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Abstract

We propose a meta-learning-based model for drug-target binding affinity
prediction (MetaDTA), for which no information on the protein structures
or binding sites is available. We formulate our method based on the At-
tentive Neural Processes (ANPs) (Kim et al., 2019), where the binding
affinities for each target protein are modeled as a regression function of the
compounds. Known drug-target binding affinity pairs are used as support
set data to determine the regression function. We designed few-shot pre-
diction experiments with a small number of support set data, similar to the
typical situations in actual drug discovery processes. Experimental results
showed that the proposed method outperforms the sequence-based baseline
models with the same amount of limited data.

1 Introduction

In the early stage of drug discovery, accurate prediction of the binding behavior between
the target protein and drugs is crucial for discovering the candidate molecule with decent
potency and selectivity (Hughes et al., 2011). The drug-target binding affinity (DTA) pre-
diction is a regression problem that aims to predict experimentally measured binding affinity
values, which is helpful for ranking and optimizing the compounds. Although it is usually
more difficult than the drug-target interaction (DTI) prediction problem, which is a bi-
nary classification of the active/inactive compounds, the DTA prediction has been actively
tackled based on the recent advances in deep learning (Ragoza et al., 2017; Stepniewska-
Dziubinska et al., 2018; Jiménez et al., 2018; Zhang et al., 2019; Jones et al., 2021; Abbasi
et al., 2020; Öztürk et al., 2018; Abbasi et al., 2020; Nguyen et al., 2020b; 2021).

DTA prediction becomes challenging when the exact structural information of the target
protein and the binding location are not precisely determined. This often occurs, especially
when the drug discovery program aims to conquer disease by controlling a novel target
protein that has not been studied much. For those cases, structure-free binding affinity
prediction methods are required. Recently, the DTA prediction methods based on the
protein sequence were proposed (Öztürk et al., 2018; Huang et al., 2021) which bypasses
the use of three-dimensional structural information of the target proteins. Those methods
successfully predict binding affinity without using the structural information. However, the
performance is degraded when the number of training data samples for the target protein
is limited (Huang et al., 2021).

In the hit identification and lead optimization procedure, designing, synthesizing, and mea-
suring the potency of molecules are time-consuming and expensive processes. These limit
the number of molecules to be tested for a target protein, reducing the size of the dataset. In
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Figure 1: Schematic of ligand-based meta-learning protein drug-target binding affinity pre-
diction

such a small data set, the performance of the deep learning approaches mentioned above is
reduced, so developing a model that can predict well even in a few-shot manner is challeng-
ing. We can think of this as a few-shot learning problem where a binding affinity prediction
function is determined with a small number of given data (Figure 1). Instead of using the in-
trinsic protein features such as the sequences, we use the known (compound, binding affinity)
pairs for a target protein as the features. Based on this setting, we propose a meta-learning
model for drug-target binding affinity prediction (MetaDTA), where the regression functions
that map between the given compounds to corresponding binding affinities are modeled with
Attentive Neural Processes (ANPs) (Kim et al., 2019). Each regression function for each
task represents the binding affinities for a specific target protein. By stochastically splitting
the compounds into support and query sets, we generate various episodes for a task and use
them for training the model.

ANPs have many advantages to be applied for binding affinity predictions. First, ANPs are
few-shot learning models specialized for regression problems. Next, the model architecture,
consisting of a cross-attention-based deterministic path and a global latent path, represents
the prediction strategies well. The deterministic path can serve as a ligand similarity-based
prediction (Altae-Tran et al., 2017), and the latent path can be viewed as a target protein
feature extraction. Finally, ANPs do not underfit the given context data, which fits well for
the binding affinity prediction problem where the context data is usually the most reliable
experimental result.

