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ABSTRACT

Implicit neural representations (INRs) have emerged as a powerful tool that pro-
vides an accurate and resolution-independent encoding of data. Their robustness
as general approximators has been shown across diverse data modalities, such as
images, video, audio, and 3D scenes. However, little attention has been given
to leveraging these architectures for time series data. Addressing this gap, we
propose an approach for time series generation based on two novel architectures:
TSNet, an INR network for interpretable trend-seasonality time series representa-
tion, and iHyperTime, a hypernetwork architecture that leverages TSNet for time
series generalization and synthesis. Through evaluations of fidelity and usefulness
metrics, we demonstrate that iHyperTime outperforms current state-of-the-art meth-
ods in challenging scenarios that involve long or irregularly sampled time series,
while performing on par on regularly sampled data. Furthermore, we showcase
iHyperTime fast training speed, comparable to the fastest existing methods for
short sequences and significantly superior for longer ones. Finally, we empirically
validate the quality of the model’s unsupervised trend-seasonality decomposition
by comparing against the well-established STL method.
Code available at: https://anonymous.4open.science/r/iHyperTime-8186/README.md

1 INTRODUCTION

Modeling time series data has been a key topic of research for many years, constituting a crucial
component in a wide variety of areas such as climate modeling, medicine, biology, retail and
finance (Lim & Zohren, 2021). Traditional methods for time series modeling have relied on parametric
models informed by expert knowledge. However, the development of modern machine learning
methods has provided purely data-driven techniques to learn temporal relationships. In particular,
neural network-based methods have gained popularity in recent times, with applications to a wide
range of tasks, such as time series classification (Ismail Fawaz et al., 2020), clustering (Alqahtani
et al., 2021), segmentation (Zeng et al., 2022), anomaly detection (Choi et al., 2021), upsampling (Oh
et al., 2020), imputation (Cao et al., 2018), forecasting (Torres et al., 2021) and generation (Coletta
et al., 2023). In particular, generation of synthetic time series has recently gained attention due to
the large number of applications in medical and financial fields, where data cannot be shared, either
due to privacy reasons or proprietary restrictions (Jordon et al., 2021; Assefa et al., 2020). Moreover,
synthetic time series can be used to augment training datasets to improve model generalization on
downstream tasks, such as classification (Fons et al., 2021), forecasting and anomaly detection. In
these fields, having a disentangled representation of time series can be critical for applications with
regulatory focus, which often require transparency and interpretability of proposed machine learning
solutions as well as injection of expert knowledge as constraints into the training process (Vyetrenko
& Xu, 2019).

The task of generating realistic time-series data poses considerable challenges, particularly due to the
diverse nature of time series, which may vary along dimensions such as univariate vs. multivariate,
short vs. long, and regularly vs. irregularly sampled. Although numerous solutions have been
proposed to address the problem of time-series data generation (Alaa et al., 2021; Yoon et al., 2019;
Esteban et al., 2017), the focus has predominantly been on generating data for well-structured
scenarios, such as short and regularly sampled time series. Such an approach is often conflicting
with the complexities of real-world time-series data, where irregularities, missing values and diverse
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sequence lengths are commonplace (Fang & Wang, 2020). Recent methods have addressed some of
these shortcomings (Jeon et al., 2022; Zhou et al., 2023; Coletta et al., 2023). However, no single
approach has shown a consistent performance across all these challenging scenarios. Furthermore, the
scalability of many existing methods to longer sequences is constrained by escalating computational
costs that correlate with series length.

In recent years, implicit neural representations (INRs) have gained popularity as an accurate and
flexible method to parameterize signals from diverse sources, such as images, video, audio and 3D
scene data (Sitzmann et al., 2020b; Mildenhall et al., 2020). Conventional methods for data encoding
often rely on discrete representations, such as data grids, which are limited by their spatial resolution
and present inherent discretization artifacts. In contrast, INRs encode data in terms of continuous
functional relationships between signals, and thus are uncoupled to spatial resolution. In practical
terms, INRs provide a data representation framework that is resolution-independent, which makes
them ideally suited to deal with the aforementioned challenges in real-world time series. While there
have been a few recent works exploring the application of INRs to time series data (Jeong & Shin,
2022; Woo et al., 2023), there is no work on leveraging these architectures for generating synthetic
time series.

In this paper, we propose a novel method for time series generation based on two novel architectures:
1) TSNet, an INR tailored for resolution-agnostic encoding of time series data, offering a trend-
seasonality-residual disentangling of single time series. 2) iHyperTime, a hypernetwork architecture
for generalization of time series datasets, that leverages TSNet to produce interpretable latent
representations of the signals. Together, these architectures form a unified approach for disentangled
representation and generation of multiple forms of time series data, including challenging cases such
as multivariate, irregularly sampled, and long time series.

Generation quality Through empirical evaluations, we demonstrate that iHyperTime outperforms
existing state-of-the-art methods for time series generation. Our method excels in complex scenarios
such as irregularly sampled or long sequences, while performing on par with state-of-the-art for
regularly sampled time series.

Efficiency We show that our architecture achieves rapid training speeds, comparable to the fastest
methods for short sequences, and substantially faster for longer ones.

TSR Decomposition We validate the unsupervised decomposition capabilities of our method by
benchmarking it against the widely-used STL decomposition technique.

2 RELATED WORK

Implicit Neural Representations Implicit Neural Representations (INRs) provide a continuous
representation of multidimensional data, by encoding a functional relationship between input co-
ordinates and signal values, avoiding possible discretization artifacts. They have recently gained
popularity in visual computing (Mescheder et al., 2019; Mildenhall et al., 2020) due to the key
development of positional encodings (Tancik et al., 2020) and SIREN periodic activations (Sitzmann
et al., 2020b), which have proven to be critical for the learning of high-frequency details. Whilst
INRs have been shown to produce accurate reconstructions in a wide variety of data sources, such as
video, images and audio (Sitzmann et al., 2020b; Chen et al., 2021; Rott Shaham et al., 2021), few
works have leveraged them for time series representation (Jeong & Shin, 2022; Woo et al., 2023), and
none have focused on interpretability and generation.

Hypernetworks Hypernetworks are neural network architectures that are trained to predict the
parameters of secondary networks, referred to as hyponetworks (Ha et al., 2017; Sitzmann et al.,
2020a). In the last few years, some works have leveraged different hypernetwork architectures for the
prediction of INR weights, in order to learn priors over image data (Skorokhodov et al., 2021) and
3D scene data (Littwin & Wolf, 2019; Sitzmann et al., 2019; Sztrajman et al., 2021). Sitzmann et al.
(2020b) leverage a set encoder and a hypernetwork decoder to learn a prior over SIRENs encoding
image data, and apply it for image in-painting.

Time Series Generation Synthesis of time series data using deep generative models has been
previously studied in the literature. Examples include the TimeGAN architecture (Yoon et al.,
2019), GT-GAN (Jeon et al., 2022), and QuantGAN (Wiese et al., 2020). More recently, as an
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alternative to GAN-based time series generation, Desai et al. (2021) proposed TimeVAE, based on a
variational autoencoder, while Coletta et al. (2023) proposed a diffusion model architecture called
DiffTime. Alaa et al. (2021) introduced Fourier Flows, a normalizing flow model for time series
data that leverages the frequency domain representation, which is currently considered together with
TimeGAN as state-of-the-art for time series generation. In the last few years, multiple methods have
used INRs for data generation, with applications on image synthesis (Skorokhodov et al., 2021),
super-resolution (Chen et al., 2021) and panorama synthesis (Anokhin et al., 2021). However, there
are currently no applications of INRs on the generation of time series data.

Interpretable Time Series Seasonal-trend decomposition is a standard tool in time series analysis.
The trend encapsulates the slow time-varying behavior of the signal, while seasonal components
capture periodicity. These techniques introduce interpretability in time series, which plays an impor-
tant role in downstream tasks such as forecasting and anomaly detection. The classic approaches for
decomposition are the widely used STL algorithm (Cleveland et al., 1990), and its variants (Wen et al.,
2019; Bandara et al., 2022). Relevant to this work is the recent N-BEATS architecture (Oreshkin et al.,
2020), a deep learning-based model for univariate time series forecasting that provides interpretability
capabilities. The model explicitly encodes seasonal-trend decomposition into the network by defining
separate trend and seasonal blocks, which fit a low degree polynomial and a Fourier series.

