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Abstract. With the emergence of the Segment Anything Model (SAM)
as a foundational model for image segmentation, its application has been
extensively studied across various domains, including the medical field.
However, its potential in the context of histopathology data, specifically
in region segmentation, has received relatively limited attention. In this
paper, we evaluate SAM’s performance in zero-shot and fine-tuned sce-
narios on histopathology data, with a focus on interactive segmentation.
Additionally, we compare SAM with other state-of-the-art interactive
models to assess its practical potential and evaluate its generalization ca-
pability with domain adaptability. In the experimental results, SAM ex-
hibits a weakness in segmentation performance compared to other models
while demonstrating relative strengths in terms of inference time and gen-
eralization capability. To improve SAM’s limited local refinement abil-
ity and to enhance prompt stability while preserving its core strengths,
we propose a modification of SAM’s decoder. The experimental results
suggest that the proposed modification is effective to make SAM useful
for interactive histology image segmentation. The code is available at
https://github.com/hvcl/SAM_Interactive_Histopathology

Keywords: Segment Anything Model · Histopathology Image Anaysis
· Interactive Segmentation · Foundation Models.

1 Introduction
Tumor region segmentation in whole slide images (WSIs) is a critical task in

digital pathology diagnosis. Numerous segmentation methods have been devel-
oped in the computer vision community that perform well on objects with clear
edges [1, 2, 9]. However, as shown in Fig. 1, tumor boundaries in histopathology
images are often indistinct and ambiguous. As a result, directly applying conven-
tional image segmentation methods to WSIs tends to yield unsatisfactory results.
In recent years, deep learning advancements have shown promising outcomes in
medical image segmentation [21] when sufficient training labels are available.
Nevertheless, even fully-supervised models have room for improvement due to
⋆ Corresponding author: wkjeong@korea.ac.kr
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Fig. 1: Comparison between SAMMD and ours. The green and red points represent
positive and negative clicks, respectively. Each click is automatically generated on the
error region in the previous prediction.

potential disparities between training and inference imaging conditions, making
generalization challenging.

Recently, the Segment Anything Model (SAM) [13], a large promptable foun-
dation model that allows user interaction, has gained considerable attention as a
general image segmentation model, eliminating the need for task-specific annota-
tion, training, and modeling. Inspired by this, the primary motivation behind our
work stems from the notion that a foundation model like SAM holds promise as
a general-purpose segmentation model, which can also be applied to histopathol-
ogy image segmentation without domain-specific training. Several early attempts
have been made to employ SAM in medical image segmentation [8,18,22]. How-
ever, the exploration of SAM’s potential for interactive segmentation has been
limited, with only subjective criteria-based prompts being utilized. Another mo-
tivation of our work is that supervised training may not generalize well to var-
ious target images during inference. Hence, utilizing interactive segmentation
to modify the segmentation model’s results could prove to be a practical and
effective strategy for improving segmentation performance. While numerous in-
teractive segmentation methods exist in computer vision [4, 16, 24], only a few
works have been proposed specifically for interactive histopathology image seg-
mentation [5, 20] so far.

In this study, we investigate the potential of SAM for tumor region seg-
mentation in histopathology images using a click-based interactive approach.
Our primary objectives are to answer the following questions: 1) Can SAM be
directly (zero-shot) applied to interactive histopathology image segmentation
tasks? and 2) If not, what is the optimal approach for modifying (or fine-tuning)
SAM for interactive histopathology image segmentation? To address these ques-
tions, we conducted extensive experiments on two publicly available datasets:
PAIP2019 [12] and CAMELYON16 [7]. We investigated SAM mainly with point
prompts, using a well-established evaluation protocol by Xu et al. [25] which
mimics human click interaction. We conducted a comparison between SAM and
other state-of-the-art (SOTA) interactive segmentation methods [4,16,24], both
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with and without dataset-specific fine-tuning. We also investigated an efficient
strategy to harness the potential of SAM through various fine-tuning scenarios.
The main contributions of our work are several-fold as follows:

– We assessed SAM’s current capability for zero-shot histopathology image
segmentation in the context of interactive segmentation by comparing it
against SOTA interactive segmentation algorithms.

