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Abstract

Task vectors capture how a model changes during fine-tuning by recording the
difference between pre-trained and task-specific weights. The composition of task
vectors, a key operator in task arithmetic, enables models to integrate knowledge
from multiple tasks without incurring significant additional inference costs. In this
paper, we propose variational task vector composition (VTVC), where composition
coefficients are taken as latent variables and estimated in a Bayesian inference
framework. Unlike previous methods that operate at the task level, our framework
focuses on sample-specific composition. Motivated by the observation of structural
redundancy in task vectors, we introduce a Spike-and-Slab prior that promotes
sparsity and aims to preserve the most informative components. To further address
the high variance and sampling inefficiency in sparse, high-dimensional spaces, we
develop a gated sampling mechanism that constructs a controllable posterior by fil-
tering the composition coefficients based on both uncertainty and importance. This
yields a more stable and interpretable variational framework by deterministically
selecting reliable task components, reducing sampling variance while improving
transparency and generalization. Experimental results demonstrate that our method
achieves state-of-the-art average performance across a diverse range of benchmarks,
including image classification and natural language understanding. These findings
highlight the practical value of our approach, offering a new, efficient, and effective
framework for task vector composition.

1 Introduction

Task vectors represent the difference between a model’s pre-trained and fine-tuned weights, capturing
the changes during fine-tuning on specific tasks. Using task vectors, task arithmetic [17] enables
simple and efficient model editing. The composition of task vectors, a key operator in task arithmetic,
enables models to integrate knowledge from multiple tasks without increasing additional inference
costs. Task vector composition has demonstrated strong performance across a variety of domains,
including computer vision [14], natural language processing [4 1, 23, 13], and multimodal learning
[16, 26]. This approach provides a practical solution for knowledge integration and model editing
[48, 44, 53, 46].

In recent years, the composition of task vectors has been widely studied to improve efficiency and
controllability [52]. Some works focus on improving task vector representations by redesigning spaces
and developing parameterization techniques to better capture the relationships between tasks [30, 9].
Others extend the functional scope of task vectors to reduce computational overhead [41, 14, 15].
Advances in composition methods also enable more effective integration of knowledge across multiple
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tasks, enhancing both the controllability and interpretability of models [51, 54]. Meanwhile, in the
broader field of meta-learning, researchers have also explored using probabilistic frameworks such as
variational inference to learn task-adaptive modules, thereby improving the model’s generalization
ability on new tasks[55, 8]. While recent works have made notable progress, three key challenges
remain under-explored. (1) Existing approaches typically rely on deterministic composition schemes,
lacking mechanisms to quantify uncertainty. (2) Most methods operate at the task level, which
limits their ability to adapt to sample-level variability. (3) Task vector spaces often exhibit redundant
structure, which may reduce efficiency in both inference and storage.

In this paper, we propose a novel approach for the Variational Task Vectors Composition (VIVC).
Our main contributions are as follows: (i) We cast task vector composition as a variational inference
problem and introduce an amortized inference network to model sample-specific posteriors over
composition coefficients. This formulation enables efficient integration of domain-specific knowledge
at the sample level and overcomes the limitations of conventional task-level composition. (ii) To
address the structural redundancy in task vector spaces, we introduce a Spike-and-Slab prior that
promotes sparsity by modeling the variational posterior as a mixture of zero-valued spikes and
Gaussian slabs. This structured prior guides the variational posterior to focus on essential task
components, enhancing interpretability and improving the efficiency of sample-specific composition.
(iii) To address the high variance and sampling inefficiency of traditional sampling-based inference,
we develop a controllable posterior via gated sampling, which deterministically filters composition
coefficients based on their estimated uncertainty and importance. By deterministically selecting task
coefficients based on uncertainty and importance, the proposed framework avoids the high variance of
stochastic sampling, highlights the components that contribute to adaptation, and promotes consistent
inference, making it more stable, interpretable, and reliable.

We evaluate our framework on diverse benchmarks in computer vision and natural language process-
ing. Experimental results show that VTVC achieves strong performance in various task arithmetic
scenarios, including task addition and task negation. Our analyses of the three main contributions—
variational composition, Spike-and-Slab priors, and the gated sampling process highlight the method’s
advantages. We demonstrate its ability to integrate sample-level knowledge, reduce redundancy, and
improve inference stability.

2 Related work

Task vector composition and task arithmetic. Task arithmetic is a central technique in the model
merging field, which aims to combine multiple specialized models into one [17]. The field has
been widely studied to improve efficiency and controllability [52], with theoretical foundations
established from perspectives like the Neural Tangent Kernel and generalization analysis [30, 23].
Early frameworks like aTLAS introduced anisotropic scaling for more precise control [51]. A key
challenge is managing interference between task parameters. Recent work has largely focused on two
directions. The first is leveraging sparsity, where methods like DARE merge only the critical, sparse
parameters to improve efficiency [50, 43, 11]. The second direction focuses on directly resolving
task interference, with methods aligning parameter signs [47] or redesigning task vector spaces to
find less conflicting representations [9, 54, 4]. The functional scope of task vectors has also been
extended in various applications, from vision to language models [14, 41, 15]. Other approaches
achieve sample-level adaptation by modifying the model architecture uses Mixture-of-Experts (MoE)
modules to dynamically route inputs to different task vectors [38]. While these methods are effective,
they are largely deterministic. In contrast, we propose a probabilistic inference framework that learns
sample-specific composition coefficients, uniquely allowing it to quantify and leverage uncertainty
without requiring architectural changes.

Applications of Spike-and-Slab priors. Spike-and-Slab priors are widely used in Bayesian sparse
modeling to distinguish between important and unimportant variables [21, 2]. The foundational
work by Mitchell et al. [28] introduced them as mixture distributions for effective variable selection.
While traditional estimation relied on MCMC sampling [ 18], the need for scalability on large datasets
has prompted a shift toward more efficient variational inference (VI) approaches [40, 34]. In deep
learning, these priors have been applied to tasks like unsupervised image classification [10], with
recent studies also exploring structured forms to model complex correlations [37, 1, 36, 27]. However,
their practical integration with large deep models remains a challenge, especially for sample-specific
sparse inference.



3 Preliminary

In transfer learning and multi-task learning, task-specific knowledge is often captured by modeling
changes in network parameters, including models based on CLIP [31], GPT-2 [32], and T5 [33]. In
this paper, we focus particularly on CLIP, as it offers powerful multimodal representations and aligns
with experimental settings used in previous work.

