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ABSTRACT

Graph convolutional networks have been a powerful tool in representation learning
of networked data. However, most architectures of message passing graph convo-
lutional networks (MPGCNs) are limited as they employ a single message pass-
ing strategy and typically focus on low-frequency information, especially when
graph features or signals are heterogeneous in different dimensions. Then, exist-
ing spectral graph convolutional operators lack a proper sharing scheme between
filters, which may result in overfitting problems with numerous parameters. In this
paper, we present a novel graph convolution operator, termed BankGCN, which
extends the capabilities of most MPGCNs beyond single ‘low-pass’ features and
simplifies spectral methods with a carefully designed sharing scheme between
filters. BankGCN decomposes multi-channel signals on arbitrary graphs into sub-
spaces and shares adaptive filters to represent information in each subspace. The
filters of all subspaces differ in frequency response and together form a filter bank.
The filter bank and the signal decomposition permit to adaptively capture diverse
spectral characteristics of graph data for target applications with a compact archi-
tecture. We finally show through extensive experiments that BankGCN achieves
excellent performance on a collection of benchmark graph datasets.

1 INTRODUCTION

In many application domains, structured data is supported by graphs or networks. To deal with
such data, a collection of graph convolutional networks (GCNs), including MPGCNs and spectral
GCNs, have been proposed by generalizing architectures used for data in the Euclidean domain,
to the irregular graphs. Unfortunately, both types of architectures have implicit limitations when it
comes to efficiently representing graph data information in terms of frequency filtering.

MPGCNs (Gilmer et al., 2017; Velikovi et al., 2018; Hamilton et al., 2017; Xu et al., 2019) built on
diverse message passing (MP) schemes are much prevalent with their flexible and intuitive formu-
lations of graph convolution. The message passing schemes in classical MPGCNs, however, mostly
focus on the low frequency characteristics of the data. For example, GCN (Kipf & Welling, 2017)
performs as Laplacian smoothing (Li et al., 2018), and the mean aggregator adopted in GraphSage
(Hamilton et al., 2017) has naturally low-pass properties. However, in addition to low-frequency
components, graph data may also carry rich information in the middle- and high-frequency ranges.
There have been some recent attempts to complement low-pass features, either with predefined fil-
ters (Gao et al., 2019; Chang et al., 2021) or with other aggregation schemes (Abu-El-Haija et al.,
2019; Zhu et al., 2020). Yet, they still have some limitations, such as the nonadaptiviy of predefined
filters. The importance of different frequency components may vary with the target tasks, it is thus
beneficial to be able to adapt the representation accordingly.

Spectral graph convolutional networks (Defferrard et al., 2016; Levie et al., 2018; Bianchi et al.,
2021) are designed in the graph frequency domain directly and are much more powerful alternatives
to process diverse spectral characteristics of graphs. The lack of proper sharing schemes between
filters, however, renders these models redundant and even prone to overfitting.

We go beyond the above limitations and propose to build effective adaptive representations for
graph data with diverse spectral properties. We design a novel graph convolution operator termed
BankGCN that utilizes an adaptive filter bank to process graph data in the frequency domain, as
presented in Fig. 1. BankGCN provides an effective implementation to simplify spectral methods
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with a proper sharing scheme between filters with the help of signal decomposition. Firstly, we
decompose multi-channel graph signals into a collection of subspaces through projection, in order
to adaptively separate input data according to signal characteristics. Components in a subspace will
then share a learnable filter that captures their particular frequency properties. Notably, represen-
tations are built on finite impulse response (FIR) filters with a universal design (Tremblay et al.,
2018) that correspond to local message passing schemes in the spatial domain. Filters of all the
subspaces together form a filter bank, and they are simultaneously learned from data together with
subspace decomposition. The filter bank representation is regularized to favour diversity in the fre-
quency responses, in order to properly capture various spectral components in the graph signals.
The proposed convolution operator is stackable, and can be optimized together with other modules
in the GCNs like graph pooling. We validate the proposed architecture through extensive experi-
ments on various graph classification tasks. BankGCN is more powerful than most MPGCNs, such
as GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al., 2017), and GIN (Xu et al., 2019), in
that it is able to exploit more diverse spectral characteristics than ‘low-pass’ features in the data and
adapts to its heterogeneous properties with a group of learnable multi-hop message passing strate-
gies. Furthermore, it outperforms its counterpart ChebNets (Defferrard et al., 2016) with a more
compact architecture and achieves better generalization, and is superior to the most recent spectral
method ARMA (Bianchi et al., 2021). It would be interesting to extend BankGCN to tasks like link
prediction and applications into non-Euclidean data like 3-D point clouds.

2 RELATED WORK

We briefly overview the main architectures for graph representation learning. We describe first
existing message passing schemes, and then discuss several spectral methods.

Message Passing Graph Convolutional Networks. MPGCNs design graph convolution with a va-
riety of message passing schemes in the spatial domain. For instance, messages are aggregated with
the node-wise mean or max operation in a localized neighborhood in GraphSage (Hamilton et al.,
2017), or based on attention scores in GAT (Velikovi et al., 2018). A more expressive scheme, GIN,
is further proposed with summing features in a neighborhood followed by a multi-layer perceptrons
(MLP) to approximate any injective function on multiset (Xu et al., 2019). However, these methods
are typically constrained to a single one-hop message passing strategy that mostly captures ‘low-
pass’ characteristics in the graph data. Klicpera et al. (2019) expand the MP range to multi-hop
neighborhoods with graph diffusion operators. Besides, several methods are proposed to implement
an equivalent high-order (polynomial) filter with the whole network to alleviate over-smoothing rep-
resentation, including SGC (Wu et al., 2019), LGC (Navarin et al., 2020), GPR-GNN (Chien et al.,
2021), SGF (NT et al., 2021), and S2GC (Zhu & Koniusz, 2021). However, a single equivalent fil-
ter may be limited when representing multi-channel signals with diverse frequency characteristics.
Alternatively, a group of works attempt to complement the ‘low-pass’ features using different strate-
gies, such as graph wavelet filters (Gao et al., 2019; Chang et al., 2021), a one-order high-pass filter
(Bo et al., 2021) and an additional quadratic middle-pass filter (Wu et al., 2021), and other aggrega-
tion schemes (Abu-El-Haija et al., 2019; Zhu et al., 2020). Contrary to these methods, we employ a
learnable filter bank with various frequency responses in a single layer to adaptively capture diverse
spectral characteristics of signals rather than merely adding ‘high-pass’ features or specific com-
ponents via predefined graph wavelets. Finally, in contrast with some works that further consider
adaptive filters (Li et al., 2021; Dong et al., 2021; Pasa et al., 2021), BankGCN is a more powerful
and compact design with polynomial filter banks to avoid eigen-decomposition and a further sharing
scheme between filters to reduce free parameters. More detailed comparisons in App. F.