3 FORMULATION

In this Section, we describe the TSNet network architecture for time series representation and TSR
decomposition, and the iHyperTime network leveraged for generalization and new data generation.

3.1 TIME SERIES REPRESENTATION

We consider a time series signal encoded by a discrete sequence of N observations y = (y1, ...,yN )
where yi ∈ Rm is the m-dimensional observation at time ti. This time series defines a dataset
D = {(ti,yi)}Ni=1 of time coordinates ti associated with observations yi. We want to find a
continuous mapping f : R → Rm, t → f(t) that parameterizes the discrete time series, so that
yi = f(ti) for i = 1, . . . , N . The function f can be approximated by an implicit neural representation
(INR) architecture conditioned on the training loss L =

∑
i ∥yi − f̂(ti)∥2. Input and output of the

INR are of dimensions 1 and m, corresponding to the time coordinate t and the prediction f̂(t). After
training, the network encodes a continuous representation of the functional relationship f(t) for a
single time series.

3.1.1 TSNET

We propose an interpretable architecture to encode time series that reuses the described INR. In
particular, we assume that our INR follows a classic time series additive decomposition, i.e.,

f(t) = fT (t) + fS(t) + fR(t), (1)

where fT , fS , fR correspond to the trend, seasonality and residual components of f(t). Note that this
is a standard assumption for time series decomposition techniques, such as STL and others (Cleveland
et al., 1990). We elaborate on our modeling of these three components in the following.

Trend and Seasonality Blocks Following the work by Oreshkin et al. (2020), we model trend and
seasonality via basis decompositions with coefficients learned by fully-connected networks. The
trend component of a time series aims to model slow-varying (and occasionally monotonic) behavior,
thus we consider a polynomial regressor, i.e.,

fT (t) =

P∑
p=0

w(T )

p tp, (2)

where P denotes the degree of the polynomial, and w(T )
p denotes the learned weight associated with

the pth degree. In practice, P is chosen to be small (e.g., P = 2) to capture low frequency behavior.
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Figure 1: iHyperTime architecture. The Set Encoder processes a set of tuples {(ti,yi)}Ni=1 repre-
senting a time series, and encodes it as embeddings ZT , ZS , ZR associated to the components of the
TSR decomposition. The hypernetwork decoders learn to predict the weights of their corresponding
TSNet blocks from the embeddings. During training, the output of the hypernetworks is used to
instantiate a TSNet hyponetwork, and the loss is computed as a difference between y and the output
of TSNet f̂(t), in terms of signal and spectral distribution.

The seasonal component of the time series fS(t) aims to capture the periodic behavior of the signal,
and thus we leverage a learnable Fourier decomposition:

fS(t) =

N/2−1∑
i=0

(
w(S)

i cos (2πit) +w(S)

N/2+i sin (2πit)
)

(3)

where w(S)

i are the weights predicted by the network.

Residual Block The residual of a time series comprises the high-frequency non-periodic compo-
nents of the signal. In order to model it, we leverage a fully-connected network of K layers with sine
activations (SIREN), as defined by Sitzmann et al. (2020b):

qk+1 = sin
(
ω0w

(R)

k qk + b(R)

k

)
, k = 0, ...,K − 1 (4)

fR(t) = w(R)

K qK + b(R)

K (5)

where w(R)

k , b(R)

k and qk are the weights, biases, and outputs of the k layer, with q0 = t corresponding
to the input of the network. A general factor ω0 multiplying the network weights determines the order
of magnitude of the frequencies that will be used to encode the signal. As shown by Sitzmann et al.
(2020b), SIRENs mitigate the spectral bias of regular fully-connected networks, and thus are well
suited for learning and representation of high-frequencies. We refer to Appendix D.2 for the TSNet
model implementation details.

3.2 TIME SERIES GENERATION WITH IHYPERTIME

In Fig. 1, we show a diagram of our iHyperTime architecture, which can be used to learn a prior over
implicit neural representations (TSNet) of time series data. Next, we will detail its components and
describe how iHyperTime can be used for time series generation. Additional details on the model
implementation can be found in Appendix D.2.

Set Encoder The set encoder is composed of SIREN layers (Sitzmann et al., 2020b) and takes
as input an arbitrary set of tuples {(ti,yi)}Ni=1, where t denotes the time-coordinate and yi the
corresponding univariate or multivariate time series value. Each tuple is encoded into a fixed-size
embedding Zi = g(ti,yi), and the sample set is reduced to a single embedding Z by applying a
symmetric operation ⊕ (e.g., averaging): Z =

⊕N
i=1 Zi, where the function g : R × Rm → RdZ ,

used to determine the embedding of each tuple, is parameterized by the SIREN layers (model details
in Appendix D.2). The use of a set encoder introduces permutation invariance in the computation, and
provides a high degree of flexibility in terms of the input (Zaheer et al., 2017), enabling the encoding
of data with missing values or irregular sampling, which are common occurrences in time series.

Hypernetwork decoders The embedding Z is modeled as a concatenation of three sub-embeddings
ZT , ZS , and ZR with ZT ∈ RdT denoting the trend embedding, ZS ∈ RdS denoting the seasonality
embedding, and ZR ∈ RdR denoting the residual embedding with dZ = dT + dS + dR. Each
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embedding component is pass through its own hypernetwork decoder, which outputs the weights of
its corresponding block in the TSNet INR. For example, ZT is passed into the Trend Hypernetwork
to output the weights of the trend block in TSNet. The output of TSNet sums the three signals from
each block into a single predicted time series, which is compared against the ground truth signal via
the reconstruction and spectral losses (LRec and LFFT ) during training.

iHyperTime training During training, we use the weights predicted by the hypernetwork decoders
to instantiate a TSNet hyponetwork and evaluate it on the input time-coordinate t, to produce the
predicted time series value f̂(t). We then compare the TSNet hyponetwork prediction with the
ground truth signal via the reconstruction and spectral losses LRec and LFFT .

The training of iHyperTime is performed in three stages, in order to improve stability: 1) we train
the Trend networks (Trend hypernetwork, Trend block) for 100 epochs, computing the MSE loss
between the ground truth time series y and the output of the block: L1 =

∑
i ∥yi − f̂T (ti)∥2. This

leads to a smooth approximation of the time series, which we use as initial guess for the second stage.
2) We then train the Trend and Seasonality blocks together, computing the MSE reconstruction loss
Lrec and the FFT loss LFFT between the ground truth and the added output of both TSNet blocks. 3)
Finally, we train the three blocks together.

Training Loss The training of iHyperTime is done by optimizing the following loss, which contains
an MSE reconstruction term Lrec, a spectral loss LFFT and two regularization terms Lweights and Llatent,
for the network weights and the latent embeddings, respectively:

L =
1

N

N∑
i=1

∥∥∥yi − f̂(ti)
∥∥∥2

︸ ︷︷ ︸
Lrec

+λ1
1

W

W∑
j=1

w2
j︸ ︷︷ ︸

Lweights

+λ2
1

Z

Z∑
l=1

z2l︸ ︷︷ ︸
Llatent

+λ3
1

N

N−1∑
k=0

∥Fk − F̂k∥︸ ︷︷ ︸
LFFT

. (6)

where Fk = [FT {f}]k corresponds to the coefficient of the kth frequency in the discrete Fourier
transform (DFT) of the time series. The term LFFT penalizes deviations of the signal’s frequency
spectrum with respect to ground truth. Thus, we ensure a high-fidelity reconstruction not only of the
time series values, but also of its spectral composition. We refer to Appendices C and D for further
details on LFFT and the implementation details of the iHyperTime architecture.

Time Series Generation After training, we leverage the hypernetwork architecture to generate
latent representations of the time series from our training set. Generation of new time series is
produced by randomly selecting pairs of time series, and performing linear a interpolation between
their embeddings Z(1) and Z(2):

Zgen = Z(1) + λ
(
Z(2) − Z(1)

)
(7)

where λ is also sampled randomly. Optionally, the interpolation can be performed on individual
components ZT , ZS , ZR of the embeddings, enabling the conditional generation of time series.