Formally, denote the CLIP image encoder as a function f : X x © — Z, where for an input image
2 € X and parameters 6 € O, the output z = f(x; 0) represents the learned latent representation
for the input image. Given the pre-trained parameters O and the fine-tuned parameters O; in a
downstream task ¢, the corresponding task vector is defined as 7, = ©,; — O¢. In practice, we follow
standard procedures by fine-tuning only the image encoder while keeping the text encoder fixed,
which helps maintain feature alignment across tasks.

Task vectors can be composed through various arithmetic operations, and the most common operation
is task addition. In task addition, given a task vector pool 7 with N task vectors {r;}¥ , fine-tuned
on different tasks, with a global learnable scaling factor \, a unified model can be constructed as:

Onew = O + A - Zf\; 7;. This form of composition has shown strong practical value, enabling
effective integration of knowledge from multiple tasks into a single model and demonstrating superior
transfer capabilities in image classification and transfer learning benchmarks.

Task vectors can also be decomposed into block-wise representations. Based on functional parti-

tioning, aTLAS [51] divides each task vector 7; into M parameter blocks {Tf j”il, and assigns an
independent scaling coefficient A7 to each block. Such modular decomposition also enables the
exploration of task relevance at different network layers or functional units, which can be further

exploited in downstream analysis. The composed model parameters can then be written as:

N M
0=00+ Y S A7 (1)

i=1 j=1

This block-wise formulation enables finer-grained knowledge integration and provides a foundation
for efficient multi-task learning and task transfer. While most existing methods perform task vector
composition at the task level with fixed coefficients, they fail to capture fine-grained differences
between samples. To address this limitation, we model composition at the sample level, where the
coefficients become functions of the input x. Formally, the parameters of a sample-specific merged
model ©(x) can be written as:

N

O(z) = 69 + Z 2i(z) - 7; (non-block case), )
i=1
N M '

O(z) = 69 + Z Z zij(z) -7} (block case). A3)
i=1 j=1

Here, z;(z) and z;;(x) are sample-specific coefficients produced by an inference network that takes
x as input. This finer-grained approach allows the model to adapt to input variability and enhances
performance in heterogeneous environments, underpinning our proposed variational framework.

4 Methodology

This section introduces our proposed framework for the variational composition of task vectors. In
Section 4.1, we reformulate the composition problem as a variational inference process and introduce
an amortized inference network to model sample-specific posteriors over composition coefficients.
To address the structural redundancy in task vector spaces, we then introduce a Spike-and-Slab prior
to promote sparsity by modeling the variational posterior as a mixture distribution in section 4.2. We
also propose a controllable posterior with gated sampling that automatically selects informative task
vectors in section 4.3, which enhances the model’s generalization capability and robustness.



4.1 Variational Composition of Task Vectors

Conventional task vector composition is typically performed as a direct and deterministic modifi-
cation of model weights, lacking any mechanism for uncertainty quantification. As a result, such
approaches are less capable of adapting to sample-specific variations and cannot estimate uncertainty
in the composition process. In our variational inference framework, the composition coefficients
z are treated as latent variables, while the input x and labels y are

observed. Figure 1 illustrates the probabilistic dependencies. Ac- 7~ N (pa(x), 05(x))
cording to Bayesian theory, our objective is to compute the posterior

distribution p(z|x,y). Since the posterior is typically difficult to ° e
compute directly, variational inference introduces a parameterizable

approximate posterior distribution ¢(z|x), leading to the evidence

lower bound (ELBO):
log p(y[x) > Ey(zlx) [log p(y|x,2)] — Dxr(q(z[x)[|p(2)). (4 6 °

Here, the first term represents the expected log-likelihood, which
promotes the model to make accurate predictions, while the second
term is the KL divergence, which regularizes the posterior towards
the prior to prevent overfitting. This framework naturally recasts the composition problem as an
inference task, allowing us to incorporate flexible prior knowledge, such as sparsity or structural
constraints, into the composition process. The detailed mathematical derivation is provided in
Appendix A.1.

To efficiently realize sample-level variational inference, we employ amortized inference by de-
signing a neural network with parameters ® to parameterize the posterior distribution: ¢ (z|x) =
N(z; po(x),00(x)). This network takes samples x as inputs and predicts the parameters of the
composition coefficient distribution z. Amortized inference improves both efficiency and scalability
by sharing parameters across samples.

Figure 1: Variational Composi-
tion of Task Vectors.

In summary, sample-level composition allows the model to adapt composition coefficients to indi-
vidual inputs, offering finer control over task integration and leading to improved generalization in
heterogeneous settings. This represents a fundamental difference from task-level approaches. How-
ever, conventional variational inference typically uses Gaussian priors, which are unable to capture
or address structural redundancy in task vector spaces. This can lead to inefficient composition and
increased risk of overfitting.

4.2 Spike-and-Slab Priors for Sparse Representations

The standard Gaussian prior is widely used, but it fails to capture the structural properties inherent
in high-dimensional task vector spaces. As illustrated in Fig. 2, we conduct a thorough redundancy
analysis of task vector representations. Using t-SNE and singular value decomposition, we find
significant redundancy in task vectors, which leads to inefficient integration and a higher risk of
overfitting. For instance, over 95% of the variance can be explained by fewer than 40 principal
components across all datasets, highlighting substantial compressibility. Moreover, when input
samples are located near the boundaries of multiple task domains, Gaussian priors are unable to
capture the multimodal nature of the underlying composition, thereby limiting model performance on
heterogeneous data.

Our variational composition framework offers a flexible way of incorporating prior knowledge to
address the issue of structural redundancy in task vector representations. We introduce a Spike-and-
Slab prior, which effectively promotes structural sparsity in the compositions of task vectors. The
Spike-and-Slab prior is defined as a mixture distribution:

p(z) = (1 —7)do(2) + mN(2;0,0%), )

where dy(z) denotes the Dirac delta distribution at zero, N'(z; 0, 02) denotes a Gaussian distribution
with zero mean and variance o2, and 7 is the mixture coefficient that controls the expected sparsity
of the coefficients. The Spike-and-Slab prior allocates probability mass between a point mass at
zero (the spike) and a continuous Gaussian distribution (the slab). This ensures that coefficients are
either exactly zero or drawn from the Gaussian, thereby enabling explicit and interpretable structure
selection. By promoting coefficient sparsity, the Spike-and-Slab prior automatically identifies and
retains the most important task vector components while effectively eliminating irrelevant ones. This
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(a) t-SNE clustering of task representations. (b) Cumulative singular value energy distribution.

Figure 2: Redundancy and structural analysis of task vectors. (a) t-SNE visualization shows that task
representations form distinct clusters corresponding to each dataset, but there are notable overlap regions,
indicating partial coupling of task features across domains. (b) Cumulative singular value energy plots reveal
that fewer than 40 principal components account for over 95% of the variance across all eight datasets. These
analyses reveal substantial structural redundancy in task vector representations.

property not only improves model efficiency but also enhances interpretability, allowing us to clearly
determine which task knowledge is relevant to each input sample.

