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Abstract

Gradient estimation is critical in zeroth-order optimization methods, which aims to
obtain the descent direction by sampling update directions and querying function
evaluations. Extensive research has been conducted including smoothing and linear
interpolation. The former methods smooth the objective function, causing a biased
gradient estimation, while the latter often enjoys more accurate estimates, at the
cost of large amounts of samples and queries at each iteration to update variables.
This paper resorts to the linear interpolation strategy and proposes to reduce the
complexity of gradient estimation by reusing queries in the prior iterations while
maintaining the sample size unchanged. Specifically, we model the gradient estima-
tion as a quadratically constrained linear program problem and manage to derive
the analytical solution. It innovatively decouples the required sample size from the
variable dimension without extra conditions required, making it able to leverage
the queries in the prior iterations. Moreover, part of the intermediate variables that
contribute to the gradient estimation can be directly indexed, significantly reducing
the computation complexity. Experiments on both simulation functions and real
scenarios (black-box adversarial attacks neural architecture search, and parameter-
efficient fine-tuning for large language models), show its efficacy and efficiency.
Our code is available at https://github.com/Thinklab-SJTU/ReLIZO.git.

1 Introduction

Zeroth-order optimization (ZO) aims to estimate the gradients by only function evaluations and
solve optimization problems by the descent method. It has been successfully applied to many fields,
including science [41, 25], finance [35], and artificial intelligence [37, 45, 47], where the optimization
functions are usually black-box without available gradients w.r.t. the variables. Typical ZO methods
iteratively perform three major steps [35]: 1) estimate the gradient by sampling directions to update
the variable and querying the function evaluation, 2) rectify the descent direction through momentum,
element-wise sign operation, stochastic variance reduced algorithms, etc., and 3) update the variables
according to the descent direction. Wherein, the first step, i.e. gradient estimation, is critical since
it provides the essential direction to update variables, which have been explored by many recent
works [5, 30].

Gradient estimation methods in ZO can be roughly categorized into two groups [5]: linear interpo-
lation technique [4, 30] and smoothing strategy [39, 12]. The former proposes to sample a set of
linearly independent directions to form an invertible matrix and compute the gradient through linear
interpolation. Though such methods can get better descent directions, the sample size of directions
should be the same as the dimension of variables, leading to an intractable complexity of building an
invertible matrix and computing the matrix inversion as the dimension increases. A recent work [30]
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makes the sample size in linear interpolation strategy independent of the dimension of variables yet
involves an extra orthogonal requirement of the sampled vectors. The latter group proposes to estimate
the gradient by a sum of directional derivatives along random directions e.g. Gaussian and uniform on
a unit sphere. Such methods are simple to implement and the sample size directions are independent
of the variable dimension. However, it provides a gradient estimation of a smoothed version of
the objective function [35], which differs from the original one with a bound w.r.t. a smoothing
parameter [39]. Additionally, the prior work [5] shows that smoothing methods require significantly
more samples than linear interpolation strategies to obtain an accurate estimation The work [28]
leverages information theory showing that under the Lipschitz continuous gradient assumption, ZO
methods require sample complexities growing polynomially with the variable dimension.

Overall, the prior gradient estimation methods require large amounts of samples at each iteration
to update variables. Nevertheless, in many real scenarios, one query of function evaluation can
require large amounts of resources such as tasks in AutoML and reinforcement learning, which
significantly restricts the acceptable sample size at each iteration and thus slow down the convergence
of ZO methods. Consequently, it has been urgently demanded to reduce the number of queries while
ensuring the convergence of ZO methods.

To this end, we delve into the ZO pipeline and observe that the magnitudes of steps to update variables
are limited, making it possible to reuse the queries in the prior iterations. It is hoped that such a
reusing strategy can be explored to significantly reduce the number of queries of function evaluation
while maintaining the sample size unchanged at each iteration. However, it is hard to be directly
applied to the prior gradient estimation methods. On one hand, for smoothing strategies, it is hard to
guarantee the reused samples obey the demanded distribution, which will further increase the gradient
estimation bias. On the other hand, methods based on linear interpolation techniques require a large
computation complexity since building an invertible matrix needs to compute the null space of reused
samples. Additionally, another work [30] requires orthogonal sampled vectors, which can hardly be
satisfied by the prior samples, making it impossible to reuse the samples.

This work refers to Taylor’s expansion and proposes to estimate gradients through a linear combination
of limited direction samples and their queried function evaluations. We then model the gradient
estimation as a quadratically constrained linear program (QCLP) and derive the analytical solution.
Our method can reduce the required sample size (decoupled from the variable dimension) for linear
interpolation strategies without the orthogonal condition required. Consequently, it supports to reuse
the queries in the prior iterations. Moreover, part of the intermediate variables that contribute to the
gradient estimation can be directly indexed from the computation in the prior iterations, significantly
reducing the computation complexity during the ZO process. Theoretical analysis is performed to
show that our method can be regarded as a general version of the traditional linear interpolation
strategy and has a similar convergence rate. In summary, our contributions lie in:

1) We introduce to reuse the prior queries to speed up the ZO procedure. Unlike recent works
that cannot reuse the queries due to the requirements of sampled vectors to be orthogonal in linear
interpolation strategies or obey a specific distribution in smoothing techniques, we introduce to
estimate the gradient with an arbitrary number of sampled vectors without orthogonal condition,
making it possible to leverage the queries in the prior iterations. To the best of our knowledge, this
work is the first that attempts to reuse queries to speed up the ZO procedure.

2) We model the gradient estimation in ZO as a QCLP and derive the analytical solution by
Lagrange multiplier. Theoretical analysis also proves that our method has a similar convergence rate
as conventional linear interpolation techniques. Moreover, after combining our gradient estimator
based on QCLP with the reusing strategy, part of the intermediate variables that contribute to
the analytical solution can also be directly indexed from the computation in the prior iterations,
significantly reducing the complexity when the sample size is much lower than the variable dimension.
Overall, our method is more efficient than linear interpolation-based methods with a comparable
accurate estimation of the gradient.

3) We conduct extensive experiments to show the efficacy and efficiency of our method. We first
compare our method with recent ZO methods on the CUTEst, showing that it has faster convergence
speed and better solutions. Ablation studies show that the performance drop is negligible even with
more than 50% reuse rate. We then conduct experiments on the black-box adversarial attack task,
showing that it has lower attack loss and 5% better attack success rate compared to peer ZO solvers
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with similar final ℓ2 distortion. Our method is further applied to the Neural Architecture Search
(NAS) on NAS-Bench-201, outperforming other ZO solvers with 39% less number of queries.