Numerical experiments on the binding affinity dataset were performed to compare the per-
formance with existing sequence-based prediction models (Öztürk et al., 2018; Huang et al.,
2021). The advantages of the MetaDTA are summarized as follows:

• The accuracy of MetaDTA is better than the sequence-based models, especially
when a small number (≤ 100) of data pairs are available. (§4.2)

• MetaDTA can accurately predict the binding affinity even when support set data
is used only in test time. (§4.1.2)

• The accuracy of MetaDTA is gradually improved when the training data contains
more diverse proteins, even though the model does not directly exploit structural
information. (§4.3)
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2 Related Works

2.1 Drug-Target Binding Affinity Prediction

Machine learning has been studied as a promising approach for drug-target binding affinity
prediction. Structure-based methods use the experimentally measured 3D structure of the
protein-ligand binding complexes (Ragoza et al., 2017; Stepniewska-Dziubinska et al., 2018;
Jiménez et al., 2018; Zhang et al., 2019; Jones et al., 2021). However, obtaining such
structural information in high resolution is still a challenging task, and virtual generation of
the combined structure from docking simulations often produces inaccurate results; hence
the prediction accuracy degrades in these cases.

Structure-free methods try to predict the affinity without using the exact 3D binding struc-
tures. Instead, the models use simple but abundant and diverse protein features, such
as amino acid sequences (Öztürk et al., 2018; Abbasi et al., 2020; Nguyen et al., 2020b;

2021; Huang et al., 2021), the motifs (Öztürk et al., 2019), Protein Sequence Composition
(PSC)(Feng et al., 2018), or Position-Specific Scoring Matrix (PSSM) features(Mousavian
et al., 2016). These methods achieve somewhat promising results. However, learning proper
protein embeddings and interactions is difficult, especially when only limited data for the
target protein is available.

Most models try to learn the embedding of drugs and target proteins, as well as the inter-
action between them (Lim et al. (2021) and the references therein). In this case, the model
for predicting the binding affinity y between drug d and target tfrom drug information xd
and target information xt is formulated as

y = fθ(gϕ(xd), hψ(xt)) (1)

where gϕ represents the embedding function for drugs, hψ represents the embedding func-
tion for targets, and fθ represents the interaction function between the drugs and targets.
Although there exists millions of binding affinity pair data, the learned model does not
generalize well for the protein targets with a small number of samples (Huang et al., 2021).

2.2 Few-shot learning for DTI prediction

Meta-learning, which is often referred to as ’learning to learn,’ aims to improve the ability
to deal with a new task (Koch et al., 2015; Vinyals et al., 2016; Finn et al., 2017; Garnelo
et al., 2018a; Hospedales et al., 2021). Few-shot learning is a representative problem of meta-
learning, which makes predictions for the target task from only a few available examples.

Altae-Tran et al. (2017) proposed a few-shot learning method for DTI prediction. The
binary interaction label was predicted as the weighted sum of context labels, where the
weights were computed from the similarity between the learned embeddings of the drugs.
Few-shot learning showed adequate performance for various molecular property prediction
tasks, including DTI prediction (Nguyen et al., 2020a) and drug response prediction (Ma
et al., 2021). Recently, a benchmark dataset (Stanley et al., 2021) was proposed for the
few-shot DTI prediction problem. Existing few-shot learning methods focused on the DTI
problems, and to the best of our knowledge, few-shot learning methods specialized for the
DTA prediction problem have not been proposed.

3 Method

3.1 Few-shot Learning for Binding Affinity Prediction

We consider a problem of binding affinity prediction as a few-shot learning problem. To this
end, we consider a task Tt as predicting the binding affinities for a specific target protein
t. A support set St = {(xi, yi)} for the task is the set of ligand xi and binding affinity yi
pairs, which represents the target protein. A query set Qt for the task is the set of ligands
whose binding affinities sholud be predicted by the model. Then, the problem of predict the
binding affinity y of a query ligand xq ∈ Qt is formulated as

yq = fθ(xq,St). (2)
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Figure 2: (a) MetaDTA model architecture. (b) Latent path prior (Kim et al., 2019)

Note that this formulation does not directly use the target protein information. Instead of
extracting information from the target protein, the target-specific binding affinity function
fθ is determined from available data pairs. Various and abundant episodes for the task Tt
are generated by splitting available training data pairs into support and query sets during
training. The number of possible episode combinations is much greater than the number
of training data pairs, so the meta-learning formation has the potential to overcome the
over-fitting for a limited amount of training data pairs which is conventional in the methods
following (Eq. 1).

