training. Extensive research
has explored the convergence properties of SGD in solving
nonconvex optimization problems (Ghadimi & Lan, 2013;
Li et al., 2024; Madden et al., 2024; Lei et al., 2019), which
ensures a correct inverse mapping even with the presence of
noise, thus preserves high accuracy in reconstruction.

We adapted the SGD convergence result in (Garrigos &
Gower, 2023) for SGD jittering as follows, where the proof
of Corollary 6.2 can be found in the Appendix.
Corollary 6.2. (Convergence of MBAs-SGD for IPs, modi-
fied from Theorem 5.12 in (Garrigos & Gower, 2023)) Let
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F (x) = 1
2 ||y −Ax||22 + rθ(x) denote the lower-level ob-

jective function in (8). Assume fθ = ∇rθ is L-Lipschitz
continuous, satisfying

||fθ(x+∆)− fθ(x)||2 ≤ L||∆||2, ∀x,∆,

Consider a sequence {xsgd
k }Kk=0 generated by SGD in (8)

with a constant step-size η =
√

2
LLmaxK

, for K ≥ 1, the
following holds:

min
0≤k<K

E||∇F (xsgd
k )||22 ≤

√
2LLmax

K

(
2(F (xsgd

0 )−inf F )+∆∗
F )

)
,

where, x∗ = argminx F (x), and

∆∗
F = F (x∗)− inf

(1
2
||y −Ax||22

)
− inf rθ(x),

denote λi as the eigenvalues of A⊤A and Lmax =
max{L,maxi=1,..,n λi}.

On the other hand, SGD jittering noise also implicitly en-
hances robustness. While we will analyze this relationship
theoretically in the following section, intuitively, exposing a
neural network to noisier inputs during training encourages
it to converge to smoother regions of the loss landscape,
which are less sensitive to input variations. This results in
more stable outputs that are less affected by perturbations
during evaluation.

7. Analysis for Denoising Problem
In this section, we analyze the generalization and robustness
of SGD jittering in addressing the denoising problem. We
begin by outlining the relevant assumptions.

Assumption 7.1. (Denoising) The forward model in denois-
ing is identity mapping, so that y = x+ z. Signals x ∈ Rn

are sampled from distribution X , and noises are sampled
i.i.d. from z ∼ N (0, σ2

z/nI).

Assumption 7.2. (Neural Network) Assume the neural net-
work architecture is twice differentiable with respect to the
input, so the Hessian exists.

Definition 7.3. Let θmse, θat and θsgd denote the optimal
neural network parameters of f obtained from regular MSE
training in (5), AT in (6) and SGD jittering training in (8),
respectively.

7.1. Main Theoretical Results

Given the assumptions, we state the first theorem regarding
generalization accuracy. Let Hθ denote the inverse process
learned using MBAs for the rest of the analysis.

Theorem 7.4. Assuming a small zero-meam Gaussian ran-
dom vector g with E||g||22 = σ2

g is added to data x ∈ D
during evaluation. The generalization risk for denoising
problem is defined as,

G(θ) = Ex,y∼D,g||x+ g −Hθ(y + g)||22. (9)

Under assumptions 6.1, 7.1 and 7.2, SGD jittering general-
izes better than regular MSE training,

G(θsgd) ≤ G(θmse).

The detailed proof is provided in Appendix C. SGD jittering
can be interpreted as a noisy version of the regular MSE
training. The idea is to decompose the generalization ac-
curacy in the presence of g into two terms: the MSE term
corresponding to the reconstruction from the clean trajectory
Hθ(y), and a penalty term depends on the noisy trajectory
Hθ(y + g). Then we show that the training loss of SGD jit-
tering includes an implicit regularization term that penalizes
deviations in the intermediate reconstructions caused by the
perturbation. Minimizing the SGD jittering training loss
also minimizes the penalty term in G(θ), leading to better
generalization accuracy compared to regular MSE training.

Furthermore, we rewrite the regularization term derived in
the proof as follows in SGD training via Taylor expansion.

regularization = E ||
K−1∑
i=0

η(1−η)K−1−i(fθ(x
′
i)−fθ(x

sgd
i ))||22.

(10)

Let {xsgd
k }Kk=0 and {x′

k}Kk=0 denote the reconstruction
trajectory from SGD and GD, respectively. As derived
through iterative expansions in the proof, at iteration k,
we have xsgd

k = x′
k + δk, where δk =

∑k−1
i=0 η(1 −

η)k−1−i(fθ(x
′
i)− fθ(x

sgd
i )) +

∑k
i=0 η(1− η)k−iwi. As-

sumption 7.2 ensures the existence of the first and second
derivatives of fθ. Let f i