Filtering on Graphs and Spectral GCNs. Filtering and Graph Fourier Transform have been gener-
alized to graph data via spectral graph theory (Shuman et al., 2013). Correspondingly, several spec-
tral GCNs are derived from filtering in the graph frequency domain directly, as pioneered by Bruna
et al. (2014). However, they rely on computationally expensive eigen-decomposition of the graph
Laplacian. To avoid the eigendecomposition, similarly to dictionary learning methods (Thanou et al.,
2014) in graph signal processing (GSP), the filters are built as polynomial or rational functions of
eigenvalues of the graph Laplacian, such as Chebyshev polynomials in ChebNets (Defferrard et al.,
2016) and TIGraNet (Khasanova & Frossard, 2017), Cayley polynomials in CayleyNets (Levie et al.,
2018), and auto-regressive moving average (ARMA) filters (Bianchi et al., 2021). In contrast with
these spectral convolution methods that focus on the implementation of filters with desirable prop-
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Figure 1: Illustration of the BankGCN operator. In each layer, the graph signal x(vm) is decom-
posed into a collection of subspaces and processed by an adaptive filter bank to capture distinct
frequency properties. A filter in the filter bank corresponds to an adapted K-hop neighborhood
message passing scheme in the spatial domain, as illustrated in (b) and (c).

erties, like localization and narrowband specialization, this paper focuses on the design of the filter
bank in order to construct a simplified architecture with improved generalization.

Finally, there are several papers in graph signal processing literature about the design of graph fil-
ter banks for graph signal decomposition (Narang & Ortega, 2012; Tanaka & Sakiyama, 2014) and
multiscale analysis (Hammond et al., 2011; Narang & Ortega, 2013). However, they usually work
under a rigid constraint, e.g., perfect reconstruction, and thereby their produced (sparse) represen-
tations may not be flexible enough to adapt to diverse tasks in machine learning. In contrast, our
method relaxes the perfect reconstruction condition and rather regularizes filters in a filter bank to
be sufficiently different in the graph frequency domain.

3 PRELIMINARIES AND PROBLEMS

In this paper, we consider data that is represented on undirected graphs. Each vertex of graphs is
attributed a d-channel signal or feature. The node signal is typically multi-channel, i.e., d > 1, and
with different spectral statistics along different dimensions, which we refer to heterogeneous signals
in this paper. Notations and preliminaries on Graph Fourier Transform and filtering are introduced
in App. A.

We first show how filtering can be implemented by messaging passing, which is used in many state-
of-the-art graph representation learning methods. Filtering in the graph frequency domain and MP
in the spatial domain is closely related (Shuman et al., 2013). Taking the most popular GCN (Kipf &
Welling, 2017) as an example, according to its initial formation, the j-th channel of a filtered signal is

hj =

d∑
i=1

(I +D−
1
2AD−

1
2 )Θxi =

d∑
i=1

(2I − L)Θi,jxi =

d∑
i=1

Θi,jUĝ(Λ)U∗xi (1)

where Θ denotes learnable parameters, d indicates the dimension of signals, and ĝ(Λ) = 2I−Λ is a
low-pass filter (NT & Maehara, 2019; Min et al., 2020). The renormalized version of GCN and the
GIN can be formulated similarly. Please refer to (Balcilar et al., 2021) for their specific equivalent
supports of ĝ(Λ). Besides, GraphSage uses the mean or max operator to aggregate information in
neighborhoods. Although it is hard to explicitly formulate its corresponding frequency response, the
element-wise mean operation is a low-pass operation by nature and the element-wise max operator
performs as an envelope extraction that suppresses the high-frequency components.

Another line of works, spectral GCNs, are directly derived from spectral filtering. For the repre-
sentative ChebNets and CayleyNets, the filters are defined as ĝ(λ) =

∑K
k=0 θ

(k)Tk(λ) in the graph
frequency domain with the Chebyshev polynomial or Cayley polynomial basis {Tk(·)} and corre-
spondingly

hj =

d∑
i=1

U

K∑
k=0

Θ
(k)
i,j Tk(Λ)U∗xi =

d∑
i=1

Uĝij(Λ)U∗xi, (2)
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where K is the order of the polynomial filters and {Θ(k)} are learnable parameters.

Notably, the above MPGCNs employ just a single kind of filter to handle all the channels of signals,
and then takes different (linear) combinations of the filtered signals to obtain different channels of
the output signals. Thereby, most MPGCNs are restricted in the number and types of filters and
have a limited capacity in frequency-domain filtering. On the contrary, ChebNets and CayleyNets
employ a different filter for each mapping from an input channel to an output channel and adopt
a total of d × d′ K-order polynomial filters (d and d′ denote the respective number of channels of
input and output signals) , as presented in Eq. 2. This naive design neglects the potential relationship
between filters and fails to reduce redundancy. Consequently, they explore such a large number of
learnable filters to process diverse frequency components of graph data at the expense of numerous
free parameters, which sometimes leads to overfitting.

4 THE BANKGCN ALGORITHM

In this section, we first outline the framework of BankGCN, then present its main elements, and
finally discuss connections with spectral methods.

4.1 GRAPH CONVOLUTION WITH ADAPTIVE FILTER BANKS

Signals (features) supported on nodes of a graph are usually high-dimensional and composed of
multiple spectral patterns. In other words, different signal channels vary differently over nodes,
leading to diverse spectral characteristics. To handle the heterogeneous signals, we employ a filter
bank composed of a set of filters with different frequency responses in the design of BankGCN. In
order to further facilitate information processing, signal decomposition is adopted to explore latent
relationships in the data.

For a multi-channel input node signal x(vm), we first adaptively decompose it into different sub-
spaces and then employ different filters to deal with the signal components in each subspace sepa-
rately. The decomposition aims to map the components of signals with similar characteristics into
the same subspace in order to facilitate the subsequent adaptive filtering. This is implemented with
learnable subspace projections. Mathematically, the input signal x(vm) is projected into s subspaces
with a group of projection functions denoted by {f[p](·)},

r[p](vm) = f[p](x(vm)), p = 1, 2, . . . , s, ∀vm ∈ V. (3)
Here, the subscript “[p]” indicates the terms belonging to the p-th subspace and r[p](vm) is the pro-
jected signal. The choices for projection functions will be introduced in Section 4.2. Subsequently,
an adaptive filter g[p](·) is designed within each subspace to represent the spectral characteristics of
the corresponding signal components,

h[p](vm) = (g[p] ∗ r[p])(vm), (4)
where we reuse ‘*’ to denote the convolution between each channel of signal r[p] and the filter g[p].

The filtered signals h[p](vm), p = 1, 2, · · · , s, of all the subspaces are concatenated to produce the
output features. A Rectified Linear Unit (ReLU) is then used as a non-linear activation function,

h(vl,m) = Concat(h[1](vl,m),h[2](vl,m), . . . ,h[s](vl,m)), (5)

x(vl+1,m) = ReLU(h(vl,m)), (6)
where the subscript l indicates variables or parameters in the l-th layer to describe the forward
propagation between different layers in a hierarchical architecture.

Specially, considering that some filters are only supported on medium-to-high frequency compo-
nents that usually mean large signal variations in the spatial domain, we further introduce a shortcut
in each subspace that corresponds to full-pass in the graph frequency domain in order to make the
filtered signals stable. Correspondingly, the filtered signal h[p](vm) in each subspace becomes

h[p](vm) = (g[p] ∗ r[p])(vm) + r[p](vm). (7)
The shortcut can further facilitate back propagation of gradients, as for CNNs (He et al., 2016).