Under the Spike-and-Slab prior, we adopt a factorized variational posterior:

go(zx) = [ [ ] [ 4o (w]1x)ga (2], %), 6)

i

Specifically, for each composition coefficient zg, we introduce a corresponding binary indicator
variable w; . The coefficient is retained when w; = 1 and set to zero when w] =

By performing variational inference, we obtain the following ELBO objective:

LELBO = ]qu>(z,w|x) [logp(Y|Xa z, W)] — D1 (q@ (Z7 w|x) | |p(z, w))7 @)

To optimize this framework, we employ amortized inference with Monte Carlo sampling. We design
a neural network parameterized by ® that inputs sample x and outputs three sets of parameters:

inclusion probabilities 7] (x), weight means f1;(x), and log variances log o7;(x). During training,
we first sample binary inclusion variables w’ ~ Bernoulli(n? (x)), then sample weights z/ ~

7.

i

N (pij(x), afj (x)), and finally combine them to obtain sparse composition coefficients z] = w

z]. The complete derivation of the variational objective with Spike-and-Slab prior is available in
Appendix A.2.

However, in high-dimensional settings, Monte Carlo-based variational inference often suffers from
unstable sparsity patterns and unreliable results [35, 6]. This limitation motivates the development of
a more stable and controllable posterior, which we describe in the following section.

4.3 Controllable Posterior with Gated Sampling

To address the instability and high variance of Monte Carlo sampling in high dimensions, we propose
a gated sampling mechanism for controllable posterior. Instead of sampling binary variables from
the conventional Bernoulli distribution with probability 7(x), our method employs a deterministic,
continuous gating function to modulate composition coefficients. The continuous gating function
replaces discrete sampling with differentiable alternative, enabling gradient-based training while
preserving the structure of variational inference. Figure 3 illustrates both stochastic and deterministic
inference processes, highlighting how our method transitions from random Bernoulli sampling to
uncertainty-aware, soft-gated posterior construction.

We begin by constructing an uncertainty estimate ¢/, which integrates two components: gradient
sensitivity and distributional deviation. Gradient sensitivity S quantifies how responsive a coefficient
is to small perturbations in the input, while distributional deviation }V measures the extent to which a
coefficient deviates from the batch mean, where pp and o denote the mean and standard deviation
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Figure 3: Variational Composition of Task Vectors with Spike-and-Slab Prior. The framework illustrates
two inference approaches based on the Spike-and-Slab prior. On the left, the sampling-based variational
posterior process generates latent variables z from input features x via A (s (x), 03 (x)), producing sparse
representations z = z © w through element-wise multiplication with binary indicators w sampled from
Bernoulli(7r(x)). On the right, the deterministic gated sampling process computes uncertainty ¢/ from gradient
sensitivity S and distributional deviation V), uses an adaptive threshold I to generate continuous gating variables
€, and produces sparse representations z = z ® 2. This framework demonstrates the transition from random
binary selection to deterministic continuous gated in the inference process.

w ~ Bernoulli(7(x))

of the coefficient within the batch, respectively. The overall uncertainty measure is formulated as a
weighted combination:

z(x) — i
oB

U=?7-S+(1—77)-V=77~IVxZ(X)er(l—n)-‘ 7 ®)

where 7 is a balancing coefficient. Intuitively, coefficients that are highly sensitive to input changes
or show large fluctuations among similar samples are deemed unreliable and should be suppressed,
while stable and significant coefficients should be preserved.

We then define an adaptive gating function:
G (2,U; V) = z-1(|z[ = T(U; ), ©)

where the threshold function I'({/; ¥) varies with the uncertainty metric I/, creating an adaptive
selection mechanism as follows:

FU; W) =11 - (1 + )2 - U), (10)

where U = {41, 1} are learnable parameters, ¢; is a base threshold, and 15 controls sensitivity
to uncertainty. Under this mechanism, coefficients with high uncertainty are subjected to higher
thresholds and thus are less likely to be selected, while those with low uncertainty face lower
thresholds, increasing their likelihood of being retained. This adaptive selection ensures that more
reliable and informative components are preferentially integrated into the final model composition.

To enable end-to-end differentiable training, we approximate the hard-gated function with a soft-
gated function, thereby replacing the Monte Carlo sampling methods described in Section 4.2 with a
deterministic point estimation approach:

|z — P(U; ‘I’))

Q(z,U) :a( ;

where o(-) denotes the sigmoid function and p is a temperature hyperparameter. During training,
the soft-gated function allows for gradient-based optimization, while at inference time we switch to
hard thresholding to ensure sparse and interpretable coefficient selection. Based on this design, each
coefficient’s variational posterior can be approximated as a mixture of Spike-and-Slab priors:

a(zlx) = [1 — Q(z,U)] - 30(2) + Uz, U) - Nz j1a (%), 0% (). (12)

Here, € replaces the binary indicator variable w for deterministic gating. To further address the
high variance of sampling in high-dimensional spaces, we shift from sampling the coefficients z
to predicting them as a deterministic point estimate from the input z = f¢(x). In our framework,
instead of modeling a distribution over z, we explicitly compute an uncertainty metric I/ and use
it to control the gating function (2. This leads to a more stable training process. We formalize this
deterministic choice for z within the variational posterior using a Dirac delta distribution as follows:

q@,‘IJ(Q7Z|X) = q\I/(Q|Z)6z:fq)(x)- (13)

(1D



This parameterization enables the selection of deterministic coefficients within the variational infer-
ence framework, while explicitly modeling uncertainty.

In addition to the primary objective of the ELBO, we introduce auxiliary regularization losses Leq
to further stabilize training and encourage exploration. These include a boundary loss, penalizing
coefficients near the threshold to encourage more decisive selection decisions, and an exploration loss,
promoting threshold-related parameters to search in a broader space to avoid local optima. Detailed
definitions of these regularization terms and hyperparameter settings are provided in Appendix B.

In summary, the final training objective can be expressed as:
|De|
.1
argmmﬁ L(f (x5;00+ G (2(x;P9),U; V) T) ,¥s) + Alreg(2,U; V), (14)
W tl
where ) is the balance parameter. Our final training objective comprises two components: the primary
prediction loss based on the gated sampling, and a regularization term that stabilizes the optimization
process while enhancing the model’s generalization capacity. By modeling coefficient uncertainty
explicitly, our method enhances generalization and interpretability. Overall, this uncertainty-guided,
gated composition yields a more robust and interpretable mechanism for knowledge integration across
diverse tasks.