θ : Rn → R be the function defined
by f i

θ(x) = [fθ(x)]i, representing the ith component of
fθ(x), for i ∈ {1, ..., n}. Then, we have,

f i
θ(x

sgd
k ) ≈ f i

θ(x
′
k) + δ⊤

k ∇f i
θ(x

′
k) +

1

2
δ⊤
k Hi

f (x
′
k)δk,

where, ∇f i
θ and Hi

f denote the gradient and the Hessian of
f i
θ. As k increases, the regularization weight η(1−η)K−1−i

in (10) becomes more significant. Thus minimizing the SGD
jittering risk implicitly promotes smoother and wider land-
scapes of the lower-level objective F with respect to the
iterative inputs x′

k for larger values of K. It is important
to note that this differs from the concept of flat minima
in a general feedforward neural network, which flatness
refers to regions of low training loss with respect to the
network parameters, often associated with improved gener-
alization. Our findings align with the observations in (Lim
et al., 2021), which demonstrate that layer-wise noise in-
jections to recurrent neural networks promotes a smaller
Hessian with respect to the hidden inputs to the final layer.
While it is widely observed that flat minima in the loss
landscape (with respect to network parameters) imply better
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Figure 1. 2D point denoising example using MSE training, AT, and SGD jittering. Each method is evaluated using regular in-distribution
data, under average- and worst-case attacks to y and with additional bias (from left to right columns respectively). Blue dots represents
each test data instance, and the red dots indicate the ground-truth. The dashed circle highlights the cluster under attack, and the arrows
represent the distance from the center of the data cluster to the biased ground truth.

generalization as summarized in Section 2, Lim et al. (2021)
does not clarify why flat minima with respect to hidden-
layer inputs improve generalization in regression settings.
Our work fills this gap in the context of IPs.

Furthermore, we present the robustness analysis results.
Theorem 7.5. Let e be the perturbation vector sampled
i.i.d. from the zero-mean Gaussian distribution, Pe, such
that E||e||22 = σ2

e. For an inverse mapping Hθ, the average-
case robustness risk for denoising is as follows,

Re(θ) = E(x,y)∼D,e∼Pe

[
||x−Hθ(y + e)||22

]
. (11)

SGD jittering is more robust than MSE training against
bounded-variance perturbations around the measurements,

Re(θ
sgd) ≤ Re(θ

mse).

The proof is similar to the one in proving generalization,
we include the full proof in the Appendix D. The implicit
regularization induced by SGD jittering help characterize
both generalization and robustness of MBAs.

8. Experiments and Discussions
In our experiments, we use a toy denoising example to val-
idate our theorems and demonstrate the proposed training
scheme using seismic deconvolution and magnetic reso-
nance imaging reconstruction. For each task, we train the
same LU architecture using different training schemes. We
then evaluate the models using in-distribution (ID) testing
data, adversarial attacks with various strengths, and task-
dependent OOD data. Detailed training procedures are pro-
vided in the Appendix.

Toy Problem: 2-dimensional Point Denoising We begin
with a 2D point denoising problem to validate our theorems.
The task involves recovering the point x = (0, 0)⊤ from
noisy observations generated by adding zero-mean Gaus-
sian noise with a variance of 0.01. We use 200 samples
for training and 50 for evaluation. Figure 1 visualizes the
denoising results under ID data, average-case attack, worst-
case attack, and a biased ground-truth. ID data are sampled
from the same distribution as the training data, centered
at (0, 0)⊤. The worst-case attack finds a vector within a
0.01 ℓ2-distance around y that maximizes the squared error,
while the average-case attack uniformly samples attack vec-
tors within the same ball and adds to y. Finally, we evaluate
generalization accuracy by reconstructing the slightly biased
ground truth (0.005, 0)⊤ from its corresponding measure-
ments. The results show that both SGD jittering and AT
produce tighter clusters of reconstructed points compared
to MSE training under adversarial attacks. Moreover, when
reconstructing a slightly biased ground truth, SGD jittering
achieves the most accurate reconstruction, showcasing its
better generalization capability to small variations in data.
Notice that MSE training underperforms SGD jittering on
ID data, likely because the noise injection in SGD jittering
helps the model escape from local minima in training.

Seismic Deconvolution Seismic deconvolution is a cru-
cial problem in geophysics. It aims to reverse the convo-
lution effects in the received signal, which occurs when
artificial source waves travel through the Earth’s layers. The
goal is to extract sparse reflectivity series from recorded
seismic data. The training data is generated following the
same procedure as in (Iqbal et al., 2019; Guan et al., 2024).

6



Stochastic (Proximal) Gradient Descent Jittering

Figure 2. Visualization of seismic deconvolution using (stochastic) gradient descent variants within loop unrolling architectures. Figure
(a) illustrates the reconstruction performance under adversarial attack with ϵ = 1. Figure (b) evaluates the model’s performance on OOD
seismic data, where the ground-truth reflectivity includes an additional small horizontal layer (with magnitude of 0.3 and 0.1), highlighted
in the red boxes.

