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Abstract

Visual object recognition systems need to generalize from a set of 2D training views to
novel views. The question of how the human visual system can generalize to novel views
has been studied and modeled in psychology, computer vision, and neuroscience. Modern
deep learning architectures for object recognition generalize well to novel views, but the
mechanisms are not well understood. In this paper, we characterize the ability of common
deep learning architectures to generalize to novel views. We formulate this as a supervised
classification task where labels correspond to unique 3D objects and examples correspond
to 2D views of the objects at different 3D orientations. We consider three common models
of generalization to novel views: (i) full 3D generalization, (ii) pure 2D matching, and (iii)
matching based on a linear combination of views. We find that deep models generalize
well to novel views, but they do so in a way that differs from all these existing models.
Extrapolation to views beyond the range covered by views in the training set is limited, and
extrapolation to novel rotation axes is even more limited, implying that the networks do
not infer full 3D structure, nor use linear interpolation. Yet, generalization is far superior
to pure 2D matching. These findings help with designing datasets with 2D views required
to achieve 3D generalization.

1 Introduction

Visual object recognition systems need to be able to generalize to novel views of objects using a small
set of training views. This ability has been studied extensively in neuroscience, psychology, and computer
vision (Poggio & Edelman, 1990; Logothetis et al., 1995; Riesenhuber & Poggio, 1998; Cooper et al., 1992;
Biederman, 2000).

In order to explain these remarkable generalization capabilities of the human visual system in terms of object
recognition, a range of different hypotheses have been proposed. One common theory is that humans perform
pure view-based recognition (Poggio & Edelman, 1990; Logothetis et al., 1995; Riesenhuber & Poggio, 1998).
However, the generalization capabilities exhibited by humans in visual recognition are hard to explain using a
purely view-based recognition system. An alternative view is that humans build a partial 3D representation
of the object rather than leveraging purely view-based recognition (Cooper et al., 1992; Biederman, 2000;
Biederman et al., 1993).

Deep learning models have also demonstrated the capability to recognize objects from novel viewpoints.
However, since these mechanisms are not explicitly built into the architecture, the reasons responsible for
this capability are unclear. This knowledge is important to understanding and improving visual recognition
systems.

Based on prior work in neuroscience and computer vision, we identify three distinct classes of behaviors for
visual recognition that can explain the generalization capabilities of deep learning models:

• Full 3D recognition, where the system recovers a full 3D model of the object given a limited number
of views. Once this 3D object is constructed, recognition is performed by selecting the model which

1



Under review as submission to TMLR

(a) Paperclip dataset (b) 3D chairs dataset

Figure 1: Examples from the generated datasets. (a) Paperclip dataset where we plot a single
paperclip object at different orientations along the z-axis on the horizontal axis and along the y-axis on the
vertical axis. See Fig. 12 for rotation along other axes. (b) 3D chairs dataset where we use the same
generation protocol as for the paperclip dataset but use the 3D models of chairs from ShapeNet (Chang
et al., 2015) instead of synthetic Paperclips.

best explains the given view. Such a model should generalize to all views given a small number of
training views.

• Pure 2D matching, where recognition is performed directly by identifying the nearest training view
for the given test view. Such a model should generalize only to similar views, independent of the
axis of rotation.

• Matching based on a linear combination of views (2.5D matching), where the system interpolates
between a limited number of views in order to construct a better representation of the underlying
3D object. Such a model should generalize well to rotation axes represented in the training data.

In this paper, we aim to understand the mechanisms responsible for generalization in deep networks by
evaluating how far a model can generalize by learning on a limited number of training views for a given 3D
object. 2D views of objects are generated via rotations around different axes.

The appearance of 3D objects varies across viewpoints for two reasons: self-occlusion, and the geometry of
3D projection. Self-occlusion results simply in the presence, or absence of features in the image, similar to
other forms of occlusions. The geometric dependence of the two-dimensional view on the pose parameters has
received extensive study in the literature (Plantinga & Dyer, 1990; Cyr & Kimia, 2001; Gigus & Malik, 1990).
Synthetic wire-like objects i.e., Paperclips are a particularly good model to study the latter phenomenon
as they have limited self-occlusion. For this reason, Paperclips have been used to study generalization in
humans, monkeys, and pigeons in the past (Poggio & Edelman, 1990; Logothetis et al., 1995; Riesenhuber
& Poggio, 1998; Spetch et al., 2006).

