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ABSTRACT

Protein language models have revolutionized structure prediction, but their non-
linear nature obscures how sequence representations inform structure prediction.
While sparse autoencoders (SAEs) offer a path to interpretability here by learning
linear representations in high-dimensional space, their application has been lim-
ited to smaller protein language models unable to perform structure prediction.
In this work, we make two key advances: (1) we scale SAEs to ESM2-3B, the
base model for ESMFold, enabling mechanistic interpretability of protein struc-
ture prediction for the first time, and (2) we adapt Matryoshka SAEs for protein
language models, which learn hierarchically organized features by forcing nested
groups of latents to reconstruct inputs independently. We demonstrate that our
Matryoshka SAEs achieve comparable or better performance than standard ar-
chitectures. Through comprehensive evaluations, we show that SAEs trained on
ESM2-3B significantly outperform those trained on smaller models for both bi-
ological concept discovery and contact map prediction. Finally, we present an
initial case study demonstrating how our approach enables targeted steering of
ESMFold predictions, increasing structure solvent accessibility while fixing the
input sequence. Upon publication, we plan to release our code, trained models,
and visualization tools to facilitate further investigation by the research commu-
nity.

1 INTRODUCTION

Machine learning-based protein structure prediction models have achieved remarkable success by
leveraging vast amounts of sequence data (Jumper et al., 2021; Lin et al., 2022), building on the
success of previous sequence homology-based methods (Marks et al., 2011; Kamisetty et al., 2013).
However, their nonlinear nature prevent easily understanding how sequence information informs
structure prediction compared to previous statistical methods with simple linear priors.

Previous interpretability studies on transformer-based protein language models (PLMs) have demon-
strated PLMs, despite only training on sequences, learn structural information. Rao et al. (2021) and
Vig et al. (2021) showed that the attention map learns to predict residue-residue contacts. Zhang
et al. (2024) show PLMs predict structure primarily by memorizing and retrieving patterns of co-
evolving residues rather than learning fundamental biophysical principles. However, these works
are limited to correlational analyses between model behaviors and biological patterns, failing to
establish causal relationships between internal mechanisms and predictions.

Mechanistic interpretability through sparse autoencoders (SAEs) offers a promising direction for
understanding these black box models by learning interpretable linear representations (Templeton
et al., 2024; Gao et al., 2024), similar to how earlier statistical methods successfully used linear pri-
ors to capture sequence-structure relationships. While modern PLMs achieve superior performance
through complex nonlinear transformations, SAEs can potentially bridge this interpretability gap by
decomposing these transformations into human interpretable features in a linear high-dimensional
latent space.

SAEs have previously been trained on protein language models in the ESM2 series (Simon and
Zou, 2024; Adams et al., 2025), identifying thousands of features which correspond to manually-
annotated biological concepts and functional properties. However, the subject PLMs used in previ-
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Figure 1: a) Matryoshka Sparse Autoencoder (SAE) architecture for training on ESM2 hidden layer
representations, showing nested sparse feature organization. b) SAE intervention framework for
ESMFold, comparing normal operation (left) where all ESM2 hidden representations flow to the
structure trunk, versus intervention (right) where only a modified layer 36 representation is used
while ablating all other layers.

ous works were too small to enable interpretability on ESMFold, the structure prediction head on
top of ESM2.

Our work advances protein model interpretability in two key directions. First, we scale SAEs to
ESM2-3B, the base model for ESMFold, enabling mechanistic interpretability of protein structure
prediction for the first time. Second, we adapt Matryoshka SAEs (Nabeshima, 2024; Bussmann
et al., 2024) to PLMs, which learn features at multiple scales of detail. This hierarchical orga-
nization not only aligns with the multi-scale nature of protein structure but also improves feature
disentanglement and interpretability compared to standard sparse autoencoders.

We structure the paper as follows:

1. In Section 2, we present our methodological advances: scaling SAEs to ESM2-3B and
adapting Matryoshka SAEs, a recently developed SAE architecture that learns hierarchi-
cally organized features.

2. In Section 3, we validate our approach by demonstrating Matryoshka SAEs achieve com-
parable or better performance than L1 and TopK architectures on both language modeling
and structure prediction tasks.

3. In Section 4, we show the benefits of interpreting larger PLMs through ESM2-3B’s superior
performance on biological concept discovery and contact map prediction tasks.

