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Abstract

Sampling equilibrium conformational ensemble
is essential for understanding biomolecular func-
tions. Although i.i.d. ensemble samplers (i.e.,
Boltzmann emulators) hold great promise, their
training strategies have been underexplored. We
hypothesize that machine learning interatomic
potentials (MLIPs), trained on abundant non-
equilibrium data, already capture geometric and
energetic information needed for ensemble gener-
ation. Inspired by Yu et al. (2025), we introduce
a representation alignment loss that regularizes
the emulator’s hidden states to be similar to those
of pretrained MLIP. This simple addition only re-
quires a one-time inference cost of samples yet
shortens the training time by 1.5× and yields bet-
ter sampling performances.

Figure 1. Overview of our framework. We accelerate the training
of Boltzmann emulators via representation alignment (REPA) with
pretrained, foundational MLIP model embeddings.
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1. Introduction
Sampling the conformational ensemble of biomolecules is
fundamental to understanding biological functions. These
ensembles enable free energy calculations, uncover mecha-
nisms of binding and folding, and reveal rare but function-
ally important states. However, most experimental tech-
niques can be costly, and often yield only static snapshots
or low-resolution ensemble averages. When a force field
is available, the ensemble can be computationally sampled
using molecular dynamics (MD), which integrates Newton’s
equations of motion based on interatomic or coarse-grained
forces. In practice, however, MD is hindered by slow tran-
sitions between metastable states, making exhaustive sam-
pling computationally prohibitive for many biomolecular
systems.

Deep generative models offer a promising alternative be-
cause they are capable of i.i.d sampling of equilibrium struc-
tures, bypassing the challenge of metastability. A recently
emerging class of models known as Boltzmann emulators
(or simply emulators) — including BioEmu (Lewis et al.,
2024), AlphaFlow (Jing et al., 2024), and ETFlow (Hassan
et al., 2024) — leverages the expressiveness of score-based
and flow-based generative frameworks to directly model
equilibrium (Boltzmann) distributions.

Training Boltzmann emulators suffer from lack of data be-
cause they require near-equilibrium ensembles. By contrast,
machine learning interatomic potentials (MLIPs) (Batatia
et al., 2023b; Liao et al., 2024b) can exploit more abun-
dant non-equilibrium structures and have better access to
a broader transferability from the same amount of data be-
cause force prediction is largely local. Recent MLIPs are be-
coming more ”foundational”, trained on chemically diverse
datasets (Mazitov et al., 2025), aiming to learn universal
chemistry.

Yu et al. (2025) recently proposed that the major bottleneck
in training of visual diffusion models is the quality of the
learned hidden representation. They showed that adding an
auxiliary loss to align a diffusion model’s hidden states to a
pretrained image encoder accelerated the training by 17.5×.
Since pretrained MLIPs already encode rich information
about molecular geometry and energetics, if those pretrained
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representations could be leveraged, emulator training could
be cheaper and faster.

The mathematical link between scores and forces further
strengthens the emulator–MLIP connection. In score-based
diffusion models — the backbone of most emulators — at
sufficiently low noise level, the score approximates the neg-
ative gradient of the potential energy, which is the physical
force. Arts et al. (2023) leveraged this property to extract
a coarse-grained force field directly from a pretrained dif-
fusion model. Several recent MLIPs are trained with a
denoising auxiliary task (e.g., DeNS (Liao et al., 2024a))
that reconstructs noiseless structures from noisy structures
and force labels. Together, these studies point to a connec-
tion between force prediction and conformer generation,
suggesting that knowledge for one task can be leveraged to
improve the other.

The opposite direction, however — turning a pretrained
force predictor into an i.i.d. generator of equilibrium struc-
tures — has barely been explored. Because modern MLIPs
are trained with massive amount of non-equilibrium data
and therefore generalize well, transferring their knowledge
to emulators could sidestep the scarcity of equilibrium sam-
ples.

We therefore propose a simple yet effective training strategy:
align the representation spaces of the two models. If force
prediction and conformer generation rely on a shared rep-
resentation of molecular geometry and energy, aligning an
emulator’s hidden states toward those of a pretrained MLIP
should provide an informative prior. With our experiments,
we demonstrate that adding an alignment loss delivers more
accurate emulators at much cheaper cost.

Using alanine dipeptide as our test system, we:

• Quantify representation overlap between force pre-
diction and conformer generation task. We track
the alignment between the hidden states of an emu-
lator and those of a pretrained MLIP during training.
Alignment rises with the conformer generation perfor-
mance, suggesting that the generative model training
is a search for suitable representations, and that the
pretrained MLIP provides one almost “for free”.