2 Related Work

Zeroth-order optimization. There are typically two types of gradient estimation in ZO algorithms:
one-point estimation [38, 13, 54] and multi-point estimation [1, 39, 22, 19]. Since multi-point
estimation is more accurate, some works [33, 52] made further research on ZO convex problems. As
for the non-convex setting, the prior works [39, 22] proposed ZO-GD and its stochastic counterpart
ZO-SGD. ZO algorithms have been widely employed in various scenarios, such as black-box
adversarial attacks [11, 27], AutoML [47] and transfer learning [44]. It is worth noting that the
gradient estimation is the most critical part of ZO solvers, which is the focus of the above methods.

Gradient estimation via smoothing strategy. Methods based on the smoothing strategy [3, 36]
estimate gradients by averaging over several directional derivatives by sampling the direction from
either a Gaussian distribution [39] or a uniform distribution [20] on a unit sphere. Referring to the
prior smoothing strategy based ZO algorithms [39, 22], ZO-signSGD [34] yields faster convergence
but only guarantees to converge to a neighborhood of a solution, and ZO-AdaMM [12] uses adaptive
momentum to enhance the optimization.

Gradient estimation via linear interpolation. Methods based on linear interpolation [15, 4] estimate
gradient by solving linear programming. Conn et al. [15] derived the error bounds between the true
function value and interpolating polynomials, including linear and quadratic approximation models.
Berahas et al.[4] showed that linear interpolation gives better gradients than Gaussian smoothing in
derivative-free optimization. The prior work [5] derived bounds on the sample size and the sampling
radius, showing that smoothing strategy requires significantly more samples to obtain an accurate
estimation than linear interpolation. Kozak et al.[30] approximated the gradient by finite differences
computed in a set of orthogonal random directions, which is a special case of linear interpolation.
This work also focuses on the scope of linear interpolation due to its more accurate estimation of
gradient than smoothing techniques.

Remarks. Our approach has few constraints on the sample size, similar to the smoothing techniques.
Meanwhile, we estimate the gradients by solving a linear program problem, similar to the linear
interpolation strategies. Overall, our approach enjoys the efficiency of smoothing techniques while
maintaining estimation accuracy.

3 The Proposed ReLIZO Method

Similar to the prior ZO methods [22, 12], we consider the problem of finding a point x∗ ∈ Rd

such that f(x∗) = minx f(x). The function f : Rd → R is black-box and satisfies the following
assumptions:

Assumption 3.1. 0 < f(x0)− f(x∗) <∞, where x0 is the initial point.

Assumption 3.2. The function f is continuously differentiable, and∇f is L-Lipschitz continuous
for ∀x ∈ Rd.

3.1 Rethinking Gradient Estimation as QCLP

Consider the Taylor’s expansion of function f :

f(y) = f(x) +∇f(x)⊤(y − x) + o(y − x). (1)

The remainder can be omitted in many scenarios. For large-scale applications it can be hard to
compute the number of function evaluations required to construct quadratic models.

Given n random vectors as candidate updates to the variable ∆x ∈ Rn×d, we denote the i-th row
of it as ∆i

x. The corresponding function evaluation {f(x+∆i
x)}ni=1 can be queried and compose

∆f ∈ Rn, whose entries ∆i
f = f(x+∆i

x)− f(x),∀i = 1, ..., n. According to Eq. 1, we can have
the equations as follows:

∆x∇f(x) ≈ ∆f . (2)
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In this work, we mainly focus on the case where n < d, hoping to obtain approximately accurate
gradients with fewer queries. To this end, we estimate the direction of gradient ∇f(x) as g(x) by
linearly combining the n sampled vectors {∆i

x}ni=1, yielding g(x) = ∆⊤
x α, where α ∈ Rn represents

the coefficients of the linear combination. The inner product of normalized g(x) and∇f(x) increases
when their directions are getting closed, which can be formulated as:

argmax
g

g(x)⊤∇f(x)
∥g(x)∥

=
α⊤∆x∇f(x)√
α⊤∆x∆⊤

x α
. (3)

Substitute Eq. 2 into Eq. 3 and define Ax = ∆x∆
⊤
x ∈ Rn×n, We can model the estimation of

gradient direction as a quadratically constrained linear program (QCLP):

argmax
α

α⊤∆f , s.t. α⊤Axα = 1. (4)

We employ the Lagrange multiplier method to address the QCLP problem (4). The Lagrangian
function is defined as: L(α, λ) = α⊤∆f − λ(α⊤Axα − 1), where λ is the Lagrange multiplier.
Taking partial derivatives w.r.t. α and setting it to zero, we have ∂L

∂α = ∆f − 2λAxα = 0 and
Axα = 1

2λ∆f , yielding the direction of α ∝ A−1
x ∆f . Consequently, we obtain the estimated

direction of the gradient:
g(x) = ∆⊤

x α ∝ ∆⊤
x A

−1
x ∆f . (5)

Finally, we initialize the magnitude of the descent direction σk with learning rate η and adopt the line
search strategy to update σk to satisfy the Armijo-Goldstein condition [2, 23].

3.2 Reusing the Queries in the Prior Iterations

Unlike recent works unable to reuse the queries due to the requirements of sampled vectors to be
orthogonal in linear interpolation strategies [30] or to obey a specific distribution in smoothing
techniques [39], our method has few constraints on the sampled vectors ∆x, making it possible to
reuse the queries in the prior iterations.

Suppose xk−1 is the variable and ∆xk−1
is the n random vectors at (k − 1)-th iteration. We have the

queried function values at points {xk−1 +∆i
xk−1
}ni=1. The estimated descent direction is g(xk−1)

with step σk−1. After updating the variable at (k−1)-th iteration, we have xk = xk−1−σk−1g(xk−1).
Since f(xk−1) has also been queried, we have n+ 1 queried points and can collect n+ 1 random
vectors for xk with known queries at k-th iteration as:

∆̃xk
= {−σk−1g(xk−1)} ∪ {−σk−1g(xk−1)−∆i

xk−1
}ni=1. (6)

Distances between xk and the prior n+ 1 queried points are ∥xk − xk−1∥ = ∥σk−1g(xk−1)∥ and
∥xk − (xk−1 +∆i

xk−1
)∥ = ∥σk−1g(xk−1) + ∆i

xk−1
∥,∀i = {1, ..., n}.

According to Taylor’s expansion in Eq. 1, the remainder o(y − x) will be non-negligible as ∥y − x∥
increases. Therefore, we introduce a reusable distance bound b to filter out the samples far away from
the current point xk, i.e., the reused vectors are obtained by:

∆r
xk

= {∆ ∈ ∆̃xk

∣∣∥∆∥ < b}. (7)

After getting the reusable queries, we then randomly sample another n− |∆r
xk
| vectors {pj} to build

∆xk
∈ Rn×d for gradient estimation at k-th iteration:

∆xk
= ∆r

xk
∪ {pj}

n−|∆r
xk

|
j=1 . (8)

Overall, in the k-th iteration, only n− |∆r
xk
| new queries should be conducted. The ablation study in

Sec. 4.2 shows that as the sample size increases, even reusing 80% prior queries can also find good
solutions.