The proposed graph convolution operator is stackable, and the subspace mapping function in the
following layers will further combine features from different subspaces in the preceding layers to
enable information interaction between different channels.
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4.2 SUBSPACE PROJECTION

For the projection function f[p](·), there is a variety of design choices. Here, we take the linear
mapping as an example, since it is simple yet able to decompose different channels of signals.
Specifically, the d-channel 1 signal x(vm) is projected into s different subspaces with learnable
matrices {W[p]}sp=1. For the sake of simplicity, all the subspaces have the same dimension in this
paper. To increase flexibility, we further introduce a learnable bias b[p] for each subspace.

r[p](vm) = f[p](x(vm)) = WT
[p]x(vm) + b[p], p = 1, 2, . . . , s. (8)

The introduction of subspace projection brings in two advantages: (i) it simplifies the learning pro-
cess. Since the multi-channel graph signals have been decomposed, the filter in each subspace just
needs to learn to capture spectral characteristics of the corresponding signal components; (ii) with
low-dimensional subspaces, it limits the dimension of features output by the filter bank, and thereby
reduces the number of free parameters and computation in the following layers.

4.3 FILTERS

In order to handle graphs with arbitrary topologies and diverse signals, we adopt universal and
adaptive filters to construct the filter bank.

For any function t : D = [0, 2]→ R, we can obtain a corresponding filter whose frequency response
is ĝ[p](λ) = t(·), and its spatial construction is computed through IGFT (defined as Eq. S2 in
App. A):

g[p](vm) =

n∑
i=1

ĝ[p](λi)ui(vm), (9)

with ui, i = 1, · · · , n, the eigenvectors of the symmetric normalized graph Laplacian of a graph.
Notably, we directly design the frequency response of the filter for the continuous range D = [0, 2]
in which the spectrum of an arbitrary graph locates as introduced in Section A. In other words,
given the discrete spectrum {λ0, λ1, . . . , λn} of an arbitrary graph, we have λi ∈ D and obtain
the corresponding filter value on these specific discrete values ĝ[p](λi) = t(λi), for i = 1, 2, . . . , n.
Thereby, the filter g[p](·) is adaptable to any graph even with different topologies, i.e., it is a universal
form (Tremblay et al., 2018; Levie et al., 2019).

Furthermore, we constrain the filter to the K-order polynomial function space in order to avoid the
computation-intense eigendecomposition of the graph Laplacian, similarly to parametric dictionary
learning (Thanou et al., 2014) in GSP. It corresponds to an FIR filter. Mathematically, the frequency
response of a filter can be represented as

ĝ[p](λ) =

K∑
k=0

α
(k)
[p] Tk(λ), (10)

where {Tk} denotes a specific polynomial basis such as Chebyshev polynomials, and {α(k)
[p] } indi-

cates the corresponding coefficients. With {α(k)
[p] } learnable, we obtain an adaptive filter whose fre-

quency response adapts to the data and to the target task. Correspondingly, for the signal projected
to the p-th subspace r[p](vm) and R[p] = [r[p](v1), r[p](v2), . . . , r[p](vn)]T , the filtered signal is
calculated as

h[p](vm) = (r[p] ∗ g[p])(vm) =

K∑
k=0

α
(k)
[p] (Tk(L)R[p])

T
m. (11)

Equivalently, according to the relationship between frequency filtering and localized linear trans-
forms in the spatial domain (Shuman et al., 2013), the filtering strategy corresponds to a message
passing scheme within a K-hop neighborhood

h[p](vm) = cmmr[p](vm) +
∑

vo∈NK(vm)

cmor[p](vo), (12)

1 For the input signal with d = 1, we set s as the feature channels in the neural network in the first layer so
that the signal is scaled differently in each subspace. In the following hidden layers, it can be used as the other
cases to handle multi-channel features produced by previous layers in GCNs.
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with

cmo =

K∑
k=0

α
(k)
[p] (Tk(L))m,o ∀m, o ∈ {1, 2, . . . , n}. (13)

Specially, the induced K-hop message passing scheme is learned from the data and exploits the
multi-hop topological information of graphs through polynomials of the graph Laplacian. Signal
information is also taken into consideration through the learnable parameters {α(k)

[p] } as well as in
the subspace projection step. More importantly, it permits to represent features that do not only have
“low-pass” properties and explores the frequency components in a data-driven manner.

4.4 DIVERSITY REGULARIZATION FOR FILTER BANKS

The filters constituting a filter bank should ideally have diverse frequency responses so that the signal
is decomposed through filtering into a series of signals with different frequency characteristics. In
GSP, the filters are usually band-pass and divide the spectrum in different bands. Considering that
strict band-pass filters are difficult to fit through polynomial functions, we relax this strict band-
pass requirement and rather target filters with diverse frequency responses, which we call “diversity
condition”. With the filter ĝ[p](λ) given as a K-order polynomial function, the regularization on
the filter is imposed on the respective polynomial coefficients {α(k)

[p] }p,k in Eq. 10. To achieve the
diversity condition, we regularize the polynomial coefficients to be well distributed in the parameter
space. Considering that the distances of the coefficient vectors of two scaled filters may still be
large in terms of the Euclidean distance, we thereby take the cosine distance to measure the distance
between the polynomial coefficients of filters. Specifically, the regularization term is:

Ω(α) = max
p 6=q

| < α[p],α[q] > |
‖α[p]‖2‖α[q]‖2

, (14)

where α[p] = [α
(0)
[p] , α

(1)
[p] , . . . , α

(K)
[p] ]T . The max function reflects the maximum similarity between

the polynomial coefficients of any pair of filters in the filter bank. Through minimizing Eq. 14, the
most similar filters will have different orientations in the parameter space. Thus, all the pairs of
filters tend to be different. When {Tk(L)}k is an orthogonal basis such as Chebyshev polynomials,
the diversity of polynomial coefficients {α[p]}p implies that filters defined as Eq. 10 are different in
the graph frequency domain. More intuitively, the message passing schemes in the spatial domain
induced by the filters are different with diverse {α[p]}p, as presented in Eq. 12 and Eq. 13.

We can note that, if the filter is defined on the basis composed of rectangular pulse functions2, i.e.,

Tk(λ) =

{
1 2k

K+1 ≤ λ <
2(k+1)
K+1

0 others
, (15)

the ideal subband filter banks, whose filters have different passbands in GSP, just corresponds to the
optimal solution to the regularization with Ω(α) = 0 in Eq. 14, when K ≥ s.
With TΘ(G, Y ) generally representing a target function, the overall objective function is then for-
mulated as

min
Θ

TΘ(G, Y ) + γ Ω(α), (16)

where Y indicates ground truth labels, Θ denotes the parameter set including {α[p],W[p], b[p]}sp=1,
and γ is a hyperparameter to adjust the contribution of regularization term. Like most popular
graph convolution operators, BankGCN can be optimized via gradient-based methods together with
modules such as graph pooling operators in GCNs. It achieves linear computational complexity with
O(K|E|d) and constant learning complexity, similarly to most existing MPGCNs.

4.5 DISCUSSION

BankGCN actually provides an effective simplification of existing polynomial-based spectral meth-
ods with parameter decomposition. With Θ = [Θ0; Θ1; . . . ; ΘK ] ∈ Rd×d′×(K+1) representing the

2Note that this is not the case in this paper.
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free parameters of the spectral methods adopting corresponding polynomial filters, BankGCN with
a linear mapping as projection function actually provides a decomposition based approximation of
Θ with

[W[1] ⊗α[1],W[2] ⊗α[2], . . . ,W[s] ⊗α[s]], (17)

where ⊗ indicates outer product. This decomposition strategy allows for filter sharing to reduce
potential redundancy of existing spectral methods. Multi-channel signals are first adaptively decom-
posed into various subspaces with {W[p]}p, and signal components within a subspace share a filter
defined with α[p] to process corresponding characteristics. In addition, it permits to further control
the relationship between filters with the diversity regularization as introduced in Section 4.4.