PSNR / SSIM ID Test Data Adv. Attack OOD Data

MSE training 34.64 / 0.921 28.85 / 0.829 34.57 / 0.918

AT 33.50 / 0.903 30.27 / 0.849 33.45 / 0.902

Input Jittering 32.92 / 0.882 30.10 / 0.832 32.91 / 0.882

SGD jittering 35.10 / 0.928 29.89 / 0.842 34.93 / 0.927

Table 1. Seismic deconvolution evaluation for in-distribution data
(column 2), under adversarial attack with ϵ = 1 (column 3), and
for OOD data with additional horizontal layer (columns 4). The
best and second-best performances are in bold and underlined
respectively.

To test the generalization accuracy, we generate OOD data
by introducing an arbitrary horizontal layer with magni-
tudes of 0.1 to the ground truth, reflected accordingly in
the measurements. The numerical results in Table 1 show
that SGD jittering achieves the highest peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) on ID
and OOD data, while maintaining competitive performance
under adversarial attacks. In contrast, AT demonstrates the
best robustness under adversarial attacks but suffers signif-
icant performance degradation for both ID and OOD data.
Visual reconstructions in Figure 2 further highlight the dif-
ferences between these methods. While MSE training often
introduces artifacts, especially under adversarial attacks, AT
fails to recover the small horizontal layer in OOD data with
a magnitude of 0.1, likely perceiving it as noise. In compar-
ison, SGD jittering accurately recovers the additional layer,
demonstrating its ability to generalize to subtle features not
present in the training data.

Accelerated MRI Reconstruction Accelerated MRI aims
to recover human-interpreted body structures from partial
k-space measurements. We train models with single-coil
knee MRI from the fastMRI dataset (Knoll et al., 2020) with
4× acceleration, or 1/4 of the measurements in k-space is

PSNR / SSIM fastMRI Adv. Attack Tumor Cell

MSE training 28.21 / 0.603 25.68 / 0.382 29.92 / 0.779

AT 27.68 / 0.564 27.17 / 0.549 27.74 / 0.597

Input Jittering 28.18 / 0.595 25.05 / 0.420 29.97 / 0.740

SGD jittering 28.22 / 0.607 26.77 / 0.552 30.36 / 0.788

Table 2. MRI evaluation for in-distribution data (column 2), ad-
versarial attack (column 3), and OOD data (column 4). The best
and second best performances are in bold and underlined respec-
tively.

used for reconstruction. To assess generalization, we use
a different knee dataset from Bickle & Jin (2021), which
includes giant tumor cells absent from the training data. The
results in Table 2 show that, on ID data, MSE training and
SGD jittering perform similarly, while AT underperforms
due to its inherent tradeoff in resolution. On OOD tumor
data, SGD jittering outperforms all other methods, demon-
strating better generalization to unseen features. Visual
comparisons in Figure 3 further support these findings. Re-
constructions produced by AT are smoother but often miss
fine details, consistent with prior observations in black-box
IP solvers (Krainovic et al., 2023). In contrast, SGD jittering
produces high-resolution reconstructions, preserving critical
anatomical structures, particularly in OOD cases.

8.1. Robustness vs. Generalization

Figure 4 presents a comparison of various training schemes
in terms of in-distribution accuracy, robustness and general-
ization measured by average test PSNR on seismic decon-
volution (top row) and MRI reconstruction (bottom row)
tasks. The left panels show that the proposed SGD jitter-
ing approach achieves better generalization to OOD data.
Meanwhile, the right panels depict the trade-off between
robustness and accuracy for baseline methods, where our

7
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Figure 3. Gradient descent LU for MRI evaluation (a) under adversarial attack obtained from projected gradient descent with norm no
more than ϵ = 1. Each row represents an MRI reconstruction of a sample from fastMRI (Knoll et al., 2020). (b) MRI evaluation using
OOD tumor knee data from (Bickle & Jin, 2021).

Figure 4. Comparing robustness and generalization of different
training schemes for GD LU for seismic deconvolution problem
(top row), and MRI reconstruction (bottom row).

approach provides a more effective balance between the two
metrics.

8.2. How to Choose SGD Noise Level?

Figure 6 examines the impact of SGD jittering noise levels
σ2
wk in the context of the denoising problem. The jittering

noise level determines the robustness and in- and out-of-
distribution accuracies. This parameter search allows the
identification of an optimal σ2

wk that balances robustness
against adversarial attacks while maintaining high accuracy.

8.3. Stochastic Proximal Gradient Descent Jittering

We further extend the proposed stochastic training idea to
proximal gradient descent (PGD) variant of model-based
architecture training, and denote the algorithm as SPGD
jittering, where the learning objective is,

JSPGD
σwk

(θ) = Ew̄,(x,y)∼D||x− x̂||22 where,

x̂ = lim
k→∞

proxθ

(
xk − η

(
A⊤(Axk − y) +wk

))
.