Discussion on the reusable distance bound b: ZO methods estimate the directional derivative by
difference and restrict the distances between the samples and current point to a small value, which
has the same order as the stepsize (initial learning rate) η ∼ O( 1d ) as previous works (Table 1 in [29]).
In our method, the reusable distance bound b restricts the distances between the reusable samples
and current point, which should has the same order of magnitude as the stepsize. Then we choose
b ∼ O( 1d ). Ablation studies in Fig. 2 show that b = 2η works pretty well in different optimization
tasks with different sample sizes N , thus we set b = 2η by default.
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Algorithm 1 ReLIZO

Input: A Black-box function f(x); Sample size at each iteration n; Reusable distance bound b;
Number of iterations K; Learning rate η.

Output: The best solution x∗ that minimizes f(x).
1: ∆̃x0

= ∅;
2: for k = 0 to K − 1 do
3: Collect the reusable vectors from the last iteration and get ∆r

xk
by Eq. 6 and Eq. 7;

4: Sample another n− |∆r
xk
| vectors P and build ∆xk

∈ Rn×d by Eq. 8;
5: Query the function evaluation for newly sampled vectors f(xk + pj),∀pj ∈ P ;
6: Compute Axk

by Eq. 11;
7: Obtain the estimated gradient direction g(xk) ∝ ∆⊤

xk
A−1

xk
∆f by Eq. 5;

8: Initialize the magnitude of descent direction σk as η and update σk by the backtracking line
search;

9: Update the variable: xk+1 ← xk − σkg(xk).
10: end for
11: Return the solution xK and the best solution x∗ satisfying f(x∗) ≥ f(xk),∀k ∈ {0, ...,K}.

3.3 Reducing the Computation Complexity by Indexing

Eq. 5 shows that the estimated direction is related to the inverse of Ax = ∆x∆
⊤
x . When the sample

size is much smaller than the dimension of variables, i.e., n << d, the computation complexity of
Ax is O(n2d) dominating the complexity of matrix inversion O(n3). Nevertheless, the complexity
can be significantly reduced when a large number of rows of ∆x is reused.

We denote Axk−1
= ∆xk−1

∆⊤
xk−1

, which has been computed in the (k − 1)-th iteration. In the k-th
iteration, ∆r

xk
in Eq. 7 is the reused samples. In the following, we introduce an efficient strategy to

compute ∆r
xk
∆r⊤

xk
.

First, we define ∆̄xk−1
∈ R(n+1)×d to denote the vector differences between xk−1 and all n + 1

reusable points including {xk−1 +∆i
xk−1
}ni=1 ∪ {xk−1}. Hence, we get Āxk−1

= ∆̄xk−1
∆̄⊤

xk−1
as:

∆̄xk−1
=

[
∆xk−1

0⊤

]
, Āxk−1

=

[
Axk−1

0

0⊤ 0

]
. (9)

Without losing generality, we suppose ∆r
xk

has nk rows and the i-th row of it reuses the ri-th row
vector in ∆̄xk−1

, and R = [r1, ...rnk
]. Since g(xk−1) = ∆⊤

xk−1
α, we have:

∆r
xk

= −σk−1α
⊤∆xk−1︸ ︷︷ ︸

R1×d

− ∆̄R
xk−1︸ ︷︷ ︸

Rnk×d

, (10)

where ∆̄R
xk−1

= [∆̄r1
xk−1

; ...; ∆̄
rnk
xk−1 ] ∈ Rnk×d, and the subtraction should be broadcast among the

first dimension. Then, we can derive ∆r
xk
∆r⊤

xk
as follows:

∆r
xk
∆r⊤

xk
= σ2

k−1∥g(xk−1)∥2︸ ︷︷ ︸
R1×1

+∆̄R
xk−1

∆̄R⊤
xk−1︸ ︷︷ ︸

Rnk×nk

−σk−1∆̄
R
xk−1

∆⊤
xk−1

α︸ ︷︷ ︸
Rnk×1

−σk−1[∆̄
R
xk−1

∆⊤
xk−1

α]⊤︸ ︷︷ ︸
R1×nk

,

where the addition and subtractions should broadcast among the corresponding dimensions. Note that
∆̄R

xk−1
∆̄R⊤

xk−1
and ∆̄R

xk−1
∆⊤

xk−1
can be directly indexed from Āxk−1

(Eq. 9), that has been computed
in the prior iterations. Hence, we can simplify Eq. 11 as:

∆r
xk
∆r⊤

xk
= σ2

k−1∥g(xk−1)∥2 + Ā(R,R)
xk−1

− σk−1Ā
R
xk−1

α− σk−1[Ā
R
xk−1

α]⊤,

where R = [r1, ...rnk
] is the index of reusing vectors in ∆̄xk−1

, Ā(R,R)
xk−1 ∈ Rnk×nk denotes to index

R rows and R columns from Āxk−1
, ĀR

xk−1
∈ Rnk×n denotes to index R rows from Āxk−1

, and
α ∈ Rn×1 is the solution to QCLP problem (4). Hence, by reusing nk vectors ∆r

xk
and newly

sampled vectors P ∈ R(n−nk)×d, Axk
= ∆xk

∆⊤
xk

can be obtained by:

Axk
=

[
∆r

xk
∆r⊤

xk
∆r

xk
P⊤

(∆r
xk
P⊤)⊤ PP⊤

]
. (11)
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Consequently, the complexity of computing Axk
can be reduced to O(nkn+ (n− nk)nd), which

decreases as the reuse rate nk

n increases. The overall computation complexity is analyzed and
compared with other ZO methods in Appendix B. The algorithm flow is shown in Alg. 1.

3.4 Convergence Analysis

We start the analysis with a lemma that estimates the distance between the estimated gradient in our
method and the projected exact gradient of the function.
Lemma 3.1. Let f satisfies Assumption 3.1 and 3.2. For every k ∈ N, ∆xk

∈ Rn×d and ∥∆i
xk
∥ < b:

∥∆xk
g(xk)−∆xk

∇f(xk)∥ ≤
Lb
√
n

2
. (12)

Then we can derive the distance bound between the estimated gradient and the exact gradient of the
function.
Lemma 3.2. Let the SVD of ∆xk

= UΛV ⊤, A−1
xk

= (∆xk
∆⊤

xk
)−1, ρk denotes the spectral radius

of A−1
xk

. Based on Lemma 3.1, we have:

∥g(xk)−∇f(xk)∥2 ≤ r∥∇f(xk)∥2 +
ρkL

2b2n

4
, (13)

where r =
∑d

j=n v2
j

∥∇f(xk)∥2 < 1, v = V ⊤∇f(xk).