We further study the capacity of BankGCN in handling the spectrum of signals with a compact
architecture.

Proposition 1. BankGCN can capture and preserve diverse frequency components of input graph
signals, like its counterpart introduced in Eq. 2.

Proof. Please refer to App. B.

As demonstrated in Prop. 1 and its proof, a single filter g[p] in BankGCN together with signal projec-
tion is capable to explore and represent diverse frequency components of graph signals, as done in its
counterpart with a group of filters {gij}i. This theoretically validates the effectiveness of BankGCN
in reducing the number of filters and thereby potential redundancy in existing polynomial-based
spectral architectures, while maintaining the capability of representing diverse spectral information.

5 EXPERIMENTS

In this section, in order to evaluate models in learning representation of diverse spectral information
of graph data, we resort to node classification and graph classification tasks.

Baselines. We compare BankGCN with several state-of-the-art graph convolution methods, includ-
ing MPGCNs and spectral methods, as listed in Table 1 and Table 2. Furthermore, two simplifica-
tions of the proposed model (BankGCN-Diff and BankGCN-NR) are considered for ablation study.
Please refer to App. C & D for details.

5.1 NODE CLASSIFICATION

Table 1: Results (mean accuracy ± stdev) on
node classification with different data splits (* and
† denoting the results cited from (Zhu et al., 2020) and
(Li et al., 2021), respectively).

Texas Wisconsin Cornell Actor
β 0.06 0.16 0.11 0.24

GCN* 59.46 ± 5.25 59.80 ± 6.99 57.03 ± 4.67 30.26 ± 0.79
SGC † 58.9 ± 6.1 51.8 ± 5.9 58.1 ± 4.6 -
GAT* 53.38 ± 4.45 55.29 ± 8.71 58.92 ± 3.32 26.28 ± 1.73
GEOM-GCN 67.57 64.12 60.81 31.63
MixHop* 77.84 ± 7.73 75.88 ± 4.90 73.51 ± 6.34 32.22 ± 2.34
GraphSage* 82.43 ± 6.14 81.18 ± 5.56 75.95 ± 5.01 34.23 ± 0.99
ChebNets† 79.7 ± 5.0 82.5 ± 2.8 76.5 ± 9.4 -
ARMA † 82.2 ± 5.1 78.4 ± 4.6 74.9 ± 2.9 -
SGF 80.56 ± 0.63 87.06 ± 4.66 82.45 ± 6.19 -
H2GCN* 84.86 ± 6.77 86.67 ± 4.69 82.16 ± 4.80 35.86 ± 1.03
ASGAT-Cheb 85.1 ± 5.7 86.3 ± 3.7 82.7 ± 8.3 -

BankGCN 86.49 ± 4.19 87.06 ± 3.19 83.78 ± 4.68 36.87 ± 0.95

We first evaluate the proposed model in
node classification tasks on several heterophilic
(i.e., neighbor nodes are dissimilar in la-
bels/features) graph datasets, in order to vali-
date the advantages of diverse frequency rep-
resentation with filter banks. We follow the
data split and evaluation procedure of (Pei et al.,
2020; Zhu et al., 2020; Li et al., 2021), and de-
scribe the detail information of datasets and ex-
perimental settings in App. C. Results of base-
lines are cited from their respective publications
if available, or recent public works (Zhu et al.,
2020; Li et al., 2021). The metric β introduced
by Pei et al. (2020) reveals the degree of ho-
mophily of graph data in datasets (Small β cor-
responding to strong heterophily). As presented in Table 1, BankGCN achieves the best performance
on all the datasets. In contrast, the MPGCNs that rely on low-pass features, like GCN and GAT, per-
form worse. Notably, BankGCN still outperforms several of the most recent MPGCNs that improve
on the over-smoothing issues, including a simplified GCN (SGC), improved aggregation schemes
MixHop, GEOM-GCN and H2GCN, and adaptive filter based methods SGF and ASGAT.
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Table 2: Results on graph classification with 20 runs for different datasets (#P/L denotes the number
of free parameters per hidden layer).

ENZY DD NCI1 PROT NCI109 MUTA FRAN ∼#P/L

GCN 62.75 ± 5.83 77.75 ± 3.55 79.00 ± 1.93 74.87 ± 4.08 78.90 ± 1.52 81.34 ± 1.61 62.21 ± 2.41 4.2k
GraphSage 66.75 ± 6.31 75.21 ± 2.72 80.97 ± 1.87 75.13 ± 4.04 79.54 ± 2.24 82.30 ± 1.48 63.91 ± 1.96 8.3k
GIN 61.08 ± 4.92 75.42 ± 3.31 81.19 ± 2.27 74.91 ± 3.88 80.71 ± 2.38 81.66 ± 2.48 68.11 ± 2.09 8.3k
GAT 62.67 ± 7.52 77.50 ± 2.14 79.43 ± 2.38 75.09 ± 4.05 79.16 ± 1.85 81.28 ± 2.20 63.89 ± 1.53 4.3k

ChebNets (K = 2) 66.75 ± 4.79 77.67 ± 2.91 81.80 ± 2.35 74.64 ± 4.75 81.27 ± 1.89 82.50 ± 1.58 68.35 ± 2.65 12.4k
ARMA(K = 2) 63.33 ± 6.32 78.81 ± 3.04 80.86 ± 2.58 74.91 ± 5.36 80.12 ± 1.89 81.97 ± 1.81 67.65 ± 2.35 12.4k

BankGCN-Diff (s = 8) 66.92 ± 5.71 77.88 ± 2.81 80.07 ± 2.03 74.87 ± 4.21 79.23 ± 2.29 82.27 ± 2.00 64.63 ± 1.96 4.2k
BankGCN-NR (K = 2, s = 8) 65.83 ± 6.66 77.03 ± 4.08 81.89 ± 1.95 75.36 ± 4.68 81.03 ± 1.95 82.44 ± 1.69 67.82 ± 2.30 4.2k
BankGCN (K = 2, s = 8) 68.00 ± 5.23 78.14 ± 2.81 82.06 ± 1.75 75.67 ± 4.19 81.54 ± 2.13 82.89 ± 1.61 67.82 ± 2.30 4.2k
BankGCN (K = 2, s = 16) 66.83 ± 5.19 77.42 ± 3.50 81.93 ± 2.15 76.12 ± 5.08 81.62 ± 1.87 82.57 ± 1.61 68.43 ± 1.98 4.2k

Table 3: Study on the order K of filters and the number of subspaces s per layer.