3.2 MetaDTA Model

We employ the ANPs to model the binding affinity prediction functions. As in the Neural
Processes (NPs) (Garnelo et al., 2018b), ANPs consist of deterministic and latent paths.
The deterministic part models the conditional distributions conditioned on the support set
St to model the query set Qt, which is formulated as

p(yq∣xq,St) ∶= p(yq∣xq, rq), (3)

where a query-specific representation rq ∶= aW (St,xq) is modeled with a cross-attention
mechanism between the query and the items in the support set. We employ the multi-head,
scaled dot-product attention (Vaswani et al., 2017),

MultiHead(Q,K,V ) ∶= concat(head1,head2,headN)W (4)

headh ∶= DotProduct(QW
Q
h ,KW

K
h ,V W

V
h ) (5)

DotProduct(Q,K,V ) ∶= softmax(QK
⊤

√
dk

)V . (6)

In the cross-attention module, Q is the feature of the query set ligands, and K is the feature
of the support set ligands. V is the embedded vector of the support set binding affinities.

The differences between our model and ANPs are in this cross-attention module. We used
the embedded vector of yi as V to focus on the binding affinities, while ANPs used the em-
bedded vector of concatenated (xi, yi). Based on the intuition of the ligand-based prediction
(Altae-Tran et al., 2017), the attention which represents the relationship between the sup-
port and the query ligands is used as a weight distribution of support binding affinities. We
constructed deeper models by adding cross-attention modules or additional self-attention
modules after cross-attention modules (Figure 2).

The latent path uses a global latent variable z to model different realizations of regression
functions, which is written by

p(yq∣xq,St) ∶= ∫ pρ(yq∣xq, z)qξ(z∣St)dz, (7)
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where the prior function qξ models the latent variable conditioned on the support set. In
the binding affinity prediction problem, the latent path can be considered to extract the
representation of target protein from the given support set St and use it to predict the
binding affinities. Considering both paths lead to the following conditional distribution:

p(yq∣xq,St) ∶= ∫ pρ(yq∣xq, aW (St,xq), z)qξ(z∣St)dz. (8)

Here the functions aW (St,xq) and qξ(St) forms the encoder, and the likelihood
pρ(yq∣xq, rq, z) corresponds to the decoder.

The training of the model is done by maximizing the following ELBO

log p(yQt
∣xQt

,St) ≥ E [log p(yQt
∣xQt

, aW (St,xQt
), z)]

−DKL [qξ(z∣Qt ∪ St)∣∣qξ(z∣St)] , (9)

by using stochastically splitted query and support sets.

4 Experiments

4.1 Experimental Setting

The primary objective of our work is to develop a binding affinity prediction method for
the practical drug-discovery scenario, where limited binding affinity measurements are only
available for the target protein without three-dimensional protein structure information. To
show the behavior of the proposed model, we designed two sets of experiments to answer
the following questions:

• Does MetaDTA predict binding affinity well with small test samples?

• Does MetaDTA generalize well for the drugs/targets not contained in the training
data?

• How much data is required for good generalization performance?

The first set of experiments tests the model performances for a limited number of few-shot
test data (4.2), and the second one tests for a limited amount of training target diversities
(4.3).

4.1.1 Dataset

We used the BindingDB (Gilson et al., 2016) for the experiments, since it is one of the
largest databases of experimentally measured binding affinities. We used the measurements
labeled with the half-maximal inhibitory concentration (IC50), representing the compound
concentration required for 50% inhibition. The BindingDB contains 1,390,284 inhibition
affinities with 5,960 proteins, for 689,301 small molecules. Since IC50 values distribute over
several orders of magnitude, we used pIC50 = − log10(IC50) values for the prediction targets.