We use a limited number of views to train and evaluate the generalization capabilities of the model on all
possible axis-aligned rotations. We also perform evaluations on 3D models of real-world objects – models of
chairs from ShapeNet (Chang et al., 2015).

We formulate this as a supervised classification task, where the 3D model refers to the class, while specific 2D
views based on different 3D rotations of the underlying 3D object refer to the training/evaluation examples.
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This formulation is consistent with experiments on monkeys/humans where they were tasked to distinguish
views of the same object from views of another object (Poggio & Edelman, 1990; Logothetis et al., 1995;
Riesenhuber & Poggio, 1998; Spetch et al., 2006).

Our results show that deep models exhibit behavior that is neither full 3D recognition nor pure 2D matching.
This behavior is also distinct from the linear combination of views on paperclips in subtle ways. In particular,
the contributions of this paper are:

• We present new datasets of synthetic paperclips and chairs for testing the 3D generalization of
models.

• By analyzing the generalization capabilities of deep learning models on rotations of 3D objects
around different axes, we show that deep learning models are capable of substantial generalization
across views, but behave differently from all existing mathematical models of generalization across
views.

• We show that generalization improves with the number of classes, showing that 3D generalization
is based in part on learning model-independent features.

• We show that these results are consistent across different input representations, architectures
(ResNets, VGG, and ViTs) as well as real-world 3D objects (3D models of chairs (Chang et al.,
2015)), highlighting that these results are not an artifact of the chosen representation, 3D object, or
architecture.

2 Background & Related Work

We analyze the 3D generalization capabilities of deep learning models, as well as the class of behavior
leveraged by these models for recognition by training on different 2D views of the underlying 3D object.
For this purpose, we first describe the geometry of vision, followed by different classes of behavior for visual
recognition that we consider in this work to evaluate deep networks. We then describe visual recognition in
humans, highlighting the behavioral class that they are hypothesized to follow. Finally, we discuss prior work
analyzing failure modes of deep networks in 3D generalization as well as the evaluation of generalization on
OOD poses which is closest to our work.

2.1 Geometry of Vision

Visual systems are commonly modeled as performing a central projection of 3D objects onto the image plane.
This projection is determined by 6 pose parameters covering 3D translation and rotation, where pitch, yaw,
and roll correspond to rotation along the x-axis, y-axis, and z-axis respectively. For objects sufficiently
distant from the camera, this projection is usually approximated via an orthographic projection along with
the scale. Based on these 6 pose parameters, the set of views forms a 6-dimensional manifold in image space.

An ideal recognition system should be invariant to variations in all 6 parameters. We can achieve approximate
invariance to 4 of the 6 parameters by modeling recognition to be invariant under 2D translation, rotation,
and scale. This is commonly achieved in deep learning systems via data augmentation. This leaves 2 pose
parameters, namely rotation along the x-axis and y-axis (pitch and yaw).

2.2 Classes of Behavior for Visual Recognition

We consider three dominant classes of behavior for visual recognition from classical computer vision as well
as neuroscience literature i.e. (i) full 3D recognition, (ii) pure 2D recognition, and (iii) 2.5D matching based
on a linear combination of views.

Full 3D Recognition. Huttenlocher & Ullman (1987) proposed a pure 3D recognition algorithm i.e.
recognition by alignment where the 3D model is aligned with the given 2D view for recognition. This
assumes access to an underlying 3D model of the object. For full 3D recognition, the manifold of views can
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be reconstructed from a limited number of samples using structure from motion theorems (Jebara et al.,
1999). Systems performing full 3D recognition should generalize to all views given just a couple of training
views.

Pure 2D Matching. Poggio & Edelman (1990) presented pure 2D matching systems, where distances to
views are defined via radial basis functions (RBF) from existing views, and recognition is performed based
on the nearest training view for the given test view. For pure 2D matching, 4 of the 6 view parameters can
be eliminated via augmentation, followed by simple nearest neighbor lookup or sampling for the remaining
two parameters. Systems performing pure 2D matching should generalize to very similar views, independent
of the axis of rotation.