4 EXPERIMENTS

We present our evaluation of time series generation on regular and irregular data, covering time series
of diverse lengths and numbers of channels. Additionally, we perform an analysis of our model’s
TSR decomposition, and we compare training and inference times with previous works.

4.1 BASELINES AND EVALUATION

Datasets We test the performance of iHT using multiple datasets with varying characteristics such
as periodicity, level of noise, number of features and length of the series. Stock corresponds to Google
stock price data from 2004 to 2019, where each observation has 6 features. Energy is a UCI appliance
prediction dataset (Candanedo et al., 2017) with 28 features. Additionally, we also consider Monash
dataset (Godahewa et al., 2021), from which we choose FRED-MD, NN5 Daily, Temperature Rain,
and Solar Weekly datasets. A complete description of the datasets can be found in Appendix B.

Additionally, we conduct experiments on irregularly sampled time series, achieved by randomly
removing fixed percentages of values from each time series. We create the datasets by removing 30,
50 and 70% of each time series.
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Baselines We compare our method with TimeGAN (Yoon et al., 2019), GT-GAN (Jeon et al.,
2022), Fourier Flows (FF) (Alaa et al., 2021), LS4 (Zhou et al., 2023), DiffTime (Coletta et al.,
2023), and RCGAN (Esteban et al., 2017). TimeGAN and GT-GAN have shown strong performance
on multivariate time series with short sequence lengths and are able to handle missing data. LS4,
DiffTime, and Fourier Flows have shown strong performance on time series with longer sequence
length, generating distributions of frequencies that closely resemble the original data. We refer to
Appendix D.1 for further details on baselines and the adjusted DiffTime and RCGAN architectures,
introduced to deal with missing data and longer time series, respectively.
Evaluation metrics To asses the quality of the synthesized data, we adopt the predictive and
discriminative scores used in TimeGAN (Yoon et al., 2019). The predictive score measures the
usefulness of the generated data by using a train on synthetic, test on real (TSRT) approach: a model
is trained using the synthetic data to predict the next step in a sequence, and then it is evaluated
using the real data. The mean absolute error (MAE) between the predicted values and the ground
truth is used for the evaluation. The discriminative score serves as a measurement of fidelity of the
generated data, where the aim is to assess if the synthetic data is indistinguishable from real data. For
this purpose, a discriminative model is trained to classify real and fake samples, and then used to test
whether the original and generated data are correctly classified. The discriminative score is computed
as |Accuracy− 0.5|, where a low value means that the classification is challenging, and therefore, the
model cannot tell which samples are real and which are generated. For a qualitative evaluation, we
analyze the synthesized and original time series by employing t-SNE visualizations which project the
data into a two-dimensional space (van der Maaten & Hinton, 2008). Additionally, we perform a
kernel density estimation (Jeon et al., 2022) to compare the data distributions. For the experiments on
longer real-world time series from the Monash dataset, we also consider the marginal score (Zhou
et al., 2023) that computes the absolute difference between the real and synthetic empirical probability
density functions.

4.2 EXPERIMENTAL RESULTS ON REGULAR TIME SERIES SYNTHESIS

Performance results for regularly sampled time series are provided in Table 1, for univariate and
multivariate datasets of varying lengths. The results indicate that iHT outperforms all methods in
terms of the predictive score. This highlights the usefulness of the data generated by our method as a
source of synthetic data for learning. In terms of discriminative score, iHT is competitive with state-
of-the-art methods across all datasets, although no method emerges as a definitively superior approach.
In Figure 2, the t-SNE visualizations show that the time series generated by iHT closely resemble the
ground truth data distribution. We refer to Appendix I for additional qualitative comparisons.

Table 1: Regular time series generation performance in
terms of predictive and discriminative scores.

Method Energy24 Stock24 Stocks72 Stock360

Pr
ed

ic
tiv

e
Sc

or
e

iHT .251 ± .000 .037 ± .000 .188 ± .000 .168 ± .000

GT-GAN .321 ± .002 .040 ± .000 .207 ± .000 .188 ± .000
TimeGAN .273 ± .004 .038 ± .001 .226 ± .002 .206 ± .000
RCGAN .292 ± .005 .040 ± .001 .192 ± .001 .189 ± .000
DiffTime .252 ± .000 .038 ± .001 .213 ± .000 .215 ± .000
LS4 .295 ± .001 .103 ± .001 .194 ± .000 .168 ± .000
FF .251 ± .000 .076 ± .001 .191 ± .000 .169 ± .000
Original .250 ± .003 .036 ± .001 .186 ± .001 .167 ± .001

D
is

cr
im

in
at

iv
e

Sc
or

e iHT .245 ± .019 .044 ± .011 .014 ± .009 .018 ± .015

GT-GAN .221 ± .068 .077 ± .031 .058 ± .017 .085 ± .064
TimeGAN .236 ± .012 .102 ± .021 .073 ± .047 .042 ± .074
RCGAN .336 ± .017 .196 ± .027 .012 ± .09 .014 ± .007
DiffTime .445 ± .004 .097 ± .016 .097 ± .012 .101 ± .018
LS4 .499 ± .000 .363 ± .027 .089 ± .081 .088 ± .081
FF .499 ± .001 .349 ± .113 .016 ± .018 .015 ± .014

Table 2: Irregular time series generation performance:
predictive and discriminative scores. 30% missing data.

Method Energy24 Stock24 Stocks72 Stock360

Pr
ed

Sc
or

e

iHT .049 ± .001 .013 ± .001 .188 ± .000 .168 ± .000

GT-GAN .066 ± .001 .021 ± .003 .206 ± .000 .196 ± .000
DiffTime .052 ± .001 .019 ± .006 .200 ± .000 .188 ± .000
LS4 .063 ± .001 .022 ± .005 .198 ± .000 .229 ± .000
FF .148 ± .007 .137 ± .029 .210 ± .000 .184 ± .000
Original .045 ± .001 .011 ± .002 .186 ± .001 .167 ± .001

D
is

c
Sc

or
e

iHT .452 ± .003 .059 ± .046 .017 ± .007 .014 ± .010

GT-GAN .333 ± .063 .251 ± .097 .068 ± .007 .111 ± .026
DiffTime .298 ± .010 .215 ± .010 .110 ± .045 .057 ± .070
LS4 .500 ± .000 .495 ± .004 .203 ± .028 .067 ± .016
FF .500 ± .000 .497 ± .005 .223 ± .092 .156 ± .102

4.3 EXPERIMENTAL RESULTS ON IRREGULAR TIME SERIES SYNTHESIS

Tables 2, 3 and 4 shows the results for the irregular time series generation with different percentages
of missing values. iHT outperforms all methods in terms of predictive score across all datasets. In
regards to fidelity (predictive score), our method shows the best performance in 3 out of 4 datasets.
In particular, it shows the best scores for long time series datasets, showing its versatility on time
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Table 3: Irregular time series generation performance:
predictive and discriminative scores. 50% missing data.

Method Energy24 Stock24 Stocks72 Stock360
Pr

ed
Sc

or
e

iHT (Ours) .051 ± .002 .014 ± .001 .187 ± .000 .168 ± .000
GT-GAN .064 ± .001 .018 ± .002 .195 ± .000 .195 ±.000
DiffTime .057 ± .001 .024 ± .002 .278 ± .000 .186 ± .000
LS4 .065 ± .002 .033 ± .005 .212 ± .000 .197 ± .000
FF .227 ± .004 .169 ± .018 .236 ± .000 .215 ± .000
Original .045 ± .001 .011 ± .002 .186 ± .001 .167 ± .001

D
is

c
Sc

or
e

iHT (Ours) .472 ± .004 .102 ± .051 .011 ± .003 .004 ± .003
GT-GAN .317 ± .010 .265 ± .073 .026 ± .012 .081 ± .023
DiffTime .422 ± .011 .332 ± .034 .284 ± .137 .110 ± .061
LS4 .500 ± .000 .498 ± .000 .144 ± .034 .027 ± .015
FF .500 ± .002 .498 ± .003 .376 ± .130 .422 ± .058

Table 4: Irregular time series generation performance:
predictive and discriminative scores. 70% missing data.