The outlier detection using interquartile (IQR) method was applied to filter out extraordi-
narily large or small values. The multiple measurements for single molecule are averaged
out, but if the standard deviation of the duplicated values is more than 0.5, the correspond-
ing drug-target pair is discarded. Only the targets with the binding affinities with more
than 20 ligands were used. As a result of the process, 1,040,153 inhibition affinities with
2,968 proteins and 662,438 small molecules have remained in the dataset.

For the ligand representation, we used the extended-connectivity fingerprints (ECFPs)
(Rogers & Hahn, 2010) with 2,048 dimensions and a diameter of 6. The simplified molecular-
input line-entry system (SMILES) string was used for the baseline models as a ligand rep-
resentation. MetaDTA did not use the explicit protein features, but the support set data
pairs were used to characterize the target protein. The pIC50 values were converted to 32-
dimensional vectors using a Gaussian kernel to increase model sensitivity towards affinity
values. The baseline methods used protein amino acid sequences as protein features.
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Figure 3: Mean Absolute Error (MAE) of prediction models with respect to the number
of ligands in few-shot data by Random and Scaffold split. MetaDTA(T) shows the best
performance in prediction with few-shot ligands data.

4.1.2 Baselines and metrics

We compared our MetaDTA model with two baseline models, DeepDTA(Öztürk et al., 2018)
and MolTrans(Huang et al., 2021), which do not rely on the three-dimensional structure of
target proteins. Both methods use the protein sequences as protein features and SMILES
strings as compound features. DeepDTA uses convolutional neural networks (CNNs), and
MolTrans uses the Transformers to extract information of the target protein and compound
features. MolTrans was originally proposed for DTI prediction methods, so we modified the
final activation of MolTrans to a linear function.

For MetaDTA, we can use the few-shot data for test tasks in two different ways. The
first is the inference mode (MetaDTA(I)), which does not use the few-shot data pairs in
training, but only uses them in the test tasks as support sets. The other is the training mode
(MetaDTA(T)), in which the few-shot data were used to train the model and predict the
test task as support sets. The baseline methods used the few-shot data to train the model
with other train data.

The metrics for model evaluation of regression problems are Root Mean Squared Error

(RMSE), Mean Absolute Error(MAE), Concordance Index (CI), and r
2
m, and details are

described in A.1. Averaged results of 5-fold cross-validation were provided as a model
performance.

4.2 Binding affinity prediction with limited data

In this experiment, we evaluated model performances when the number of available data for
test targets was limited. A limited number of data points were selected as the few-shot data
for test targets. The maximum sizes of the few-shot data for a target were 10, 20, 30, 50,
and 100. The models were evaluated for two different settings. The overall ligands were not
explicitly split into the training and test types in Random setting. In Scaffold setting,
the ligands were split into training and test types based on the Murcko scaffold (Bemis &
Murcko, 1996). The similar ligands were either entirely in the training or test data in the
latter case. Scaffold setting is much more difficult because the model should predict with a
limited number of previously unseen ligands.

In general, the measured MAE of the models was improved as the size of few-shot data
increased (Figure 3). Except for some cases, MetaDTA(I) outperforms the baseline models,
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Table 1: Metrics of prediction models with 50 ligands of few-shot data split by random choice
for test tasks. MetaDTA(T) model has the best performance in binding affinity prediction
for test proteins.

RMSE MAE r
2
m CI

DeepDTA 1.109±0.039 0.866±0.042 0.427±0.014 0.746±0.014
MolTrans 1.070±0.038 0.819±0.029 0.456±0.012 0.764±0.009

MetaDTA(I) 1.070±0.041 0.795±0.029 0.460±0.036 0.759±0.009
MetaDTA(T) 1.009±0.026 0.747±0.033 0.521±0.036 0.779±0.007

Table 2: Metrics of prediction models with 50 ligands of limited few-shot data split by
Murcko scaffold. MetaDTA(T) and MetaDTA(I) show better performance than sequence-
based methods.