4. In Section 5, we demonstrate practical applications through an initial steering case study,
showing how we can increase the solvent accessibility of a predicted structure while fixing
the input sequence.

5. In Appendix A, we include a ”meaningfulness statement” describing what we think consti-
tutes a meaningful representation of life and how this work contributes to this direction.

To enable the community to extend our work and continue investigating, we will release our code
and trained models open-source accompanied by a visualizer upon publication.

2 METHODS

2.1 SETUP

Problem Statement. For each token of a protein sequence, a transformer encoder-based PLM
outputs an embedding x ∈ Rd in each layer ℓ. A sparse autoencoder encodes the embedding x
to a higher-dimensional latent representation z ∈ Rn where d << n and decodes it as x̂. The
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SAE is trained by minimizing the L2 reconstruction loss between the original embedding x and its
reconstruction x̂, defined as L = ∥x− x̂∥22.

To learn meaningful representations, sparsity constraints are imposed on the latent vector z. This
sparsity can be achieved either through L1 regularization terms in the loss function or through spe-
cialized activation functions that directly restrict the number of non-zero elements. In practice, the
number of active (non-zero) elements K satisfies K ≪ d ≪ n, preventing degenerate solutions
such as the identity map.

Subject Models. We train SAEs on the ESM2 series of PLMs (Lin et al., 2022). We focus primarily
on the 3 billion parameter model ESM2-3B which provides representations for ESMFold.

Hyperparameters. We train SAEs on layer 18 and 36 of ESM2-3B, the middle and last layer
respectively. During training, we normalize our embeddings to have average unit L2 norm enabling
hyperparameter transfer between layers. During inference, we unnormalize by scaling the biases
following Marks et al. (2024).

Data. We randomly selected 10M sequences from Uniref50, the training set of ESM2, constituting
2.5 billion tokens. See Appendix G.2 for details.

2.2 MATRYOSHKA SAES

Background. Biological systems inherently exhibit hierarchical organization, from atomic interac-
tions to molecular assemblies to cellular structures to entire organisms. This hierarchical nature is
reflected in protein sequences, where information is encoded at multiple scales - from local amino
acid patterns to higher-order structural motifs. To capture these multi-scale features, we employ
Matryoshka Sparse Autoencoders (SAEs), which learn nested hierarchical representations of pro-
tein sequence embeddings (Nabeshima, 2024; Bussmann et al., 2024). Like their namesake Russian
dolls, these autoencoders embed lower-dimensional representations within higher-dimensional ones,
allowing simultaneous optimization of features at multiple scales. For a visual diagram, see Fig. 1a.

Architecture. The Matryoshka SAE architecture divides its latent dictionary into nested groups
of increasing size, with each group building upon the previous ones. When processing a protein
token embedding x ∈ Rd from a PLM, each group must learn to reconstruct the input using only
its allocated subset of latents. This progressive constraint naturally encourages the emergence of
a feature hierarchy - earlier groups must capture high-level, abstract features to achieve reasonable
reconstruction with limited capacity, while later groups can encode more granular details.

Encoding. We follow Bussmann et al. (2024) and Marks et al. (2024) where given an token embed-
ding x ∈ Rd, the encoding process follows as

z = BatchTopK(Wencx+ benc) (1)

where Wenc ∈ Rn×d is the encoder weight matrix, benc ∈ Rn is the encoder bias, and BatchTopK
enforces sparsity by keeping only the B ∗K highest activations in each batch. This enforces average
sparsity while allowing the number of active latents per token to vary.

Decoding and Loss. The key innovation of Matryoshka SAEs lies in their group-wise decoding
process:

x̂(m) = W
(m)
dec z[1:m] + bdec (2)

Here, z[1:m] represents the first m components of the latent vector, W (m)
dec ∈ Rd×m is the decoder

weight matrix restricted to its first m columns, and bdec ∈ Rd is the decoder bias. Each group
m must reconstruct the input using only its allocated subset of latents. The total loss combines
reconstruction errors across all group sizes M :

L(x) =
∑
m∈M

∥x− x̂(m)∥22 + αLaux (3)

where α weights any auxiliary regularization terms. We use the auxiliary loss term from Marks et al.
(2024) and Gao et al. (2024) to reduce dead latents.
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(a) CE loss reconstruction across sparsity levels
for TopK, Matryoshka (Matry), and L1 regular-
ized autoencoders. Matryoshka requires similar
or less active latents to achieve good reconstruc-
tion.