Consequently, we can derive the following proposition:

Proposition 3.3. Suppose f is convex and ∃ θ ∈ [0, 1) satisfying ρk ≤ 4(θ2−r)∥∇f(x)∥2

L2b2n , we have:

f(xk)− f(x∗) ≤ C

k(1− θ)2
∼ O(

d

k
), (14)

which yields a sublinear convergence. Proof can be found in Appendix A. Furthermore, our experi-
mental results demonstrate that our method can converge in many scenarios, including simulation
benchmarks and real-world applications.

3.5 Relationship with Linear Interpolation Methods

We show that our method can be regarded as a general version of the linear interpolation strategy.

First, consider the situation where n = d and the matrix ∆x is nonsingular, the estimated gradient
by our method in Eq. 5 and be simplified as g(x) ∝ ∆⊤

x A
−1
x ∆f = ∆−1

x ∆f , which has a similar
formulation to the gradient estimated by linear interpolation strategy [5].

Second, consider a more general situation where n < d, the matrix ∆x can be singular, and its
singular value decomposition (SVD) is denoted as ∆x = UΛV ⊤. Then Ax = ∆x∆

⊤
x = UΛΛ⊤U⊤,

and the estimated gradient by our method in Eq. 5 can be transformed as:

g(x) ∝ ∆⊤
x A

−1
x ∆f = V Λ⊤U⊤(UΛΛ⊤U⊤)−1∆f = V Λ⊤(ΛΛ⊤)−1U⊤∆f . (15)

Since U and V are orthonormal, we have ∆x(V Λ⊤(ΛΛ⊤)−1U⊤)∆x = ∆x, showing that
V Λ⊤(ΛΛ⊤)−1U⊤ is the pseudo-inverse of ∆x. Consequently, our method can be regarded as
a general version of the linear interpolation strategy.

Moreover, in the spacial case where ∆x is orthonormal, ΛΛ⊤ = E is an identity matrix, and Eq. 15
can be simplified as g(x) ∝ V Λ⊤U−1∆f = ∆⊤

x ∆f , consistent with the gradient estimation in [30].

4 Experiment

4.1 Protocols

To demonstrate the efficacy and efficiency of our method, we conduct experiments on both simulation
benchmarks and real-world scenarios. First, we test on the CUTEst [24], one of the most popular
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Figure 1: Illustration of the optimization procedure of different solvers on four problems. Each
solver conducts 500 iterations to update the variables. The dimension of variable d is shown in the
bracket in the title of each figure. We run each solver at each setting three times and plot the average
performance and standard deviation as the line and shadow.

benchmarks for derivative-free optimization containing over 1,500 problems, many of which are
parametrized to allow for variable dimensions through user-selectable parameters. Specifically, we
utilize the PyCUTEst [21], a Python interface, to import the optimization problems from the CUTEst
and solve them by multiple ZO solvers implemented ourselves on the PyTorch platform. Second, we
conduct experiments on the black-box adversarial attack task, a real-world application for ZO solvers.
The task attempts to search additive noises for each pixel of inputs to confuse a pretrained neural
network, which is one of the most popular scenarios for ZO solvers. Third, we apply our method
to the Neural Architecture Search (NAS) task, aiming to search for the best neural architecture.
Since querying once in NAS task consumes large amounts of resources, we conduct experiments on
NAS-Bench-201 [18], which can directly query the performance of 15,625 architectures on three
datasets including CIFAR10, CIFAR100, and ImageNet-16-120. Finally, we conduct experiment on
large-scale neural network training by fine-tuning large language models (LLMs), demonstrating the
applicability of our proposed ReLIZO.

4.2 Experiments on the Simulation Benchmark

We compare the performance of our method with baselines on four problems from the CUTEst
optimization benchmark, containing an ill-conditioned or singular type problem (BOXPOWER), a
nonlinear optimization test problem (SROSENBR), and a problem coming from application scenarios
(COATING). The dimension of variables ranges from 50 to 1000 to evaluate the effectiveness of our
method on both low-dimension and high-dimension problems. The baselines include ZO-SGD [22],
ZO-signSGD [34] and ZO-AdaMM [12] implemented by ourselves on the PyTorch platform. Each
solver updates the variables 500 times and samples 8 random directions at each iteration to update the
variables. We also utilize grid search to obtain the best learning rate for each problem. The candidate
learning rate η ranges from {0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.5}. As for our method, the total sample size at each iteration is set as 8, and the reusable distance
bound b is set as 2η, where η is the learning rate obtained by the grid search. The variables are
initialized as the default values in CUTEst for all solvers. Experiments at each setting are repeated
three times, and the results are shown in Fig. 1. We observe that our method has a faster convergence
speed and achieves better solutions to different problems. Moreover, the standard deviation of our
method among three replications (shadows in Fig. 1) is much lower than other methods, showing that
our method can stably find good solutions.

Ablation Study about sample size N and reusable distance bound b. To evaluate the impact of
sample size at each iteration and reusable distance bound, we run our method for 500 iterations on
different sample sizes ranging from {6, 8, 10, 20, 50, 100, 200} and reusable distance bounds ranging
from {0, η, 2η, 5η}, where η is the learning rate at each iteration. Note that we set the sample size
smaller than the dimension of variables. Results are shown in Fig. 2. The x-axis indicates the sample
size, the y-axis shows the optimal value found by our solver after 500 iterations, and colors indicate
different reusable distance bounds. For each setting, we conduct three replication experiments and
plot the average performance and standard deviation as the nodes and lines. We also illustrate the
reusing rates = # reused queries

total sample size in Fig. 2 as the floats in the boxes beside the scatters. According to the
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Figure 2: Illustration of the best function value found by our method in 500 iterations under different
settings of sample size N and reusable distance bound b. We conduct three replication experiments at
each setting and plot the average performance and standard deviation as nodes and lines. We also
illustrate the reusing rates as the floats in the boxes beside the scatters.

results, we have three observations: 1) A larger reusable distance bound b has a larger reusable rate,
and a larger sample size will also lead to a larger reusable rate. 2) As the sample size increases, large
reusable distance bound can also find good solutions, demonstrating the rationality of reusing queries.
3) the standard deviation of performance is pretty small when N > 6 and b < 5η, showing that it can
stably find good solutions. Experiments and analysis on extreme conditions (e.g. small N and large
d) in Appendix C.1 also demonstrate the robustness and scalability of ReLIZO.

