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Abstract

Large language models (LLMs) are increasingly used in learning algorithms, eval-
uations, and optimization tasks. Recent studies have shown that incorporating
self-criticism into LLMs can significantly enhance model performance, with frame-
works such as TextGrad [1] illustrating this approach by iteratively refining model
outputs through prompting. However, these frameworks often require extensive
hand-crafting and are sensitive to instruction wording. To mitigate these challenges,
we propose metaTextGrad, a meta-learning approach for LLM-based optimizers,
focusing on learning loss functions and templates for inference-time optimiza-
tion. Our method significantly improves performance across multiple benchmarks,
achieving 5-27% gains on question-answering tasks. These results demonstrate
the potential of meta-learning to enhance LLM-based systems, reducing manual
tuning and improving generalizability.

1 Introduction

Large language models (LLMs) are increasingly used in learning algorithms, optimization, and
evaluation tasks [1, 2, 3, 4, 5]. However, algorithms that incorporate LLMs often face significant
challenges. Firstly, many of these algorithms are still hand-crafted to a considerable extent, requiring
substantial human expertise and effort to design and implement effectively. This manual approach
can be time-consuming and may not always result in optimal performance across diverse tasks
and domains. Second, LLMs are notably sensitive to the specific wording and structure of their
instructions [6], making it tedious to improve them effectively to be used in learning algorithms.

In this study, we focus on inference-time optimization problems. Specifically, instead of relying
solely on the model’s output during inference, we iteratively optimize it to progressively enhance
the model’s performance on the task. There are two key challenges associated with inference-time
optimization: the first is identifying an appropriate loss function to ensure that the optimization
is moving in the correct direction; the second is determining a good initialization to facilitate the
optimization process. Traditionally, these design choices have been made through complex manual
efforts, and our work aims to develop an automated approach to address both of these issues.

Given that learning good initializations [7, 8] or loss functions [9, 10] is a well-explored area in
meta-learning, we draw inspiration from two families of meta-learning algorithms. Specifically, we
propose metaTextGrad, which consists of two approaches. First, we optimize LLM-based loss
functions to better align the loss with the task of interest, enabling the loss function to provide
more effective guidance for optimization in the correct direction. Second, we explore learning good
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initializations, akin to methods such as MAML [7] and Reptile [8], which we refer to as inference
templates. These templates can include solution strategies for reasoning problems, thereby improving
the model’s adaptability and performance during inference.

We find that metaTextGrad significantly improve the performance of LLM-based optimizers across
multiple benchmarks. Our results demonstrate that learned loss functions and inference templates can
lead to more accurate and efficient optimization, particularly in complex reasoning tasks. Specifically,
metaTextGrad achieves improvements between 5 − 27% on question answering tasks, such as
BBH [11], MMLU [12], and GPQA [13].

To the best of our knowledge, metaTextGrad is the first approach to employ meta-learning
for inference-time optimization in LLMs. Our findings suggest the benefits of meta learning for
LLM-based optimizers. As LLMs are utilized more in evaluation and optimization tasks, we suggest
learning to learn will be a highly important part of future optimizers. This approach not only enhances
the adaptability of LLM-based systems but also reduces the need for manual tuning, potentially
leading to more robust and generalizable AI systems.

2 metaTextGrad: Learning to (learn at inference time) in natural language

We are interested in learning to learn at inference time, using LLMs in the loop of learning algorithms.
Let ϕ(x, y, ŷ) ∈ R be some success metric for a task, where x is the input for the task, y is the ground
truth label (if it exists), and ŷ is a prediction. For instance, ϕ can be accuracy for question answering.

In LLM-based learning algorithms, we often use LLMs both as evaluators or critics to provide
the signal for optimization, and optimizers update the states of variables. An LLM denoted by
fLLM is simply a probability distribution, where we can sample the next token iteratively through:
xt ∼ fLLM (·|x1:t−1). Sometimes we’ll abuse the notation and use xt:T = LLM(x1:t−1) to denote
sampling multiple tokens, which will be clear from the context.

An LLM evaluator is denoted by LLM(x, y, ŷ; θL), where the LLM uses the task input x, the label y,
the prediction ŷ, and a loss parameter θL to produce an evaluation, which can be in natural language.