Comparison RMSD (Å)

Exp vs. ESMFold (baseline) 3.1 ± 2.5
Exp vs. ESMFold (full ablation) 15.1 ± 5.9
Exp vs. ESMFold (only layer 36) 2.9 ± 2.1
Exp vs. SAE (layer 36) 3.2 ± 2.6
ESMFold vs. SAE (both L36) 3.1 ± 4.4

(b) Backbone RMSD (Å) comparing experimental
structures (Exp), ESMFold predictions, and SAE
reconstructions. Keeping layer 36 or using SAE
preserves accuracy, while full ablation degrades
performance.

Figure 2: Downstream loss evalautions on a) language modeling and b) structure prediction.

3 EVALUATIONS ON DOWNSTREAM LOSS

We evaluate our SAEs on language modeling and structure prediction for ESM2-3B and ESMFold
respectively to assess how well they preserve performance on downstream tasks.

3.1 LANGUAGE MODELING

Setup. We report the average difference in cross-entropy loss ∆CE between the logits from the
original and SAE reconstructed PLM. We evaluate on 1024 random sequences in CATH (Sillitoe
et al., 2020) following Simon and Zou (2024) on layer 36 of ESM2. 1

Results. Figure 2a shows the impact of different autoencoder architectures on downstream lan-
guage modeling performance across sparsity levels. For architecture details, see Appendix G.1. At
low sparsity (L0 < 10), all approaches - TopK, Matryoshka, and L1 regularization - show similar
degradation (∆CE ≈ 2.5–3.0). As sparsity increases, TopK and Matryoshka SAEs maintain better
performance compared to L1 regularization, with ∆CE approaching 0 for sparsity levels above 100.

3.2 STRUCTURE PREDICTION

Setup. By scaling SAEs to ESM2-3B, we can now evaluate how well our SAE representations
preserve ESMFold’s structure prediction capabilities. We focus on reconstructing ESM2’s hidden
representations that feed into ESMFold. Since ESMFold uses representations from all layers but our
SAE reconstructs only one layer, we ablate all other layers to isolate reconstruction effects. This
ablation maintains performance on the CASP14 test set (see Fig. 2b).

Data. We evaluate structure prediction on the CASP14 dataset, a diverse challenging dataset that is
held out from ESMFold during training. We filter out sequences that 1) are longer than 700 residues
so that our evaluations can fit on one GPU and 2) have ESMFold predictions with RMSD > 10 Å
compared to the experimental structure, leaving 17 / 34 targets. Full list in Appendix D.

Results. Our experiments demonstrate effective preservation of structural information. In Fig. 2b,
we see that comparing experimental structures to ESMFold predictions shows an RMSD of 3.1 ± 2.5
Å without ablation. While full ablation of ESM2 embeddings significantly degrades performance
(RMSD 15.1 ± 5.9 Å), both keeping only layer 36 (RMSD 2.9 ± 2.1 Å) and using our SAE recon-
struction (RMSD 3.2 ± 2.6 Å) maintain comparable performance. The similarity between ESMFold
and SAE predictions (RMSD 3.1 ± 4.4 Å) confirms preservation of structural information.

1Results on a held-out Uniref50 test set and layer 18 will be included in the final version.
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These results show our SAE effectively compresses model representations while maintaining both
sequence-level and structural prediction capabilities across sparsity levels.

4 FURTHER EVALUATIONS

4.1 SWISS-PROT CONCEPT DISCOVERY

We evaluate feature interpretability through alignment with Swiss-Prot annotations, following the
methodology of Simon and Zou (2024) with background in Appendix Section C.1. Our evaluation
encompasses 476 biological concepts (256 domains, 98 residue-level features, 55 regions, 37 motifs,
15 zinc fingers, 5 targeting peptides, and 10 other features), analyzing 30,871,402 amino acid tokens
(approximately 21% of Swiss-Prot) (Table 1).