ENZY DD NCI1 PROT NCI109 MUTA FRAN

K = 2

s = 1 63.58 ± 6.31 76.40 ± 2.34 80.46 ± 2.34 74.38 ± 4.80 79.23 ± 2.29 82.09 ± 1.51 65.52 ± 2.44
s = 4 66.75 ± 5.61 78.14 ± 2.81 81.62 ± 1.84 75.67 ± 4.61 81.19 ± 2.08 82.70 ± 1.63 67.48 ± 2.09
s = 8 68.00 ± 5.23 78.14 ± 2.81 82.06 ± 1.75 75.67 ± 4.19 81.54 ± 2.13 82.89 ± 1.61 67.82 ± 2.30
s = 16 66.83 ± 5.19 77.42 ± 3.50 81.93 ± 2.15 76.12 ± 5.08 81.62 ± 1.87 82.57 ± 1.61 68.43 ± 1.98

K = 1

s = 8

67.17 ± 5.68 76.99 ± 2.99 81.02 ± 1.88 75.89 ± 5.07 80.92 ± 1.66 82.40 ± 1.89 66.95 ± 1.91
K = 2 68.00 ± 5.23 78.14 ± 2.81 82.06 ± 1.75 75.67 ± 4.19 81.54 ± 2.13 82.89 ± 1.61 67.82 ± 2.30
K = 3 65.75 ± 5.54 77.75 ± 2.66 81.85 ± 1.92 74.96 ± 5.77 80.82 ± 1.84 82.53 ± 1.56 68.35 ± 2.13
K = 4 65.17 ± 6.62 77.75 ± 3.01 82.46 ± 1.98 75.09 ± 4.94 81.17 ± 2.11 82.26 ± 1.71 68.35 ± 1.92

5.2 GRAPH CLASSIFICATION

We further evaluate the different models in graph classification tasks and study the components of
BankGCN. Specially, for a fair and complete comparison, we consider two cases, (i) the same
number of features, i.e., all of models with the same number of feature maps per hidden layer, and
(ii) the same number of parameters, i.e., models with nearly the same number of free parameters per
hidden layer, in Table 2 and Table 4 respectively. Experimental settings are presented in App. D.

As presented in Table 2, BankGCN outperforms all the MP baselines with nearly the same or even
fewer number of parameters on TU-benchmarks. It further achieves better performance than its
counterpart ChebNets with much fewer free parameters, i.e., about 1/(K + 1), and is also superior
to the most recent spectral method ARMA on most datasets. As presented in Fig. 2, the learned
filters have different frequency responses rather than only low-pass, some of them being high-pass
and some focusing on middle-frequencies. With such a bank of filters, BankGCN handles the multi-
channel signals flexibly and thereby achieves the best performance on almost all the datasets.

We then go one step further to evaluate the adaptive filtering capabilities. As presented in Fig. 2, the
learned filters have different frequency responses on various datasets as they are adapted to the data
characteristics. As listed in Tables 2 and 3, the BankGCN (s = 1) employing one single adaptive
filter still outperforms GCN with ‘low-pass’ filtering on most datasets; Furthermore, BankGCN is
superior to its variant BankGCN-Diff that uses predefined filter banks on all the datasets. These
validate the benefits of adaptive filtering to flexibly capture the spectral characteristics of data.

Study on the number of filters. Furthermore, we evaluate the adoption of filter banks rather than a
single filter, and study the impact of the number of filters in the filter bank (equivalently s, the num-
ber of subspaces) on the classification performance. With a group of filters, the ability of convolution
operators to handle information is enhanced. As presented in Table 2, BankGCN-Diff outperforms
GCN with additional band-pass and high-pass filters on almost all the datasets, and BankGCN fur-
ther improves the performance with adaptive filters. Furthermore, as s increases from 1 to 8, the
performance of BankGCN is improved on most datasets, as listed in Table 3. These validate the
benefits of using more than one filter. With s further increased into 16, the performance is degraded
on several datasets. Given that the total dimension of all the subspaces is fixed, the dimension of
each space decreases and the representation capacity of each subspace probably declines with the
further growth of s.

Study on the order of filters. The order of polynomials determines the function space of filters. In
the graph frequency domain, as demonstrated in Fig. 2, it can better realize the bandpass property
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(e) K = 2, γ = 0.

Figure 2: Illustrations of the frequency responses of the learned filters of BankGCN (s = 8) in the
first layer of networks. (a) ∼ (d) are on NCI109 and (e) on FRANKENSTEIN.

of filters using a larger K but at the cost of a greater risk of overfitting the spectrum of training
data. In the spatial domain, the value of K corresponds to the message passing range, and a large
K will affect the locality of signals. Thereby, a tradeoff is needed. As shown in Table 3, BankGCN
with K = 2 achieves the best performance on most datasets. We notice that for the cases with
complex node signals, like FRANKENSTEIN with 780-channel node attributes, a relatively large
K is needed to exploit their various spectral characteristics; and the small K is preferred on simple
datasets, such as the PROTEINS dataset with 3-channel node category features.

Study on the regularization. We further evaluate the effect of the proposed diversity regularization.
The comparison of BankGCN-NR and BankGCN in Table 2 shows that the regularization improves
the classification performance on almost all the datasets. On the FRANKENSTEIN dataset whose
signal is composed of 780-channel attributes, the regularization is not helpful. We infer that the
information in such high-channel signal is complex enough to induce different filters, as presented
in Fig. 2(e). Fig. 2(a)-(c) show that the learned filters in a filter bank with regularization present
better diversity in frequency response, than those without regularization. For example, the filters
denoted by blue and red in Fig. 2(a) are with similar frequency responses, while they are more
diverse in Fig. 2(b) and Fig. 2(c). This is further verified by the maximum similarity scores of the
polynomial coefficients that define the filters Ω(α) = 0.997, 0.744, and 0.649 (computed as Eq. 14)
for Fig. 2(a)-(c), respectively. More results and analysis are presented in App. E.

Table 4: Classification accuracy on CIFAR-10 and
Ogbg-molhiv (no edge attributes) datasets.

Method CIFAR-10 CIFAR-10 (1000) Ogbg-molhiv
Acc Acc Decrease ROC-AUC

GCN 55.64 ± 0.11 36.47 ± 0.31 -34.5% 75.18 ± 1.85
GraphSage 63.51 ± 0.40 40.03 ± 0.56 -37.0% 75.39 ± 1.64
GIN 50.04 ± 0.06 31.97 ± 0.20 -36.1% 71.52 ± 1.45
GAT 60.34 ± 0.19 36.08 ± 0.04 -40.2% 75.08 ± 0.39
ChebNets (K = 2) 64.33 ± 0.14 39.46 ± 0.75 -38.7% 74.69 ± 2.08
ChebNets (K = 3) 63.62 ± 0.23 37.91 ± 0.40 -40.4% 73.17 ± 1.57
ARMA (K = 2) 61.66 ± 0.35 32.66 ± 0.09 - 47.0% 75.73 ± 1.15
ARMA (K = 3) 61.79 ± 0.28 32.47 ± 0.32 - 47.5% 74.61 ± 0.98

BankGCN(K = 2, s = 16) 66.17 ± 0.34 42.82 ± 0.33 -35.3% 77.95 ± 1.96
BankGCN(K = 3, s = 16) 66.00 ± 0.51 42.95 ± 0.49 -34.9% 75.72 ± 1.45

BankGCN still achieves the best perfor-
mance on both CIFAR-10 and Ogbg-
molhiv with all the models having a sim-
ilar number of free parameters per hidden
layer, as presented in Table 4. Furthermore,
to evaluate the generalization of models,
we construct a reduced CIFAR-10 (1000)
dataset by taking 100 graphs per category
to form the training set, while maintaining
the validation and testing sets. BankGCN
still performs best on the reduced CIFAR-
10 dataset and is among the models with
the least performance loss compared with the full dataset. Together with ROC-AUC being a mea-
sure of the generalization ability of a model, BankGCN performs well in the sense of generalization,
especially when compared with its counterpart ChebNets. These further validate the effect of the
proposed sharing scheme between filters for model simplification on improving generalization.