5 Experiments

5.1 Experiments Setup

Tasks and Datasets. We evaluate our framework across three distinct scenarios. For multi-task
model merging, we follow previous work and use eight image classification datasets: Cars [20], DTD
[5], EuroSAT [12], GTSRB [39], MNIST [22], RESISC45 [3], SUN397 [45], and SVHN [29]. For
NLP applications, we use the General Language Understanding Evaluation(GLUE) benchmark [42].
We also design a task negation experiment to evaluate performance on more complex task arithmetic.

Baselines. We compare our method VTVC against a comprehensive set of recent model merging
methods, including Task Arithmetic [17], aTLAS [51], TIES-Merging [47], DARE [50], AdaMerging
[49], and WUDI-Merging [4]. To ensure a fair comparison, all methods are evaluated under the same
experimental conditions.

Implementation Details. We use three pre-trained CLIP Vision Transformer (ViT) architectures:
ViT-B/16, ViT-B/32, and ViT-L/14 [31, 7]. For NLP tasks, we use RoBERTa [24] as the backbone
model. All experiments are trained with the AdamW optimizer [25]. For our method’s gated posterior,
we set the base threshold(¢1) to 0.05 and the sensitivity parameter(¢)s) to 1.0. All experiments were
conducted on eight NVIDIA A40 GPUs. Further details on hyperparameters and task-specific settings
are provided in Appendix B.

Evaluation Metrics. For model merging and image classification tasks, we report the top-1 accuracy.
For task negation, we evaluate the accuracy on both the forgotten target task and the remaining control
tasks. For the GLUE benchmark, we report the average score across all tasks. We also report the
gated ratio of our method, which measures the average proportion of active coefficients, to analyze its
sparsity.

5.2 Main Results

Performance on Multi-Task Merging. We first evaluated VTVC against current state-of-the-
art methods on model merging tasks. The evaluation covered eight visual tasks using ViT-B/32
models and eight NLP tasks using RoOBERTa-base models. All methods were tested under fair
experimental settings. As shown in Table 1 and Table 2, VTVC achieved the highest average accuracy
in both domains. For visual tasks, VTVC reached 87.45% average accuracy, with particularly strong
performance on DTD and RESISC45 datasets, improving accuracy by 15.35% and 5.14% respectively
compared to the previous best method. For NLP tasks, VI'VC achieved 81.93% average accuracy,
showing significant improvements on challenging tasks such as COLA, STS-B, and RTE, where
accuracy gains reached 80.60%, 74.37%, and 83.80% respectively. These results demonstrate that
the sample-level variational approach effectively captures task-specific features across different
modalities, making it a flexible and powerful method for model merging.



Table 1: Multi-task performance when merging ViT-B/32 models on eight visual tasks.

Methods | Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN | Avg Acc
Pre-trained | 59.63 44.13 45.74 32.60 48.26 60.27 63.53 31.63 | 4822
Task Arithmetic [17] | 60.23  55.18 80.26 66.21 95.94 69.17 64.09 76.27 70.92
Ties-Merging [47] 65.17 59.43 78.03 67.55 97.49 73.29 76.98 84.70 75.33
AdaMerging [49] 69.90 50.10 83.40 82.40 95.70 73.10 69.80 87.30 76.46
DARE [50] 61.89 55.19 79.89 66.03 95.87 68.94 63.69 75.98 70.94
aTLAS [51] 71.59 78.93 93.05 88.33 96.87 87.39 67.94 85.47 83.70
WUDI-Merging [4] | 70.88 71.53 95.74 93.12 98.01 86.21 72.35 92.01 84.98
VTVC (Ours) | 76.02 86.88 95.84 90.57 98.24 91.35 71.19 89.53 | 8745

Table 2: Multi-task performance when merging RoBERTa-base model on NLP tasks.

Methods | COLA STS-2 MRPC STS-B QQP QNLI MNLI RTE | AvgAcc
Pre-trained | 0.00 53.76  85.01 4.01 3748 53.05 37.09 71.19| 4270
Weight Averaging 0.00 5921 8579 4699 4537 6394 48.00 71.19 52.56

Task Arithmetic [17] 8.35 88.26  89.57 3284 82.03 8540 7554 80.43 67.80
Ties-Merging [47] 31.76  88.86  86.18 1094 61.05 8594 83.01 69.56 64.66
DARE [50] 0.00 88.14 86.61 30.19 8433 79.09 6395 77.16 63.68

VTVC (Ours) | 80.60 90.60 8848 74.37 8040 8320 74.00 83.80 | 81.93

Performance on Task Negation. Task negation aims to  Table 3: Performance of task negation aver-
remove specific knowledge from a merged model while aged across eight datasets.
preserving other capabilities. The goal is to reduce perfor-

mance on the target task while maintaining accuracy on ~_Methods | Target(]) Control(1)
control tasks. As shown in Table 3, VTVC achieves the = Task Arithmetic | 22.62 60.73
best task negation performance with the lowest target accu-  Ties-Merging 20.93 61.52
racy and competitive control accuracy. This demonstrates ~ TaLoS 17.28 61.33
that VTVC can selectively remove task-specific knowl- aTLAS 19.42 61.31
edge without significantly affecting other tasks. More  VIVC (Ours) | 16.75 60.84

detailed results are provided in Appendix C.1.

5.3 Ablation Studies and Analysis

In this section, we analyze the contribution of each component through ablation experiments. All
ablation experiments are conducted under a unified setting. To avoid the impact of data augmentation
strategies and improve computational efficiency, we use pre-computed feature representations with a
static data augmentation strategy.

Benefit of sample-specific task vectors. Sample-specific task vector composition consistently
outperforms task-level baselines, as shown in Table 4. The improvements are especially clear on
Cars, SVHN, and GTSRB datasets. These datasets show greater diversity within the sample and
differences between domains. SVHN contains data features that differ significantly from pre-training
source data. GTSRB includes various types of traffic signs. Cars features different automobile models
and viewing angles. These characteristics make unified task-level vectors insufficient for capturing
sample-specific differences. Our approach calculates combination coefficients for each input sample,
enabling more accurate and adaptive knowledge integration. As a result, improvements are greatest
on datasets with high variability and notable domain gaps. This confirms the effectiveness of our
sample-specific task vectors when handling complex data scenarios. All results are based on features
encoded by the ViT-B/32 model. More detailed results are provided in Appendix C.2.