Methodology. Concepts are included if they contain either more than 1,500 total amino acids or
appear in more than 10 domains within our dataset. Features are considered to capture a concept
if they achieve an F1 score above 0.5, calculated using the modified domain-level recall metric in
Simon and Zou (2024) that accounts for varying granularity between feature activations and concept
annotations. For consistent evaluation across architectural variants, we perform post-hoc normaliza-
tion by scaling feature activations to [0,1] based on maximum activation values across the evaluation
set.

Results. When comparing models trained on ESM2-3B versus ESM2-8M (both using dictionary
size 20,480 and sparsity k=100), we find SAEs trained on ESM2-3B capture substantially more
biological concepts with higher F1 scores achieved for each concept (Figure 5). The 3B Matryoshka
model generates 2,677 high-quality feature-concept pairs of F1 > 0.5, compared to 287 pairs for its
8M counterpart, while the TopK variants produce 2,461 and 844 pairs respectively (Figure 3a).

Both 3B variants identify 233 distinct concepts (48.9% of total) with F1 scores above 0.5, com-
pared to 72 (15.1%) and 95 (20.0%) concepts for the 8M Matryoshka and TopK variants (Table 1).
This improved coverage spans all categories, with particularly strong performance in protein do-
mains where 3B models capture 76% of concepts versus 19.5-28.1% in 8M models. Head-to-head
comparison shows 3B models achieve higher F1 scores on over 400 concepts, with an average im-
provement of 0.25, while architectural variants at the same scale show minimal differences (Figure
6). See Appendix Section C.2 for additional details on model performance.

4.2 CONTACT MAP PREDICTION

Background. Following Zhang et al. (2024), we evaluate our SAEs’ ability to capture coevolution-
ary statistics through contact map prediction using the Categorical Jacobian. Details in Appendix E.
This provides an unsupervised test of whether our compressed representations preserve the structural
information encoded in the original model.

Results. We assess contact prediction accuracy using the precision at L/2 metric (P @ L/2), which
measures the fraction of correctly predicted contacts among the top L/2 predicted long-range con-
tacts, where L is the protein sequence length. Figure 3b shows the correlation between contact
prediction accuracy of ESM2 and our SAE reconstructions across different model scales. The 3B
model demonstrates consistently higher precision compared to the 8M model, with reconstructions
closely tracking the original ESM2 predictions. 2 This suggests that larger language models capture
more robust coevolutionary signals that can be effectively compressed by our approach.

5 CASE STUDY: SAE FEATURE STEERING ON ESMFOLD

5.1 SAES ON ESMFOLD HELP IDENTIFY STRUCTURAL FEATURES

Building on previous work by Simon and Zou (2024), we investigated whether targeted feature
manipulation of ESM2-3B could induce coordinated changes in both sequence composition and
predicted structure through ESMFold’s pipeline. Using our Matryoshka SAE trained on ESM2-
3B, we identified a feature strongly correlated with residue hydrophobicity. Following the feature

2The current version of these results are biased and will be corrected. See Appendix E.
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(a) Number of high-performing feature-concept
pairs (F1 > 0.5) across model scales and archi-
tectures, broken down by concept type.

(b) Correlation plot on long-range contact accu-
racy measured by Precision at L/2 (P @ L/2) be-
tween ESM2 and SAE reconstructions on 8M and
3B subject model sizes.

Figure 3: Analysis of feature-concept relationships and long-range contact accuracy.

steering methodology of Templeton et al. (2024) and detailed in Appendix Section F, we steer this
feature (α = -0.275) and observe significant changes in predicted protein surface accessibility of
myoglobin (PDB ID: 1MBN) while maintaining structural integrity (Figure 4a).

Steering increased total Solvent Accessible Surface Area (SASA) by 31.5% (from 8,369.5 to
11,009.3 Å

2
) with minimal structural disruption (RMSD 2.76 Å) in the expected range of Figure 2b.

Feature intervention affected both sequence-level predictions via steering toward more hydrophilic
residues and direct structural predictions of ESMFold (Figure 8). Critically, steering the hidden rep-
resentation at layer 36 alone was sufficient to induce significant structural changes consistent with
increased hydrophilicity, even when providing ESMFold with the correct input sequence (Figure
4b). Further details found in Appendix Section F.2 and feature validation in Appendix Section F.3.