– We provide insights into the utilization of pretrained weights of SAM by
exploring various fine-tuning scenarios. We discovered that SAM requires a
prediction refinement strategy for interactive histopathology image segmen-
tation.

– We introduce a modified mask decoder for SAM which enhances performance
and reduces the fine-tuning cost while retaining the original SAM’s high
generalization capability and inference speed. As a result, we achieved an
average reduction of 5.19% in the number of clicks required to reach the
target IoU.

2 Method
2.1 Overview of Segment Anything Model (SAM)

Introduced by Meta AI, SAM [13] is a promptable foundation model for im-
age segmentation trained with the largest segmentation dataset (SA-1B) over
one billion masks and 11 million images. This model demonstrates significant
zero-shot performance in natural image domains. SAM consists of three main
components: An Image Encoder (IE) is a Vision Transformer (ViT) [6,10]-based
encoder to extract image features, a Prompt Encoder (PE) encodes various types
of prompts such as points, bounding boxes, masks, and texts, and a lightweight
Mask Decoder (MD) maps image embedding and prompt embeddings to seg-
mentation results.

2.2 SAM Fine-tuning Scenarios

We set up three scenarios for fine-tuning SAM to understand the impact of
each component in SAM on the performance and explore an efficient method
for utilizing SAM in the interactive segmentation(see Fig. 2 (a) and (b)). First,
we train only the lightweight mask decoder (SAMMD) by freezing the pretrained
image encoder and prompt encoder. Second, we train IE and MD (SAMIE_MD)
to investigate the influence of PE on the model’s generalization ability. Third,
we train the whole model (SAMWhole) for comparison to other scenarios.

To fully utilize the pretrained weights of SAM’s ViT-based image encoder, we
resized input patches to a size of 1024×1024 and restored the output predictions
to match the original input patch size. In the training process, we employed the
click guidance scheme by Sofiiuk et al. [24] for automatic point prompts gener-
ation. The click guidance scheme uses random sampling for the first iteration
and samples subsequent clicks from the error regions of the previous predic-
tions, thereby better resembling real-world user interaction. Moreover, we use
the previous prediction as a mask prompt to improve the model performance as
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Fig. 2: (a) An illustration of interactive segmentation process using SAM. Image En-
coder (IE) extracts features from input patch and Prompt Encoder (PE) encodes
prompts which are previous prediction as mask prompt and point coordinates as point
prompts. (b) We set up three SAM fine-tuning scenarios. SAMMD freezes IE and PE,
training only MD. SAMIE_MD freezes PE and trains IE and MD. SAMWhole trains
the entire SAM. (c) Modified mask decoder architecture to improve local refinement
capability. Compared to original MD, we exclude dot-product between the final out-
put token and image embedding. Also, we use global self-attention block, and deeper
decoder layers.

shown in [19]. We employed the Normalized Focal Loss [24], known for faster
convergence and better accuracy compared to Binary Cross-Entropy (BCE) as
explained in [4, 16,17].

2.3 Decoder Architecture Modification

The graph in Fig. 3 (a), and (b) show the zero-shot and fine-tuned performance
with mean Intersection over Union (mIoU) per interaction of SAM and SOTA
interactive models on PAIP2019 [12] dataset. SAM demonstrates comparable
performance to other models in early iterations, but it struggles in later itera-
tions. As shown in Fig. 4, SAM without fine-tuning shows weakness in refining
predictions locally (i.e., a local modification affects a large area). Considering
the architecture of the ViT-based SAM image encoder, training the entire SAM
requires a longer time and a higher computational cost. Also, as shown in Table 1
and described in Sec. 4.2, we empirically found that including IE in fine-tuning
is not always beneficial.