Linear Combination of Views. Linear combination of views (or 2.5D) matching was popularized
by Ullman & Basri (1989), who showed that given 2D image views from an underlying 3D model
M = {M1, M2, ..., Mn}, a given 2D image P can be recognized as an instance of the object M if, for
some constraints αi, we have P =

∑
i αiMi. The model, in this case, is represented by the coordinates of

the object’s silhouette (an edge-map). They established that such a method can handle 3D transformations
of an object, assuming that the object has been correctly segmented from the background. This approach
is akin to interpolating the given views to achieve a larger effective number of views for recognition. In the
context of the linear combination of views, the 6D view manifold can be approximated with a linear manifold
that contains the original view manifold. Systems performing linear combinations of views should generalize
well to rotations along the axes represented in the training data.

2.3 Visual Recognition in Humans

There has been a long line of research arguing for view-centric or pure 2D matching-based recognition in
humans (Poggio & Edelman, 1990; Logothetis et al., 1995; Riesenhuber & Poggio, 1998), where the visual
system responds to view-specific features of the object, which are not invariant to different transformations
of the original object.

The generalization-based approach is another dominant hypothesis where the visual system learns view-
invariant features which can be useful for recognition even when considering novel views of the object (Cooper
et al., 1992; Biederman, 2000; Biederman et al., 1993). One hypothesis for how this can be achieved is by
relying on Geon Structural Descriptions (GSD) of the object, which remains invariant to these identity-
preserving transformations (Biederman et al., 1993).

Karimi-Rouzbahani et al. (2017) compared recognition between humans and deep learning systems, and
argued that humans focus on view-invariant features of the input, while deep learning models employ a view-
specific recognition approach, which impedes their ability to be invariant to a certain set of transformations.

2.4 3D Generalization Failures of Deep Networks

Recent work has also attempted to analyze the 3D generalization failures of deep networks. Alcorn et al.
(2019) showed that novel 3D poses of familiar objects produced incorrect predictions from the model. Abbas
& Deny (2022) extended this evaluation to state-of-the-art models and showed that current models still
struggle to recognize objects in novel poses. Madan et al. (2021) similarly showed that such misclassification
can be induced by even minor variations in lighting conditions or poses which can still be considered in-
distribution. Experiments in psychology have also demonstrated that reaction times, as well as error rates,
also increase for humans when looking at objects from novel viewpoints (Spetch et al., 2006).

The investigation of adversarial examples has also been extended beyond Lp norm-based attacks using a
differentiable renderer to identify adversarial poses (Liu et al., 2018; Zeng et al., 2019).

All these investigations are targeted toward trying to find vulnerabilities in the model recognition behavior.
On the other hand, we attempt to understand the model’s generalization when provided with a small number
of training views.
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2.5 Generalization to OOD poses

Schott et al. (2021) generated datasets based on a fixed generative model, and showed that the model fails to
learn the correct latent factors of variation, hence, struggling to generalize in OOD scenarios regardless of the
level of supervision used to train the model. However, their analysis is mainly limited to 2D generalization
while we focus on 3D generalization.

Cooper et al. (2021) attempted to systematically understand the generalization of the model to novel poses
by evaluating on out-of-distribution poses of the underlying 3D object. Although their work shares some
conceptual similarities with ours, there are noteworthy differences in the evaluation settings:

• The study by Cooper et al. (2021) focused on OOD performance. In contrast, our research primarily
addresses the issue of generalization from multiple training views (multi-view generalization).

• Our work is the first to demonstrate the dependence on the number of views, specifically the in-
teraction between views. The observed synergistic effects of training on multiple views of the same
object are quite intriguing.

• The conclusion drawn from Cooper et al. (2021) regarding the model’s ability to achieve only planar
generalization is related to our case of linear interpolation of views. However, our work extends this
concept to multiple views.

• The experimental setup in Cooper et al. (2021) differs from ours, as they appear to perform per-
category classification, rendering the classification problem to be considerably simpler. In our study,
we formulate a per-object classification problem (similar to the prior studies in psychology and
neuroscience (Poggio & Edelman, 1990; Logothetis et al., 1995; Riesenhuber & Poggio, 1998; Spetch
et al., 2006)) and reveal the synergistic effects of the number of views as well as the number of classes
on generalization across the training axis.

3 Methods

We first discuss the dataset generation technique employed in this paper for generating our datasets, followed
by the training protocol used to train our models.