When running optimization at inference-time, we do not have access to the ground truth label. Thus,
an optimizer using LLM evaluators often proceeds through the following iterative process:

Evaluation = LLM(x, ŷt−1; θL), (1)

ŷt = TGD.step(ŷt−1,
∂Evaluation

∂ŷt−1

), (2)

where TGD.step is a textual gradient descent optimizer such as TextGrad [1] (check appendix A for
details), and ŷ0 is an initial response generated using an inference template yT . Table 1 displays a
minimal example of this process.

Our goal is to improve the loss prompt θL and inference template yT using ideas from meta learning [7,
8]. In particular, we want to optimize the average performance of the LLM on the dataset:

θ∗L = argmax
θL

E(x,y)∼Dtrain [ϕ(x, y, ŷT (x, θL, yT ))] (3)

y∗T = argmax
yT

E(x,y)∼Dtrain [ϕ(x, y, ŷT (x, θL, yT ))] , (4)

where Dtrain is the training dataset, and we obtain ŷT through the optimization process in Eq 1.

The meta-learning framework contains two main components: an outer loop that optimizes the
learning target (either loss prompt or inference template), and an inner loop (described in equations 1
and 2) that uses the current loss prompt and inference template to generate optimized solutions. After
each inner loop, we evaluate the generated results. If the evaluated accuracy is not better than the best
iteration before, we revert the learning target and optimize again. If the evaluated accuracy is better,
we proceed to a new outer loop.

In what follows, we describe three meta learning approaches to improve optimization at inference
time.
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Table 1: A minimal example to illustrate the inference time optimization process
Variable Value
x (question) If it takes 1 hour to dry 25 shirts under the sun,

how long will it take to dry 30 shirts under the sun?
y (standard answer, not accessible) 1 hour

yT (inference template) Let’s break this down step by step. First,
θL (loss prompt) Critically go through reasoning steps

and see if the answer is correct.

ŷ0 (generated response) Let’s break this down step by step...
it will take 1.2 hours.

Evaluation Your reasoning contains a critical flaw
that drying time is directly proportional to...

ŷ1 (improved response) Let’s break this down step by step...
it will take 1 hour.

2.1 Optimizing a loss function

The goal of this approach is to learn a good loss prompt for inference-time optimization, specifically
targeting situations where we optimize solutions at test time without access to ground-truth answers.
Typically, these loss prompts are manually crafted [14, 5, 1]. Designing such prompts is time-
consuming, and each new dataset often requires a new, custom loss prompts. Moreover, human-
designed loss prompts tend to be relatively simple, whereas more expressive ones could better identify
errors or refine approaches.

To iteratively optimize the loss prompt θL, we use the manually designed loss prompt described in
TextGrad [1] as the initial prompt, which is listed in Appendix C.

In each inner loop, the algorithm generates responses using the current loss prompt θt. Then the outer
loop optimizes the loss prompt θL based on responses and the meta learning loss prompt θmeta:

Meta Evaluation = LLM(x, y, ŷ, θL; θmeta) (5)

θL = TGD.step(θL,
∂Meta Evaluation

∂θL
), (6)

To ensure the generality of the outer loop, we keep the following meta loss prompt below fixed across
all experiments:

Meta Loss Prompt θmeta

LLM("You are a language model that improves prompts for answering reasoning questions.
You are given some wrong answers generated using the prompt and the standard answers:
Question 1: {question}
Generated Wrong Answer 1: {response}
Standard Answer 1: {answer}
...
(more Q&A pairs)
...
Prompts for evaluation of answers of a reasoning question that must be improved:
{loss prompt}
Provide concise feedback on how to improve the prompt so it better addresses reasoning ques-
tions. Your suggestions should focus on refining key points related to answering reasoning
questions. Ensure your suggestions are applicable to these types of reasoning questions as
general aspossible, not just to the specific examples provided.")
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2.2 Optimizing an inference template

In this section, we aim to design meta learning algorithms to learn a good inference template yT for
the inner loop. In our settings, an LLM uses the task input x, the prediction ŷ, and a loss prompt θL
to iteratively learn a good yT that can help solve problems more accurately. We use a simple initial
inference template to start with: "Let’s break this down step by step. First, ... " [15]

The algorithms generate responses using the current inference template yT in each inner loop. We
present two methods to update the outer loop:

MAML-style optimization with textual gradients. Inspired by MAML algorithm [7], the outer
loop optimizes the inference template yT based on the gradients of the generated responses in the
inner loop, which are directly obtained from the last gradient from the optimizer in the inner loop:

yT = TGD.step(yT ,
∂Evaluation

∂ŷ
) (7)

Reptile-style optimization with a meta loss. Inspired by the Reptile algorithm [8], the outer loop
optimizes yT based on these generated responses and the Reptile loss prompt θR:

Meta Evaluation = LLM(x, y, ŷ, yT ; θR) (8)

yT = TGD.step(yT ,
∂Meta Evaluation

∂yT
) (9)

To clarify how the Reptile loss prompt is applied to improve the inference template yT , we present
the function θR used in our experiments, which remains consistent across different benchmarks:

Reptile Loss Prompt θR

LLM("You are a language model that improves inference templates for answering reasoning
questions. Here are some wrong responses:
Question 1: {question}
Generated Wrong Answer 1: {response}
Standard Answer 1: {answer}
...
(more Q&A pairs)
...
Here is the inference template to improve:
{inference template}
Your task is to improve the inference template (the first few sentences of the response) so that
it can generate better responses. Please keep the inference template concise and general, and
end it with a colon so that it can be used as a prefix for generating responses.")

3 Experiments

In this section, we introduce our experiments conducted with GPT-4o-mini on three representative
and challenging benchmarks: BBH Word Sorting [16], MMLU Machine Learning [12], and GPQA
Diamond [17]. For the BBH Word Sorting task, we used the same train/val/test splits as TextGrad
[1]. For the other two benchmarks, since there are no default training splits, we split the data with a
train-to-test ratio of 1:3. Due to the non-determinism in the APIs serving the LLMs [18], the test
accuracy is averaged over 6 random seeds.

Baselines. We used Zero-shot CoT [15], COPRO [4], MIPROv2 [19], and TextGrad’s Prompt
Optimization and Solution Optimization algorithms [1] as baselines. Zero-shot CoT leverages chain-
of-thought reasoning without task-specific training, while COPRO, MIPRO and TextGrad refine
responses based on different methods. To facilitate reproducibility, we have included the learned loss
prompts and inference templates in Appendix B.
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Table 2: Test Accuracy (%) of GPT-4o-mini on Different Benchmarks
Method Word Sorting MMLU Machine Learning GPQA
Zero-Shot CoT 45.7 74.4 38.6

Prompt optimizers
COPRO 55.0 73.8 34.2
MIPROv2 57.0 75.0 42.3
Prompt Optimization (TextGrad) 58.3 76.8 40.0

Inference time optimizers
Solution Optimization (TextGrad) 60.0 76.6 38.4

Meta-learned inference time optimizers
metaTextGrad (Learned Loss) 73.2 75.6 39.1
metaTextGrad (MAML-style) 66.0 78.0 43.0
metaTextGrad (Reptile-style) 65.8 77.4 40.9

BBH Word Sorting. The BBH Word Sorting task [16] is a challenging benchmark that requires
accurate reasoning about word order. Our method, particularly metaTextGrad (Learned Loss) ,
outperformes all baselines with a test accuracy of 73.2%. This result demonstrates the effectiveness
of our learned loss function in guiding the model toward better solutions by penalizing errors in the
sorting process and refining word ordering criteria, such as those outlined in the prompt in Appendix
B (e.g., "clearly explain the rules for sorting words alphabetically" and "list the original words and
demonstrate the sorting process step-by-step").

MMLU Machine Learning. The MMLU Machine Learning benchmark [12] evaluates the model’s
ability to answer questions about machine learning concepts, which requires a deep understanding of
the subject matter. metaTextGrad (MAML-style) achieves the best performance with an accuracy
of 78.0%, outperforming other methods and demonstrating the strength of our meta-learned inference
templates for this domain.

GPQA Diamond. The GPQA Diamond benchmark [17] tests the model’s ability to solve
graduate-level, Google-proof questions, a task that demands advanced reasoning capabilities.
metaTextGrad (MAML-style) achieves the highest accuracy at 43.0%, proving that inference-
time optimization through meta-learning can significantly improve the model’s ability to tackle highly
complex reasoning tasks.

All experimental results are summarized in Table 2. These results demonstrate the effectiveness of
metaTextGrad, highlighting the great potential of meta-learning techniques in LLM inference-time
optimization.