(12)
Here, prox represents a proximal operator, which is re-
placed by a neural network parameterized by θ, and wk

denotes the stochastic noises injected independently to the
input of the proximal network at each iteration. Similar to
SGD jittering, SPGD jittering ensures that the noise wk is
re-sampled at every iteration, maintaining unbiased gradient
updates while promoting variations in training data.

Figure 5 compares the same proximal gradient descent
framework with different training schemes for accelerated
MRI reconstruction. MSE training denotes the classical
proximal GD variant of LU trained with MSE loss, AT, and
SPGD jittering for accelerated MRI reconstruction. MSE
training demonstrates reasonable generalization to OOD
tumor data but remains highly sensitive to adversarial at-
tacks. In contrast, AT exhibits robustness against attacks but
produces reconstructions with lower resolution, which can
obscure fine details in critical medical imaging tasks. SPGD
jittering effectively enhances both robustness and accuracy,
achieving cleaner reconstructions under adversarial attacks
and superior generalization to OOD tumor data.

Numerical evaluations on SPGD jittering for accelerated
MRI and further experiments on seismic deconvolution are
presented in Appendix E. We also compare the training
speed of AT and the proposed stochastic noise injection

8
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Figure 5. Proximal gradient descent LU for MRI evaluation (a) under adversarial attack obtained from projected gradient descent with
norm no more than ϵ = 1. Each row represents an MRI reconstruction of a sample from fastMRI (Knoll et al., 2020). (b) MRI evaluation
using OOD tumor knee data from (Bickle & Jin, 2021).

Figure 6. The effect of SGD jittering noise level σ2
wk on model

performance for denoising problem. (Top): Worst-case robustness
Rϵ recorded for each noise level. Each line represents a different
value of ϵ, with the red dot indicating the σ2

wk that achieves the best
robustness for each corresponding ϵ. (Bottom): In-distribution (ID)
and out-of-distribution (OOD) accuracies in MSE are recorded for
each σ2

wk, with best noise levels highlighted.

techniques in Appendix H, demonstrating that the proposed
method is a time-efficient strategy to promote robustness.

9. Conclusion
Robustness and generalization accuracy are both crucial
in solving IPs, yet current analyses often focus on simple
black-box solvers that enhance robustness at the cost of
accuracy. While empirical studies have examined the ro-
bustness of MBAs, there is a lack of theoretical analysis.
In this work, we introduce a novel and easily implemented

SGD jittering training scheme to address the tradeoff be-
tween robustness and accuracy in solving IPs. Our method
proves effective for high-quality model-based IP solvers.
Through mathematical analysis, we demonstrate that this
approach implicitly regularizes the gradient and Hessian of
the neural network with respect to the input, resulting in
improved generalization and enhanced robustness compared
to traditional MSE training. Experimental results show that
while MSE training is vulnerable to adversarial attacks and
AT recovers smooth estimates, SGD and SPGD jittering
consistently produces robust, high-quality outcomes.

Software and Data
The code for the proposed SGD and SPGD jittering
methods are provided here: https://github.com/
InvProbs/SGD-jittering.
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Calivá, F., Cheng, K., Shah, R., and Pedoia, V. Adver-
sarial robust training of deep learning mri reconstruc-
tion models. Machine Learning for Biomedical Imag-
ing, 1:1–32, 2021. ISSN 2766-905X. doi: https:
//doi.org/10.59275/j.melba.2021-df47. URL https:
//melba-journal.org/2021:007.

Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma,
T. Learning imbalanced datasets with label-distribution-
aware margin loss. Advances in neural information pro-
cessing systems, 32, 2019.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In international
conference on machine learning, pp. 1310–1320. PMLR,
2019.

Fabian, Z., Tinaz, B., and Soltanolkotabi, M. Humus-net:
Hybrid unrolled multi-scale network architecture for ac-
celerated mri reconstruction. Advances in Neural Infor-
mation Processing Systems, 35:25306–25319, 2022.

Fawzi, A., Moosavi-Dezfooli, S.-M., and Frossard, P. Ro-
bustness of classifiers: from adversarial to random noise.
Advances in neural information processing systems, 29,
2016.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=6Tm1mposlrM.

Garrigos, G. and Gower, R. M. Handbook of convergence
theorems for (stochastic) gradient methods, 2023.

Genzel, M., Macdonald, J., and März, M. Solving in-
verse problems with deep neural networks–robustness
included? IEEE transactions on pattern analysis and
machine intelligence, 45(1):1119–1134, 2022.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
journal on optimization, 23(4):2341–2368, 2013.

Gilmer, J., Ford, N., Carlini, N., and Cubuk, E. Adversarial
examples are a natural consequence of test error in noise.
In International Conference on Machine Learning, pp.
2280–2289. PMLR, 2019.

Gilton, D., Ongie, G., and Willett, R. Deep equilibrium
architectures for inverse problems in imaging. IEEE
Transactions on Computational Imaging, 7:1123–1133,
2021.