3.1 Datasets

The paperclip dataset is comprised of 10,000 synthetically generated 3D paperclip models. Vertices of
the different 3D models are initialized randomly within a sphere around the previous point and connected
together to form a paperclip. We restrict the number of vertices to 8 and reject 3D models with extremely
sharp edges or overlaps between wires of the paperclip. Each paperclip is rescaled and translated to the
center of the camera once the full paperclip has been generated. We then rotate the object for a full 360
degrees sequentially through all three axes. For multi-axis rotations, we consider a stride of 10 degrees,
resulting in a total of 36 × 36 frames per combination. Since there are three such combinations in total (xy,
xz, and yz), the total number of frames in the dataset turns out to be: (360×3+36×36×3)×10000 ∼ 50M .
Examples from the dataset are visualized in Fig. 1a. Training is performed by sub-sampling these classes,
as well as the number of views used during training.

We have also generated a similar dataset to compute 3D generalization on real-world 3D objects, specifically
3D models of chairs from ShapeNet (Chang et al., 2015). We render these objects without texture in order
to ensure that the model is forced to use shape rather than texture for recognition. The chairs are randomly
rotated to avoid them having in their canonical pose. This helps in breaking object symmetries, making
them comparable to our paperclip setup. Examples from the chair dataset are visualized in Fig. 1b.

We use Unity3D for our 3D renderings (Unity Technologies, 2005). We place the camera at a small distance,
looking directly at the object located in the center of the frame. See Fig. 11 for an illustration of the camera
setup.
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Figure 2: Change in recognition behavior with an increasing number of views. We plot the
performance of the model with an increasing number of views on our paperclip dataset when training with
rotations only along the y-axis using 10000 classes, starting from a view with no rotation (0◦). The red
line indicates the observed performance, the gray line indicates the expected performance from a purely
view-based model (replicated from # views=1 condition), and the orange region indicates the performance
difference between a purely view-based recognition system and deep learning models. The second last row
visualizes the performance of the most powerful setting (12 equidistant views w/ 10000 classes) when rotating
along two different axes simultaneously with blue dots indicating training views. The final row summarizes
these results with a different number of views as well as a different number of classes. The figure highlights
how recognition behavior changes with an increasing number of views, where the model is strictly view-based
when considering a single or two views (a-b) but exhibits surprising generalization to intermediate views (c-
f) located in between when the number of views increases (≥ 3). The results also show that deep learning
models do not generalize well to rotations around novel axes.
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Figure 3: Model achieves higher generalization on views embedded within training views. We
plot the performance of the model on two different settings i.e., with [-15, 15] as training views and [-30, 30]
as training views. We see that despite 0-degree rotation and 30-degree rotation being equally spaced from
training views in the case of [-15, 15], the model generalizes better to the views between training views i.e.,
0-degree rotation.
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Figure 4: Our results generalize to other representations. We plot the performance of the model using
different input representations with 1000 classes. The first row represents the coordinate image representa-
tion, while the second row represents the coordinate array representation (see Fig. 13 for a visual depiction
of the representations used). The figure indicates that our findings generalize to other input representations.

3.2 Training

All training hyperparameters are specified in Appendix A and summarized in Table 1. We perform random
horizontal flips and random cropping (with a scale of 0.5 to 1.0) during training following regular deep-
learning training recipes. It is important to note that we only aim to capture the impact of 3D rotations.
The model is expected to acquire translation and scale invariance via the random crops used during training
(see Fig. 1a). This also avoids the learning of trivial solutions by the model.

We default to using ResNet-18 for our experiments unless mentioned otherwise. We always train on rotations
along the y-axis and evaluate on rotations along all three axes, including simultaneous rotations along two
axes.
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(l) z-axis rotations

Figure 5: Same conclusions hold for real-world 3D objects. We plot the performance of the model
on 3D chairs dataset (see Fig. 2 for description). We observe similar conclusions hold for 3D models where
the model generalizes along the axis of rotation, but fails to generalize to rotations along novel axes.