Benefit of variational composition of task vectors. Table 4 shows that the variational inference
framework enhances the overall performance of the model. This is particularly evident in datasets with
stronger differences between domains, such as EuroSAT, MNIST, and SVHN. This improvement is
attributed to explicit uncertainty modeling of task vector coefficients. This provides better robustness
when processing cross-domain data variations. The KL divergence regularization effectively reduces
overfitting risk, improving model generalization. Deterministic methods perform slightly better
on DTD, likely due to the regularity of its texture features. In this case, deterministic inference



Table 4: Performance comparison of task-level versus sample-specific methods with deterministic and
probabilistic task vectors across eight datasets. Results demonstrate that sample-specific methods consistently
outperform task-level methods across all datasets, with the variational inference framework further enhancing
model performance.

Method Cars DTD EuroSAT GTSRB  MNIST RESISC45 SUN397 SVHN  Average
Pre-trained 58.56%  42.66%  40.74% = 26.45%  25.23% 54.60% 46.46% 9.25% 37.99%

Deterministic-based
Task-level [51] 62.99%  73.29% 92.67% 81.11% 97.13% 88.41% 67.16%  58.01%  77.60%
Sample-specific 74.75% 85.97% 96.07% 85.90%  98.07% 90.81% 68.01% 67.17%  83.34%
Probabilistic-based
Task-level 73.06%  80.64% 96.19% 85.66%  98.65% 90.00% 67.95%  64.23%  82.05%
Sample-specific 75.33% 85.71% 96.33%  86.76% 98.72% 90.98 % 7297% 67.78% 84.32%

ViT-B/32 ViT-B/16 ViT-L/14

Cars Cars Cars

SVHN SVHN

SUN397 EuroSAT SUN397 EuroSAT SUN397 EuroSAT

RESISC45 GTSRB RESISC45 GTSRB RESISC45 GTSRB

MNIST MNIST MNIST

Gated Ratio w/ Gaussian prior w/ Spike-and-Slab prior

Figure 4: Comparison of Accuracy and Gated Ratio under Gaussian and Spike-and-Slab Priors. We
visualize model accuracy and gated ratios for three ViT architectures across eight image classification datasets.
The Spike-and-Slab prior consistently delivers higher accuracy while activating fewer task coefficients than the
Gaussian prior, demonstrating more efficient and selective task vector composition.

adequately captures the necessary information. The uncertainty of the additional parameter from
variational inference may introduce minor interference. The results validate that our variational
inference framework is particularly effective for heterogeneous and cross-domain scenarios. More
detailed results are provided in Appendix C.3.

Normal Gaussian vs. Spike-Slab priors. Figure 4 compares the performance of Gaussian and
Spike-and-Slab priors across different ViT models. Spike-and-Slab priors achieve substantial perfor-
mance gains on most datasets. These improvements are most evident in the datasets DTD, MNIST,
and SVHN, which feature complex patterns or significant cross-domain differences. Spike-and-Slab
priors excel at capturing sparse structures in combination with task vectors. They guide the model
to select only the most relevant dimensions for each task. The gated ratio clearly demonstrates this
effect. The increased sparsity reduces interference from redundant information and improves both
efficiency and performance. It also reduces computational costs during inference. On EuroSAT
and RESISC45, Gaussian priors perform slightly better, possibly because these tasks benefit from
dense, high-dimensional feature representations. Their tasks likely require comprehensive feature
combinations across dimensions. Spike-and-Slab priors perform exceptionally well on datasets with
complex and heterogeneous characteristics. The sparse approach improves cross-domain performance
and makes the composition of task vectors more efficient. More detailed results are provided in
Appendix C.3.

Effect of controllable posterior with gated sampling. Table 5 evaluates the effectiveness of the
gated sampling mechanism. Introducing the gated sampling leads to a clear overall performance
improvement over the baseline Spike-Slab prior. This improvement is particularly significant on
datasets such as DTD, EuroSAT, and RESISC45. The gated sampling effectively identifies and
preserves critical task knowledge while suppressing noise and unreliable components by evaluating
the reliability of composition coefficients. The controllable posterior with gated sampling yields a
more stable and interpretable component selection compared to inference with random sampling.
Analysis in different data sets reveals that gated sampling performs more prominently on datasets with
complex and variable feature spaces, further confirming its superiority in handling heterogeneous data.
These experimental results validate the effectiveness of our theoretical framework, demonstrating the
important role of uncertainty-guided adaptive component selection in enhancing model generalization



Table 5: Analysis of the adaptive gated sampling. The gated sampling significantly improves model general-
ization capabilities across all datasets by selectively filtering reliable composition coefficients.

Method Cars DTD EuroSAT GTSRB  MNIST RESISC45 SUN397 SVHN  Average

w/o Gated Sampling ~ 75.69%  88.66%  96.41%  87.17% 98.81% 90.71% 72.25%  67.85%  84.69%
w/ Gated Sampling  77.78% 93.31% 97.04%  87.16% 98.91% 92.08 % 73.47%  68.57%  86.04%

capability and robustness. All results are based on features encoded by the ViT-B/32 model. More
detailed results are provided in Appendix C.3. To further verify the effectiveness and transferability
of the controllable posterior, we apply the gating module as a filter on the aTLAS method. The
evaluation shows performance improvements across all datasets and three ViT architectures. Results
are provided in Appendix C.4.

Relationship Between Model Scale and Gated Ratio. Figure 5 illustrates the impact of gated
sampling on average accuracy and activation ratios across three Vision Transformer (ViT) models
of increasing scale: ViT-B/32, ViT-B/16, and ViT-L/14. The results clearly demonstrate significant
accuracy improvements when incorporating gated

r 85.0%

sampling in all models. The improvements are 92.5% | W Accuracy (wo Gated Sampling)
most pronounced in larger models (ViT-L/14), o o T
highlighting the scalability advantage of our Gated Ratio (w/ Gated Sampling) 80.0%

= 90.0% A

method. Notably, as the model scale increases,
the activation coefficient ratio with gated posterior
rises significantly, while models without gated
sampling maintain relatively stable or slightly de-
creasing activation ratios. This pattern suggests
conventional variational methods struggle to ac-
commodate the knowledge integration demands
. . ViT-B/32 ViT-B/16 ViT-L/14
of increasingly complex models. In contrast, our Model Architecture
gated sampling dynamically adjusts knowledge .
integration strategies based on the model scale. F:lg[l;l‘e 5: g/}mcllplazl;lsoll:'()f Accur?rchy and ((i;atElea'
It preserves more valuable task vectors in larger tio Across Model Architectures. The gated sampling
. . . consistently improves prediction accuracy across all

models, enabling more efficient and precise model S

diti This oh . . ith th models. As model complexity increases, our frame-
e 1ng. This p enomenon 18 CO.nSlStent Wl,t ,t, € work retains more coefficients, showing the effective-
increased representat{onal capacity and flexibility 1egs of gated sampling in handling more complex
of larger models, which benefit more from adap- tagks.
tive gating strategies.

r75.0%
87.5% A

Average Accuracy (%)
Gated Ratio (%)

r 70.0%
85.0% A

=~ 65.0%

6 Conclusion

In this paper, we proposed a new framework, Variational Task Vector Composition (VITVC), which
formulates the composition process as a variational inference problem. Our Bayesian approach
enables precise, sample-specific modeling that effectively captures domain-specific knowledge for
each input. By introducing a Spike-and-Slab prior, our method automatically selects important
components in task vectors while removing redundancy. This concept inspired our gated sampling
mechanism, which further enhances reliability by deterministically and efficiently selecting highly
informative task vectors based on uncertainty. Extensive experiments on both vision and language
benchmarks demonstrate that VTVC significantly improves performance on various operations,
including task addition and task negation. Overall, our framework offers a new, probabilistic
perspective on task arithmetic and broadens the application potential of task vectors for adaptive
model editing.