Gottschling, N. M., Antun, V., Hansen, A. C., and Ad-
cock, B. The troublesome kernel: On hallucinations, no
free lunches, and the accuracy-stability tradeoff in in-
verse problems. SIAM Review, 67(1):73–104, 2025. doi:
10.1137/23M1568739. URL https://doi.org/10.
1137/23M1568739.

Guan, P., Iqbal, N., Davenport, M. A., and Masood,
M. Solving inverse problems with model mismatch
using untrained neural networks within model-based
architectures. Transactions on Machine Learning Re-
search, 2024. ISSN 2835-8856. URL https://
openreview.net/forum?id=XHEhjDxPDl.

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. Im-
plicit bias of gradient descent on linear convolutional
networks. Advances in neural information processing
systems, 31, 2018.
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A. Notations
We clarify the notations used in the paper.

• Hθ: learned inverse mapping parameterized by θ, i.e., black-box neural networks, MBAs. For MBAs in particular,
Hθ = argminx

1
2∥y −Ax∥22 + rθ(x).

• r: regularization function from predefined functions, i.e., ℓ1 and ℓ2 norm.

• rθ: regularization function whose gradient is learned from a neural network fθ.

• fθ: learned gradient update of r, fθ(x) = ∇xrθ(x).

• F (x) = 1
2∥y −Ax∥22 + rθ(x), denote the value of the lower-level objective function.

B. Proof of SGD Jittering Convergence (Corollary 6.2)
Corollary B.1. (Restate Corollary 6.2. Convergence of MBAs-SGD for IPs) Let F (x) = 1

2 ||y −Ax||22 + rθ(x) denote the
lower-level objective function. Assume fθ = ∇rθ is L-Lipschitz continuous, satisfying

||fθ(x+∆)− fθ(x)||2 ≤ L||∆||2, ∀x,∆,

let µ = maxi=1,..,n λi, where λi are the eigenvalues of A⊤A, and define Lmax = max{µ,L}. Consider a sequence

{xsgd
k }Kk=0 generated by SGD in (8) with a constant step-size η =

√
2

LLmaxK
. For K ≥ 1, the following holds:

min
0≤k<K

E||∇F (xsgd
k )||22 ≤

√
2LLmax

K

(
2(F (xsgd

0 )− inf F ) + ∆∗
F )

)
,

where, x∗ = argminx F , and
∆∗

F = F (x∗)− inf
(1
2
||y −Ax||22

)
− inf rθ(x).

Proof. The corollary follows directly from Theorem 5.12 in (Garrigos & Gower, 2023), which assumes the objective
function is Lipschitz. In the case of the SGD jittering training scheme, the lower-level objective function is given by
F (x) = 1

2 ||y−Ax||22 + rθ(x). We show that F is (L+ µ)-Lipschitz, allowing the result from Theorem 5.12 to be directly
applied.

Assume fθ is L-Lipschitz, expanding the gradient of F , we have,

||∇xF (x+∆)−∇xF (x)||2
= ||A⊤(A(x+∆)− y) + fθ(x+∆)−A⊤(Ax− y)− fθ(x)||2
= ||A⊤A∆+ fθ(x+∆)− fθ(x)||2
≤ ||A⊤A|| ||∆||2 + ||fθ(x+∆)− fθ(x)||2
≤ max

i=1,..,n
λi||∆||2 + ||fθ(x+∆)− fθ(x)||2,

where λi be the eigenvalues of A⊤A, and let µ = maxi=1,..,n λi. Thus F is (L+ µ)-Lipshitz and we conclude the proof.

C. Proof of Generalization (Theorem 7.4)
Theorem C.1. (Restate Theorem 7.4) Assuming a small zero-meam Gaussian random vector g with E||g||22 = σ2

g is added
to data x ∈ D during evaluation. The generalization risk for denoising problem is defined as,

G(θ) = Ex,y∼D,g ||x+ g −Hθ(y + g)||22. (13)

Under assumptions 6.1, 7.1 and 7.2, SGD jittering generalizes better than regular MSE training,

G(θsgd) ≤ G(θmse).
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Proof. For any trained model θ, we have generalization risk in (13). We can express Hθ(y + g) in terms of Hθ(y) for the
same set of parameters via iterative expansions. For iterations k = 0, 1, ...,K, let the sequence {x0,x1, ...,xK} denote
the denoising trajectory from observation y + g, where Hθ(y + g) = xK , and let {x′

0,x
′
1, ...,x

′
K} denote the denoising

trajectory from observation y where Hθ(y) = x′
K . Then we can rewrite the reconstruction trajectory with the appearance

of g as follows,
x0 = x′

0 + g = y + g

x1 = (1− η)x0 + η(y + g)− ηfθ(x0)

=
(
(1− η)x′

0 + ηy − ηfθ(x
′
0)
)
+

(
g + ηfθ(x

′
0)− ηfθ(x0)

)
= x′

1 + g + η(fθ(x
′
0)− fθ(x0))

x2 = (1− η)x1 + η(y + g)− ηfθ(x1)

= x′
2 + g + η(1− η)(fθ(x

′
0)− fθ(x0)) + η(fθ(x

′
1)− fθ(x1))

...

xk+1 = x′
k+1 + g +

k∑
i=0

η(1− η)k−i(fθ(x
′
i)− fθ(xi))

Let K = k + 1 and plug in the above expansion to (9). For brevity, we omit the subscripts of expectations in the proof.