4 Results

We divide the results into two distinct settings based on the range from which the views are sampled: (i)
uniformly sampled views, and (ii) range-limited sampled views.
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(a) VGG-11 w/ BN (x-axis rotation)
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(b) VGG-11 w/ BN (y-axis rotation)
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(c) VGG-11 w/ BN (z-axis rotation)
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(d) ViT-B/16 (x-axis rotation)
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(e) ViT-B/16 (y-axis rotation)
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(f) ViT-B/16 (z-axis rotation)

Figure 6: Our results generalize to other architectures. We plot the performance of the model with
an increasing number of uniformly sampled views on the paperclips dataset for VGG and ViT (all previous
results were based on ResNet-18). The figure indicates that our findings are not an architecture-specific
artifact, but relate to the general behavior of deep learning models.

4.1 Uniformly sampled views

In this setting, we train the model on a limited number of uniformly sampled views from the view-sphere
when only rotating along the y-axis. As the number of views increases, the model should get a holistic
understanding of the full 3D object.

Fig. 2 presents our results in this setting, where we fix the number of classes to be 10,000. We highlight the
difference in the performance of a purely view-based recognition system and our trained model with orange
color. The model seems to be performing pure 2D matching with a small number of views (Fig. 2a-b).
However, as the number of views increases, there is a drastic shift in recognition behavior where the model
exhibits significantly better generalization than that of pure 2D matching (Fig. 2c-f).

Is the model successfully recovering the full underlying 3D object? In order to answer this, we evaluate
the model’s performance when rotating the object along a different axis. Full 3D recognition based on
reconstructing a 3D representation of the object should generalize to novel rotations. However, we see in
Fig. 2g-l that once we rotate the object along a different axis, the model fails to generalize.

These results disprove both full 3D recognition and pure 2D matching as possible classes of behavior employed
by deep models, leaving only the linear combination of views as a possible class of behavior exhibited by
deep models, which we will investigate further.

Generalization on intermediate views between training views Fig. 3 shows the performance of
the model, helping us to understand generalization differences between views that are embedded within
training views vs. views that are outside the set of training views. We see that despite the two views being
equally distant from the training views, views that are embedded within the training views achieve higher
generalization.
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Figure 7: Random 2D rotation augmentation along the image plane improves generalization.
We plot the performance of the model along all three axes (see Fig. 11 for a visual illustration of the
relationship between 3D rotations and the image plane). We see that random rotations in the image plane
improve generalization along the z-axis which is partially aligned with the image plane but fails to improve
generalization along a different axis i.e. x-axis. We also visualize multi-axis rotations in the second row for
12 training views and 1000 classes to get a better understanding of the model’s generalization.

4.1.1 Generalization to other representations

Since we use 3D renderings of synthetic paperclip objects, this may make the process of recognition more
difficult. A paperclip is fully specified by the position of its vertices. Therefore, we also evaluate two
different simplified input representations i.e., (i) coordinate image representation and (ii) coordinate array
representation. In the case of coordinate image representation, we represent the coordinates directly as a set
of points on an image plane and train a regular CNN on top of these images. In the case of coordinate array
representation, we project the coordinates onto two different arrays, one representing the x-coordinates and
one representing the y-coordinates. As multiple points can be projected down to the same location, each
vertex projection carries a weight of 1/8 for a total of 8 vertices. We concatenate the two arrays and train
a multi-layer perceptron (MLP) on top of this representation. A visual depiction of these representations is
provided in Fig. 13.

In particular, we train ResNet-18 on the coordinate image representation and a 4-layer MLP w/ ReLU
activations on the coordinate array representation. This change in representation makes a negligible impact
to the results as depicted in Fig. 4, where the model generalizes to intermediate views of the training
axis, but fails to generalize to novel axes of rotation. These results indicate that our findings are not a
representation-specific artifact.

4.1.2 Generalization to real-world objects

We visualize the results from our chairs dataset in Fig. 5. We observe a similar trend where the generalization
of the model is higher than pure 2D matching but lower than full 3D generalization. These results advocate
that the obtained results are not an artifact of the chosen object i.e. Paperclips, but rather, relate to the
recognition behavior of deep learning models.
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Figure 8: Large number of views from a limited range fails to achieve generalization. We plot
the performance of the model with an increasing number of views sampled in the range [-30, 30] on the
paperclips dataset when training and evaluating with rotations only along the y-axis using 10000 classes.
The plot shows that the model fails to generalize to different rotations along the y-axis outside this limited
range of views.