6 CONCLUSION

In this paper, we propose a novel graph convolution operator, termed BankGCN, constructed on
an adaptive filter bank for graph representation learning. The filter bank is equivalent to a group
of learnable message passing schemes in K-hop neighborhoods. Together with subspace decom-
position, BankGCN explores a sharing scheme between filters to adaptively handle information of
diverse spectral characteristics with significantly fewer parameters than its competitors, and achieves
excellent performance on node classification and graph classification tasks. An interesting direction
for future research resides in discussing the capacity of the proposed graph convolution operator in
terms of graph isomorphism test. It may also be promising to employ BankGCN in a variety of tasks
on non-Euclidean data like 3-D point cloud classification and segmentation.
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A NOTATIONS AND PRELIMINARIES

In this paper, we consider data that is represented on undirected graphs. An input graph is described
as G = (V, E), with V and E respectively denoting the set of vertices and the set of edges. We
generally use capital letters for matrices and bold lowercase letters for vectors. The graph topology
is characterized by the adjacency matrix A with a non-zero value (A)ij indicating the weight of
the edge connecting vertices vi and vj . If available 3, the d-channel signals or attributes of nodes
are represented as x(vm) ∈ Rd for ∀vm ∈ V , and X = [x(v1),x(v2), · · · ,x(vn)]T is for the
whole graph G with n = |V| nodes. Specially, for vector features, xi(vm) indicates the i-th channel
of the signal on vertex vm, and xi = [xi(v1), xi(v2), · · · , xi(vn)]T represents this signal on the
whole graph. For the hierarchical structure of GCNs, we employ a subscript l to indicate variables
or parameters belonging to the l-th layer. In most cases, we ignore l for clarity without causing
confusion.

The Graph Fourier Transform (GFT) is defined based on the graph Laplacian matrix L (Shu-
man et al., 2013). We adopt the symmetric normalized graph Laplacian operator, i.e., L =

I − D−
1
2AD−

1
2 with the diagonal degree matrix D defined as (D)ii =

∑
j(A)ij . The eigen-

decomposion of the Laplacian matrix is denoted by L = UΛU∗, where U = [u1,u2, . . . ,un]
is composed of the eigenvectors uk, k = 1, · · · , n and Λ is a diagonal matrix with eigenvalues
λ1, λ2, . . . , λn, with 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. The eigenvalues {λk} construct the spectrum

3If node attributes are not available, we adopt the structural information like the one-hot encoding represen-
tation of node degree and the local clustering coefficient as node signals.
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of the graph G 4, and the GFT of a signal x is calculated as the inner-product between each of its
component xi and the eigenvectors {uk} (Shuman et al., 2013):

x̂i(λk) =

n∑
m=1

xi(vm)u∗k(vm), (S1)

where ∗ indicates conjugate transpose and u∗k(vm) denotes the m-th element in u∗k. The Inverse
Graph Fourier Transform (IGFT) is defined as

xi(vm) =

n∑
k=1

x̂i(λk)uk(vm). (S2)

According to the convolution theorem, the convolution between the i-th channel of the signal xi(vm)
and the corresponding filter g(vm) (with frequency response ĝ(λk) ) is defined as:

(xi ∗ g)(vm) =

n∑
k=1

x̂i(λk)ĝ(λk)uk(vm) (S3)

Let us define ĝ(Λ) = diag([ĝ(λ1), ĝ(λ2), . . . , ĝ(λn)]). We have for xi(vm) that
(xi ∗ g) = Uĝ(Λ)U∗xi. (S4)

Finally, a graph filter bank is composed of a set of filters {ĝi(Λ)} to decompose a graph signal into
a series of signals with different frequency components (Narang & Ortega, 2012).

B PROOF OF PROPOSITION 1

Proof. For spectral methods with polynomial filters ĝ(λ) =
∑K

k=0 θ
(k)Tk(λ), the j-th channel

(j = 1, 2, . . . , d′) of the output signal is

hj =

d∑
i=1

gij ∗ xi =

d∑
i=1

Uĝij(Λ)U∗xi

=

d∑
i=1

U

K∑
k=0

Θ
(k)
i,j Tk(Λ)U∗xi = U

d∑
i=1

K∑
k=0

Θ
(k)
i,j Tk(Λ)x̂i.

(S5)

Thereby, the spectrum of output signal is a linear transform of the K-order polynomial expansion of
input signals {Tk(Λ)x̂i}i,k

ĥj =

K∑
k=0

d∑
i=1

Θ
(k)
i,j Tk(Λ)x̂i. (S6)

For BankGCN, we assume that the j-th channel (j = 1, 2, . . . , d′) of the output signal corresponds
to the q-th channel of the filtered signal in the p-th subspace, and we have

hj = (g[p] ∗ r[p]q) = (g[p] ∗ (

d∑
i=1

(W[p])i,qxi + b[p]q1))

= U(

K∑
k=0

α
(k)
[p]

d∑
i=1

(W[p])i,qTk(Λ)U∗xi + ε[p]q),

(S7)

where r[p]q denotes the q-th channel of the projected signal R[p] in the p-th subspace, b[p]q indicates
the q-th element in b[p], 1 denotes a constant vector with value 1, and ε[p]q represents a vector
independent on input signals. Correspondingly, the spectrum of hj is

ĥj =

K∑
k=0

d∑
i=1

α
(k)
[p] (W[p])i,qTk(Λ)x̂i + ε[p]q. (S8)

According to Eq. S6 and Eq. S8, BankGCN can capture and preserve diverse frequency components
of input graph signals, like its counterpart introduced in Eq. 2

4In analogy to classical Fourier analysis, eigenvalues provide a corresponding notion of frequency and lead
to frequency filtering.
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C EXPERIMENTAL SETTINGS ON NODE CLASSIFICATION

We evaluate the models on four heterophilic graph datasets (Pei et al., 2020; Tang et al., 2009),
including Texas, Wisconsin, Cornell, and Actor. Texas, Wisconsin, Cornell are three subdatasets
from WebKB. In these datasets, nodes represent web pages with their 1703-dimensional bag-of-
words representation as node features, and hyperlinks between the web pages form edges. Actor is
a dataset preprocessed by Pei et al. (2020) from the film-director-actor-writer network (Tang et al.,
2009). The graph in the dataset represents the co-occurrence (connection) of actors (nodes) on the
same Wikipedia page. There are five categories on all these datasets.

We follow the data split and evaluation procedure of previous methods (Pei et al., 2020; Zhu et al.,
2020; Li et al., 2021). Specifically, 48%:32%:20% of nodes per class are split into training, vali-
dation and test sets, and 10 such random splits on each dataset are provided by Pei et al. (2020);
Fey & Lenssen (2019). The network architecture consists of two layers. We select the following
hyper-parameters through grid-search: number of feature maps of the hidden layer ∈ {32, 64, 128},
learning rate∈ {0.02, 0.04}, weight decay ∈ {5e−4, 1e−3}, and s ∈ {4, 8, 16}. In addition, the
dropout is 0.5 only in the hidden layer, and s is set as 1 for the output layer.

We compare BankGCN with several state-of-the-art graph convolution methods. For the MPGCNs,
we consider GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al., 2017), GAT (Velikovi et al.,
2018), MixHop (Abu-El-Haija et al., 2019), SGC (Wu et al., 2019), GEOM-GCN (Pei et al., 2020),
H2GCN (Zhu et al., 2020), SGF (NT et al., 2021), and ASGAT (Li et al., 2021). Regarding spec-
tral GCNs, we compare with its counterpart ChebNets (Defferrard et al., 2016) that also adopts
Chebyshev polynomial filters, and the most recent spectral method ARMA (Bianchi et al., 2021).