• Accelerate training. Adding a simple alignment loss
accelerates the convergence by 1.5× for the emulator
to reproduce the Boltzmann distribution.

2. Method
2.1. Force–score relationship

To learn the Boltzmann distribution over the space of 3D
atomic coordinates, we leverage the denoising score match-
ing framework (Song et al., 2021). The forward SDE gradu-

ally injects noise into the positions through a Wiener process
W :

dx = f(x, t)dt+ g(t)dW. (1)

The reverse SDE maps back the Gaussian distribution to the
data distribution by following a score function:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dW̄ . (2)

The score is approximated by a neural network: sθ(xt, t) ≈
∇x log pt(x).

As pointed out in Arts et al. (2023), if the target distribution
follows the Boltzmann distribution q(x) ∝ e−βV (x), where
β = (kBT )

−1 and V (x) is potential energy, then at the
lowest noise level, the optimal score will capture the forces:
s∗θ(x, t = 0) ≈ ∇x log q(x) = −β∇V (x) = βF.

With Gaussian perturbation, the density at noise level
t of Variance Preserving SDE (VP SDE) is pt(x) =∫
q(y)N (x;αty, σ

2
t I)dy. Then, the optimal score at t be-

comes
s∗θ(x, t) ∝ Ey∼q(y|x,t)[F(y)] (3)

, where q(y|x, t) ∝ q(y)N (x;αty, σ
2
t I), and the expecta-

tion of force F is taken over clean conformers y that could
have produced the noisy sample x. We provide a derivation
based on Bortoli et al. (2024)’s formulation, in Appendix.

2.2. MLIP alignment as an emulator training strategy

Yu et al. (2025) showed that aligning a diffusion model’s
hidden representations with those of a pretrained vision en-
coder (REPA framework) accelerates convergence by about
18×. Motivated by this result, we apply the REPA learning
objective for emulator training. We align our emulator’s
hidden states with the representations of a foundation MLIP,
distilling its pretrained knowledge of molecular geometry
and energy into a generative model.

2.2.1. REPRESENTATION ALIGNMENT (REPA)
LEARNING OBJECTIVE

Given a hidden state hθ,t = fθ(xt) ∈ RN×D from the de-
noising model and a representation z = f(y) ∈ RN×D′

computed from the noiseless conformation y by the pre-
trained MLIP model, we define the alignment loss following
(Yu et al., 2025):

LREPA(θ, ϕ) := −Ey,ϵ,t

[
1

N

N∑
n=1

sim(z[n], hϕ(h
[n]
θ,t))

]
,

(4)
where hϕ is a projection feed forward layer that matches the
dimensionalities between the intermediate representations
while providing flexibility. The final loss is

L := LDDPM + λLREPA (5)
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where λ is a hyperparameter.

For the similarity metric, we chose to use a contrastive
loss that has been previously used for molecular property
prediction task (Stärk et al., 2022), which is a derivative of
the NT-Xent loss (Chen et al., 2020).

LREPA = − 1

N

N∑
n=1

log exp
(
sim(z[n], hϕ(h

[n]
θ,t))/τ

)
∑N
k=1
k ̸=i

exp
(
sim(z[k], hϕ(h

[n]
θ,t))/τ

)


(6)

2.2.2. ALIGNING MACE WITH AN EQUIFORMERV2
EMULATOR

MACE (Batatia et al., 2023b) is a E(3)-equivariant message
passing network that predicts per-atom energies and forces
from 3D coordinates. For our alanine dipeptide experiments,
we align our emulator with MACE-OFF23 model (Kovács
et al., 2025), trained on 85% of the SPICE dataset (Najibi
& Goerigk, 2018) containing drug-like molecules, peptides,
and larger organic molecules from QMugs dataset (Isert
et al., 2021). We also test our method with MACE-MP0
model (Batatia et al., 2023a), trained on bulk crystal struc-
tures of the MPTrj dataset (Deng et al., 2023).

We adopt EquiformerV2 model as our score model architec-
ture (Liao et al., 2024b). Since EquiformerV2 is originally
an MLIP model, we add (i) time (noise level) conditioning
and (ii) positional encoding of atom orders so that the net-
work can serve as a score model. Our score model takes the
atomic positions and atomic numbers as input, initializes
a radius graph based on a predefined cutoff, and performs
graph attention (Brody et al., 2022) on irreps using equivari-
ant transformations. The predicted type-l = 1 vector lies in
R3 and approximates the score ∇x log pt(x) at the current
noise level t.