6 DISCUSSION

(a) Structural visualization of feature steering effect on myoglobin
with α= -0.275 on selected feature. Bottom row surface represen-
tation is colored by computed SASA, with blue as low, white as
medium, and red as higher SASA.

(b) Solvent accessible surface area
(SASA) changes under different steer-
ing conditions.

Figure 4: Feature steering and SASA analysis.
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This work advances PLM interpretability by scaling SAEs to ESM2-3B, extending recent work us-
ing SAEs to interpret PLMs to the structure prediction task (Simon and Zou (2024); Adams et al.
(2025)). Through a combination of increasing subject model size, leveraging the Matryoshka ar-
chitecture, and targeted interventions on ESMFold’s structure predictions, we present the first work
applying mechanistic interpretability to protein structure prediction.

6.1 LIMITATIONS

In the scope of this work, several limitations remain. First, although we take an important step
toward mechanistic interpretability of protein structure prediction, our focus is exclusively on how
PLM-derived sequence representations inform structure prediction. The interpretability of ESM-
Fold’s structure prediction head is left for future investigation. Second, our interventions on ESM-
Fold were restricted to single-feature manipulations on embeddings from individual layers rather
than exploring combinations of features or cross-layer interactions. Third, our analysis is limited to
the 8M and 3B models of ESM2; evaluating a broader range of model sizes could reveal whether
SAE performance eventually plateaus. Fourth, ESMFold is no longer state-of-the-art compared to
newer diffusion-based protein structure prediction methods Abramson et al. (2024); Wohlwend et al.
(2024); Watson et al. (2023).

Fifth, recent work suggests that SAEs can learn different features even when trained on the same
data, implying that our results may be sensitive to both initialization and the specific UniRef50
sample used (Paulo and Belrose (2025)). Sixth, our structural steering experiments focused primarily
on surface accessibility, leaving other potential structural properties unexplored, and the observed
hydrophobicity effects might be achievable through simpler approaches such as steering smaller
PLMs or using supervised linear probes. Seventh, for Matryoshka SAEs, we do not report how
the number of groups and group size choices impact results. Finally, although our ablation studies
demonstrate preservation of structural information, we have not fully characterized how interactions
among SAE features might affect ESMFold’s folding mechanism. We anticipate that future work
leveraging our open-source models developed with substantial computational resources will address
these limitations and yield further insights for the community.

6.2 FUTURE WORK

Connections to Geometric Representations. This work, while taking a significant step towards
interpreting protein structure prediction, focuses primarily on learning linear representations of se-
quence information. Future work could establish formal connections between SAE sequence repre-
sentations and equivariant representations of geometric data (Thomas et al., 2018; Geiger and Smidt,
2022; Lee et al., 2023), particularly investigating how the linear overcomplete basis learned by SAEs
map to irreducible representations of geometric transformations in the context of protein structure
prediction.

Theoretical Analysis of Matryoshka SAEs. Additionally, theoretical analysis drawing from or-
dered autoencoding (Rippel et al., 2014; Xu et al., 2021) and information bottleneck methods
(Tishby et al., 2000) applied to protein structure prediction could improve our understanding of
multi-scale feature learning in biological sequences. Such analysis may provide deeper insights into
how hierarchical feature representations emerge and interact within the context of protein language
models.

7
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7 APPENDIX

A MEANINGFULNESS STATEMENT

We consider meaningful biological representations to be those that enable humans to better under-
stand and apply biological AI models in useful ways. Our work advances this goal by making the
highly nonlinear representations in state-of-the-art protein structure prediction models more inter-
pretable through sparse autoencoders, without sacrificing performance. By revealing the hierarchical
organization of learned features and enabling targeted manipulation of structure predictions, our ap-
proach bridges the gap between black-box performance and biological understanding - a crucial step
toward trustworthy and controllable protein design tools.

B RELATED WORK

Recent work has focused on mechanistically interpreting protein language models (PLMs) to under-
stand how they achieve remarkable success in protein modeling and design. Early interpretability
studies examined PLM internals, with Vig et al. (2021) and Rao et al. (2021) discovering that at-
tention patterns encode structural relationships between amino acids. Later work extended these
findings, showing attention could identify functionally important regions like allosteric sites (Kan-
nan et al. (2024); Dong et al. (2024)).