Method Energy24 Stock24 Stocks72 Stock360

Pr
ed

Sc
or

e

iHT (Ours) .053 ± .000 .014 ± .013 .187 ± .000 .168 ± .000
GT-GAN .076 ± .001 .020 ± .005 .205 ± .000 .196 ± .000
LS4 .084 ± .003 .024 ± .002 .188 ± .000 .188 ± .000
DiffTime .065 ± .001 .068 ± .063 .284 ± .000 .196 ± .000
FF .304 ± .005 .205 ± .001 .267 ± .000 .245 ± .000
Original .045 ± .001 .011 ± .002 .186 ± .001 .167 ± .001

D
is

c
Sc

or
e

iHT (Ours) .482 ± .003 .115 ± .052 .020 ± .019 .011 ± .012
GT-GAN .325 ± .047 .230 ± .053 .058 ± .002 .091± .013
LS4 .499 ± .002 .455 ± .011 .036 ± .026 .183 ± .017
DiffTime .444 ± .001 .421 ± .003 .436 ± .009 .148 ± .018
FF .500 ± .003 .498 ± .008 .424 ± .083 .369 ± .163

(a) iHT (Ours) (b) GT-GAN (c) TimeGAN (d) RCGAN (e) DiffTime (f) LS4 (g) FF

Figure 2: t-SNE visualizations on Stock24 data, where a greater overlap of blue and red dots shows a
better distributional-similarity between the original and generated data. Our approach shows the best
performance. (See Appendix 21 for high resolution charts)

series beyond 24 time steps. Furthermore, the performance of iHT does not degrade significantly
with the percentage of missing values, even in the extreme case of 70% missing data. The top row
in Figure 3 compares the distributions of original and synthetic data for the Stock24 dataset with
50% of missing values. iHT shows the best performance, with the closest match to the original data
distribution. The bottom row shows the corresponding t-SNE visualizations, where we can see that
iHT and GT-GAN show the best overlap between original and generated data, with iHT showing
more data diversity, covering a wider area across the original data. Additional plots for other missing
rates are shown in Appendix I, where we observe a similar behavior with iHT showing the best
overlap in both distribution and t-SNE visualization.

(a) iHT (Ours) (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 3: (Top) Data distribution on irregular Stock24 data (Missing 50%). (Bottom) t-SNE visual-
izations on irregular Stock24 data (Missing 50%), where a greater overlap of blue and red dots shows
a better distributional-similarity between the generated data and original data. Our approach shows
the best performance.

4.4 EXPERIMENTAL RESULTS ON LONGER REAL-WORLD TIME SERIES SYNTHESIS

Table 5 shows additional generation results for 4 real-world datasets from the Monash dataset, where
3 of the datasets contain time series with lengths over 700 time steps. We report comparisons with
LS4, which has shown state-of-art performance on these datasets (Zhou et al., 2023), while we leave
the full evaluation table in Appendix E. In this scenario, the Classification (fidelity) and Prediction
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(usefulness) scores are computed using a 1-layer S4 model (Zhou et al., 2023). The results show the
ability of iHT to deal with long time series, with superior performance in 3 out of 4 datasets w.r.t. the
state-of-art LS4.

Table 5: Generation results on Monash datasets.

Data Metric LS4 iHT (Ours)

FRED-MD
Marginal ↓ 0.0221 0.0177
Class ↑ 0.544 1.3278
Prediction ↓ 0.0373 0.0181

NN5 Daily
Marginal ↓ 0.00671 0.00893
Class ↑ 0.636 0.4982
Prediction ↓ 0.241 0.2349

Data Metric LS4 iHT (Ours)

Temp Rain
Marginal ↓ 0.0834 0.2978
Class ↑ 0.976 11.2493
Prediction ↓ 0.521 0.132

Solar Weekly
Marginal ↓ 0.0459 0.03273
Class ↑ 0.683 1.2413
Prediction ↓ 0.141 0.0739

4.5 RUNTIME

In Figure 4, we show that the strong performance of iHT on long time series does not impact its
computational time. We consider a set of synthetic datasets with lengths {80, 320, 1280, 5120, 20480}
and we evaluate the training time for 100 iterations, and the inference time on one batch (Zhou
et al., 2023). The figure shows that iHT has among the lowest computational times w.r.t. existing
approaches. Moreover, iHT training times are almost unaffected by the length of the time series,
with negligible changes even for 20,480 time steps, making it the fastest method for long sequences.
Additional details and the overall training times are presented in Appendix F.
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Figure 4: Training and inference time comparison for time series of different lengths.

4.6 TREND-SEASONALITY DECOMPOSITION ANALYSIS

iHT provides a controllable method for time series generation based on an interpretable trend-
seasonality-residual decomposition of latent embeddings. We explore the interpretable decomposition
of iHT on analytically generated time series datasets that have trend (T), seasonal (S) and noise (R)
components, or a combination of two of them. The synthetic datasets are generated by uniformly
sampling trend values, frequencies and levels of noise. We compute the decomposition error as the
MSE between the output of each block of iHT and the corresponding TSR analytic component. In
table 6, we compare against the traditional STL method, which requires the period of seasonality
as an additional parameter. In STL (exact), we compute STL with the exact period of the analytic
signal. In STL (approx), we provide STL with an approximate period estimated by analyzing the
Fourier spectrum of the signal, a more realistic setting for time series decomposition. Our method
shows the lowest trend error, with a small standard deviation with respect to STL (approx), and shows
comparable results with STL (exact). Additionally, our method shows similar performance on the
seasonality component when there is seasonality present in the dataset with respect to STL (approx),
and shows much better agreement when there is no seasonality present (T+R dataset).

In Figure 5 (a) and (c), we show the distribution of the trend, and residuals outputs from iHT against
the ground truth components for the T+S+R dataset. In the case of the seasonality component (b),
we plot the histogram for the frequencies of the time series, where we estimate the frequency of
each time series by finding the dominant frequency component in the discrete Fourier transform.
The trend and seasonality histograms show very good agreement with the ground truth, while the
residuals show slightly wider tails. Finally, we visualize the learned representations via t-SNE of
the embeddings. Figure 5 (d) and (e) shows that iHT is able to learn the trend and seasonal patterns
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Figure 5: (a,b,c): Distribution of the trend, seasonality and residual outputs of iHT vs ground truth.
(d,e): t-SNE visualization of trend and seasonality embeddings in iHT. All cases correspond to the
T+S+R dataset.

Table 6: Ablation study for trend-seasonality-residual decomposition of time series. We compare iHT
against STL decomposition, for three dataset configurations: trend+seasonality (T+S), trend+residual
(T+R) and all three components (T+S+R).

MSE
(×10−3)

T+S+R T+R T+S
STL (exact) STL (approx) iHT (Ours) STL (exact) STL (approx) iHT (Ours) STL (exact) STL (approx) iHT (Ours)

Trend 0.46 ± 2.08 1.04 ± 4.69 0.60 ± 0.50 0.07 ± 0.07 1.26 ± 5.70 0.20 ± 0.27 0.46 ± 2.10 1.17 ± 5.12 0.46 ± 0.48
Seasonality 0.57 ± 2.10 1.19 ± 4.73 1.21 ± 0.68 0.03 ± 0.02 1.35 ± 5.74 0.17 ± 0.29 0.44 ± 2.09 1.18 ± 5.11 1.25 ± 0.77
Residuals 0.17 ± 0.15 0.18 ± 0.12 1.29 ± 0.62 0.15 ± 0.09 0.18 ± 0.13 0.41 ± 0.26 0.03 ± 0.10 0.04 ± 0.07 1.25 ± 0.71

from the dataset. In plot (d) the color separation corresponds to positive and negative trend, while
plot (e) shows the separation in frequencies. We refer to Appendix G and H for further details on the
synthetic datasets and for additional results.