Both the pretrained and the denoising model are at least
SE(3) equivariant graph neural networks, meaning that
for x ∈ X and f(x) ∈ Y , then f(DX(g)x) =
DY (g)f(x),∀g ∈ SE(3), where DX(g) is the represen-
tation of the element g ∈ SE(3) in X space. The models
use irreducible representations (irreps) as internal repre-
sentation for the data. This corresponds to expressing the
hidden features in the basis where the representations of
SO(3) transformations can be expressed as a block diago-
nal matrix made of irreducible matrices called Wigner-D
matrices. The resulting space can be expressed as a direct
sum of type−l vectors

⊕Lmax

0 vl each (2l+1) dimensional
vectors. This projection is performed with spherical harmon-
ics of up to a fixed maximum order Lmax, which we used
the identical value Lmax = 2 for both models. Information
is aggregated along the radius graph edges with the Clebsch-
Gordan tensor product, which gives the decomposition of
the resulting tensor into irreps through the Clebsch-Gordan

coefficients.

To reconcile the mismatch in feature dimensions during
alignment, Yu et al. (2025) used feed forward layers to
project the pretrained encoder representation onto the diffu-
sion model’s hidden dimensions. To preserve the equivari-
ance during projection, we use an equivariant feed forward
layer from the EquiformerV2 architecture. Notably, type-l
vectors are transformed separately and S2 activations are
used.

2.3. Experimental setting

We chose alanine dipeptide as our benchmark system. A
250 ns, fully equilibrated MD trajectory was downloaded
from the mdshare repository (Nüske et al., 2017). From
this trajectory we randomly selected 5k frames for training.
Before training begins, we compute MACE embeddings for
all noiseless training frames. This requires only a one-time
inference cost.

We train emulators with and without the REPA alignment.
Throughout training, we monitored the MLIP–emulator
representation alignment with Centered Kernel Alignment
(CKA) metric (Kornblith et al., 2019), which is widely used
for quantifying representation alignment. Generative perfor-
mance was assessed by drawing 100k samples from each
emulator and comparing their ϕ backbone dihedral distribu-
tion to the 250k-frame reference ensemble. We quantified
the discrepancy with Jensen–Shannon divergence (JSD).

3. Results
3.1. Do force prediction and conformer generation task

share similar representation space?

Figure 1 tracks the CKA alignment between the Boltzmann
emulator score model and the pretrained MACE represen-
tations during training. Even without the representation
alignment, the alignment grows steadily, implying that the
representations required for conformation generation con-
verge toward those used for force prediction. As a result of
adding the REPA auxiliary loss LREPA, alignment improves
more rapidly and converges at a higher value.

We further analyze the representation alignment between the
score model and the pretrained MACE model as a function
of noise level in the diffusion process. As expected, regard-
less of the REPA regularization, alignment is strongest at
lower noise levels, where the score of the diffusion model
more closely approximates the true physical force. Align-
ment also generally improves with more training steps. No-
tably, without REPA the trend is reversed at zero noise
(clean samples) — more training reduces the alignment.
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Figure 2. Train epoch vs. CKA alignment between the score model
and the pretrained MACE.

Figure 3. Noise level vs. CKA alignment.

3.2. Does representation alignment accelerate the
generative model convergence?

To show how the accelerated and strengthened alignment
contribute to the performance gain, we monitor the quality
of the generated conformational ensemble. Incorporating
the REPA loss drives a faster drop in JSD and achieves a
lower final JSD than score-matching alone. Ablation studies
over the LREPA hyperparameters λ and τ , as well as the
layer and the number of dimensions for the alignment are
present in Appendix. In every setting, REPA regularization
only improves the performance, except when we use an
extremely large λ weight for LREPA.