G(θ) = E||x− x′
K −

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(xi))||22

= E||x− x′
K ||22 + E||

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(xi))||22 − 2E

[
⟨x− x′

K ,

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(xi))⟩

]
The first term is the testing accuracy when x,y are in the data distribution, while the second and third terms are affected by
g. MSE training minimizes the first term solely, but no extra regularization on the other terms. On the other hand, we will
show that SGD jittering training also penalizes the magnitude of the other terms, thus obtaining a smaller generalization risk
than MSE training.

We view the SGD jittering process as a noisy version of regular MSE training, the goal is to write the SGD jittering risk in
terms of the noiseless updates with some implicit regularization. Let {x′

0,x
′
1, ...,x

′
K} denote the noiseless GD trajectory of

a model θ. We write the iterative updates of SGD jittering training {xsgd
0 ,xsgd

1 , ...,xsgd
K } for the same set of parameters θ

in terms of x′
ks, which tells the deviation of each intermediate reconstruction between the SGD jittering and its noiseless

counterpart,

xsgd
0 = y = x′

0 +w0

xsgd
1 = (1− η)xsgd

0 + ηy − ηfθ(x
sgd
0 )− ηw1

= x′
1 + η(fθ(x

′
0)− fθ(x

sgd
0 ))− (η(1− η)w0 + ηw1)

xsgd
2 = (1− η)xsgd

1 + ηy − ηfθ(x
sgd
1 )− ηw2

= x′
2 + η

(
fθ(x

′
1)− fθ(x

sgd
1 )

)
+ η(1− η)

(
fθ(x

′
0)− fθ(x

sgd
0 )

)
−

(
η(1− η)2w0 + η(1− η)w1 + ηw2

)
...

xsgd
k+1 = (1− η)xsgd

k + ηy − ηfθ(x
sgd
k )− ηwk+1

= x′
k+1 +

k∑
i=0

η(1− η)k−i(fθ(x
′
i)− fθ(x

sgd
i ))−

k+1∑
i=0

η(1− η)k+1−iwi.

Let K = k + 1. Since the jittering noise is zero-mean, the SGD jittering training risk becomes,

E||x− xsgd
K ||22 = E||x− x′

K ||22 + E ||
K∑
i=0

η(1− η)K−iwi||22 + E ||
K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

sgd
i ))||22

− 2E

[
⟨x− x′

K ,

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

sgd
i ))⟩

]
.

The first component corresponds to the MSE loss when the trajectory is not perturbed by jittering noise. The second term is
weighted noise variance independent of the network parameters. The third term adds extra regularization to the difference in
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outputs of fθ between noisy and clean trajectories. It penalizes more as the iterations approach the final output. The last
term is the cross product between the reconstruction error under noiseless GD trajectory and the perturbed reconstructions
from f , which is lower bounded since the overall SGD jittering risk is non-negative.

When choosing σ2
wk

at iteration k such that
∑k

i=0 η
2(1− η)2(k−i)σ2

wi
= σ2

g , the reconstruction from x+ g is a special case
in SGD jittering training where wk are independently sampled at each iteration. Thus, minimizing the regularization term
E(x,y)∼D,wk∀k ||

∑K−1
i=0 η(1− η)K−1−i(fθ(x

′
i)− fθ(x

sgd
i ))||22 also reduces the penalty term in computing generalization

accuracy Ex,y∈D,g||
∑K−1

i=0 η(1 − η)K−1−i(fθ(x
′
i) − fθ(xi))||22. Minimizing the last term also minimizes −2E

[
⟨x −

x′
K ,

∑K−1
i=0 η(1− η)K−1−i(fθ(x

′
i)− fθ(xi))⟩ in the generalization accuracy. Therefore, G(θsgd) ≤ G(θmse) due to the

implicit regularization term in SGD jittering training.

D. Proof of Robustness (Theorem 7.5)
Theorem D.1. (Restate Theorem 7.5) Let e be the perturbation vector and let Pe be iid zero-mean Gaussian distribution
such that E||e||22 = σ2

e. The average-case robustness risk for denoising problem is as follows,

Re(θ) = E(x,y)∼D,e∼Pe

[
||x−Hθ(y + e)||22

]
. (14)

For the denoising problem, SGD jittering is more robust than MSE training against bounded-variance perturbations around
the measurement, or

Re(θ
sgd) ≤ Re(θ

mse).