4.3 Experiments on Black-Box Adversarial Attacks
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Figure 3: Attack loss of universal attack.

ZO methods are popular solutions to black-box adver-
sarial attacks, and we conduct experiments to show the
effectiveness of our ReLIZO. We focus on universal
adversarial perturbation against images [27, 14] and
attack a well-trained DNN model on the CIFAR-10
dataset. Supported by [8] and [12], we consider the
optimization problem as: argmin

δ

λ
M

∑M
i=1 f(xi +

δ) + ∥δ∥22 s.t. (xi + δ) ∈ [−0.5, 0.5]d,∀i, where
f(xi + δ) denotes the black-box attack loss for im-
age i, λ > 0 is a regularization hyperparameter be-
tween minimizing the attack loss and the ℓ2 distor-
tion. We normalize the pixel values to [−0.5, 0.5]d,
and we specify the loss function for untargeted attack
as f(x′) = maxj ̸=t {Z(x′)t −maxj ̸=t Z(x′)j − κ},
where Z(x′)k denotes the prediction score of class k
given the input x′, and κ > 0 governs the gap between
the confidence of the predicted label and the true label t. In experiments, we set κ = 0, and the attack
loss f reaches the minimum value 0 as the perturbation succeeds to fool the network.

Table 1: Summary of attack success rate using differ-
ent zeroth-order optimization methods with the final ℓ2
distortion remains relatively consistent. The result is
based on a universal attack against 100 images under
T = 20000 iterations.

Methods Attack success rate Final ℓ2 distortion
ZO-SGD 77% 1.34

ZO-signSGD 80% 1.36
ZO-SMD 85% 1.38

ZO-AdaMM 87% 1.37
ReLIZO 92% 1.37

We conduct experiments on the CIFAR-
10 test dataset. Similar to the settings
in ZO-AdaMM [12], we randomly select
100 images, ensuring that these images are
initially correctly classified by the model.
We conduct adversarial attacks on these
selected images and compare the perfor-
mance of our proposed ReLIZO method
with 4 existing methods: ZO-SGD [22],
ZO-signSGD [34], ZO-SMD [19], and ZO-
AdaMM [12]. We conduct a linear search
for the learning rate of each approach to
maintain consistency in the ℓ2 distortion
when employing each method for the at-
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Table 2: Top-1 test classification accuracy (%) on NAS-Bench-201. The first block shows the
performance of gradient-based methods quoted from the paper of NAS-Bench-201. The second
block shows the performance of various ZO methods, which are implemented by ourselves on the
PyTorch platform. The performance of the methods based on ZO optimizers is averaged over three
independent trials.

Methods CIFAR-10 CIFAR-100 ImageNet-16-120
valid test valid test valid test

ENAS [40] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
RSPS [31] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS-V1 [32] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 [32] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS [17] 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN [16] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21

ZO-AdaMM [12] 85.97±2.28 89.59±2.25 63.24±4.68 63.28±4.86 35.43±4.07 35.63±4.73
ZO-SGD [22] 88.18±1.26 91.60±1.15 67.59±1.51 67.49±1.05 39.83±1.80 39.79±1.83
ZO-signSGD [34] 85.94±4.37 89.74±3.64 61.89±8.82 62.41±8.91 35.23±6.82 35.28±7.51
ReLIZO (ours) 89.50±1.53 92.45±1.84 69.00±2.27 69.03±1.98 42.09±3.55 42.31±3.87

tacks, and compared the loss and the attack success rate on this basis. Fig. 3 illustrates the overall
loss curves, while Table 1 presents the success rates of the adversarial attacks for each method over
T = 20000 iterations. As we can see, our ReLIZO method exhibits the fastest rate of loss reduction
compared to other ZO methods. Simultaneously, it achieves the highest attack success rate (more
than 5% improvement) under condition where the ℓ2 distortion remains relatively consistent. This
result fully demonstrates the effectiveness of our method.

4.4 Experiments on Neural Architecture Search

Table 3: Number of queries and the search cost (seconds) dur-
ing the NAS procedure on the search space of NAS-Bench-
201.

Methods ZO-AdaMM ZO-SGD ZO-signSGD ReLIZO
#Queries 19550 19550 19550 11885
Cost (s) 63044 63429 69659 55005

AutoML, including neural architec-
ture search [32, 40, 51, 50, 49, 46,
53] and hyper-parameter optimization
tasks [7, 43, 26, 48], has attracted
wide attention due to its efficacy in
reducing labor costs. Zero-order opti-
mization is an effective algorithm for
solving AutoML tasks [47], which can
be modeled as bi-level optimization.
Table 2 reports the performance of our method on the NAS-Bench-201, a popular benchmark in the
NAS task [32, 17, 51]. The first block shows the performance of gradient-based methods which is
obtained from the paper [18]. The second block shows the performance of various ZO methods, in-
cluding Zo-AdaMM, ZO-SGD, ZO-signSGD and ours. Specifically, similar to DARTS, we iteratively
train the operation weights by the SGD optimizer and train the architecture parameters by the ZO
optimizer for 50 epochs on the CIFAR10 dataset. To query the performance of one sampled direction,
we update the architecture parameters by the direction and return the loss after training the operation
weights for 10 iterations. The accuracy of discovered architectures on three datasets is directly
indexed from the benchmark. For each ZO optimizer, we conduct three replication experiments and
report the averaged accuracy and standard deviation in Table 2. We observe that our method surpasses
other ZO methods in performance. We also report the number of queries of each ZO optimizer during
the whole search process and the search time in Table 3. Our method is much faster than other ZO
optimizers with fewer queries. Notice that the queries in Table 3 are used to train the architecture
parameters, while the cost consists of training operation weights and architecture parameters, making
the reduction of cost lower than the reduction of queries.

4.5 Experiments on Parameter Efficient Fine-tuning

Compared to gradient-based methods, ZO methods are well-suited for black-box optimization
problems where gradients with respect to the variables are unavailable. Additionally, ZO methods
are more memory-efficient than gradient-based methods since they do not require a backward pass,
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Table 4: Zero-order optimizers with different parameter efficient fine-tuning methods on OPT-1.3b
model (with 1.3 billion parameters) on the Stanford Sentiment Treebank v2 (SST2) task.