Notably, the temperature hyperparameter τ in the NT-Xent
loss has a strong impact on the performance of the method.
We propose to partially align the embeddings to incorporate
more flexibility in the alignment and achieve robustness to
τ by slicing 3/4 of the channels for alignment instead of
taking the whole hidden state. Then, given the significant
dependency of the alignment on the noise level (see Figure
3), we directly allow the model to learn which channel to

Figure 4. epoch vs. JSD (ϕ). The emulator trained with the REPA
loss (repa) shows faster and better performance gain than the
baseline without alignment (nonrepa). repa reaches the final
performance level of nonrepa in roughly two-thirds of the training
time (1.5× faster).

align based on a time-conditioned gating mechanism on the
channels, thus removing the need to chose the portion of the
embeddings to align. In this setting, equation 6 becomes:

LREPA = − 1

N

N∑
n=1

log exp
(
sim(z[n], hϕ(gψ(t

[n]) ∗ h[n]
θ,t))/τ

)
∑N
k=1
k ̸=i

exp
(
sim(z[k], hϕ((gψ(t[n]) ∗ h[n]

θ,t))/τ
)


(7)

where gψ denotes a sigmoid-activated Multi-layer Percep-
tron that takes the timestep t[n] as input, and ∗ denotes an
element-wise multiplication.

The results shown Figure S6 also demonstrates a slight
increase in convergence speed with this method. This simple
trick makes the REPA regularization more robust to λwithin
mild alignment conditions as illustrated in Figure S7.

Finally, we evaluate the method’s ability to transfer meaning-
ful information across distinct chemical domains by aligning
the denoising model’s representation with that of MACE-
MP0, trained on crystal structures (Figure S8). While the
resulting speedup is reduced by approximately 20%, this
likely reflects the domain specificity of the MLIP embed-
dings due to their training on specialized datasets. Nonethe-
less, the performance gain remains appreciable, suggesting
that the representations learned by MACE-MP0 still encode
useful information that our method can leverage to model
distributions over organic molecules. Looking forward, the
availability of larger and more chemically diverse datasets
is expected to enhance the cross-domain transferability of
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our approach.

4. Discussion
We have shown that Boltzmann emulators train faster and
achieve better performance when we align their hidden
states with representations from a pretrained MLIP. This
result supports the view that force prediction and confor-
mation generation share common representation space and
that one task can inform the other with appropriate training
strategies. The additional computational cost is modest be-
cause MACE representations are computed only once at the
start of training for noiseless training frames.

A natural next step is to finetune the MLIP itself as a Boltz-
mann emulator, leveraging not only its representations but
also its weights. Still, for scenarios where MLIP inference
is too slow for denoising sampling, representation align-
ment could be useful as a distillation method. We plan to
compare direct fine-tuning and REPA-based distillation in
future work.

Alanine dipeptide is a simple system, which likely limits
the observable performance gain. As a future work, we will
test our method with larger peptides such as chignolin and
diverse multi-molecule benchmarks like GEOM-DRUGS
(Axelrod & Gómez-Bombarelli, 2022), where representa-
tion alignment can have a more pronounced impact. One
key question would be whether representation alignment
also improves data efficiency, since the scarcity of high
quality equilibrium data remains the primary bottleneck for
training Boltzmann emulators.
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Margraf, J. T., Magdău, I.-B., Michaelides, A., Moore,
J. H., Naik, A. A., Niblett, S. P., Norwood, S. W., O’Neill,
N., Ortner, C., Persson, K. A., Reuter, K., Rosen, A. S.,
Schaaf, L. L., Schran, C., Sivonxay, E., Stenczel, T. K.,
Svahn, V., Sutton, C., van der Oord, C., Varga-Umbrich,
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I.-B., Cole, D. J., and Csányi, G. Mace-off: Transfer-
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A. Implementation details
A.1. Alanine dipeptide

We use the AdamW optimizer with constant learning rate 6.10−4, 0.001 weight decay. We use an 0.999 Exponential Moving
Average (EMA) decay with an effective batch size of 128, and train for 500 epochs. The λ factor in equation 5 follows a
cosine schedule that eventually decreases to 0.0 after warming up to a maximum value for 200 steps from 0.0.

For all experiments, we use a three-layer EquiformerV2 architecture with four attention heads and representations with
64 channels. The radius graph is computed with rcutoff = 5.0 Angstrom. Unless specified otherwise, the alignment is
performed on the second layer of the denoising model. This was initially motivated by the observations from (Yu et al.,
2025). However, radius graph–based equivariant GNNs may behave quite differently from vision and text transformers.
These models are inherently local, with an effective cutoff (or receptive field) that gradually increases with network depth.
In the context of denoising, access to global context may be crucial for determining the correct score directions, since global
semantics tend to degrade more slowly under noise. This is particularly relevant for molecules, where geometric structures
can deteriorate rapidly. We thus provide an ablation study for the aligned layer below.

For the time-conditioned gating, we use a 2-layer MLP with a sigmoid output activation that takes the embedded timestep as
input. The MLP has the same width as the denoising model.