4.1.3 Generalization to other architectures

Fig. 2 presented generalization results for ResNet-18 (He et al., 2016). In Fig. 6, we additionally show results
for VGG-11 (w/ BN) (Simonyan & Zisserman, 2014) and ViT-B/16 (Dosovitskiy et al., 2020). ViT-B/16
trained using 1000 classes failed to converge in our case, resulting in very low final accuracy. It is clear from
the figure that our findings do generalize to architectures beyond ResNets. The plot also hints that the
model is slightly better at generalizing towards rotation not directly in the image plane (x-axis) as compared
to rotations directly along the image plane (z-axis). This highlights that in-plane rotations are particularly
hard for deep-learning models to handle.

4.1.4 Generalization w/ 2D rotation augmentations

As the model particularly struggles to handle in-plane rotations, we evaluate the performance of the model
by using in-plane rotations as an augmentation. In-plane rotation is equivalent to z-axis rotation as the
camera is perfectly aligned with the rotation axis. The results are visualized in Fig. 7. We see that in-plane
rotation improves generalization along the z-axis (which is aligned with in-plane rotations) while having no
impact on generalization along the x-axis. This indicates that in-plane rotation augmentations alone are
insufficient to force the model to learn a holistic 3D representation.

4.1.5 Robustness against changes in background

In order to ensure that the obtained results are not an artifact of the simple black background without any
distractors, we replace the black background with a randomly chosen image from the landscapes dataset
found on Kaggle1 for every example in the batch as part of our augmentation pipeline (sample training
images with the random backgrounds are visualized in Fig. 14). We find qualitatively similar results with
these random backgrounds even though the task is considerably harder, resulting in higher error rates.

4.2 Range-limited sampled views

In this setting, we explore generalization from views sampled from a limited range of rotations. We train on
a small subset of views sampled uniformly from [-30, 30] degrees of rotation and evaluate the performance
of the model on all possible rotations. We visualize these results in Fig. 8. It is clear from the figure that

1https://www.kaggle.com/datasets/arnaud58/landscape-pictures
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Figure 9: Large view range is important for generalization. We plot the performance of the model
with an increasing range from which the views are sampled when training and evaluating with rotations only
along the y-axis. The plot shows that the model ultimately achieves generalization to different rotations
along the y-axis outside this limited range of views when increasing the range from which the views are
sampled, specifically with a large number of classes. This hints that the model is leveraging knowledge
across classes.

despite an increasing number of views sampled uniformly within this range, the model fails to generalize to
views outside this range, indicating that the model failed to construct a view-independent representation of
the input.

Results in Section 4.1 already ruled out the possibility of pure 2D matching or full 3D recognition, making
the linear combination of views the most likely class of behavior employed by deep models for recognition.
However, for objects such as paperclips, where self-occlusion is not an issue, a linear combination of views
should be able to extrapolate i.e. generalize within the axis of rotation. Since this is not the case, this
indicates that the model is operating somewhere close to the linear combination of views, but is still distinct
in some aspects.

4.2.1 Extending the range of views

The model trained on range-limited sampled views fails to extrapolate to novel views along the training axis.
In order to understand the relationship between view range and expected generalization along the training
axis, we evaluate the performance of the model while relaxing the range limits used to train the model in
Fig. 9. We see that once the range covers a large fraction of the possible views, and there is a sufficiently
large number of views used for training, the model generalizes within the axis of rotation. However, this
generalization is still limited to the training axis. Furthermore, this generalization is also correlated with
the number of classes.

We further evaluate the relationship between the number of classes and generalization for a particular
selection of training on views from [-60, 0, 60] degrees of rotation along the y-axis in Fig. 10. The plot
shows that despite having the same number of views available for training the model, simply increasing the
number of classes helps the model to generalize to rotations along the training axis by improving the model’s
performance, particularly on intermediate views between 100◦ to 260◦ rotation. This hints that the model
is able to share knowledge between classes in order to construct a more general representation of the input.
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Figure 10: Model benefits from a larger number of classes for generalization. We plot the perfor-
mance of the model with an increasing number of classes when training on only a particular set of rotations
only along the y-axis per class ([-60, 0, 60]). Training views are marked with vertical lines. The plot shows
that the model’s generalization drastically improves with an increasing number of classes, specifically for
intermediate views without any supporting training examples (100◦ − 260◦), hinting that the model is lever-
aging knowledge across classes.