Methods Fine-Tuning LoRA Prefix-Tuning Prompt-Tuning
Acc Memory Acc Memory Acc Memory Acc Memory

SGD 91.1 44.1 GB 93.6 44.1 GB 93.1 42.9 GB 92.8 50.6 GB

ZO-SGD 90.8 28.7 GB 90.1 19.7 GB 91.4 20.7 GB 84.4 18.8 GB
ZO-SGD-Sign 87.2 31.4 GB 91.5 19.7 GB 89.5 20.7 GB 72.9 18.8 GB
ZO-Adam 84.4 31.4 GB 92.3 19.7 GB 91.4 20.7 GB 75.7 18.8 GB
ReLIZO (ours) 93.4 35.7 GB 93.1 19.9 GB 91.8 20.7 GB 90.1 18.9 GB

making them applicable to network training, as demonstrated by recent works [10, 55]. Specifically,
DeepZero [10] introduces a principled ZO framework for deep learning that is computational-graph-
free and can scale to deep neural network training with performance comparable to first-order methods.
The work [55] also applies ZO methods to large language model (LLM) fine-tuning, highlighting
their memory efficiency and introducing a ZO-LLM benchmark.

To illustrate the applicability of ReLIZO in network training, we adopt it for fine-tuning an OPT-1.3b
model (with 1.3 billion parameters) on the Stanford Sentiment Treebank v2 (SST2) task with a batch
size 128, following the methodology of ZO-LLM [55]. The results, shown in Table 4 indicate that
ReLIZO outperforms other ZO methods across various fine-tuning schemes, including full parameter
fine-tuning (FT), LoRA, Prefix-tuning, and Prompt-tuning. Notably, ReLIZO even surpasses SGD in
the FT scheme while requiring significantly less memory, demonstrating its promising potential.

5 Conclusion, Limitations and Future Work

This work handles gradient estimation in zeroth-order optimization by modeling it as a quadratically
constrained linear program problem, with analytical solution derived via the Lagrange multiplier
method. Our method ReLIZO, decouples the required sample size from the variable dimension
without the requirement of orthogonal condition in the recent linear interpolation works, making it
possible to leverage the queries in the prior iterations. We also show that part of the intermediate
variables contributing to the gradient estimation can be directly indexed, significantly reducing the
computation complexity. We further perform a theoretical analysis of the convergence of ReLIZO
and show the relationship with the prior linear interpolation methods. The efficacy and efficiency
have been shown in extensive experiments, including simulated benchmarks, NAS, and black-box
adversarial attack tasks.

Limitations and Future work. Compared to the gradient-based methods, ZO methods require
multiple queries of function evaluation at each iteration, which restricts their applications in real-
world scenarios such as neural network training. Our ReLIZO can reduce the required number of
queries by the reusing strategy, potentially broadening the scope of applications of ZO, which can be
explored in future work. However, in cases where the consumption of one query is negligible, the
profit due to the reusing technique decreases, causing a relative increase in the cost of solving the
QCLP. We leave these problems in future work.

Impact Statements

This paper presents work whose goal is to advance the field of Machine Learning. Note that zeroth-
order optimization is an effective method for black-box adversarial attacks as we have shown in
Section 4.3. Its purpose is to evaluate the robustness of machine learning models, but we should also
be aware of the impact this may have on AI safety. There are many potential societal consequences
of our work, yet none of which we think must be specifically highlighted here.
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A Convergence Analysis

A.1 Proof of Lemma 3.1

Lemma 3.1 Let f be a function satisfying Assumption 3.1 and 3.2. For every k ∈ N, ∆xk
∈ Rn×d

and ∥∆i
xk
∥ < b, we have:

∥∆xk
g(xk)−∆xk

∇f(xk)∥ ≤
Lb
√
n

2
.

Proof. We start with the Taylor’s expansion of function f defined in Eq. 1

g(x)T∆i
x = f(x+∆i

x)− f(x) =

∫ 1

0

∆i⊤
x ∇f(x+ t∆i

x)dt

g(x)⊤∆i
x −∇f(x)⊤∆i

x =

∫ 1

0

∆i⊤
x (∇f(x+ t∆i

x)−∇f(x))dt

(Assumption 3.2) ≤
∫ 1

0

∆i⊤
x ∆i

xLtdt

=
L∥∆i

x∥2

2
,

thus

∥∆x(g(x)−∇f(x))∥ ≤
L∥∆x∥2

2
.

With the condition ∥∆i
xk
∥ < b, we then derive that

∥∆xk
(g(xk)−∇f(xk))∥ ≤

Lb
√
n

2
,

which completes the proof.

A.2 Proof of Lemma 3.2

Lemma 3.2 Let the SVD of ∆xk
= UΛV ⊤, A−1

xk
= (∆xk

∆⊤
xk
)−1, ρk denotes the spectral radius of

A−1
xk

. Based on Lemma 3.1, we have:

∥g(xk)−∇f(xk)∥2 ≤ r∥∇f(xk)∥2 +
ρkL

2b2n

4
,

where

r =

∑d
j=n v

2
j

∥v∥2
< 1, v = V ⊤∇f(xk).

Proof. Without losing generality, we omit the subscript k in our proof. g(x) = ∆⊤
x A

−1∆f and
∆f = ∆xg(x) = ∆x[g(x)−∇f(x)] + ∆x∇f(x), we define

E = ∆x[g(x)−∇f(x)],
then we have:

∥g(x)−∇f(x)∥2 = ∥∆⊤
x A

−1∆f −∇f(x)∥2

= ∥(∆⊤
x A

−1∆x − Id×d)∇f(x) + ∆⊤
x A

−1E∥2,

where Id×d denotes an identity matrix with d rows and columns. Suppose the SVD of ∆x = UΛV ⊤,
substitute to ∆⊤

x A
−1∆x, we have:

∆⊤
x A

−1∆x − Id×d = V Λ⊤(ΛΛ⊤)−1ΛV ⊤ − Id×d

= V

[
In×n 0
0 0

]
V ⊤ − Id×d = V

[
0 0

0 I(d−n)×(d−n)

]
V ⊤ ≜ V Ĩd−nV ⊤.
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Then, we can simplify ∥g(x)−∇f(x)∥ as:

∥g(x)−∇f(x)∥2 = ∥V Ĩd−nV ⊤∇f(x) + ∆⊤
x A

−1E∥2

= ∥V Ĩd−nV ⊤∇f(x)∥2 + ∥∆⊤
x A

−1E∥2 + 2⟨V Ĩd−nV ⊤∇f(x),∆⊤
x A

−1E⟩,

where ⟨x, y⟩ denotes the inner product of vectors x and y. According to the definition of inner product
and the SVD of ∆x = UΛV T , we have:

⟨V Ĩd−nV ⊤∇f(x),∆⊤
x A

−1E⟩ = ∇f(x)TV (Ĩd−n)⊤V ⊤∆⊤
x A

−1E

= ∇f(x)TV
[
(Ĩd−n)⊤Λ⊤(ΛΛ⊤)−1

]
UE = 0.