Limitations and Future Work. A key direction for future research is improving the offline training
efficiency and scalability of our framework. While VTVC enables fast online inference, it relies on a
computationally intensive stage to train the inference network, especially as the number of tasks and
model scale increase.

Acknowledgements. This work was partially supported by the National Natural Science Foundation
of China under Grant No. 62176068.
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Justification: The contributions and scope of this paper are claimed in the abstract. Detailed
information can be found in the third paragraph of the introduction section 1.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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Justification: We provide a "limitation" subsection in the conclusion section 6.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
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The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
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by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental details in the experiment section. The detailed
input and output of our method can be found in Appendix and supplemental materials.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide all experimental details in the experiment section. The detailed
and Python codes of our method can be found in Appendix and supplemental materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow the standard experimental setup in Variational Task Vector Com-
position, where the data splits, is set as the same as previous works aTLAS [51]. Detailed
information can be found in Sec. 5

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following the standard experimental setup, we repeat each experiment over 3
random seeds and report the mean of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
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* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computing resources in experiments 5.
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the potential broader impacts in the conclusion section 6.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The data and models pose no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers that produced the code package and datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Details of the datasets/code/model are provided in the supplemental materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We use LLM solely for grammar checking.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Mathematical Derivation of Variational Composition of Task Vectors

A.1 Derivation of the ELBO Objective Function

In the variational composition of task vectors, our main objective is to infer the posterior distribution
p(z]x,y), where z denotes the composition coefficients of task vectors, x denotes the input data, and
y represents the labels. According to Bayes’ theorem, this posterior is given by:

p(ylx,2)p(z)

p(z|x,y) = 15)
) = )
where the marginal likelihood p(y|x) is defined as:

p(ylx) = /p(Y|X7 z)p(2)dz (16)

Since directly computing the above integral is typically intractable, we introduce a variational
approximate posterior distribution ¢(z|x) to approximate the true posterior. We derive a lower bound
on the log marginal likelihood:

log p(y|x) = log /p(YIx, z)p(z)dz (17)

Introducing the variational distribution ¢(z|x):

log p(y|[x) = log / p(y|x,2)p(z)dz
(18)

Since the logarithm is a concave function, by Jensen’s inequality:

plylx, Z)p(Z)}
q(z|x)
p(ylx, Z)p(Z)}
q(z|x)

log p(y|x) = log Eq(z/x) {

> Eyzx) |1

p(z) }
q(zlx)
= Ey(alx) [log p(y|x,2)] — Dkw(q(z[x)||p(2))

= Eyzx) [log p(¥1%,2)] + Eq(z)x) {log

This derives Equation 4 from the paper:

log p(y %) = Eq(alx) [log p(y|x,2)] — Dkr(q(z[x)]|p(2)) (20)

This inequality’s right-hand side is known as the Evidence Lower BOund (ELBO). It comprises
two critical components. The first term E, ;) [log p(y|x, z)] represents the expected logarithmic
likelihood, which guides the model toward accurate predictions. The second term D, (¢(z|x)||p(z))
is the KL divergence term, regularizing the posterior toward the prior distribution, thus preventing
overfitting.

Maximizing ELBO is equivalent to minimizing the KL divergence between the variational posterior
and the true posterior. Through optimization of the ELBO, we can learn optimal composition
coefficients for task vectors while maintaining robust generalization capabilities.

A.2 Derivation of ELBO with Spike-and-Slab Prior

In the Spike-and-Slab prior based variational framework, we introduce binary indicator variables w to
determine which composition coefficients are retained and which are set to zero. We define a joint
variational posterior distribution ¢ (w, z|x), where ® represents neural network parameters. The
ELBO can be expressed as:

EELBO = Eq<p (w,z]x) [1ng(y|xv w, Z)} — Dk (q‘i’ (w7 Z|X) | |p(w7 Z)) (21)
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Using conditional probability decomposition, we can factorize the joint variational posterior as:

g2 (w, 2[x) = qa (2|x)ge (]2, %) (22)
Similarly, the prior distribution can be decomposed as:
p(w,2z) = p(z)p(wlz) (23)

Based on the above factorization, the KL divergence term can be further expanded:

Dxu(qa(w, 2[x)[|p(w, 2)) = Dxr(ge (2[%)qs (|2, X)[[p(2)p(w]2))

= Z|X) 10 Qq>(Z\X) Z
—/qcp(\ ) log (@) d

+/Q¢>(Z|X) [/%(wlz,x) log q(l;(éj'zz’;()dw dz.

= Dxw(qa(2[%)|p(2)) + Eqy (21x) [DkL (g0 (]2, %) [[p(w]2))]

(24)

Therefore, the ELBO can be rewritten as:

LELBO = Eqy (w,2/x) [10g p(¥[%, w, 2)] — Dxv(qa (2X)[|p(2)) — Eqy (21x) [DxL (93 (w2, X)||p(w|(zz)%])

In our model, we formulate a comprehensive probabilistic framework by defining the follow-
ing distribution structure: The binary variables in the variational posterior follow g (wf |x) =
Bernoulli(fyg (x)), where %j (x) represents the inclusion probability for each coefficient, while their
prior counterparts are distributed according to p(wf ) = Bernoulli(r), with 7 serving as the global
sparsity parameter. For the coefficient values themselves, when wg = 1, the posterior distribution is
characterized by go (2] |w! = 1,x) = N (2); 15 (x), cffj (x)), and correspondingly, the prior follows

p(z)|w! = 1) = N(2?;0,02), establishing a complete probabilistic specification of our variable
selection mechanism.