Proof. The proof is similar to proving generalization accuracy. To evaluate the average-case robustness for any trained θ,
we first write the iterative updates under attack {xat

0 ,xat
1 , ...xat

K} in terms of the noiseless trajectory {x′
0,x

′
1, ...x

′
K}.

xat
0 = x′

0 + e = y + e

xat
1 = (1− η)xat

0 + η(y + e)− ηfθ(x
at
0 )

= x′
1 + e+ η(fθ(x

′
0)− fθ(x

at
0 ))

xat
2 = (1− η)xat

1 + η(y + e)− ηfθ(x
at
1 )

= x′
2 + e+ η(1− η)(fθ(x

′
0)− fθ(x

at
0 )) + η(fθ(x

′
1)− fθ(x

at
1 ))

...

xat
k+1 = x′

k+1 + e+

k∑
i=0

η(1− η)k−i(fθ(x
′
i)− fθ(x

at
i ))

Let K = k + 1, we rewrite the robustness risk. Notice that the generalization loss in (9) includes the additional vector g,
whereas the robustness risk in (11) does not.

Re(θ) = E||x− x′
K − e−

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

at
i ))||22

= E||x− x′
K ||22 + E||

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

at
i ))||22 + E||e||22 − 2E

[
⟨x− x′

K ,

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

at
i ))⟩

]

= E||x− x′
K ||22 + E||

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

at
i ))||22 + σ2

e − 2E

[
⟨x− x′

K ,

K−1∑
i=0

η(1− η)K−1−i(fθ(x
′
i)− fθ(x

at
i ))⟩

]

The first term is the mean-squared testing loss for in-distribution data. The second term is an additional penalty that appears
in SGD jittering training. When picking σ2

wk
for all k and σ2

e such that
∑k

k=0 η
2(1 − η)2(k−i)σ2

wi
= σ2

e, this term in
robustness risk is a special case in SGD jittering risk. The last term also appears in the SGD jittering risk; therefore,
minimizing the SGD jittering risk implicitly reduces this term as well. Therefore, for models that perform equally well in
MSE for in-distribution testing data, minimizing SGD jittering risk improves the robustness.
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E. Extra Stochastic Proximal Gradient Descent Experiments
Similar to gradient descent variants of loop unrolling architectures, for proximal gradient descent (PGD) variants, we train a
PGD LU with regular MSE loss. Then finding the worst-case attack to y over all PGD updates.

E.1. Seismic Deconvolution

In the same seismic deconvolution problem setup discussed in the main manuscript, but now solved using proximal gradient
variants, Figure 7(a) shows the performance of the trained models under an adversarial attack with ϵ = 1. Figure 7(b) focuses
on reconstructing the additional layer highlighted in red boxes. Table 3 provided numerical evaluations. The proposed
SPGD jittering demonstrates greater robustness compared to MSE training while better preserving detailed information than
adversarial training (AT).

Figure 7. Visualization of seismic deconvolution using (stochastic) proximal gradient descent variants within loop unrolling architectures.
Figure (a) illustrates the reconstruction performance under adversarial attack with ϵ = 1. Figure (b) evaluates the model’s performance on
out-of-distribution (OOD) seismic data, where the ground-truth reflectivity includes an additional small horizontal layer, highlighted in
the red boxes.

PSNR / SSIM in-distribution Adv. Attack OOD

MSE training 34.91 / 0.923 28.78 / 0.842 34.810 / 0.920

AT 32.99 / 0.899 31.44 / 0.875 32.966 / 0.899

Input Jittering 33.02 / 0.899 30.56 / 0.861 32.910 / 0.895

SPGD Jittering 35.05 / 0.931 29.93 / 0.870 34.952 / 0.929

Table 3. PGD variants of LU are evaluated on seismic deconvolution across three scenarios: in-distribution data (column 2), adversarial
attacks (column 3), and out-of-distribution (OOD) data (column 4). The best performance in each case is highlighted in bold, while the
second-best performance is underlined.

E.2. Accelerated MRI Reconstruction

We complete the missing numerical results discussed in the main manuscript for 4× accelerated MRI reconstruction using
SPGD jittering in Table 4.

PSNR / SSIM fastMRI Adv. Attack Tumor Cell

MSE training 27.93 / 0.582 22.82 / 0.179 29.39 / 0.771

AT 27.20 / 0.533 26.78 / 0.518 27.13 / 0.560

Input Jittering 24.88 / 0.299 24.44 / 0.297 25.85 / 0.478

SPGD Jittering 28.15 / 0.597 27.56 / 0.577 29.762 / 0.777

Table 4. PGD variants of LU are evaluated on MRI data across three scenarios: in-distribution data (column 2), adversarial attacks (column
3), and out-of-distribution (OOD) data (column 4). The best performance in each case is highlighted in bold, while the second-best
performance is underlined.
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F. Compared to Other Baselines for MRI reconstruction
We evaluate our method against a widely used robustness technique Lipschitz regularization using spectral normalization
(SN). SN constrains the Lipschitz constant of the network by bounding the spectral norm (i.e., largest singular value) of each
weight matrix, which helps stabilize training and improve robustness. As shown in the second last row in Table 5 for 4xMRI
reconstruction. SN promotes adv. robustness, but at the cost of reduced accuracy to some extend. This is likely due to its
restrictive nature of SN limiting the model’s expressive power.