Building on this attention-based analysis, Zhang et al. (2024) provided key mechanistic insights
by showing that PLMs primarily learn by storing and looking up coevolutionary patterns preserved
through evolution, rather than learning fundamental protein physics. By analyzing what sequence
features influence contact predictions through a ”categorical Jacobian” method, they demonstrated
that PLMs memorize statistics of co-evolving residues analogous to classic evolutionary models.

Sparse autoencoders (SAEs) have emerged as a powerful new tool for interpreting these models.
Simon and Zou (2024) developed InterPLM, extracting thousands of interpretable features from
ESM-2 that correspond to known biological concepts like binding sites, structural motifs, and func-
tional domains. Their work revealed that most biological concepts exist in superposition within
the model’s neurons, as SAEs vastly outperformed individual neurons at capturing these concepts.
Concurrently, Adams et al. (2025) explored different SAE training approaches and evaluated their
biological relevance through novel downstream tasks. In this work, we scale SAE training and eval-
uation to ESM2-3B and introduce Matryoshka SAEs (Bussmann et al. (2024); Nabeshima (2024))
with hierarchical encoding to steer ESMFold’s structure prediction capabilities for the first time.

C SWISS-PROT EVALUATION

C.1 BACKGROUND OF SWISS-PROT EVALUATION

Swiss-Prot is the gold standard manually curated section of the UniProt Knowledge Base, containing
expert-annotated protein sequences with detailed information about their structure, function, mod-
ifications, and key biological regions (Poux et al. (2017); Consortium (2024)). Through extensive
experimental validation and literature review, Swiss-Prot provides high-quality annotations that span
from individual catalytic sites to complete functional domains. Following Simon and Zou (2024),
we evaluate whether learned features align with these known biological concepts using a modified
F1 score that handles the mismatch between precise feature activations and broader protein annota-
tions present in Swiss-Prot. This approach calculates precision at the amino acid level but recall at
the domain level, enabling systematic comparison between learned features and known biological
concepts.

C.2 PERFORMANCE OF SAE MODELS ON F1 CONCEPT EVALUATION

Model Scale vs Architecture: At 3B scale, architectural differences have minimal impact, with both
Matryoshka and TopK identifying 233 concepts and showing only small variations in high-quality
feature-concept pairs (2,677 vs 2,461). At 8M scale, architectural differences are more pronounced
though still modest, with TopK outperforming Matryoshka (95 vs 72 concepts). However, the scale

8
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effect dominates these architectural differences - both 3B variants substantially outperform both 8M
variants across all concept types.

Category Total Concepts Concepts with F1 > 0.5 (%)

3B MatK 3B TopK 8M MatK 8M TopK

Domains 256 193 (75.4%) 195 (76.2%) 50 (19.5%) 72 (28.1%)
Regions 55 19 (34.5%) 20 (36.4%) 10 (18.2%) 13 (23.6%)
Motifs 37 6 (16.2%) 5 (13.5%) 2 (5.4%) 3 (8.1%)
Zinc Fingers 15 5 (33.3%) 5 (33.3%) 2 (13.3%) 2 (13.3%)
Other Features 10 5 (50.0%) 3 (30.0%) 4 (40.0%) 1 (10.0%)
Targeting Peptides 5 5 (100.0%) 5 (100.0%) 4 (80.0%) 4 (80.0%)

Total 476 233 (48.9%) 233 (48.9%) 72 (15.1%) 95 (20.0%)

Table 1: Concept coverage comparison across model scales and architectures. We report the number
(percentage) of concepts with F1 scores exceeding 0.5 for each model variant, broken down by
concept category.

Figure 5: Distribution of highest F1 scores achieved for each concept across models.

The boxplot distribution reveals a clear separation between model scales (5. The 3B models show
broader distributions with medians around 0.4 and numerous concepts achieving scores above 0.6. In
contrast, 8M models show compressed distributions with medians below 0.1, indicating substantially
weaker concept capture across the board.

The comparison heatmaps demonstrate relative performance between model variants by comparing
their best-performing features for each concept. The left heatmap shows the number of concepts
where each row model achieves a higher F1 score than the column model, while the right heatmap
shows the average F1 score difference (Figure 6). The 3B models outperform 8M variants on ap-
proximately 400 concepts, with an average F1 improvement of 0.25. Within each scale, architectural
variants show minimal differences (average F1 difference < 0.01), suggesting model scale rather
than architecture drives concept capture ability.