For the binary indicator variables w, the KL divergence is calculated as:

Dxw (g (w[x)||p(w)) =Y Dx.(Bernoulli(~/ (x))||Bernoulli(r))
ij

; (26)

; 1—~/(x

—Z% ) log )+(1—75(X))10g17()

-
When w{ = 1, the KL divergence for coefficient zi is:
Dx(qe (2] |lw] = 1,%)[[p(z]|w] = 1)) = Dxw(N (2]; j1i;(x), 07 (x)) | (23 0, 0))

1 2 2(x) + 12, 27)

RN R LT

2 o (%) o?

Combining the above KL divergence calculations, and considering that when wf = 0, the coefficient
is forced to zero (thus contributing no additional KL divergence), the complete form of the ELBO is:

LELBO = qu,(w,z\x) [lng(y|X, W, Z)]
‘ 1~/ (x)
j
2 x)log *Z x))log ——-=
ij

_ Z% llog 202 n o (x) _Zﬂij(x) B 11

o5 (x) o

(28)

This represents the complete expansion of Equation 6. The first term is the expected log-likelihood,
representing the model’s predictive accuracy; the second term is the KL divergence of binary indicator
variables, controlling the sparsity pattern; and the third term is the conditional KL divergence of
non-zero coefficients, weighted by their inclusion probabilities, ensuring a reasonable distribution of
weight values. By optimizing this objective function, we achieve adaptive sparse composition of task
vectors while maintaining the model’s generalization capability.
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B Regularization and Hyperparameter Settings

Regularization Overview. In our adaptive gating mechanism, regularization plays a crucial role in
ensuring training stability and enhancing model generalization capability. Our proposed regulariza-
tion strategy addresses several key challenges: uncertainty in gating decisions, insufficient parameter
space exploration, and information integration efficiency. When coefficient values approach thresh-
olds, small perturbations can cause unstable selection results; training processes tend to converge
prematurely to suboptimal solutions; and selected components must effectively represent sample
features. The total regularization objective L,¢4(z,U; ¥) comprises multiple carefully designed
components, each aiming to jointly improve the robustness and effectiveness of the gating mechanism.

Boundary Loss. The boundary loss Ly is specifically designed to penalize coefficients near thresholds,
enhancing stability by encouraging more decisive selection decisions. When coefficient values lie in
ambiguous threshold regions, minor input variations can cause significant fluctuations in component
selection, reducing model robustness and generalization capacity. The boundary loss is defined as:

n b
Ly(z, %) =) Y max(0,m — |z;; — T (Ui ;;9))) (29)

i=1 j=1
This loss function imposes a positive penalty when the absolute difference between coefficient
z; ; and threshold I'(U; ;; ¥) falls below boundary width m, otherwise zero, effectively pushing
coefficients away from unstable threshold regions to form more decisive binary selection patterns.
In our experiments, the default boundary width parameter m = 0.1 effectively balances clear
decision-making with model flexibility.

Exploration Loss. Exploration loss £. promotes threshold-related parameters (17 and ) to explore
broader parameter spaces, preventing training from converging to local optima. By encouraging these
parameters to deviate from their initial values, the model explores potentially superior parameter
configurations, enhancing the adaptability of the gating mechanism. The exploration loss is defined

as:

Le(¥) = —log (11 — | +€) —log (v — 3] + ) (30)
This loss function decreases as parameters deviate from their initial configurations by taking the
negative logarithm of the parameter-initial value difference, thus incentivizing broader parameter
space exploration. Here, € represents a small constant (typically 10~°) that ensures numerical stability.
The uncertainty loss £,, is defined as:

n b
L‘u(Z/I) :ZZU%JH[Z%J 750} (31)
i=1 j=1
This loss penalizes selected (non-zero) coefficients with high uncertainty, encouraging the model to
reduce uncertainty while retaining coefficients, further enhancing gating decision reliability. The
comprehensive regularization objective integrates these components:

‘c’r'eg(zvu; \I') = )\bﬁb(za ‘1/) + /\eﬁe(\p) + )‘uEU(Z’{) (32)

Hyperparameter Settings and Sensitivity Analysis. In our experimental implementation, we
used a set of meticulously tuned hyperparameters: boundary width m = 0.1, boundary loss weight
Ay = 107, exploration loss weight A\, = 1073, uncertainty loss weight \,, = 10~2, base threshold
initial value ¥/ = 0.05, uncertainty sensitivity initial value )3 = 1.0, global regularization coefficient
A = 1073 (Equation 13), and gating temperature parameter p = 20.0 (Equation 10). Sensitivity
analysis indicates that model performance is relatively robust to variations in A\, within the range
[107°, 10~?]; more sensitive to \., where increasing this value (> 10~2) promotes more aggressive
parameter exploration but can lead to training instability, while decreasing it (< 10~%) can cause the
model to converge to local optima. Performance is optimal when \,, is within [5 x 10735 x 1072].
The initial setting of the base threshold /9 significantly impacts model performance: excessive
values (> 0.1) lead to overly sparse representations, compromising information retention; insufficient
values (< 0.01) retain too many redundant components, increasing overfit risk. For different feature
dimensions and dataset characteristics, we recommend setting ¢)9 within the range [0.03, 0.08] and
automatically selecting optimal configurations through validation sets. Comprehensive experimental
results demonstrate that our proposed regularization strategy and parameter configurations signif-
icantly enhance the effectiveness of the adaptive gating mechanism, enabling reliable component
selection across diverse task vector spaces.
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C Supplementary Experimental Results

C.1 Detailed results of task negation

Table 6: Task negation on ViT-B/32 across 8 datasets. Lower is better for Target (Tgt.) and higher is better for
Control (Ctr.).

Cars DTD EuroSAT GTSRB MNIST RESISC45  SUN397 SVHN Average

Tgt. Ctr. Tgt. Ctr. Tgt. Ctr. Tgt. Ctr. Tgt. Ctr. Tgt. Ctr. Tgt. Ctr. Tgt. Ctr. Tgt. Ctr

Task Arithmetic [17] 35.47 60.73 26.96 60.67 11.59 60.67 7.17 60.40 12.70 60.86 32.08 61.23 47.96 60.67 7.03 60.60 22.62 60.73
TIES-Merging [47]  35.49 61.63 23.28 61.19 11.37 61.11 10.39 62.32 13.61 62.63 21.76 60.82 43.71 60.48 7.82 61.94 20.93 61.52

TaLoS [19] 28.30 60.88 18.99 59.76 9.63 62.13 520 62.01 12.18 63.00 13.56 60.27 41.87 60.47 8.49 62.10 17.28 61.33
aTLAS [51] 28.95 60.52 25.21 60.48 10.44 61.62 5.51 60.67 10.76 62.90 20.95 60.72 46.29 60.82 7.28 62.72 19.42 61.31
VTVC (Ours) 25.48 60.13 21.19 59.98 9.26 61.59 4.18 60.74 8.57 62.83 15.95 60.36 42.66 60.27 6.74 60.84 16.75 60.84