4 Conclusion

In this paper, we propose metaTextGrad, a meta-learning-based approach for optimizing large
language models (LLMs) during inference. Our method tackles two key challenges in inference-
time optimization: learning effective loss functions and good initializations. By leveraging meta-
learning techniques, metaTextGrad significantly enhances performance across multiple benchmarks,
demonstrating the robustness and generalizability of our approach.

Looking ahead, there are several promising directions for future work. One avenue is to explore
whether jointly optimizing loss functions and initializations, rather than treating them separately,
could lead to even better results. Another direction is to investigate whether it is possible to develop
a unified loss function or initialization that can generalize across different tasks, rather than being
tailored to specific domains. We firmly believe that meta-learning offers a powerful approach
for future advances in LLM-based inference-time optimization, with the potential to deliver more
adaptable and universally applicable solutions.
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A Implementation Details

TextGrad [1] is a robust framework that enables automatic "differentiation" using text. It leverages
the concept of backpropagation through textual feedback provided by large language models. In our
experiments, we utilized the TextGrad engine to perform backpropagation and textual gradient descent.
For readers unfamiliar with the TextGrad framework, we provide a few examples to demonstrate how
it functions.

A.1 How do we perform backpropagation?

After evaluating the loss using the loss prompt, we also need to determine how to improve each
relevant variable. To achieve this, TextGrad implements a "backpropagation" method, which provides
suggestions (textual gradients) for the variables. This process recursively computes the gradients for
each variable.

For instance, assuming L = LLM(y), y = LLM(x), the value of ∂L
∂x can be computed using:

Example implementation for the gradient operator [1]

∂L
∂y

△
= LLM(Below are the criticisms: {L} (10)

Explain how to improve {y}.)

∂L
∂x

= ∇LLM(x, y,
∂L
∂y

)
△
= "Here is a conversation with an LLM: {x|y}." (11)

+

LLM(Here is a conversation with an LLM: {x|y}.

Below are the criticisms on {y}:{
∂L
∂y

}
Explain how to improve {x}.)

A.2 How does TGD.step work?

Similar to traditional gradient descent, the goal of textual gradient descent is to refine a variable based
on feedback (textual gradients) received for that variable.

Let’s assume x is the variable we want to improve, and ∂L
∂x represents the textual gradient (feedback)

we obtained for x during the backward pass. Below is an example of one iteration of Textual Gradient
Descent (TGD):

Example implementation of one TGD iteration [1]

TGD.step(x,
∂L
∂x

)
△
= LLM(Below are the criticisms on {x}: (12){

∂L
∂x

}
Produce a new variable based on the criticisms.)
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B Learned Loss Prompt / Inference Template

To facilitate the reproducibility of our work, we present the Loss Prompts and Response Templates
learned through three different meta-learning methods.

B.1 BBH Word Sorting Benchmark

The following results pertain to the BBH Word Sorting Benchmark:

COPRO

Analyze the provided ‘question‘ with careful attention to its context, nuances, and underlying
assumptions. Construct a well-reasoned, clear, and concise ‘answer‘ that not only directly
responds to the query but also anticipates potential follow-up questio ns or concerns. Aim
to enrich your response with relevant examples, analogies, or explanations that enhance
understanding, ensuring that th e tone is engaging and appropriate for the audience’s level of
familiarity with the topic.
—
Follow the following format.
Question: The question to answer.
Reasoning: Let’s think step by step in order to $produce the answer. We ...
Here’s a detailed answer that addresses your question and provides further insights: The
answer to the question. The last line of your resp onse should be of the following format:
’Answer:’
—

MIPROv2

Given the fields ‘question‘, produce the fields ‘answer‘.
—
Follow the following format.
Question: The question to answer.
Reasoning: Let’s think step by step in order to $produce the answer. We ...
Answer: The answer to the question. The last line of your response should be of the following
format: ’Answer:’
—