Moreover, we denote v = V ⊤∇f(x), then ∥V Ĩd−nV ⊤∇f(x)∥2 =
∑d

j=n v
2
j , we define r as

r =

∑d
j=n v

2
j

∥∇f(x)∥2
=

∑d
j=n v

2
j

∥v∥2
< 1.

Therefore,

∥g(x)−∇f(x)∥2 = r∥∇f(x)∥2 + ∥∆⊤
x A

−1E∥2

= r∥∇f(x)∥2 + E⊤A−1E ≤ r∥∇f(x)∥2 + ρ∥E∥2,

where ρ is the spectral radius of A−1. According to Lemma 3.1, we have:

∥g(x)−∇f(x)∥2 ≤ r∥∇f(x)∥2 + ρL2b2n

4
.

A.3 Proof of Proposition 3.3

Proposition 3.3 Suppose f is a convex function and ∃ θ ∈ [0, 1) satisfying ρk ≤ 4(θ2−r)∥∇f(x)∥2

L2b2n ,
we have:

f(xk)− f(x∗) ≤ C

k(1− θ)2
,

Proof. Based on Lemma 3.2, we substitute Eq. 13 with ρk ≤ 4(θ2−r)∥∇f(x)∥2

L2b2n , then we have

∥g(xk)−∇f(xk)∥ ≤ θ∥∇f(xk)∥.

This condition is also referred to as norm condition and is introduced and studied in [9] in the context
of trust-region methods with inaccurate gradients. This then yelids

(1− θ)∥∇f(xk)∥ ≤ ∥g(xk)∥ ≤ (1 + θ)∥∇f(xk)∥ (16)

by using Cauchy-Schwarz inequality. Note that our iteration also satisfies the Armijo condition

f(xk+1) ≤ f(xk)− c1σk∥g(xk)∥2, (17)

where c1 ∈ (0, 1) is a constant, and σk is the magnitude of descent direction found by using Armijo
backtracking line search. By (16), we have

f(xk+1) ≤ f(xk)− c1σk∥g(xk)∥2

≤ f(xk)− c1σk(1− θ)2∥∇f(xk)∥2.

Assumption A.1. (Convexity and bounded level sets of f ) The function f is convex and has
bounded level sets, i.e.,

∥x− x∗∥ ≤ D, for all x with f(x) ≤ f(x0),

where x∗ is a global minimizer of f . Let f∗ = f(x∗).
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By Assumption A.1, we have

f(xk)− f(x∗) ≤ ∇f(xk)
⊤(xk − x∗)

≤ ∥∇f(xk)∥ · ∥xk − x∗∥
≤ D · ∥∇f(xk)∥.

Let zk = f(xk)− f∗, thus

zk − zk+1 = f(xk)− f(xk+1)

≥ c1σk(1− θ)2∥∇f(xk)∥2

≥ c1σk(1− θ)2z2k
D2

,

which implies
1

zk+1
− 1

zk
=

zk − zk+1

zkzk+1
≥ zk − zk+1

z2k
≥ c1σk(1− θ)2

D2

1

zk
=

1

z0
+

k−1∑
i=0

(
1

zi+1
− 1

zi
) ≥ 1

z0
+

c1(1− θ)2
∑k−1

i=0 σi

D2
≥

c1(1− θ)2
∑k−1

i=0 σi

D2
,

thus

zk = f(xk)− f∗ ≤ D2

c1(1− θ)2
∑k−1

i=0 σi

. (18)

Moreover, in line with the assumption in [30], we can set σ as the minimum step size in the algorithm.
In fact, the previous works [6] and [42] have shown that in the convex case, the number of failed line
searches can be bounded w.r.t σ. Thus we mainly focus on the case when (17) holds. In this case,
define C = D2

c1σ
, then (18) implies

zk = f(xk)− f∗ ≤ D2

c1(1− θ)2
∑k−1

i=0 σi

≤ D2

kσc1(1− θ)2
=

C

k(1− θ)2
,

which shows a sublinear convergence rate. Similar to the prior ZO works (Table 1 in [29]), we set the
minimum step size σ ∼ O( 1d ) to guarantee the correctness of the assumptions, thus the convergence
rate of our method is:

f(xk)− f(x∗) ≤ D2

kc1σ(1− θ)2
=

C

k(1− θ)2
∼ O(

d

k
). (19)

B Comparison of Computation Complexity

The algorithm flow is shown in Alg. 1. Suppose n is the sample size, d is the dimension of variables,
and n < d. For the k-th iteration, suppose nk vectors are reused from the prior iterations and
n − nk vectors are newly sampled. The computation complexity includes two parts: querying
function evaluations for newly sampled vectors, and computing gradient estimation by Eq. 5. For
the former, we denote the complexity of querying function evaluation once as O(c(d)), where c(·)
could be linear, polynomial, etc.. Then querying n−nk times requires O((n−nk)c(d)) computation
resources. As for the latter, Eq. 5 requires to compute Axk

with complexity O((n − nk)nd), the
inverse of matrix Axk

with complexity O(n3), and the matrix multiplication of ∆⊤
xk
A−1

xk
∆f with

complexity O(n2 + nd). Since n < d, the overall computation complexity for the k-th iteration is
O
(
n3 +(n−nk)nd+(n−nk)c(d)

)
. Table 5 compares the computation complexity in one iteration

of our method with prior smoothing and linear interpolation methods. Except for our methods, others
do not support the reusing strategy.
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Table 5: Comparison of computation complexity in one iteration between various ZO methods.
Methods Computation Complexity

ZO-SGD [22] O
(
nd+ nc(d)

)
ZO-signSGD [34] O

(
nd+ nc(d)

)
ZO-AdaMM [12] O

(
nd+ nc(d)

)
Conventional Linear Interpolation (n=d) [5] O

(
d3 + dc(d)

)
Linear Interpolation w/ orthogonal vectors [30] O

(
n2d+ nc(d)

)
ReLIZO (ours) O

(
n3 + (n− nk)nd+ (n− nk)c(d)

)

Table 6: Comparison of various ZO methods on small sample size N = 2.
Methods ARGTRIGLS CHNROSNB COATING BOXPOWER SROSENBR BROYDNBDLS
ZO-SGD [22] 6.03 376.32 2007.45 361.72 2706.39 116.9
ZO-signSGD [34] 66.33 224.94 1431.66 48.85 1398.44 91.39
ZO-AdaMM [12] 3.27 50.23 994.63 33.13 355.32 3.83
ReLIZO (ours) 2.38 44.38 831.5 27.44 115.48 0.65