C.2 Detailed results of task-level vs. sample-specific and deterministic vs. probabilistic

Table 7: Detailed accuracy comparison (%) across ViT models and datasets. We report zero-shot, determin-
istic (task-level and sample-specific), and probabilistic (task-level and sample-specific) performances for each
model. Highest performance in each dataset is highlighted in bold.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN  Avg.
ViT-B/32
Pre-trained 58.56 42.66 40.74 26.45 25.23 54.60 46.46 9.25 37.99
Deterministic-based
Task-level 62.99 73.29 92.67 81.11 97.13 88.41 67.16 58.01  77.60
Sample-specific ~ 74.75  85.97 96.07 85.90 98.07 90.81 68.01 67.17 83.34
Probabilistic-based
Task-level 73.06 80.64 96.19 85.66 98.65 90.00 67.95 64.23  82.05
Sample-specific  75.33  85.71 96.33 86.76 98.72 90.98 72.97 67.78 84.32
ViT-B/16
Zero-shot 63.45 43.77 50.63 35.22 19.29 55.70 47.13 1553 41.34
Deterministic-based
Task-level 71.61 7592 93.56 82.15 97.36 90.37 69.54 66.67  80.90
Sample-specific  80.59  90.10 96.96 88.04 98.85 92.17 70.02 7497  86.46
Probabilistic-based
Task-level 81.32 8244 96.19 88.18 98.93 91.57 69.95 70.50 84.87
Sample-specific  81.52  88.75 96.78 88.76 98.93 92.90 71.81 7512  86.82
ViT-L/14
Zero-shot 76.40 52.10 55.63 45.61 52.59 63.41 50.41 41.73  54.74
Deterministic-based
Task-level 85.39 83.41 96.89 91.55 98.76 93.79 71.05 76.02  87.11
Sample-specific 8729  96.84 97.91 93.46 99.09 94.30 73.90 82.38  90.65
Probabilistic-based
Task-level 88.47 90.08 97.78 92.87 99.01 93.54 72.33 7846  89.07
Sample-specific  89.64  93.28 97.99 93.55 98.92 95.11 75.05 83.03  90.82
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C.3 Detailed results of Gaussian vs. Spike-and-Slab priors

Table 8: Performance comparison between Gaussian and Spike-and-Slab prior models (%) across ViT
models and datasets. Highest performance in each dataset is highlighted in bold. Gated ratio values are reported
in italics.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN Avg.
ViT-B/32

Gaussian prior 7533%  85.71%  96.33%  86.76%  98.72% 90.98 % 7297%  67.78%  84.32%

Spike-and-Slab prior  75.69%  88.66%  96.41% 87.17% 98.81% 90.71% 72.25%  67.85%  84.69%
ViT-B/16

Gaussian prior 81.52% 88.715%  96.78%  88.76%  98.85% 92.17% 71.81%  7497%  86.61%

Spike-and-Slab prior  82.23% 90.31%  96.70%  89.27% 98.87% 92.40 % 74.10%  75.46% 87.42%
ViT-L/14

Gaussian prior 87.29%  9328%  97.67%  93.46%  99.09% 94.30% 73.90%  82.38%  90.38%

Spike-and-Slab prior  88.38%  94.35%  97.63%  93.56% 99.14% 94.43% 75.07%  83.09%  90.71%

C.4 Detailed results of gated sampling

Table 9: Accuracy and gating ratio comparison (%) across ViT models and datasets. Performance and
average gated ratio are reported for models with and without gated sampling. The highest performance in each
dataset is highlighted in bold. Gated ratio values are in italics.

Method Cars DTD  EuroSAT GTSRB MNIST RESISC45SUN397 SVHN Avg.
ViT-B/32
w/o Gated Sampling  75.69%  88.66% 96.41% 8717% 98.81% 90.711% 72.25% 67.85% 84.69%
Gated Ratio 80.40% 72.60% 58.60% 80.20% 67.30% 77.70% 71.10% 64.30% 71.53%
w/ Gated Sampling ~ 77.78% 93.31% 97.04% 87.16% 9891% 92.08% 73.47% 68.57% 86.04%
Gated Ratio 65.62% 71.88% 59.38% 71.87% 60.42% 63.54% 91.67% 64.58% 68.62%
ViT-B/16
w/o Gated Sampling  82.23% 90.31% 96.70% 89.27% 98.87% 92.40% 74.10% 75.46% 87.42%
Gated Ratio 78.70% 74.50% 68.10% 63.30% 69.10% 76.90% 72.40% 60.20%  70.40%
w/ Gated Sampling ~ 83.61% 95.01% 97.00% 89.22% 98.93% 93.02% 73.53% 7547% 88.22%
Gated Ratio 79.17% 73.96% 67.71% 82.23% 81.25% 77.08% 62.08% 75.21% 75.21%
ViT-L/14
w/o Gated Sampling  88.38%  94.35% 97.63% 93.56% 99.14% 94.43% 75.07% 83.09%  90.71%
Gated Ratio 67.00% 76.60% 66.50% 69.70% 65.50% 74.40% 62.50% 80.60% 70.35%
w/ Gated Sampling ~ 89.45% 97.75% 97.96% 93.67% 99.15% 9549% 75.52% 83.31% 91.54%
Gated Ratio 69.79% 72.92% 70.83% 85.83% 85.42% 85.42% 67.71% 7813% 78.13%

C.5 Applying gated sampling to aTLAS for filtering

Table 10: Performance comparison between standard aTLAS and Gated aTLAS methods across three
ViT architectures and eight datasets (%). The gated mechanism consistently improves performance across all
datasets and models. Highest performance in each dataset is highlighted in bold.

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN Avg.

ViT-B/32
w/o Gated 62.99%  73.29%  92.67%  81.11% 97.13% 88.41% 67.16%  58.01%  77.60%
w/Gated  71.32% 80.24%  94.96%  84.92% 97.96% 89.84% 68.33% 61.68% 81.16%
ViT-B/16
w/o Gated 71.61%  75.92%  93.56%  82.15%  97.36% 90.37% 69.54%  66.67%  80.90%
w/ Gated  80.06% 82.37% 94.96%  86.04% 98.10% 91.59 % 70.29%  68.68%  84.01%
ViT-L/14
w/o Gated 8539% 8341%  96.89%  91.55%  98.76% 93.79% 73.05%  76.02%  87.11%
w/ Gated  86.78% 88.40% 97.33%  92.88% 98.90% 94.75% 7719% 77.779%  88.59%
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