5 Conclusion

This paper has experimentally studied the behavior class employed by deep learning models for visual
recognition by analyzing the generalization capabilities of the model on axis-aligned rotations of 3D objects
when trained on a limited number of views.

Our results show that deep learning models generalize to novel views in a way that differs from all ‘classi-
cal‘ computer vision models. The closest model is matching based on a linear combination of views. We
summarize our findings as:

• We have shown that deep models do not perform pure 2D matching since the achieved generalization
is higher than a purely view-based recognition system

• We have shown that deep models do not perform full 3D recognition because the model failed to
achieve generalization to rotations along novel axes

• We have shown that deep models behave similarly to linear interpolation of views, but are still
distinct in terms of behavior as the model failed to generalize to rotations outside the limited range
of views even for simple paperclip objects without self-occlusions

• We have shown that 3D generalization abilities generalize across different 3D models

These results are of practical importance in two ways. First, they allow us to design training sets for 3D ob-
ject recognition with deep networks more efficiently by particularly focusing on views that are most beneficial
for the model to learn. Our results show that covering entire axes is better than sampling more views from
a limited range of rotations along the axes. Second, they imply that incorporating better 3D generalization
capabilities directly into our deep networks such as object reconstruction followed by recognition may signif-
icantly improve the efficiency at which our networks use training data. This sample-efficient reconstruction
can be achieved via structure from motion theorems (Jebara et al., 1999).
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Model Epochs Optimizer Batch Size Learning Rate Momentum Learning Rate Decay Weight Decay Gradient Clipping Pretrained
ResNet-18 300 SGD 128 0.1 0.9 Cosine 0.0001 10.0 False

VGG-11 (w/ BN) 300 SGD 128 0.01 0.9 Cosine 0.0001 10.0 False
ViT-B/16 300 SGD 128 0.01 0.9 Cosine 0.0001 10.0 True

Table 1: Training Hyperparameters

Figure 11: Camera Setup. This figure illustrates the camera setup in the scene, and how it relates to the
captured 2D views of the object. The object pose is described by 6 parameters, three defining the object
translation while the other three defining the object rotation. Pitch, yaw, and roll correspond to rotation
along the x-axis, y-axis, and z-axis respectively. A perfect recognition system should be invariant under
variations of all 6 pose parameters. Approximate invariance for all three translation parameters and roll can
be achieved by using random cropping and rotation augmentations.

A Training Hyperparameters

We trained ResNet-18 (He et al., 2016), VGG-11 (with batch-normalization) (Simonyan & Zisserman, 2014)
and ViT-B/16 (Dosovitskiy et al., 2020) architectures with nearly identical hyperparameters. We summarize
all hyperparameters in Table 1. All our models are trained for 300 epochs with a batch size of 128 using SGD
with a momentum of 0.9, a learning rate of 0.1 for ResNet-18, and a learning rate of 0.01 for VGG-11 and
ViT-B/16, cosine learning rate decay, and a weight decay of 1e-4. We use gradient clipping threshold of 10 for
training all our models following the training recipe for ViTs (Dosovitskiy et al., 2020). We use ImageNet-21k
pretrained weights for ViT-B/16 from TIMM (Wightman, 2019) due to the difficulty of training them from
scratch (Dosovitskiy et al., 2020).
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(a) xy-axis rotations (b) xz-axis rotations (c) yz-axis rotations

Figure 12: Examples from the generated Paperclip Dataset. We visualize rotations at a stride of 60
degrees for all three multi-axes rotations, where the first letter indicates rotations along the vertical axis,
while the second letter indicates rotation along the horizontal axis.

(a) Coordinate image representation (b) Coordinate array representation

Figure 13: This figure presents an overview of the new representations used for model training. Coordinate
image representation is similar to the full paperclip images, except that only the vertices of the paperclip
are represented. The coordinate array representation projects the coordinates to two 1D arrays, which are
concatenated together to form the final array representation.
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(a) Paperclips dataset (b) Chairs dataset

Figure 14: Datasets w/ Random Backgrounds. We replace the black background in the original datasets
with random landscape background images taken from https://www.kaggle.com/datasets/arnaud58/
landscape-pictures/ in order to highlight that the obtained generalization performance is not an artifact
of the chosen black background.
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