Meta Learning via Learned Loss Prompt

**Prompt for Evaluating Word Sorting Answers:**
Understanding the significance of sorting in reasoning tasks is crucial. This prompt guides
you through evaluating the provided answer to a word sorting problem. Follow these steps to
enhance clarity and understanding of the sorting process:
1. **Sorting Criteria**: Clearly explain the rules for sorting words alphabetically. What
principles should guide the process?
2. **Verification**: List the original words and demonstrate the sorting process step-by-step.
Identify any discrepancies between the original and sorted lists.
3. **Identify Errors**: Point out mistakes in the sorting order. Reflect on the reasoning
behind these errors and explain why they are incorrect. Provide the correct order with
examples.
4. **Correct Order**: Present the accurate alphabetical order of the words clearly.
5. **Learning Application**: Summarize what you learned about sorting and suggest
practical ways to reinforce this knowledge, such as sorting different word sets or engaging in
related activities.
6. **Real-World Implications**: Discuss how incorrect sorting can impact data organization
in fields like databases or libraries. Provide specific examples to illustrate your points.
7. **Encourage Engagement**: Consider discussing your findings with peers or engaging in
group evaluations to enhance learning and understanding of sorting principles.
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Meta Learning via Learned Loss Prompt (Cont.)

By following these steps, you will not only evaluate the sorting process effectively but also
contribute to a deeper understanding of its significance in various contexts.

Meta Learning via Learned Response Template (MAML-style)

We will sort the words alphabetically. Here are the words in the list:

Meta Learning via Learned Response Template (Reptile-style)

To sort the provided list of words alphabetically, we will compare the first letters of each
word. If the first letters are the same, we will then compare the subsequent letters until we
find a difference. Here’s the list of words to be sorted:

B.2 MMLU Machine Learning Benchmark

Below are the results obtained from the MMLU Machine Learning Benchmark:

COPRO

Analyze the provided question thoroughly and generate a comprehensive answer that ad-
dresses all aspects of the inquiry. Ensure that your re sponse is clear, concise, and informative,
providing relevant details and examples where applicable. Aim to enhance the understanding
of th e topic for the reader.
—
Follow the following format.
Question: The question to answer.
Reasoning: Let’s think step by step in order to $produce the answer. We ...
Here is a detailed answer to the question: The answer to the question. The last line of your
response should be of the following format: ’Answer: $LETTER’ (without quotes) where
LETTER is one of ABCD.
—

MIPROv2

Given the multiple-choice question provided in the ‘question‘ field, please analyze the
statements step by step to determine the correct an answer. Your response should include a
clear rationale explaining your reasoning process, followed by the final answer formatted as
’Answer: $LETTER’, where LETTER is one of A, B, C, or D.
—
Follow the following format.
Question: The question to answer.
Reasoning: Let’s think step by step in order to $produce the answer. We ...
Answer: The answer to the question. The last line of your response should be of the following
format: ’Answer: $LETTER’ (without quotes) wh ere LETTER is one of ABCD.
—
Question: Answer the following multiple choice question. The last line of your response
should be of the following format: ’Answer: $LETTER$ ’ (without quotes) where LETTER is
one of ABCD. Think step by step before answering. Statement 1| Linear regression estimator
has the small est variance among all unbiased estimators. Statement 2| The coefficients α
assigned to the classifiers assembled by AdaBoost are always no n-negative. A) True, True
B) False, False C) True, False D) False, True
Reasoning: Let’s think step by step in order to evaluate the truth of the statements.
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MIPROv2 (cont.)

For Statement 1, it is known that while linear regres sion is a popular estimator, it does not
necessarily have the smallest variance among all unbiased estimators; this is a property of
the Ga uss-Markov theorem under certain conditions. Therefore, Statement 1 is False. For
Statement 2, in AdaBoost, the coefficients assigned to th e classifiers are indeed always
non-negative, as they represent the weight of each classifier in the ensemble. Thus, Statement
2 is True.
Answer: D
—
(6 more Q&A pairs)
—

Meta Learning via Learned Loss Prompt

**Revised Prompt for Evaluating Answers to Reasoning Questions**:
**Context**: Below is a multiple-choice question from the field of [insert subject area, e.g.,
statistics, machine learning, etc.], along with an answer. Your task is to evaluate the answer
based on the following criteria:
1. **Does the answer logically follow from the statements?** 2. **Are the statements
relevant to the question being asked?** 3. **Do the statements align with established
knowledge in the field?**
**Instructions**: - Identify specific elements in the statements that support or contradict the
chosen answer. - Summarize the main points of each statement and explore their implications
and interrelations. - Reflect on any prior knowledge that influenced your evaluation.
**Justification**: Provide a brief justification for your answer in the format: ’Answer:
$LETTER’ (without quotes), where LETTER is one of ABCD. Use the following template:
"I chose answer X because [reasoning based on statements]."
**Feedback**: Identify one strong point and one area for improvement in the statements.
**Common Pitfalls**: Be aware of typical mistakes in evaluating reasoning questions, such
as misinterpreting the statements or overlooking key concepts.
**Collaborative Evaluation**: Consider discussing your evaluations with peers to gain
different perspectives and enhance your understanding.
**Iterative Feedback**: After your evaluation, reflect on your process and consider how you
might improve your approach in future assessments.
This revised prompt aims to enhance the evaluation process by providing clear guidelines,
encouraging deeper analysis, and making it applicable to a wide range of reasoning questions.