D EXPERIMENTAL SETTINGS ON GRAPH CLASSIFICATION

Datasets and data splits. For TU datasets (Kersting et al., 2016), we conduct experiments on seven
widely used public benchmark graph classification datasets, including ENZYMES, D&D, PRO-
TEINS, NCI1, NCI109, MUTAGENICITY, and FRANKENSTEIN 5. We adopt node categorical
features (one-hot encoding) and node attributes as node signals, depending on availability on the
datasets, which are usually heterogeneous in different dimensions. Specifically, node attributes are
adopted on FRANKENSTEIN, node categorical features and node attributes (normalized in range
[0, 1]) on ENZYMES, and node categorical features on the other datasets. The statistics and prop-
erties of the datasets are summarized in Table S1. According to (Lee et al., 2019), we use stratified
sampling to randomly split each dataset into training, validation and test sets with a ratio of 8:1:1.
The trained model with the best validation performance is selected for test. In order to alleviate
the impact of data partition and network initialization, we conduct 20 random runs with different
data splits and network initializations on each dataset, and report the mean accuracy with standard
deviation of these 20 test results.

We further adopt two large benchmark datasets, CIFAR-10 (Dwivedi et al., 2020) and Ogbg-molhiv
(Hu et al., 2020), in the experiments. The graph version of CIFAR-10 is composed from the super-
pixels of images, and RGB intensities and normalized coordinates form node signals. Ogbg-molhiv
is a molecule graph dataset, with 9-dimensional node features including atomic number, chirality,
and additional atom features. We divide data on these two datasets in accordance with (Dwivedi
et al., 2020) and (Hu et al., 2020), respectively. Similarly, results are achieved with 3 runs on
CIFAR-10 and 10 runs on Ogbg-molhiv in order to alleviate the impact of network initialization.

Network architectures. In the experiments, we adopt a similar architecture to (Xu et al., 2018), and
the network consists of four convolution layers, one graph-level readout module and one prediction
module for all the datasets. Specifically, the graph convolution layer is designed as introduced in
Section 4 or defined by various baseline models. An l2 normalization function is utilized in each
convolution layer to stabilize and accelerate the training process, as in (Hamilton et al., 2017). A
graph-level readout module then aggregates the graph features from all the convolution layers to
generate the graph representation hG . It consists of node-wise mean and maximum operators (or
mean operator on Ogbg-molhiv as in (Hu et al., 2020)), represented by ω(·).

hG = Concat(ω(Xl)|l = 1, 2, 3, 4). (S9)
5Datasets could be downloaded from https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table S1: Dataset statistics and properties (L indicates node categorical features and A denotes node
attributes).

ENZ D&D PROT NCI1 NCI109 MUTA FRAN CIFAR-10 Ogbg-molhiv

Avg |V| 32.63 284.32 39.06 29.87 29.68 30.32 16.90 117.63 25.51
Avg |E| 62.14 715.66 72.82 32.30 32.13 30.77 17.88 564.86 27.47
Node feature L+A L L L L L A A A
Dim(feat) 3+18 89 3 37 38 14 780 5 9
#Classes 6 2 2 2 2 2 2 10 2
#Graphs 600 1,178 1,113 4,110 4,127 4,337 4,337 60,000 41,127

Finally, a prediction module composed of a linear fully connected layer and a softmax layer makes
the prediction of the category of the input graph. The cross-entropy (represented as TΘ(G, Y )) is
adopted as the loss function, which together with the regularization Ω(α) for diversity condition
composes the objective function:

TΘ(G, Y ) + γ Ω(α) (S10)

where Θ denotes all the free parameters and Y indicates ground truth categorical labels.

In more details, we consider two versions of the architectures in the experiments in order to evaluate
the models under the same number of features and the same number of parameters, respectively.
For the first case, all of models have the same number of feature maps per hidden layer, whereas
models are composed of nearly the same number of parameters per hidden layer for the latter case.
We consider the first version with TU datasets in Table 2 with 64 feature maps per hidden layer, and
the second version in Table 4 with nearly 16,500 and 65,800 free parameters per layer for all the
models on CIFAR-10 and Ogbg-molhiv, respectively.

Configurations. We implement the proposed models in Pytorch (Paszke et al., 2017) with geometric
package (Fey & Lenssen, 2019), and optimize all of the models with the Adam optimizer (Kingma
& Ba, 2015) on workstations with GPU GeForce GTX 1080 Ti for TU datasets as well as CIFAR-10
and with GPU RTX 2080 Ti for Ogbg-molhiv. In more details, for TU datasets, the learning rate is
0.001 and the batch size is 64. The number of training epochs is set as 500, and early stopping is
employed with patience 30. Finally, we obtain the following optimal hyper-parameters through grid
search: weight decay ∈ {0, 1e−5, 1e−4} and γ ∈ {0, 0.1, 10}.
For CIFAR-10 and Ogbg-molhiv, the batch size is increased to 256 due to their large scale. Similarly
to (Dwivedi et al., 2020), we adopt a dynamic learning rate that is initialized as 0.001 and decays by
0.1 when validation loss is not improved for 20 epochs until the minimum learning rate 1e−5. The
number of training epochs is 500 with early stoping (patience 50). The other settings are the same
as TU datasets.

For the polynomial basis in the filter design of BankGCN, we adopt the widely used Chebyshev
polynomials.

T0(λ) = 1, T1(λ) = λ, Tk(λ) = 2λTk−1 − Tk−2. (S11)

The graph Laplacian is adopted as L̃ = L− I for numerical stability, similarly to (Defferrard et al.,
2016).

Baselines. We compare BankGCN with several state-of-the-art graph convolution methods. For
the MPGCNs, we consider GCN (Kipf & Welling, 2017), GraphSage (Hamilton et al., 2017) with
mean aggregation, GAT (8-heads) (Velikovi et al., 2018), and GIN using SUM-MLP (2 layers) that
achieves the best performance (Xu et al., 2019). Regarding spectral GCNs, we compare with its
counterpart ChebNets (Defferrard et al., 2016) that also adopts Chebyshev polynomial filters, and
the most recent spectral method ARMA (1-stack) (Bianchi et al., 2021). For a fair comparison, the
results of baseline models are obtained with the same configurations as BankGCN using the public
versions provided in the pytorch-geometric package (Fey & Lenssen, 2019), with their respective
optimal hyper-parameters (weight decay) selected by grid search.

Ablation Study. Furthermore, we consider two simplifications of the proposed model for ablation
study. First, BankGCN-Diff adopts a predefined filter bank. The filter bank consists of a low-
pass filter, a high-pass filter, and band-pass filters from graph diffusion wavelets as used by Gama
et al. (2019); Min et al. (2020). The specific frequency responses of these filters are presented in
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Table S2: Ablation study on the diversity regularization with BankGCN (K = 2, s = 8).

ENZY DD NCI1 PROT NCI109 MUTA FRAN

γ = 0 65.83 ± 6.66 77.03 ± 4.08 81.89 ± 1.95 75.36 ± 4.68 81.03 ± 1.95 82.44 ± 1.69 67.82 ± 2.30
γ = 0.01 66.50 ± 6.39 77.54 ± 3.21 81.63 ± 2.33 75.49 ± 4.07 81.27 ± 2.16 82.87 ± 1.94 67.71 ± 1.96
γ = 0.1 68.00 ± 5.23 78.09 ± 2.18 82.06 ± 1.75 75.67 ± 4.19 81.34 ± 1.92 82.83 ± 1.87 67.68 ± 2.10
γ = 1 66.42 ± 6.20 77.97 ± 3.57 81.81 ± 1.97 76.29 ± 4.84 81.00 ± 2.21 82.95 ± 1.44 67.76 ± 1.65
γ = 10 66.75 ± 5.90 78.14 ± 2.81 82.06 ± 2.10 75.31 ± 4.64 81.54 ± 2.13 82.89 ± 1.61 67.20 ± 1.67
γ = 100 67.08 ± 5.42 77.75 ± 3.26 81.81 ± 2.18 75.98 ± 4.40 81.14 ± 1.94 82.44 ± 1.71 67.52 ± 1.83

Appendix D. Second, BankGCN-NR removes the diversity regularization from BankGCN with
γ = 0.