4.7 ABLATION STUDIES

In Table 7, we change the architecture of iHT to create simpler ablation models, and report predictive
and discriminative metrics for multiple datasets. iHT corresponds to our full proposed model. In
iHT (no FFT) we have removed the FFT loss from the training. In iHT-SIREN we remove the TSR
decomposition from iHT, replacing TSNet with a SIREN network. We observe that the predictive
scores are comparable for all configurations, while discriminative scores improve for all datasets
when we incorporate the interpretable decomposition. The error reduces further when we add the
FFT loss to the training process.

Table 7: Ablation study for model architecture: comparison of iHT against simpler configurations:
iHT (no FFT) without FFT loss, and iHT-SIREN without TSR decomposition.

Energy24 Stock24 Stock72 Stock360

Predictive Score

iHT 0.047 0.013 0.188 0.168
iHT (no FFT) 0.046 0.014 0.188 0.168
iHT-SIREN 0.048 0.013 0.188 0.169

Energy24 Stock24 Stock72 Stock360

Disc. Score

iHT 0.245 0.044 0.014 0.009
iHT (no FFT) 0.278 0.073 0.015 0.011
iHT-SIREN 0.341 0.108 0.022 0.024

5 DISCUSSION AND CONCLUSIONS

We presented iHyperTime, a versatile and efficient framework for generating time series with a wide
range of characteristics. Unlike existing generative models that excel either in short or long sequences,
our model demonstrates superior performance across both types of datasets. Our evaluations reveal
its efficacy in handling irregularly sampled data, where it consistently surpasses current benchmarks.
For regularly sampled sequences, iHyperTime’s performance is competitive with the best available
models, regardless of time series length. One of the model’s notable strengths is its rapid training
speed, which is not only comparable to the quickest existing methods for short sequences but also
significantly faster for longer ones. Importantly, our architecture incorporates inductive biases that
facilitate unsupervised decomposition of time series into trend, seasonality, and residual components,
a capability we validated against the established STL decomposition method. Additionally, we
illustrated iHyperTime’s ability to learn semantically meaningful representations, opening the door
for applications that involve generating time series conditioned on interpretable factors.
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A ADDITIONAL RELATED WORK

Implicit Neural Representations INRs (or coordinate-based neural networks) have recently gained
popularity in computer vision applications. The usual implementation of INRs consists of a fully-
connected neural network (MLP) that maps coordinates (e.g. xyz-coordinates) to the corresponding
values of the data, essentially encoding their functional relationship in the network. One of the
main advantages of this approach for data representation, is that the information is encoded in a
continuous/grid-free representation, that provides a built-in non-linear interpolation of the data. This
avoids the usual artifacts that arise from discretization, and has been shown to combine flexible and
accurate data representation with high memory efficiency (Sitzmann et al., 2020b; Tancik et al., 2020).
Whilst INRs have been shown to work on data from diverse sources, such as video, images and
audio (Sitzmann et al., 2020b; Chen et al., 2021; Rott Shaham et al., 2021), their recent popularity
has been motivated by multiple applications in the representation of 3D scene data, such as 3D
geometry (Park et al., 2019; Mescheder et al., 2019; Sitzmann et al., 2020a; 2019) and object
appearance (Mildenhall et al., 2020; Sztrajman et al., 2021). In early architectures, INRs showed
a lack of accuracy in the encoding of high-frequency details of signals. Mildenhall et al. (2020)
proposed positional encodings to address this issue, and Tancik et al. (2020) further explored them,
showing that by using Fourier-based features in the input layer, the network is able to learn the full
spectrum of frequencies from data. Concurrently, Sitzmann et al. (2020b) tackled the encoding of
high-frequency data by proposing the use of sinusoidal activation functions (SIREN: Sinusoidal
Representation Networks), and ? showed the equivalence between Fourier features and single-layer
SIRENs. Our INR architecture for time series data (Section 3) is based on the SIREN architecture by
Sitzmann et al.

Hypernetworks A hypernetwork is a neural network architecture designed to predict the weight
values of a secondary neural network, denominated a hyponetwork (Sitzmann et al., 2020a). The
concept of hypernetwork was formalized by Ha et al. (2017), drawing inspiration from methods in
evolutionary computing (Stanley et al., 2009). Moreover, while convolutional encoders have been
likened to the function of the human visual system (Skorokhodov et al., 2021), the analogy cannot
be extended to convolutional decoders, and some researchers have argued that hypernetworks much
more closely match the behavior of the prefrontal cortex (Russin et al., 2020). Hypernetworks have
been praised for their expressivity, compression due to weight sharing, and for their fast inference
times(Skorokhodov et al., 2021). They have been leveraged for multiple applications, including
few-shot learning (Rusu et al., 2019; Zhao et al., 2020), continual learning (von Oswald et al., 2020)
and architecture search (Zhang et al., 2019; Brock et al., 2018). Moreover, in the last two years
some works have started to leverage hypernetworks for the training of INRs, enabling the learning of
latent encodings of data, while also maintaining the flexible and accurate reconstruction of signals
provided by INRs. This approach has been implemented with different hypernetwork architectures,
to learn priors over image data (Sitzmann et al., 2020b; Skorokhodov et al., 2021), 3D scene
geometry (Littwin & Wolf, 2019; Sitzmann et al., 2019; 2020a) and material appearance (Sztrajman
et al., 2021). Tancik et al. (2021) leverage hypernetworks to speed-up the training of INRs by
providing learned initializations of the network weights. Sitzmann et al. (2020b) combine a set
encoder with a hypernetwork decoder to learn a prior over INRs representing image data, and apply it
for image in-painting. Our hypernetwork architecture from Section 3 is similar to Sitzmann et al.’s,
however we learn a prior over the space of time series and leverage it for new data synthesis through
interpolation of the learned embeddings.

Interpretable Time Series Seasonal-trend decomposition techniques are standard tools in time
series analysis used to decompose a time series into trend, seasonal, and remainder components.
The trend component encapsulates the slow time-varying behavior of the time series, while seasonal
components capture recurring (i.e., periodic) fluctuations in the data. These techniques enable an
intuitive and interpretable analysis of time series data which play an important role in a variety of
downstream tasks, including forecasting and anomaly detection. The classic approach for performing
the decomposition is the widely used STL algorithm (Cleveland et al., 1990). To account for
outliers and distributional shifts, a robust version of the algorithm, called Robust STL, has also
been proposed (Wen et al., 2019). Additional challenges in seasonal-trend decomposition involve
dealing with complex time series data that exhibit multiple seasonal components, to which techniques
such as multiple STL (MSTL) have been proposed (Bandara et al., 2022). The ability to break
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time series into interpretable components has been a topic of recent interest in the context of
anomaly detection, forecasting, and generation. Relevant to this work is the recently proposed N-
BEATS architecture (Oreshkin et al., 2020), a deep learning-based univariate time series forecasting
solution that provides time series interpretability capabilities without considerable loss in predictive
performance. The N-BEATS architecture explicitly encodes seasonal-trend decomposition into the
network by defining two blocks: a trend block which uses a small ordered polynomial to capture slow
varying behaviors, and a seasonality block which uses a Fourier series to capture cyclical patterns.
Little work, however, has been done in the design of generation schemes that allow for decomposition
of time series data into interpretable components. While TimeVAE (Desai et al., 2021) proposes
a VAE architecture where the decoder has trend and seasonality blocks to allow for interpretable
generation, no results highlighting the advantage of this capability were demonstrated.

B DATASETS

Here we introduce in detail the datasets used in our evaluation. We use publicly available Google
stocks data from Yahoo finance, and the UCI Energy dataset (Candanedo et al., 2017). Google stock
dataset contains daily observations from 2004 to 2019 with 6 features, namely open, high, low, close,
adjusted close, and volume. The energy data contains 28 features with 10-minute resolution. Finally,
we consider 4 datasets with longer real-world time-series from Monash repository (Godahewa et al.,
2021), namely FRED-MD, NN5 Daily, Temperature Rain, and Solar Weekly. The first three datasets
have time-series of length of around 700, while the latter one has time-series with length of 52. The
datasets characteristics are summarized in Table 8.

In order to make a fair comparison with current state-of-the-art methods, we process the Stock and
Energy in two different ways: in line with Yoon et al. (2019) and Jeon et al. (2022), we slice the data
using a window of 24 time steps, corresponding to datasets Stock24 and Energy24. Following Coletta
et al. (2023), we select one feature per dataset (univariate) and slice it using windows of 72 and 360
time steps, which correspond to Stock72 and Energy360.