Additionally, we also compares the performance to a diffusion models (DMs), as they also demonstrates impressive results in
image generation. Since our work proposes a general framework for IPs, we chose to compare against the standard DDPM
rather than specialized task-specific DMs, consistent with prior work (Güngör et al., 2023). To ensure a fair comparison
under similar computational constraints, we adapt the denoising U-Net to fit within the same GPU memory as other methods.

Table 5 compares DDPM with other methods. DDPM achieves comparable in-distribution (ID) performance to MBAs
trained with both MSE loss and the proposed SGD jittering, and shows stronger robustness than standard MSE-trained
MBAs. However, it underperforms in OOD generalization. While DDPM serves as a strong baseline for robustness and ID
accuracy, SGD jittering achieves better generalization under distribution shifts. We will add the comparison to DM in the
main manuscript as an interesting baseline.

It is also worth noting that DDPM requires 10× more parameters and is significantly more data-intensive, whereas MBAs
are more data-efficient (Monga et al., 2021) due to their optimization-inspired iterative structure. We also refer to prior
work (Güngör et al., 2023), which compares DDPM, DiffRecon, AdaDiff to MSE-trained MBAs for MRI reconstruction.
Their results show that while DM can generalize well in some cases, MBA methods consistently perform better on ID data.
Results in (Güngör et al., 2023) shows that MSE-trained MBA is a strong baseline, and our proposed SGD jittering further
improves their robustness and generalization.

Model Training Scheme/Design fastMRI Adv. Attack Tumor Cell

GD LU

MSE training 28.21 / 0.603 25.68 / 0.382 29.92 / 0.779
AT 27.68 / 0.564 27.17 / 0.549 27.74 / 0.597

Input Jittering 28.18 / 0.595 25.05 / 0.420 29.97 / 0.740
SGD jittering (Ours) 28.22 / 0.607 26.77 / 0.552 30.36 / 0.788

Lipschitz regularization (SN) 27.71 / 0.576 27.09 / 0.542 27.92 / 0.594

DDPM Default training 28.17 / 0.611 27.13 / 0.536 29.72 / 0.782

Table 5. MRI reconstruction evaluation compared to the Lipschitz regularization method (last row). The best and second best performances
are in bold and underlined respectively.

G. Training Details
We use 10-iteration gradient descent loop unrolling architectures for all tasks. For the toy example, we use a 3-layer MLP
with a hidden dimension of 32 as the learned gradient network. For seismic deconvolution and MRI reconstruction, a 5-layer
and 8-layer DnCNN with 64 hidden channels are used for the learned gradient network, respectively. All models are trained
using Nvidia RTX3080, using Adam optimizer with a learning rate of 1e− 4.

The jittering noise variance for each method is selected based on performances of both robustness and accuracy. In input
jittering training, the three methods in order of 2D denoising, seismic deconvolution and MRI reconstruction use the noise
variance of 0.01, 0.05 and 0.05. In SGD jittering training, we choose the SGD jittering variance for each task with 0.01, 0.1
and 0.01 respectively.

H. Training Speed
We also compare the training speed among different training schemes for GD and PGD LU architectures. All methods
are trained on the same device. Training batch sizes for the 2D denoising problem, seismic deconvolution and MRI are
256, 16, and 4 respectively. AT is trained by projected gradient descent. For the 2D denoising problem, ϵ = 0.01 with 50
projected GD iterations and a stepsize of 0.05. For the seismic deconvolution and MRI reconstruction problem, ϵ = 1, with
20 projected GD iterations and a stepsize of 0.1. AT is significantly slower than other methods. Notice that the jittering in
SGD and SPGD does introduce very minimal time overhead compared to standard MSE training, even when accounting for
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the additional noise sampling steps.

2D denoising Seis. Deconv. MRI

GD LU

MSE training 5360.84 it/s 23.69 it/s 5.23 it/s
AT 562.75 it/s 1.53 it/s 0.25 it/s

Input Jittering 5256.77 it/s 22.80 it/s 5.20 it/s
SGD jittering 4337.84 it/s 22.72 it/s 5.27 it/s

PGD LU

MSE training 5136.34 it/s 16.78 it/s 6.23 it/s
AT 486.68 it/s 1.12 it/s 0.17 it/s

Input Jittering 4965.25 it/s 16.44 it/s 6.17 it/s
SPGD jittering 4669.76 it/s 14.52 it/s 6.07 it/s

Table 6. Training speed measured in items per second are recorded.
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