As MACE has two message passing layers and the last layer contains only invariant irreps (energy prediction), we extract
the full first layer with all its irreps. The dot product operation is performed on the flattened full higher order tensors.

The diffusion is performed with a maximum of T = 1000 steps. While sampling, we use DPM Solver-3 for integration with
150 score evaluation steps, and sample 100K configurations.

We compute the Jensen-Shannon Divergence (JSD) for the backbone dihedral angle distribution against 250k samples from
the reference MD simulation with 61 bins.

For the representation alignment, the best performing hyperparameter settings are shown in Table 1

Table 1. Best hyperparameter settings used in our experiments.

Hyperparameter Fastest JSD drop Best final JSD

λ 1.0 5.0
τ 0.75 0.75
Similarity Metric NT-Xent NT-Xent
Layer Aligned 2 2

B. Ablation study on Alanine dipeptide
We study the effect of the temperature τ from equation 6 in Figure S1, fixing λ = 1.0. We found that τ = 0.75 was best
performing. We note that the better results for τ = 0.75 correlates with a better alignment of about 5% for the validation
CKA compared to its τ = 0.5 counterpart. We also perform an ablation study on λ. Figure S2 shows that within reasonable
scale of regularization, aligning the higher order tensors from the EquiformerV2 score model with pretrained MACE
embeddings consistently improves the performance. Using different score model layers for alignment does not have a
significant impact as shown in Figure S3. Therefore we used the second layer. We note that, this behavior might differ when
facing larger systems necessitating deeper models.

From our initial observations with constant λ, REPA was improving early-to-mid epoch convergence but struggled to
converge to the optimal JSD value. Therefore, we used a cosine schedule for λ as mentioned above. As another way
of loosening the constraint from the regularization, we also tried aligning only the 3/4 of score model representation
dimensions and freed the other 1/4 from REPA. Results can be seen Figure S4 along the ablation study of λ for τ = 0.5,
which show a significant improvement achieved by partial alignment this approach. A τ ablation study (see Figure S5)
for the 3/4 partially aligned model reveal that the method is robust to this hyperparameter. As discussed in section 3, we
introduced a time-conditioned gate to learn a mask over the intermediate latents that are aligned to the pretrained MLIP
embeddings. We provide a performance comparison with our best performing methods to demonstrate its effectiveness
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Figure S6. We also provide a λ ablation study for the partial gated alignment showing more robustness compared to the
standard approach.

Figure S1. JSD of the sampled distributions against reference for different τ values (left: (ϕ, ψ), right: ϕ).

Figure S2. JSD of the sampled distributions against reference for different λ values (left: (ϕ, ψ), right: ϕ). τ is fixed at 0.75.

C. Ramachandran plots
We show Ramachandran plots at different epochs during training in Figure S10 without regularization, and in Figure S11
with REPA. The improvement in convergence and final performance is clearly visible especially at Epoch 120, with smoother
surfaces and transition regions. To visualize the sampling quality, we plot potential of mean force with ϕ angle as the
collective variable S9a.
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Figure S3. JSD of the sampled distributions against reference for different EquiformerV2 layers being aligned (left: (ϕ, ψ), right: ϕ). τ is
fixed at 0.5.

D. Methods
D.1. Denoising Diffusion Probabilistic Models

We use the formulation from Denoising Diffusion Probabilistic Models (Ho et al., 2020) (DDPM) that leverages a discrete
Markov chain p(xi|xi−1) = N (xi;

√
1− βixi−1, βiI) and the closed-form marginalization to add noise to the data, yielding:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I). (8)

where αt = 1 − βt, ᾱt =
∏t
s=1 αs, and i ∈ { 1, ..., T} specifies the timestep. The reverse diffusion process

can then be sampled by performing, from the Gaussian prior, successive steps of the reverse chain pθ(xi−1|xi) =

N (xi−1;
1√
αi

(
zi − βi√

1−ᾱi
ϵθ(zi, i)

)
, βiI). We optimize for the conditional denoising score matching objective

LDDPM = E[||ϵ− ϵθ(xt, t)||2] (9)

where xt follows equation 8. We use a cosine variance schedule βi following the observations of iDDPM (Nichol &
Dhariwal, 2021). At inference, we sample the initial atomic positions from the Gaussian distribution. We then take advantage
of the ODE formulation

dxt
dt

= f(t)xt −
1

2
g2(t)∇x log pt(xt), xT ∼ pT (xT ), (10)

as well as higher order ODE solver to obtain good quality generation with reasonable sampling time. We use DPM-Solver-3
(Lu et al., 2022) to perform a third order solve.