Table 8: Main characteristics of the datasets used.

Dataset Number of Samples Length of Time series No of Features Source

Stock24 3661 24 6
Stock72 3613 72 1 Link
Stock360 3325 360 1
Energy 19635 24 28 Link
FRED-MD 107 728 1 Link
NN5 Daily 111 791 1 Link
Temp Rain 32072 725 1 Link
Solar Weekly 137 52 1 Link

C FOURIER-BASED LOSS

As part of the training of our iHyperTime architecture, we propose a Fourier spectrum reconstruction
loss. For a discrete-time signal f = {f0 = f(0), f1 = f(1), . . . , fN = f(N)}, the N -point discrete
Fourier transform (DFT) is utilized to obtain the corresponding frequency domain representation of f
through the following operation:

Fk = [FT {f}]k =

N−1∑
n=0

fne
−2πi( kn

N ), 0 ≤ k ≤ N − 1,

where i =
√
−1 corresponds to the imaginary unit of a complex number. The coefficient Fk ∈ C

quantifies the strength in representation of the kth frequency component of the signal. The DFT has a
time complexity of O(N2). In practice, an algorithm called the fast Fourier transform (FFT) is used
to compute the DFT due to its lower time complexity (i.e., O(N logN)). Using the FFT to obtain the
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frequency domain representations of two discrete-time signals f and f̂ , we introduce a Fourier-based
reconstruction loss as follows:

LFFT =
1

N

N−1∑
k=0

∥Fk − F̂k∥.

Here, we utilized the PyTorch implementation of the FFT to obtain the DFT for each signal. It is
important to note that the DFT is only well-defined for regularly sampled signals. In the case of this
work, the discrete-time signal f is obtained by deterministically sampling the function f(t) via a
discretized grid of time steps t ∈ {0, 1, . . . , N}.

D IMPLEMENTATION & REPRODUCIBILITY DETAILS

D.1 BASELINES

We use the following methods with publicly available code as benchmark for our method:

• Fourier Flows (Alaa et al., 2021): https://github.com/ahmedmalaa/Fourier-flows

• TimeGAN (Yoon et al., 2019): https://github.com/jsyoon0823/TimeGAN

• GT-GAN(Jeon et al., 2022): https://github.com/Jinsung-Jeon/GT-GAN

• RCGAN (Esteban et al., 2017): https://github.com/3778/Ward2ICU

• LS4(Zhou et al., 2023): https://github.com/alexzhou907/ls4/tree/main

• DiffTime(Coletta et al., 2023): https://arxiv.org/abs/2307.01717

We adapted TimeGAN, RCGAN, and GT-GAN for longer time-series by setting the hidden dimensions
to be equal to the time-series length, as suggested by authors and empirically evaluated. Moreover,
we improve RCGAN discriminator to handle longer time-series more effectively using the CSDI
transformer architecture (Tashiro et al., 2021). For DiffTime we reach out the authors to get access to
their code, and to handle missing data we dynamically mask the input time-series to let the model
learn to reconstruct the whole original time-series, similarly to CSDI approach for imputation (Tashiro
et al., 2021).

D.2 IMPLEMENTATION DETAILS

iHyperTime is composed of a set encoder, three decoder (hypernetworks) whose outputs corresponds
to the weights of each of the blocks in TSNet. Below we explain each component in detail.

Set Encoder The set encoder is a SIREN with two hidden layers of 128 neurons and an output
layer (embedding) of 40 neurons. It takes as input an arbitrary set of tuples {(ti,yi)}Ni=1, where t
denotes the time-coordinate and yi the corresponding univariate or multivariate time series value.
We use a single floating point value as temporal coordinate (time t). As data pre-processing, the
values are scaled to the interval [−1, 1], with a common global factor for all time series of a dataset.
MinMax scaling is also applied to the time series amplitudes, although in the interval [0, 1]. In all
cases, regardless of sequence length, the time series is fed to the set encoder as a single set, and is
hence converted into a single embedding Z.

Decoder (Hypernetwork) Each decoder block (hypernetwork) is a one-layer MLP with ReLU
activations, with a hidden layer of dimension 128. The output of each hypernetwork is a vector that
contains the weights of its corresponding decomposition block. Table 9 shows the dimension details,
where nt, nS and nR correspond to the number of weights in the trend, seasonality and residuals
blocks, which form TSNet.
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Table 9: Architecture of the hypernetworks in the decoder.

Hypernet block Design Input size Output size

Trend Hypernet Relu 10 128
Linear 128 nT

Season Hypernet Relu 15 128
Linear 128 nS

Res. Hypernet Relu 15 128
Linear 128 nR

TSnet Architecture TSnet is an implicit neural representation of univariate/multivariate time series
data. It is composed of three distinctive blocks that perform a trend-seasonality-residual additive
decomposition of the time series signal. Table 10 shows the network details of each component of
TSNet. In the trend block, p corresponds to the degree of the polynomial, L corresponds to the max
length of the time series, and m corresponds to the number of features.

Figure 6: Diagram of the TSnet architecture.

Table 10: Architecture of TSNet.

Layer Design Input size Output size

Trend block 1 Linear p m

Seasonality block 1 Linear L m

Residual block 1 Sine(Linear) 1 60
2 Sine(Linear) 60 60
3 Sine(Linear) 60 60
4 Sine(Linear) 60 60
5 Linear 60 m

Training The training of iHT is performed in three stages to improve stability: 1) we train the
Trend HyperNetwork, Trend Block for 100 epochs, computing the MSE loss between the ground
truth time series y and the output of the block: L1 =

∑
i ∥yi − f̂tr(t)∥2. This leads to a smooth

approximation of the time series, which we use as initial guess for the second stage. 2) We then train
the Trend and Seasonality blocks together, computing the MSE reconstruction loss Lrec and the FFT
loss LFFT between the ground truth and the added output of both TSnet blocks. 3) Finally, we train
the three blocks together.

• Stage 1 training:
– Number of epochs: 100
– Learning rate: 1e− 3

• Stage 2 training:
– Number of epochs: 150
– Learning rate: 5e− 5
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• Stage 3 training:
– Number of epochs: 150
– Learning rate: 5e− 5

• Batch size: 256
• λ1 = 1.0× 10−3

• λ2 = 1.0

• λ3 = 1.0× 10−2

We train Energy24, Stock24, Stock72, Stock360 and Solar Weekly datasets for 400 epochs, with
Adam optimizer. For the NN5 daily, and Fred MD datasets we trained for 500 epochs, and for the
Temperature Rain dataset we train iHT for 1500 epochs.

Hardware and Software We implement our method in Python and the experiments are ran using a
g4dn.2xlarge AWS instance with a NVIDIA T4 GPU, 8 CPU and 32gb of RAM.

E ADDITIONAL EXPERIMENTAL RESULTS ON REAL-WORLD TIME SERIES
SYNTHESIS

We show additional comparisons of time series synthesis the four Monash datasets in Table 11. Out
method still shows competitive results across most datasets, with best predictive score in three cases,
only loosing against Latent ODE in the FRED-MD dataset.

Data Metric RNN-VAE GP-VAE ODE2VAE Latent ODE TimeGAN SDEGAN SaShiMi LS4 iHT (Ours)
FRED-MD Marginal ↓ 0.132 0.152 0.122 0.0416 0.0813 0.0841 0.0482 0.0221 0.0177

Class. ↑ 0.0362 0.0158 0.0282 0.327 0.0294 0.501 0.00119 0.544 1.3278
Prediction ↓ 1.47 2.05 0.567 0.0132 0.0575 0.677 0.232 0.0373 0.0181

NN5 Daily Marginal ↓ 0.137 0.117 0.211 0.107 0.0396 0.0852 0.0199 0.00671 0.00893
Class. ↑ 0.000339 0.00246 0.00102 0.000381 0.00160 0.0852 0.0446 0.636 0.4982
Prediction ↓ 0.967 1.169 1.19 1.04 1.34 1.01 0.849 0.241 0.2349

Temp Rain Marginal ↓ 0.0174 0.183 1.831 0.0106 0.498 0.990 0.758 0.0834 0.2978
Class. ↑ 0.00000212 0.0000123 0.0000319 0.0000419 0.00271 0.0169 0.0000167 0.976 11.2493
Prediction ↓ 159 2.305 1.133 145 1.96 2.46 2.12 0.521 0.132

Solar Weekly Marginal ↓ 0.0903 0.308 0.153 0.0853 0.0496 0.147 0.173 0.0459 0.03273
Class. ↑ 0.0524 0.000731 0.0998 0.0521 0.6489 0.591 0.00102 0.683 1.2413
Prediction ↓ 1.25 1.47 0.761 0.973 0.237 0.976 0.578 0.141 0.0739

Table 11: Generation results on FRED-MD, NN5 Daily, Temperature Rain, and Solar Weekly.