9
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Figure 6: Left: Number of concepts where the row model achieves a higher maximum F1 score for
a given concept than the column model. Right: Average score difference of the highest F1 scores
for a given concept between models (row minus column) across all concepts. Each cell compares
the best-performing feature for each concept between model pairs. Darker blue indicates stronger
performance advantage for the row model.

D CASP14 DATASET

We downloaded the CASP14 targets dataset from the CASP14 website here.

After filtering, we benchmark on these targets: [T1024, T1025, T1026, T1029, T1030, T1032,
T1046s1, T1046s2, T1050, T1054, T1056, T1067, T1073, T1074, T1079, T1082, T1090].

E CONTACT MAP PREDICTION

Motivation. Zhang et al. (2024) introduced the Categorical Jacobian calculation to extract coevo-
lutionary signals from protein language models in an unsupervised manner via masked language
modeling. Given that SAEs also learn through unsupervised training, we adapt this approach for
contact map prediction to evaluate whether SAEs preserve coevolutionary patterns and structural
information learned by ESM2.

Data. We subset the evaluation dataset to the top 50 proteins ranked by precision at L/2 on ESM2-
3B due to computational constraints. This subset was used as a positive control, and we did not have
time to rerun the full analysis before the submission deadline. We acknowledge that this approach
introduces a bias favoring the claim that ESM2-3B outperforms 8M, which will be addressed in a
subsequent revision. Nonetheless, we expect the claim to remain valid, as ESM2-3B significantly
outperforms 8M across nearly the entire dataset of Zhang et al. (2024), as illustrated in Fig. 7.

Hyperparameters. In Fig 3b, our SAEs were trained on layer 36 with TopK architecture with ex-
pansion factors 16x for ESM2-8M (dict size 10240) and 8x for ESM2-3B (dict size 20480). We did
not rerun for the Matryoshka architecture given TopK’s similar language modeling reconstruction
performance and how computationally expensive it is.
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Figure 7: Contact Map Accuracy for Cat. Jacobian on ESM2 8M vs 3B, N=1412/1431

F ESMFOLD STEERING CASE STUDY

F.1 FEATURE STEERING BACKGROUND

Following the method described in Templeton et al. (2024), each target feature is represented by its
corresponding decoder vector (d(i) = Wdec[i, :]), which is normalized to unit norm during training,
and an intervention is performed by adding a scaled version of this vector to the hidden state (hl ←
hl+α·d(i)) to amplify or suppress that feature’s contribution. In our approach, we apply a maximum
activation scaling factor during training and subsequently scale the encoder and decoder biases at
inference. This means our effective steering coefficient, reported in all figures and results, is given
by α′ = norm factor · α, ensuring consistent steering effects across different model configurations.

F.2 DETAILS OF FEATURE STEERING CASE STUDY

Figure 8: Plot of sequence GRAVY scores overlaid with sequence similarity with increased feature
steering

11
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Our intervention framework employed two complementary approaches: (1) examining sequence-
level changes through standard ESMFold predictions, and (2) directly intervening on hidden repre-
sentations while maintaining the true input sequence in an ablated version that isolated intervention
effects. This design allowed us to dissect how structural information flows through the model. The
ablated model showed minimal performance differences (Figure 2b).

The feature (f/2) was identified in the first group of a Matryoshka SAE trained on hidden layer 36
(dictionary size 10,240, group fractions [0.002, 0.0156, 0.125, 0.8574], sparsity k=20), showing
strong correlation with residue hydrophobicity. We selected the Matryoshka SAE architecture as its
hierarchical encoding tends to capture broader concepts in earlier groups, which we hypothesized
would enable more robust steering across diverse proteins. We applied the steering methodology
from Templeton et al. (2024), adding the decoder vector with coefficient α = -0.275. SASA was
computed using FreeSASA Mitternacht (2016) with default parameters. The observed RMSD of
2.76 Å aligns with typical deviations for ESMFold with layer 36 LM head ablation, while ablating
other ESM2 layer representations resulted in RMSD of 0.191 compared to regular ESMFold (Figure
2b).