D.2. Derivation of the force-score relationship

At t = 0. For a Boltzmann target q(y) ∝ e−βV (y) with force F = −∇yV (y), the zero-noise score is

s∗θ(x, 0) = ∇x log q(x) = β F(x).

At finite t > 0. With Gaussian noise perturbation pt(x) =
∫
q(y)N (αtx;y, σ

2
t I) dy,
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Figure S4. JSD of the sampled distributions against reference for different λ values (left: (ϕ, ψ), right: ϕ). The ’partial’ condition
corresponds to aligning only 3/4 of score model representation dimensions. τ is fixed at 0.5

∇xpt(x) =

∫
q(y)∇xN (x;αty, σ

2
t I) dy

= − 1

αt

∫
q(y)∇yN (x;αty, σ

2
t I) dy (since ∇x = −(1/αt)∇y for the Gaussian)

= − 1

αt

[
q(y)N (x;αty, σ

2
t I)

]y=∞

y=−∞
+

1

αt

∫
N (x;αty, σ

2
t I)∇yq(y) dy (integration by parts)

=
1

αt

∫
N (x;αty, σ

2
t I)∇yq(y) dy,

Because ∇yq = βqF(y),

∇xpt(x) =
β

αt

∫
q(y)N (x;αty, σ

2
t I)F(y) dy.

Divide by pt to obtain the optimal score:

s∗θ(x, t) ∝ Ey∼q(y|x,t)[F(y)]

, where q(y|x, t) = q(y)N (x;αty, σ
2
t I)/pt(x), and the expectation is taken over clean conformers y that could have

produced the noisy sample x.

D.3. Alignment metric

The Centered Kernel Alignment (CKA) (Kornblith et al., 2019) measures global similarity from all data pairs by computing
a normalized Hilbert-Schmidt Independent Criterion estimator:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (11)

Following the original notation from (Huh et al., 2024), with ϕi, ϕj the intermediate representations extracted from
one network and ψi, ψj the ones extracted from the other model, and with the kernel matrices Ki,j = K(ϕi, ϕj), and
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Figure S5. JSD of the sampled distributions against reference for different τ values for partial alignment (left: (ϕ, ψ), right: ϕ). 3/4 of the
channels are sliced for alignment

Ki,j = K(ψi, ψj):

HSIC(K,L) =
1

(n− 1)2

∑
i

∑
j

(⟨ϕi, ϕj⟩ − El[⟨ϕi, ϕl⟩]) (⟨ψi, ψj⟩ − El[⟨ψi, ψl⟩])

 (12)

More specifically, as Murphy et al. (2024) pointed out, the standard biased estimator of CKA is highly dependent on the
number of points taken to compute the metric. Therefore, we use the more reliable unbiased estimator from Song et al.
(2007) to compute HSIC.

E. Additional discussion
E.1. The discrepancy between the pretrained MLIP being aligned and the force field used to sample the training data

Another notable point is the discrepancy between the force field used to generate the training data and the one used for
alignment. In our experiments, the reference conformational ensemble was generated via MD simulations using the classical
AmberFF99SB force field, while the alignment was performed using representations from the pretrained MACE model.
This mismatch may have provided less ideal results, particularly in high-energy regions where different force fields tend
to diverge. In future work, we will systematically investigate how such discrepancies affect the quality of alignment and
overall model performance.
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Figure S6. JSD of the sampled distributions against reference for the best performing methods against the partial gated alignment method
(left: (ϕ, ψ), right: ϕ). The full alignment is with τ = 0.75. All results are obtained with λ = 1 except for the non aligned one.

Figure S7. JSD of the sampled distributions against reference for different λ values for partial gated alignment (left: (ϕ, ψ), right: ϕ)
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Figure S8. JSD of the sampled distributions against reference using MACE-OFF23 or MACE-MP0 as the pretrained MLIP (left: (ϕ, ψ),
right: ϕ). The REPA results are obtained with the time-conditioned gate and λ = 1.
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(a) Potential of mean force along ϕ (λ = 1.0, τ =
0.75)

(b) Reference Ramachandran plot

Figure S9. (a) PMF along ϕ and (b) reference Ramachandran plot
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Figure S10. Ramachandran plots of 100k samples generated from the model trained without representation alignment ( λ = 1.0,
τ = 0.75).

Figure S11. Ramachandran plots of 100k samples generated from the model trained with representation alignment (λ = 1.0, τ = 0.75).
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