F TRAINING TIME COMPARISON

Table 12 shows the training time of iHT and all the other baselines for the Energy and Stock datasets.
iHT has the lowest training time across all datasets, with Fourier Flows having a similar performance
in the Stock datasets. In the case of Energy, given that Fourier Flows trains on each feature separately,
this sequential training increases the computational time because of the large number of features
present in the dataset. The training times of TimeGAN and GTGAN are orders of magnitude larger
for the datasets with the longest time series, in the case of TimeGAN because it based on RNNs,
whilst GTGAN’s needs to solve various differential equations.

G ADDITIONAL TREND-SEASONALITY DECOMPOSITION ANALYSIS

In this section we provide further details of the analysis of iHT decomposition.

Synthetic dataset We generated time series datasets that have trend (T), seasonal (S) and noise
(R) components, or a combination of two of them. The trend was generated by randomly choosing
the degree of the polynomial, a sign and a slope. A code example with the parameters is shown in
Code Snippet 1. To model the seasonality component we use a Sine function with the frequency
sampled uniformly within [1,10]. Finally, for the residual component we used Gaussian noise, with
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Table 12: Comparison of training time. iHT shows the shortest training time on all datasets.

Training Time (HH:MM) Energy24 Stock24 Stock72 Stock360

iHT (Ours) 00:15 00:03 00:03 00:04
GTGAN 10:39 12:20 04:32 21:23
TimeGAN 12:28 11:40 34:30 65:00
FourierFlows 02:48 00:07 00:03 00:05
LS4 04:19 00:57 01:16 02:09
DiffTime 17:03 02:52 01:42 02:13

the standard deviation sampled between 0 and 0.2. For each dataset, we generated 2000 time series
of 200 time steps. Figure 7 shows examples of each dataset.

Code Snippet 1: Trend generation
1 def generate_trend():
2 trend_slope = np.random.uniform(1.5,2)
3 degree = np.random.choice([1,2,3])
4 sign = np.random.choice((-1, 1))
5 trend = sign * (trend_slope*regular_time_samples)**degree
6 return trend

Table 13, we compare iHT with STL (exact) and STL (approx), in the previous dataset TSR, T+R,
T+S the additional dataset of S+R dataset. We can observe that in the S+R dataset iHT shows the
worst performance in all three components. Interestingly, both STL (exact) and STL (approx) show
higher errors than in the other datasets, showing that this is a more challenging case.

Figure 7: Example of synthetic datasets with trend (T), seasonal (S) and noise (R) components, or a
combination of two of them.

MSE
(×10−3)

TSR T+R T+S S+R
STL (exact) STL (approx) iHT (Ours) STL (exact) STL (approx) iHT (Ours) STL (exact) STL (approx) iHT (Ours) STL (exact) STL (approx) iHT (Ours)

Trend 0.46 ± 2.08 1.04 ± 4.69 0.6 ± 0.5 0.07 ± 0.07 1.26 ± 5.7 0.2 ± 0.27 0.46 ± 2.1 1.17 ± 5.12 0.46 ± 0.48 0.18 ± 0.19 0.71 ± 1.9 8.11 ± 8.31
Seasonality 0.57 ± 2.1 1.19 ± 4.73 1.21 ± 0.68 0.03 ± 0.02 1.35 ± 5.74 0.17 ± 0.29 0.44 ± 2.09 1.18 ± 5.11 1.25 ± 0.77 2.54 ± 2.68 3.89 ± 3.93 14.86 ± 11.49
Residuals 0.17 ± 0.15 0.18 ± 0.12 1.29 ± 0.62 0.15 ± 0.09 0.18 ± 0.13 0.41 ± 0.26 0.03 ± 0.1 0.04 ± 0.07 1.25 ± 0.71 2.64 ± 2.73 3.45 ± 3.07 13.98 ± 5.71

Table 13: Ablation study for trend-seasonality-residual decomposition of time series. We compare iHT
against STL decomposition, for three dataset configurations: trend+seasonality (T+S), trend+residual
(T+R), seasonality+residual (S+R) and all three components (TSR).

In Figures 8, 9, 10 and 11 we show the evaluation of the output of iHT for each dataset. The first
three plots on each row correspond to the distribution of trend, seasonality and residuals outputs
from iHT against the ground truth components. We can see in Figures 9 and 10 that for the T+S and
T+R datasets, the trend shows good agreement, and in the case of no residuals, we observe a narrow
distribution close to zero, while in the case of no seasonality, the frequency histogram is also very
narrow around zero. In Figure 11, which corresponds to S+R we can observe that the distribution of
trend is quite broad, and this is in line with the results on Table 13. Even in the seasonality distribution

18



Under review as a conference paper at ICLR 2024

we can observe a slightly worse match with regards to the other cases. The plots on the right show
the learned representations via t-SNE of the embeddings. We can still observe a separation in trend
up and down on the T+R dataset, although the separation in high and low frequency in the S+R plot
is less obvious.

(a) Trend (b) Seasonality (c) Residuals (d) tSNE-trend (e) tSNE-seasonality

Figure 8: (a,b,c): Distribution of the trend, seasonality and residual outputs of iHT vs ground truth.
(d,e): t-SNE visualization of trend and seasonality embeddings in iHT for the TSR dataset.

(a) Trend (b) Seasonality (c) Residuals (d) tSNE-trend (e) tSNE-seasonality

Figure 9: (a,b,c): Distribution of the trend, seasonality and residual outputs of iHT vs ground truth.
(d,e): t-SNE visualization of trend and seasonality embeddings in iHT for the T+S dataset.

(a) Trend (b) Seasonality (c) Residuals (d) tSNE-trend

Figure 10: (a,b,c): Distribution of the trend, seasonality and residual outputs of iHT vs ground truth.
(d): t-SNE visualization of trend embeddings in iHT for the T+R dataset.

(a) Trend (b) Seasonality (c) Residuals (d) tSNE-seasonality

Figure 11: (a,b,c): Distribution of the trend, seasonality and residual outputs of iHT vs ground truth.
(d): t-SNE visualization of seasonality embeddings in iHT for the S+R dataset.
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H TIME SERIES GENERATION USING TREND COMPONENT

Here we consider a peculiar capability of iHT that enables the user to provide an input trend component
to generate time-series accordingly. iHT generates new time series by performing interpolation in
the embedding space between two time series, and then generating the novel weights of TSNet that
represents the novel time series. This allows us to control the generation by projecting a desired
trend pattern in iHT to use in the generation process. To evaluate the performance of this guided
generation, we use iHT trained on Stock24. We provide an input trend and generate 1000 time series
using iHT. In this experiment we consider the following baselines: DiffTime, RCGAN, TimeGAN,
GT-GAN. While DiffTime (Coletta et al., 2023) is naturally designed for constrained time-series
generation, we adapted RCGAN, TimeGAN, GT-GAN architectures to deal with the input trend.
In detail, we re-trained them as conditioned models using an additional input trend, computed as
a polynomial interpolation from original data during the training. In Figure 12 we show how the
generated time-series follow the trend. For each approach we generate 1000 samples and we plot
their 5-95th percentile values as the light-blue shaded area, while trend is the dotted orange line. In
Table 14 we report the quantitative metrics, which evaluate how much each generated time-series
deviate from the input trend by computing the L2 distance and Dynamic-Time-Warping (DTW)
distance between the generated sample and the input trend. The results show that iHT has among the
best performance and it is competitive w.r.t. to DiffTime, which is specifically designed to incorporate
such trend constraints.