BankGCN-Diff adopts a predefined filter bank that consists of a low-pass filter, a high-pass filter,
and band-pass filters from graph diffusion wavelets as used in (Gama et al., 2019; Min et al., 2020).
The specific frequency responses of these filters are

ψl,0(T ) = I − T, ψh,0(T ) = I − T ′

ψl,1(T ) = T (I − T ), ψh,1(T ) = T ′(I − T ′)
ψl,2(T ) = T 2(I − T 2), ψh,2(T ) = T ′2(I − T ′2)

ψl,3(T ) = T 4(I − T 4), ψh,3(T ) = T ′4(I − T ′4) (S12)

with two diffusion operators:

T = (1−D− 1
2AD−

1
2 )/2, T ′ = (1 +D−

1
2AD−

1
2 )/2. (S13)

Their frequency responses can be easily derived with the relationship between the diffusion operators
and the graph Laplacian. Specifically, ψl,0 and ψh,0 are respective low-pass and high-pass filters,
and the others are band-pass filters.

E MORE EXPERIMENTAL RESULTS AND ANALYSIS

More Ablation Results about the Diversity Regularization. In Table S2, we consider the values
of γ ∈ {0, 0.01, 0.1, 1, 10, 100} to adjust its contribution in the objective function (Eq. 16). The
regularization improves the classification performance on almost all the datasets. Mostly, the best
performance is achieved with γ = 0.1 or γ = 10, and thereby we consider γ ∈ {0, 0.1, 10}
in adjusting the contribution of regularization in the experiments. As illustrated in Fig. S1(a)-(f),
the learned filters in a filter bank with regularization present better diversity in terms of frequency
response than those without regularization on NCI109 and ENZYMES datasets. For example, the
filters denoted by blue and red in Fig. S1(a) are with similar frequency responses, while they are
more diverse in Fig. S1(b) and Fig. S1(c). Besides, the filters indicated by gray and purple in
Fig. S1(d)-(f) show similar results. These are further verified with the maximum similarity scores
of the polynomial coefficients that define the filters Ω(α) = 0.997, 0.744, and 0.649 (computed as
Eq. (18)) for Fig. S1(a)-(c), and Ω(α) = 0.899, 0.714, and 0.705 for Fig. S1(d)-(f), respectively.

More illustration results. We provide more illustration results in Fig. S2 to demonstrate adaptive
filter banks with different numbers of filters. With the increase of the s, BankGCN is more flexible
to decompose the signal into components with different spectral characteristics. Furthermore, as
shown in Fig. S3, the frequency responses of the learned filters in a filter bank vary with the datasets
and the layers in the neural networks. These demonstrate the necessity and benefit of adopting
learnable rather than predefined filters.

F MORE COMPARISONS WITH RELATED WORKS

Message Passing Graph Convolutional Networks. MPGCNs design graph convolution with a va-
riety of message passing schemes in the spatial domain. For instance, messages are aggregated with
the node-wise mean or max operation in a localized neighborhood in GraphSage (Hamilton et al.,
2017), or based on attention scores in GAT (Velikovi et al., 2018). A more expressive scheme, GIN,
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(a) γ = 0.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

λ

0.0

0.5

1.0

1.5

2.0

|̂g [
p
](
λ
)|

(b) γ = 0.1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

λ

0.0

0.5

1.0

1.5

2.0

|̂g [
p
](
λ
)|

(c) γ = 10.

E
N

Z
Y

M
E

S

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

λ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

|̂g [
p
](
λ
)|

(d) γ = 0.
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(e) γ = 0.1.
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(f) γ = 10.
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(g) γ = 0.
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(h) γ = 0.1.
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(i) γ = 10.

Figure S1: Comparisons of the frequency responses of the learned filters of BankGCN (K = 2, s =
8) under different regularization strengths on different datasets.
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(a) s = 1.
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(b) s = 4.
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(c) s = 8.
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(d) s = 16.

Figure S2: Illustrations of the frequency responses of the learned filters of BankGCN (K = 2, γ =
10) in the first layer of networks with different number of subspaces (s) on NCI109.
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(a) Layer-1.
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(b) Layer-2.
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(c) Layer-3.
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(d) Layer-1.
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(e) Layer-2.
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(f) Layer-3.
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(g) Layer-1.
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(h) Layer-2.
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(i) Layer-3.

Figure S3: Illustrations of the frequency responses of the learned filters of BankGCN (K = 2, s = 8)
in the different layers of networks on different datasets.
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is further proposed with summing features in a neighborhood followed by a multi-layer perceptrons
(MLP) to approximate any injective function on multiset (Xu et al., 2019). However, these methods
are typically constrained to a single one-hop message passing strategy that mostly captures ‘low-
pass’ characteristics in the graph data. Klicpera et al. (2019) expand the MP range to multi-hop
neighborhoods with graph diffusion operators. Besides, several methods are proposed to imple-
ment a high-order (polynomial) filter with the whole network. For example, SGC (Wu et al., 2019)
corresponds to a fixed polynomial filter, and LGC (Navarin et al., 2020), GPR-GNN (Chien et al.,
2021), SGF (NT et al., 2021), and S2GC (Zhu & Koniusz, 2021) further realizes an adaptive filter
with diverse motivations. Alternatively, a group of methods attempt to complement the ‘low-pass’
features of GCN using different strategies. For instance, Scattering GCN (Min et al., 2020) resorts
to geometric scattering transform (Gao et al., 2019) to complement the ‘low-pass’ features of GCN
(Kipf & Welling, 2017) with ‘band-pass’ features, a one-order high-pass filter is adopted as the com-
plement (Bo et al., 2021), and SpGAT (Chang et al., 2021) employs predefined graph wavelet filters.
Besides, MixHop (Abu-El-Haija et al., 2019) explores linear mixing of neighborhood information
to further realize difference operators, which can capture high-frequency information, and H2GCN
(Zhu et al., 2020) additionaly aggregates information from high-order neighborhoods. Contrary to
these methods, we employ a learnable filter bank with various frequency responses to adaptively
capture diverse spectral characteristics of signals rather than merely adding ‘high-pass’ features or
specific components via predefined graph wavelets. Finally, some works further consider adaptive
filters (Li et al., 2021; Dong et al., 2021; Pasa et al., 2021), but BankGCN is a more powerful and
compact design with polynomial filter banks to avoid eigen-decomposition and a further considera-
tion of the sharing scheme between filters to reduce free parameters. For instance, AdaGNN (Dong
et al., 2021) implements an equivalent filter for each channel of input signals through the whole
network, while BankGCN can realize it within a single convolution operator. Furthermore, the filter
space of BankGCN with K-order polynomial filters is larger than AdaGNN, since the K-order filter
in AdaGNN is obtained by multiplying K one-order filters. The expressive capacity can be further
enhanced by stacking multiple BankGCN layers.
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