To address this issue, we modified the lightweight decoder in the original
SAM as depicted in Fig. 2 (c) to improve local refinement capability and assign
prompt stability. We add a global self-attention layer to the image embedding
after the cross-attention transformer block to enhance the ability to capture the
global context across the entire patch. Moreover, we deepen the decoder layers
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(c) Fine-tune on PAIP and Test on CAMELYON

Fig. 3: (a) Zero-shot mIoU scores per click of each model on the PAIP2019 dataset.
(b) mIoUs per click after fine-tuning on the PAIP dataset. (c) mIoUs per click on the
CAMELYON16 ×10 dataset for models trained on the PAIP dataset.

during the upsampling process to increase the representational capacity of the
decoder.

The upsampling process is described as follows: We constructed a UpCon-
vBlock and ConvBlock module. UpConvBlock consists of two 3×3 convolution
layers and a 2×2 up-convolution layer and ConvBlock consists of two 3×3 con-
volution layers. In the second 3×3 convolution layer of both UpConvBlock and
ConvBlock, a channel reduction is performed, reducing the input channel size
by half. After global self-attention, the image embedding proceeds through two
UpConvBlocks and ConvBlock sequentially. We integrated instance normaliza-
tion layers and GELU activation functions between each layer. Furthermore, to
mitigate information loss, we employed shortcut connections within each Block.
After passing through 3 Blocks, features are transformed into a segmentation
map through the 1×1 convolution layer.

3 Experiments
3.1 Data Description

We utilized two publicly available WSI datasets, namely PAIP2019 [12] and
CAMELYON16 [7]. The PAIP2019 WSIs were scaled at a 5× magnification,
while for CAMELYON16, we used WSIs scaled at both 10× and 5× magnifica-
tion. Subsequently, the WSIs were cropped into patches of size 400×400 pixels.
These patches were then filtered based on the proportion of tumor area, ranging
from 20% to 80%, as outlined in [20]. Consequently, for the PAIP2019 dataset,
we employed 5190, 576, and 654 patches for training, validation, and testing, re-
spectively. As for CAMELYON16, we utilized 397 patches at 10× magnification
and 318 patches at 5× magnification scales for testing.

3.2 Implementation Details

We compared SAM to three SOTA interactive segmentation methods: RITM [24],
FocalClick [4], and SimpleClick [16]. We fine-tuned the pretrained models in
PAIP2019 and validated their generalization capabilities in CAMELYON16. For
a fair comparison, we used the largest pretrained model and the best-performing
pretrained weights for each model. For fine-tuning the parameters, we adhered
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Fig. 4: Qualitative comparison between SAMWhole and SOTA methods. The results
show the performance of each method on the PAIP2019 dataset, both in terms of
zero-shot and after fine-tuning.

to the default setting of [24], wherein we set the initial learning rate to 5e-4.
Additionally, we decreased the learning rate by a factor of 10 at the 20th and
25th epochs out of the total 30 epochs.

To assess the zero-shot transfer ability of each model, we conducted inference
without training using WSIs. Additionally, to evaluate the generalization ability
and domain adaptability, we performed inference after fine-tuning using WSIs.
For a fair comparison, we employed an automatic evaluation method used in
the previous work [3, 11, 14, 15, 23, 25]. Inference per patch continues until it
reaches the target IoU (Intersection over Union). We set the maximum number
of clicks per patch to 20. As for the evaluation metrics, we used Number of Clicks
(NoC), Seconds per Click (SPC), and Number of Fails (NoF). NoC represents the
average number of clicks required to reach the target IoU, while SPC measures
the average time it takes for the model to perform an inference per click. NoF
represents the number of images that failed to reach the target IoU despite the
maximum number of clicks. For a more intuitive representation, we divide NoF
by the number of testset n. All of evaluations were performed on a single NVDIA
RTX A6000 GPU.