Meta Learning via Learned Response Template (MAML-style)

To begin our analysis, we will methodically evaluate each statement to determine their
accuracy based on established principles in machine learning and statistical theory.

Meta Learning via Learned Response Template (Reptile-style)

Let’s analyze the question and the provided statements or options in detail. We will evaluate
the truth of each statement step by step, considering relevant concepts and definitions to
ensure a clear understanding. This methodical approach will guide us to the correct answer.
Here’s the breakdown:

B.3 GPQA Diamond Benchmark

The results for the GPQA Diamond Benchmark are provided below:
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COPRO

Analyze the provided ‘question‘ in depth, synthesizing relevant information and context to
generate a comprehensive a nd insightful ‘answer‘. Ensure your response is not only clear and
concise but also addresses potential follow-up questions, providing exam ples or explanations
that enhance understanding and demonstrate the broader implications of the topic. — Follow
the following format. Question: The question to answer. Reasoning: Let’s think step by step
in order to $produce the answer. We ... Here is a thorough and insightful answer to your
question: The answer to the question. The last line of your response should be of the foll
owing format: ’Answer: $LETTER’ (without quotes) where LETTER is one of ABCD. —

MIPROv2

Given the multiple-choice question provided in the ‘question‘ field, please analyze the
statements step by step to determine the correct an swer. Your response should include a
clear rationale explaining your reasoning process, followed by the final answer formatted as
’Answer: $LETTER’, where LETTER is one of A, B, C, or D.
—
Follow the following format.
Question: The question to answer.
Reasoning: Let’s think step by step in order to $produce the answer. We ...
Answer: The answer to the question. The last line of your response should be of the following
format: ’Answer: $LETTER’ (without quotes) wh ere LETTER is one of ABCD.
—
Question: Answer the following multiple choice question. The last line of your response
should be of the following format: ’Answer: $LETTER ’ (without quotes) where LETTER is
one of ABCD. Think step by step before answering. Statement 1| Linear regression estimator
has the small est variance among all unbiased estimators. Statement 2| The coefficients α
assigned to the classifiers assembled by AdaBoost are always no n-negative. A) True, True
B) False, False C) True, False D) False, True Reasoning: Let’s think step by step in order
to evaluate the truth of the statements. For Statement 1, it is known that while linear regres
sion is a popular estimator, it does not necessarily have the smallest variance among all
unbiased estimators; this is a property of the Ga uss-Markov theorem under certain conditions.
Therefore, Statement 1 is False. For Statement 2, in AdaBoost, the coefficients assigned to th
e classifiers are indeed always non-negative, as they represent the weight of each classifier in
the ensemble. Thus, Statement 2 is True.
Answer: D
—
(5 more Q&A pairs)
—

Meta Learning via Learned Loss Prompt

Below is a multiple-choice question along with the selected answer. Your task is to evaluate
the reasoning behind the chosen answer. 1. **Clarify the Context**: Understand that the
"prediction" refers to the selected answer to the question.
2. **Analyze the Reasoning**: Break down the reasoning steps that led to the selected
answer. Identify the key concepts or principles involved in the question. 3. **Consider
Alternatives**: Think about whether other answers could also be valid. What reasoning
could support these alternative answers? 4. **Identify Assumptions**: What assumptions
underlie the selected answer? Are there any logical fallacies present in the reasoning?
5. **Provide Justifications**: For each objection raised, provide a rationale that explains
why the reasoning may be flawed.
6. **Compare Answers**: How does the reasoning for the selected answer differ from that
of the correct answer?
7. **Summarize Your Findings**: Conclude with a brief summary of your evaluation,
highlighting the strengths and weaknesses of the reasoning.
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Meta Learning via Learned Loss Prompt (cont.)