As shown in Figure 8, steering progressively decreased sequence GRAVY scores, indicating a shift
toward hydrophilic residues. When modified sequences were processed through default ESMFold,
we observed even larger SASA increases, consistent with replacing hydrophobic core residues with
hydrophilic ones. This effect manifested through two distinct mechanisms: direct biasing of the
structure module toward more exposed conformations (even with correct sequence information),
and shifting sequence predictions toward more hydrophilic residues when allowed to influence the
sequence module. Notably, structural changes persisted even when preserving the original sequence,
suggesting ESMFold’s predictions are influenced by hidden representations corresponding to the
modified sequence despite having access to correct sequence information.

F.3 VALIDATION OF CASE STUDY FEATURE STEERING DIRECTIONALITY AND SPECIFICITY

Scalar Modified SASA SASA Change Modified GRAVY GRAVY Change

0.069 8369.55 0.00% -0.3588 0.00%
0.208 8351.58 -0.21% -0.0595 +83.42%
0.346 8568.43 +2.38% 0.6569 +283.08%
0.554 8616.49 +2.95% 1.3046 +463.60%
0.693 9719.28 +16.13% 1.5255 +525.17%

Table 2: Positive steering control results showing changes in SASA and GRAVY scores relative to
baseline values.

Feature Metric Scalar Values

-0.069 -0.346 -0.693

Feature 5 (Group 1) δSASA 0.00% +0.38% -0.54%
δGRAVY 0.00% +40.40% +52.34%

Feature 39 (Group 2) δSASA 0.00% 0.00% 0.00%
Feature 1381 (Group 3) δSASA 0.00% 0.00% 0.00%
Feature 7921 (Group 4) δSASA 0.00% 0.00% 0.00%

δGRAVY 0.00% 0.00% 0.00%

Original δSASA +128.44% +137.12% +112.89%
Experiment δGRAVY -417.34% -446.21% -356.69%

Table 3: Comparison of random feature controls with original experiment, showing percentage
changes relative to unsteered (scalar=0) values.

We performed positive steering control experiments to validate the directional behavior of our fea-
ture, applying scalar values from 0.069 to 0.693. As predicted, steering the feature positively resulted

12
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in a systematic increase in hydrophobicity (GRAVY score) while maintaining structural stability at
moderate steering strengths. The modified sequence GRAVY scores increased from -0.36 to 1.53,
reflecting enhanced hydrophobic content, while SASA values remained stable (≤ 3% change) until
the highest scalar values where minor structural perturbations emerged.

Additionally, to assess the specificity of identified feature, we performed negative steering experi-
ments on randomly selected features from each Matryoshka group (features 5, 39, 1381, and 7921).
Unlike our target feature, random features showed minimal response to steering, with three features
showing no changes (≤ 0.1% variation) across all metrics and one feature (Feature 5) showing only
minor variations incomparable to the dramatic shifts observed in our main experiment.

G IMPLEMENTATION DETAILS

G.1 CODE

For all SAE implementations, we use Marks et al. (2024). For our L1 regularized SAEs, we follow
Conerly et al. (2024). For TopK, we follow Gao et al. (2024). In Fig 2a, we standardize hyperpa-
rameters with an expansion factor of 8x (dict size 20480) and batch size 2048 and use best learning
rate.

G.2 DATA CURATION

Following the approach outlined in the InterPLM paper, we first process the UniRef50 FASTA file by
iterating over each protein sequence. We remove any sequence that exceeds 1022 tokens, as ESM-2
cannot process longer inputs. From the remaining sequences, we randomly select a predetermined
number of proteins to create our working dataset. This dataset is then divided into shards of 1000
sequences each, facilitating efficient handling during training.

G.3 OPTIMIZING THE DATASET AND TRAINING PROCEDURE

After generating embeddings with ESM-2, the activations are stored as tensors representing entire
shards. We then use Litdata’s optimize function to iterate through each tensor and split it into
fixed-size batches. The optimized dataset achieves speedup by reducing streaming I/O overhead to
AWS S3 during training. Additionally, the optimized dataset uses Litdata’s StreamingDataset and
StreamingDataloader where we shuffle the batches during training, while also leveraging PyTorch
Lightning for multi-GPU training support.

13
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nakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia Bertolli, Alex
Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers, Andrew Cowie,
Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A. Khan, Caro-
line M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian Stecula,
Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal Zielinski,
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