4 Results

4.1 Zero-shot Performance

Table 1 presents the zero-shot performance of SAM and state-of-the-art (SOTA)
interactive segmentation models. SAM demonstrates lower performance com-
pared to SOTA models across all three different domains. The low NoC and
high NoF in the zero-shot setting indicate that SAM lacks the ability to effec-
tively modify the mask to accurately reflect user intent, particularly when faced



SAM for interactive histopathology image segmentation 7

Table 1: Quantitative Result of Zero-Shot Performance

Dataset Method
NoC@

SPC(s)
NoF/n @

80 85 90 85 90

PAIP2019
(×5)

RITM 7.43 10.24 13.00 0.075 0.30 0.47
FocalClick 7.37 9.89 12.42 0.073 0.28 0.43
SimpleClick 7.21 10.16 13.44 0.189 0.33 0.53

SAM 9.13 12.10 14.73 0.052 0.50 0.66

CAMELYON16
(×5)

RITM 6.25 7.88 9.98 0.078 0.14 0.24
FocalClick 3.64 4.83 7.20 0.085 0.04 0.14
SimpleClick 5.26 6.94 9.23 0.187 0.15 0.25

SAM 5.31 7.45 10.38 0.053 0.19 0.36

CAMELYON16
(×10)

RITM 6.91 8.19 10.07 0.077 0.15 0.22
FocalClick 4.73 5.89 7.87 0.076 0.06 0.14
SimpleClick 5.20 6.42 8.55 0.187 0.11 0.23

SAM 6.64 8.49 11.03 0.053 0.24 0.37

Table 2: Quantitative Result of After Fine-tuning on PAIP2019

Dataset Method
NoC@

SPC(s)
NoF/n @

80 85 90 85 90

PAIP2019
(×5)

RITM 2.78 4.93 9.40 0.075 0.12 0.33
FocalClick 2.58 4.54 8.98 0.071 0.06 0.25
SimpleClick 5.11 8.33 12.20 0.189 0.32 0.52

SAMMD 5.80 8.93 12.09 0.050 0.31 0.48
SAMIE_MD 4.53 7.58 10.86 0.050 0.29 0.45
SAMWhole 4.53 7.50 10.95 0.052 0.28 0.46

Ours 4.75 7.78 10.85 0.067 0.26 0.42

CAMELYON16
(×5)

RITM 3.74(-2.51) 5.04(-2.84) 7.50(-2.48) 0.081 0.08 0.17
FocalClick 4.15(+0.51) 5.57(+0.74) 8.19(+0.99) 0.071 0.10 0.22
SimpleClick 3.82(-1.44) 5.41(-1.53) 7.94(-1.29) 0.187 0.15 0.25

SAMMD 4.09(-1.22) 5.84(-1.61) 8.31(-2.07) 0.050 0.13 0.24
SAMIE_MD 4.30(-1.01) 5.64(-1.81) 7.85(-2.53) 0.052 0.15 0.24
SAMWhole 3.28(-2.03) 4.80(-2.65) 7.06(-3.32) 0.053 0.10 0.20

Ours 4.27(-1.04) 5.59(-1.86) 8.04(-2.34) 0.066 0.11 0.20

CAMELYON16
(×10)

RITM 6.28(-0.63) 7.65(-0.54) 9.67(-0.31) 0.076 0.13 0.23
FocalClick 11.82(+7.09) 13.01(+7.12) 14.53(+7.33) 0.076 0.43 0.54
SimpleClick 6.07(+0.87) 7.44(+1.02) 9.94(+1.39) 0.187 0.18 0.28

SAMMD 4.88(-1.76) 6.68(-1.81) 9.07(-1.96) 0.053 0.13 0.25
SAMIE_MD 7.63(+0.99) 9.19(+0.7) 11.81(+0.78) 0.049 0.23 0.38
SAMWhole 6.60(-0.04) 8.10(-0.39) 10.66(-0.37) 0.053 0.20 0.31

Ours 4.59(-2.05) 5.92(-2.57) 8.40(-2.63) 0.064 0.11 0.20
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with challenging images. As depicted in Fig. 4, SAM in the zero-shot setting
fails to refine local information. However, SAM exhibits minimal SPC compared
to other models due to its feature extraction being performed only once on the
input image, resulting in a significantly faster processing time, over three times
faster than SimpleClick.