RMSE MAE r
2
m CI

DeepDTA 1.171±0.036 0.916±0.033 0.400±0.079 0.720±0.021
MolTrans 1.113±0.031 0.849±0.037 0.432±0.071 0.746±0.018

MetaDTA(I) 1.092±0.062 0.809±0.051 0.462±0.098 0.764±0.012
MetaDTA(T) 1.066±0.052 0.790±0.042 0.491±0.089 0.769±0.006

even though it does not update the model parameters using the few-shot data of the test
tasks. MetaDTA(T) consistently showed the best performance for all cases. In Scaffold
setting, the prediction errors increased than that of Random setting. The tendency is the

same for the other metrics (Table 1, 2). The performance of r
2
m > 0.5 is generally believed to

be predictive, and MetaDTA(T) achieved this level with over 50 few-shot ligands in Random
setting and 100 ligands in Scaffold setting (Appendix. Table 5).

4.3 Protein cluster split

Although the above experiments were conducted for the target proteins not contained in
the training data, there is still a possibility of bias due to the structural similarity of the
target proteins, which could result from very similar affinity patterns for ligands. For an ap-
propriate train/test split of target proteins, Ragoza et al. (2017) exploited protein sequence
similarity and binding site similarity. However, sequence similarity does not provide a com-
plete split because some proteins have similar structures, but their sequences are different.
Clustering based on binding site similarity excludes the protein targets whose binding sites
are not determined, resulting in a decrease in the size of the dataset. To obtain an appro-
priate protein split for a larger number of protein targets, we exploited AlphaFold (Jumper
et al., 2021) predicted protein structures to cluster the protein domains.

All available structure models for human proteins (23,391 structures as of Feb 10, 2022) were
downloaded from the AlphaFold Protein Structure Database’s FTP site (Varadi et al., 2022).
We divided a single protein into domains by identifying long disordered regions and only used
1,778 proteins that have a single domain and exist in bindingDB. The application calculates
the number of inter-residue contacts using a distance cutoff of 4 Å for every residue. The
starting position of a domain boundary is determined as the first residue of a 10-residue
window when all the consecutive residues in the window have inter-residue contacts and the
ending position as the first residue of a 5-residue window with no inter-residue contact under
the condition of the defined starting position. Domains were extracted from each AlphaFold
structure model using a set of the starting and end positions (i.e., domain boundaries). We
performed an all-against-all structure comparison of 1,778 protein domains. Structural
similarities between two domains were measured using TM-align (Zhang & Skolnick, 2005)
and normalized by the length of the smaller domain. The similarity score, TM-score (Zhang
& Skolnick, 2004) has the value in (0, 1], where 1 indicates a perfect match. The proteins
are grouped by hierarchical clustering into 32 different classes with respect to the distances
(1 − TM-score).
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Figure 4: Mean Absolute Error (MAE) of prediction models with respect to the number of
training protein clusters. MetaDTA gets better prediction performance while the available
target clusters increase.

Table 3: Metrics of model prediction trained with 25 protein clusters.

RMSE MAE r
2
m CI

DeepDTA 1.220±0.083 0.971±0.063 0.262±0.054 0.641±0.081
MolTrans 1.122±0.112 0.865±0.095 0.326±0.047 0.665±0.066

MetaDTA(I) 1.107±0.103 0.837±0.063 0.408±0.071 0.704±0.059
MetaDTA(T) 1.058±0.095 0.786±0.058 0.442±0.049 0.720±0.062

We applied 5-fold cross-validation by using the 32 protein clusters and varied the number
of protein clusters from 5 to 25 for each training fold. We limited the number of ligands in
the few-shot data to 50. MetaDTA models showed steady improvements in test accuracy as
the number of training protein groups increased (Figure 4). For the MetaDTA, the training
dataset’s diversity helps to improve the model performance for the unseen, structurally
dissimilar protein targets. Although MetaDTA(I) performances were relatively poor at small
training protein clusters, they became better than the baseline models with sufficiently
diverse training data. The model’s performance is generally expected to improve with
more diverse training data. However, such improvement was not evident in the baseline
models. For sufficiently diverse protein data given (25 clusters), MetaDTA(T) showed the
best performance overall metrics (Table 3).