Table 14: Time-Series Trend Generation on Stock24 dataset.

Algo L2 Distance DTW Distance
iHT (Ours) 23.68±18.6 14.43±13.60
DiffTime 19.83±5.40 15.42±4.79
GT-GAN 1304.2±1026.9 1303.9±1303.1
TimeGAN 88.18±12.10 87.29±12.35
RCGAN 60.56±9.20 32.94±6.05

Figure 12 shows additional qualitative results using iHT trained on Stock72 with a wide diversity of
input trends. We can see that in all cases, the input trend is within the 5-95th percentile values of the
generated time series, showing a good agreement of the synthetic time series with the input trend.

(a) iHT (b) GT-GAN (c) TimeGAN (d) RCGAN (e) DiffTime

Figure 12: A visualizations of time-series generated according the input Trend. The orange dotted
time-series is the trend, and the shaded blue area shows the 5% and 95% percentiles of the generated
synthetic time-series. Our approaches show among the best performance with time-series closer to
the input trend.

I VISUALIZATIONS WITH TSNE AND DATA DISTRIBUTIONS

In this section we report an additional evaluation of the synthetic and real data distributions. We
evaluate the synthetic distributions on Stock24, including missing data from 30% to 70%; then we
analyse synthetic data on longer stock time-series, i.e., stock72 and stock360; and finally we evaluate
the synthetic distributions for Energy data, which has 28 dimensions.
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Figure 13: A visualizations of time-series generated by iHT according to an input Trend, on the
Stock72 dataset. The orange dotted time-series is the trend, and the shaded blue area shows the 5%
and 95% percentiles of the generated synthetic time-series.

I.1 DATA DISTRIBUTION

First we plot the real (blue) and synthetic (orange) distributions empirically evaluated through a
kernel-density estimation of real and generated data. Figure 14 shows the empirical distributions for
Stock24, where iHT has among the closest match with original data. The superior performance of
iHT is more evident with irregular data, from Figure 15 to Figure 17, where iHT is always able to
closely resemble the real data distributions.

The performance of iHT is consistent with longer time-series (Figure 18 and Figure 19) and highly
dimensional data like Energy in Figure 20.

(a) iHT (b) GT-GAN (c) TimeGAN

(d) DiffTime (e) LS4 (f) FF

Figure 14: Data distribution on Stock24 data.

I.2 TSNE VISUALIZATION

We now evaluate the real (blue) and synthetic (red) distributions through t-SNE visualizations.
Figure 21 shows the t-SNE plots for Stock24, where iHT has among the best performance (i.e., the
synthetic data almost completely overlap with real data). As mentioned in the previous section, the
superior performance of iHT is more evident with irregular data, from Figure 22 to Figure 24, where
iHT is the only method to closely resemble the real data distribution. While GT-GAN reproduces
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(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 15: Data distribution on irregular Stock24 data (Missing 70%).

(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 16: Data distribution on irregular Stock24 data (Missing 50%).

(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 17: Data distribution on irregular Stock24 data (Missing 30%).

(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 18: Data distribution on regular Stock72 data.

(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 19: Data distribution on regular Stock360 data.

similarly the real data distributions, the synthetic distributions are more condensed around the original
data, and don’t cover the full space.

For longer time-series (Figure 25 and Figure 26) the t-SNE plots show that iHT is able to better
reproduce the original data distributions. Finally, Figure 27 shows the t-SNE plots for energy data
where with consistent performance for iHT.
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(a) iHT (b) GT-GAN (c) TimeGAN

(d) DiffTime (e) LS4 (f) FF

Figure 20: Data distribution on Energy data.

(a) iHT (b) GT-GAN (c) TimeGAN

(d) RCGAN (e) DiffTime (f) LS4 (g) FF

Figure 21: t-SNE visualizations on Stock24 data, where a greater overlap of blue and red dots shows
a better distributional-similarity between the generated data and original data. Our approach shows
the best performance.

(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 22: t-SNE visualizations on irregular Stock24 data (Missing 70%), where a greater overlap
of blue and red dots shows a better distributional-similarity between the generated data and original
data. Our approach shows the best performance.
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(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 23: t-SNE visualizations on irregular Stock24 data (Missing 50%), where a greater overlap
of blue and red dots shows a better distributional-similarity between the generated data and original
data. Our approach shows the best performance.

(a) iHT (b) GT-GAN (c) DiffTime (d) LS4 (e) FF

Figure 24: t-SNE visualizations on irregular Stock24 data (Missing 30%), where a greater overlap
of blue and red dots shows a better distributional-similarity between the generated data and original
data. Our approach shows the best performance.

(a) iHT (b) GT-GAN (c) TimeGAN

(d) RCGAN (e) DiffTime (f) LS4 (g) FF

Figure 25: t-SNE visualizations on Stock72 data, where a greater overlap of blue and red dots shows
a better distributional-similarity between the generated data and original data. Our approach shows
the best performance.
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(a) iHT (b) GT-GAN (c) TimeGAN

(d) RCGAN (e) DiffTime (f) LS4 (g) FF

Figure 26: t-SNE visualizations on Stock360 data, where a greater overlap of blue and red dots shows
a better distributional-similarity between the generated data and original data. Our approach shows
the best performance.

(a) iHT (b) GT-GAN (c) TimeGAN

(d) DiffTime (e) LS4 (f) FF

Figure 27: t-SNE visualizations on Energy data, where a greater overlap of blue and red dots shows a
better distributional-similarity between the generated data and original data. Our approach shows the
best performance.

25



Under review as a conference paper at ICLR 2024

J FINANCIAL RETURNS AND AUTOCORRELATION

We now evaluate the distributions of two well known properties (i.e., stylized facts) of financial
time-series, namely the returns and autocorrelation. We consider stock uni-variate data with length
of 72. Figure 28 and Figure 29 show the returns and the autocorrelation of returns distributions,
respectively. The two figures confirm the ability of iHT to learn the real data properties (i.e., the real
and synthetic distributions mostly overlap).

(a) iHT (b) DiffTime (c) GT-GAN (d) TimeGAN

(e) RCGAN (f) Fourier Flow (g) LS4

Figure 28: Returns distribution of stock time-series with length 72.

(a) iHT (b) DiffTime (c) GT-GAN (d) TimeGAN

(e) RCGAN (f) Fourier Flow (g) LS4

Figure 29: Autocorrelation of returns distributions of stock time-series with length 72.
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K VISUALIZATIONS OF GENERATED SAMPLES

Finally we report examples of generated time-series. It is worth to mention that in Figure 30 the
synthetic time-series from iHT effectively respect the open-high-low-close relationship from the real
data – high (low) is the highest (lowest) series. Such data property is preserved also when the model
is trained on missing data, as shown in Figure 31, Figure 32, and Figure 33. With the exception of
DiffTime, which is specifically designed for constrained time-series generation, most of the existing
approaches do not preserve such property.

Energy data is shown in Figure 34 for regular time-series, and in Figure 35, Figure 36, and Figure 37
for irregular time-series. Considering that Energy has 28 features, with different scales, we plot only
the first 5 normalized features.

Finally, we plot longer-times for regular stock72 in Figure 38. While we plot the irregular stock72 in
Figure 39, Figure 40, and Figure 41.
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Figure 30: An example of Regular Stock24 samples.
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Figure 31: An example of Irregular Stock24 samples (70% missing data).
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Figure 32: An example of Irregular Stock24 samples (50% missing data).
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Figure 33: An example of Irregular Stock24 samples (30% missing data).
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Figure 34: An example of Regular Energy24 samples.
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Figure 35: An example of Irregular Energy24 samples (70% missing data).
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Figure 36: An example of Irregular Energy24 samples (50% missing data).
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Figure 37: An example of Irregular Energy24 samples (30% missing data).
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Figure 38: An example of Regular Stock72 samples.
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Figure 39: An example of Irregular Stock72 samples (70% missing data).
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Figure 40: An example of Irregular Stock72 samples (50% missing data).
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Figure 41: An example of Irregular Stock72 samples (30% missing data).
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