8. **Reflect on the Process**: Consider how your own reasoning process could be improved
for future evaluations.
9. **Holistic View**: What does this evaluation reveal about common misconceptions in the
subject area?
This prompt is designed to guide you through a structured and comprehensive analysis of the
reasoning question, ultimately leading to better insights and understanding.

Meta Learning via Learned Response Template (MAML-style)

To begin our analysis, let’s clearly outline the assumptions we are making regarding the
context of the problem. First, we will break down the reasoning step by step, ensuring that we
address key factors such as the specific conditions, potential alternatives, and the implications
of our findings. This structured approach will help us navigate through the complexities of
the question and arrive at a well-supported conclusion.

Meta Learning via Learned Response Template (Reptile-style)

Let’s analyze the question carefully and approach it step by step. We will consider the key
details and relevant concepts before arriving at a conclusion. This methodical approach will
help ensure that we arrive at the correct answer. Now, let’s proceed with the analysis:

C Initial Loss Prompts

The following are the initial loss prompts used for each benchmark. These prompts serve as the
starting point for the iterative optimization of the loss prompt θL, as described in TextGrad [1]. Each
prompt is manually designed to guide the model in critically evaluating the problem or prediction in
a specific domain. We use them as the first-step loss prompt in our experiments.

BBH Word Sorting Benchmark

Below is a word sorting problem and an answer. You are an expert scientist. Your job is to
investigate the answer. Critically go through reasoning steps, consider your knowledge, and
see if the answer is correct or if there are any critical mistakes.

MMLU Machine Learning Benchmark

Below is a multi-choice question and an answer. You are an expert scientist. Your job is to
investigate the answer. Critically go through reasoning steps, consider your knowledge, and
see if the answer is correct or if there are any critical mistakes.

GPQA Diamond Benchmark

Below is a multi-choice question and a prediction. You are an expert scientist. Your job
is to investigate the prediction. Critically go through reasoning steps, and see if there is a
reason why the prediction could be incorrect. Use the Janusian Process. Think about whether
alternative answers could be true. Raise creative and critical objections to the solution, when
needed.
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D Related Work

D.1 Prompt Optimization in LLMs

Prompt optimization has become a critical area of research in improving the performance of large
language models (LLMs). Initial strategies, such as few-shot learning and in-context learning,
demonstrated that careful prompt design could significantly boost LLM performance across various
tasks [20]. Techniques like Chain-of-Thought (CoT) reasoning [15] and ensemble methods [21]
also emerged as popular ways to structure prompts for more effective problem-solving.

Efforts to automate prompt optimization have led to the development of gradient-based approaches
[22, 23]. These methods, however, require access to the internal model parameters, which limits their
application to open-source models. To address these limitations, approaches using LLMs themselves
as prompt optimizers were introduced [24, 25, 4, 26, 1]. Our work draws inspiration from these
frameworks but goes beyond prompt optimization to include inference-time optimization of diverse
reasoning tasks.

D.2 Meta-Learning Algorithms

Meta-learning focuses on learning models that generalize better across tasks by optimizing either
the loss functions or initializations. In terms of loss functions, the idea of learning loss functions
through meta-learning has shown promise in improving model performance across various domains.
For example, "Meta-Learning via Learned Loss"[9] presents a method for training parametric loss
functions that can generalize across tasks. In the area of good initializations, Model-Agnostic Meta-
Learning (MAML)[7] and its first-order variant, Reptile[8], have become foundational. MAML
optimizes model parameters so that the model can adapt quickly to new tasks with minimal gradient
updates. Reptile simplifies this by avoiding second-order derivatives, making it more computationally
efficient. Both algorithms have inspired numerous advancements in meta-learning for fast task
adaptation, which we incorporate in our approach to inference-time optimization by learning better
initialization strategies for LLMs.

14


	Introduction
	metaTextGrad: Learning to (learn at inference time) in natural language
	Optimizing a loss function
	Optimizing an inference template

	Experiments
	Conclusion
	Implementation Details
	How do we perform backpropagation?
	How does TGD.step work?

	Learned Loss Prompt / Inference Template
	BBH Word Sorting Benchmark
	MMLU Machine Learning Benchmark
	GPQA Diamond Benchmark

	Initial Loss Prompts
	Related Work
	Prompt Optimization in LLMs
	Meta-Learning Algorithms