4.2 Fine-tuned SAM Performance

As introduced in Sec 2.2, we compare the three scenarios to verify the impact of
each SAM component on fine-tuned performance. We fine-tuned the entire SAM
(SAMWhole), the IE and MD (SAMIE_MD), and only the MD (SAMMD) using
the PAIP2019 dataset, respectively. Then, we verify the generalization ability
of models at two scales of the CAMELYON16 dataset. As shown in Table 2,
SAMMD yield lower performance on NoC and NoF compared to IE-trained sce-
narios on the PAIP2019 dataset. On CAMELYON16, SAMMD exhibited compa-
rable results as IE-trained cases at scale ×5 and better performance at scale ×10.
This result demonstrates that the pretrained IE of SAM shows the robustness
of feature extraction ability on different data distributions.

4.3 Comparison between SAM and SOTA Interactive Methods

As shown in Table 2, SAM still exhibits a notable performance gap compared to
RITM and FocalClick on the PAIP2019 dataset. SAM requires at least two more
NoC compared to RITM and FocalClick. SimpleClick exhibited poorer perfor-
mance compared to SAMWhole and SAMIE_MD, but similar or slightly better per-
formance compared to SAMMD. On the CAMELYON16 ×5 dataset, SAMWhole

exhibited the best performance. The numbers in parentheses in Table 2 repre-
sent the changes in the NoC metric compared to the zero-shot performance in
Table 1. All models showed a decrease in NoC but an increase in FocalClick, indi-
cating that CAMELYON16 ×5 has similar data distribution with the PAIP2019
dataset. As for the CAMELYON16 ×10 dataset, SAMMD performed second best
after SAM with a modified decoder (ours). Furthermore, despite significant dif-
ferences in data distributions between source and target domain, SAMMD and
SAMWhole demonstrated improved performance along with RITM, indicating
a higher generalized capability compared to FocalClick and SimpleClick. Note
that FocalClick and SimpleClick performed poorly compared to the zero-shot
approach with FocalClick’s significant performance drop as shown in Fig. 3 (c).
These methods utilize local segmentation which refines the prediction locally. As
the data distribution changes, more iterations of local segmentation are required,
resulting in performance degradation in both NoC and NoF metrics.

4.4 Modified SAM Decoder Performance

As shown in Table 2, our approach exhibits improved performance compared
to SAMMD in every dataset. Moreover, it shows comparable performance in
PAIP2019 compared to SAMWhole. Especially on the CAMELYON16 x10 dataset,
our approach demonstrates the best performance among all interactive SOTA
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models. It shows the highest performance in all of NoC and NoF, highlighting its
remarkable generalization capability. However, in PAIP2019, it still shows lower
performance compared to SOTA interactive models. Intuitively, Table 2 may not
be enough to say that our approach has a clear advantage over other methods.
However, when taking into account a comprehensive range of factors includ-
ing performance, inferencing speed, training cost, and generalization ability, we
argue that our approach is sufficiently compelling.

5 Conclusion
In this study, we demonstrate the potential of SAM for interactive pathology

segmentation. SAM showed higher generalization capability and notably excelled
in terms of inference speed per interaction compared to SOTA interactive models.
Additionally, a modified decoder with pretrained encoders of SAM can achieve
performance comparable to that of the entire SAM fine-tuning. In this approach,
SAM could efficiently capture user intent and precisely refine predictions, which
is crucial in interactive segmentation. However, SAM exhibits lower performance
compared to state-of-the-art interactive models, especially in achieving high IoU
scores. We plan to develope SAM as a foundational interactive model that works
well for all histopathology data (different organs, tissues, etc.).
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Fig. S1: Qualitative comparison between SAMWhole and SOTA methods on CAME-
LYON16 ×5 dataset. The results on each method show the performance in zero-shot
and fine-tuned on PAIP2019, respectively. The segmentation results in each row cor-
respond to different numbers of clicks: one click, five clicks, ten clicks, and twenty
clicks. Except for FocalClick, all other models demonstrated improved results over the
zero-shot, with SAM showing the largest improvement.
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Fig. S2: Qualitative comparison between SAMWhole and SOTA methods on CAME-
LYON16 ×10 dataset. The results on each method show the performance in zero-shot
and fine-tuned on PAIP2019, respectively.