5 Conclusion

We proposed a meta-learning model for drug-target binding affinity prediction (MetaDTA).
The model predicts the binding affinity for query compounds by applying attention mech-
anisms to the support compounds and known affinity data. Numerical experiments showed
that the proposed method achieves higher prediction accuracy than the baseline models
without additional information about the target protein. In the experiments using the
AlphaFold-predicted structure-based protein clustering, the proposed method showed grad-
ual performance improvement for more diverse protein information. In contrast, the other
methods did not show such improvements.
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A Appendix

A.1 Evaluation Metrics

We evaluate the performance of the proposed model using most common evaluation indexes
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Concordance Index
(CI) (Gönen & Heller, 2005) for regression problems. Equation for CI is described in 10 and
11. The CI index measures whether the predicted values of two random binding affinities

are predicted in the same order as the true values. r
2
m index also be used to evaluate the

predictive performance of QSAR models and model with r
2
m > 0.5 for the test set was

considered acceptable (Pratim Roy et al., 2009). The metric for r
2
m is described in Equation

12 where r
2

and r
2
0 are the squared correlation coefficients with and without intercept,

respectively.

CI =
1

Z
∑
yi>yj

h (pi − pj) (10)

h (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 , x > 0

0.5 , x = 0

0 , x < 0

(11)

r
2
m = r

2
⋅ (1 −

√
r2 − r20) (12)

A.2 Ablation Study

We present the results of the ablation study for proposed model in Table 4. We evaluated
the performance of cross-attention module (C.A) , self-attention module (S.A) and latent
encoder path of MetaDTA model on benchmark dataset with support set length 100. In
this dataset, cross-attention alone has strong predictive performance. The use of latent path
and self-attention achieves similar performance with cross-attention and model configuration
would be better to optimized in differenct dataset and different condition.
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Table 4: Comparison of the prediction performance between the different configuration of
the models. C.A and S.A means cross-attention and self-attention module. The use of
cross-attention shows best performance in three metrics and both self-attention and latent
path improves the prediction accuracy in CI score. The model performance along to the
configuration depends on dataset and hyper parameters.

RMSE MAE r
2
m CI

ANPs (original) 0.973±0.022 0.711±0.018 0.538±0.033 0.790±0.033
C.A+S.A+Latent 0.979±0.063 0.694±0.026 0.553±0.038 0.795±0.014
C.A+Latent 0.961±0.021 0.701±0.016 0.557±0.032 0.793±0.009
C.A+S.A 1.022±0.069 0.733±0.029 0.534±0.037 0.782±0.012
C.A 0.952±0.015 0.694±0.011 0.564±0.044 0.794±0.008

A.3 r
2
mndexes for few-shot scenario ligands experiment

Table 5: r
2
m indexes for few-shot scenario ligands split experiments

DeepDTA MolTrans MetaDTA(I) MetaDTA(T)

Random

10 0.299±0.039 0.363±0.029 0.468±0.067 0.374±0.033
20 0.360±0.022 0.410±0.012 0.383±0.029 0.433±0.035
30 0.404±0.011 0.431±0.020 0.435±0.035 0.477±0.033
50 0.427±0.014 0.456±0.012 0.460±0.036 0.521±0.036
100 0.473±0.032 0.488±0.018 0.505±0.034 0.557±0.022

Scaffold

10 0.301±0.061 0.351±0.076 0.364±0.050 0.366±0.067
20 0.352±0.085 0.352±0.018 0.408±0.073 0.412±0.071
30 0.378±0.068 0.416±0.086 0.434±0.074 0.461±0.077
50 0.400±0.079 0.433±0.071 0.461±0.098 0.491±0.089
100 0.403±0.069 0.440±0.057 0.508±0.088 0.516±0.074
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