Table 7: Comparison of various ZO methods on large dimension d.
SROSENBR d=1000 d=5000 d=10000
ZO-SGD [22] 293.81(277.31) 45432.77(35091.73) 96988.70(49867.83)
ZO-signSGD [34] 883.52(867.02) 36289.83(25948.79) 96749.68(49628.81)
ZO-AdaMM [12] 47.54(31.04) 32071.75(21730.71) 87781.39(41666.52)
ReLIZO (ours) 16.50(0) 10341.04(0) 47120.87(0)

BOXPOWER d=1000 d=10000 d=20000
ZO-SGD [22] 11.10(2.11) 118.05(28.13) 248.02(67.03)
ZO-signSGD [34] 37.74(28.75) 325.92(236) 713.91(532.92)
ZO-AdaMM [12] 20.88(11.89) 235.39(145.47) 471.19(290.2)
ReLIZO (ours) 8.99(0) 89.92(0) 180.99(0)

C Supplementary Experiments

C.1 Experiments on Extreme Conditions

Experiments on small sample size N : We set N = 2 and compare ReLIZO and other methods on
six PyCUTEst optimization tasks. The results are reported in Table 6, showing that ReLIZO also
surpasses other baselines. We analyze that the methods based on smoothing strategy utilize Monte
Carlo sampling to estimate the expectation of various directional derivatives and a small N will lead
to a biased estimation as shown in [5]. In contrast, our ReLIZO computes the projection of gradient
on a space generated by arbitrary numbers of sampled directions by solving the QCLP, and thus can
also work pretty well under a small N .

Experiments on large dimension d: We conduct experiments on two PyCUTEst optimization tasks
with an adjustable variable dimension. Each optimizer updates the variables 500 times and samples 8
random directions at each iteration to update the variables. We also utilize grid search to obtain the
best learning rate for each optimizer for different tasks. The best solution obtained by each optimizer
are reported in Table 7, and the values in the brackets report the gap between each baseline and
ReLIZO. The results show that the improvement of ReLIZO is increasing as d increases for each
optimization task. We analyze that the sample size N becomes relatively small compared to the
dimension d as d increases, our method computes the projection of gradient on a space generated by
N sampled directions by solving the QCLP, and thus can also work pretty well even if N << d.

18



C.2 Discussion on the Line Search

We adopt line search to adaptively adjust the stepsize to ensure a fast convergence rate. Our
experimental results show that there are few queries from line search during the whole optimization
process in most cases. Specifically, there are 0 queries from line search in NAS task and several
optimization tasks in PyCUTEst, including CHNROSNB, SROSENBR, and BOXPOWER. We report
the number of queries in each task in Table 8, where ‘#LS’ denotes the number of queries from
line search, ‘#Queries’ denotes the number of actual queries including #LS during the optimization
procedure, ‘#Reused’ denotes the number of reused queries, ‘N x T’ denotes the total queries required
by other methods without reusing strategy (N is the sample size per iteration and T is the number of
iterations).

Table 8: Number of queries from line search, total queries, reused samples during the optimization
process.

ARGTRIGLS CHNROSNB COATING BOXPOWER SROSENBR BROYDNBDLS NAS-Bench-201
#LS 115 0 77 0 0 90 0
#Queries 3689+115 2294+0 3780+77 2715+0 2526+0 1353+90 11885+0
#Reused 311 1706 220 1285 1474 2647 7665
N × T 4000 4000 4000 4000 4000 4000 19550

C.3 Ablation Studies on Other Problems

Results of ablation studies on another two problems MANCINO and ARGTRIGLS are shown in
Fig. 4.
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Figure 4: Illustration of the best function value found by our method in 500 iterations under different
settings of sample size N and reusable distance bound b. We conduct three replication experiments at
each setting and plot the average performance and standard deviation as nodes and lines. We also
illustrate the reusing rates as the floats in the boxes beside the scatters.

We also report the optimization procedure of our method at different settings of reusable distance
bound b in Fig. 5 and sample size n in Fig. 6.

C.4 Improved Sampling Strategy with Momentum

The ability of ReLIZO to sample new vectors from an arbitrary distribution can be considered
one of its strengths compared to other ZO methods. In contrast, smoothing-based ZO methods
have to rely on Gaussian or uniform distributions with a mean of zero. We introduce an effective
sampling strategy inspired by SGD with momentum. Specifically, we propose a sampling momentum
strategy where the sampling probability in the current iteration follows a distribution defined as

Table 9: Comparison of ReLIZO and ReLIZO-m on NAS tasks.
Method CIFAR10-valid CIFAR10-test CIFAR100-valid CIFAR100-test ImageNet-16-120-valid ImageNet-16-120-test
ReLIZO 89.50 92.45 69.00 69.03 42.09 42.31
ReLIZO-m 90.71 93.41 70.40 69.63 42.79 43.22
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Figure 5: Illustration of the optimization procedure of our method at different settings of reusable
distance bound b. The sample size is fixed as 8.
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Figure 6: Illustration of the optimization procedure of our method with sample size n. The reusable
distance bound is fixed as 2η.

p(xt) = αN(gt−1, σ) + (1 − α)N(0, σ), with N() denoting a Gaussian distribution, gt−1 is the
estimated gradient in the last iteration, α as the momentum parameter, and σ as the standard deviation.
The results of this approach, labeled as ReLIZO-m, are presented in Table 9.

C.5 Additional Experimental Results on the Reusable Distance Bound b

In Fig. 5, we observe a relative performance drop (slightly slower convergence) when the reusable
distance bound b ≥ η. However, this does not imply that the reuse strategy is ineffective in this case.
The ARGTRIGLS problem is characterized by a rugged landscape with numerous local minima.
In this case, as shown in Fig. 4(b), even with b = η and a sample size n = 8, the reuse rate of
ARGTRIGLS exceeds 90%, whereas reuse rates for other problems are generally below 50% (e.g.
MANCINO with d=100 in Fig. 4(a), SROSENBR with d=500 in Fig. 2(b)). This high reuse rate
indicates that the number of new queries during optimization is relatively small, contributing to the
observed decrease in convergence speed. To address this issue, we can employ simple strategies
such as reducing the reusable distance bound b. Table 10 illustrates that performance improves as b
decreases.
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Table 10: The objective value and total reuse rate of different reusable distance bound b.
reusable distance bound b = 0 b = 0.01η b = 0.05η b = 0.1η b = 0.5η b = η

objective value (iter=500) 0.133 0.162 0.298 0.495 3.768 8.158
objective value (iter=2000) 0.053 0.063 0.166 0.311 1.834 3.825
total reuse rate 0% 16.6% 72.4% 82.3% 94.7% 96.8%

Moreover, setting an upper bound for the reuse rate in each iteration can also help. Table 11 reports
the performance when the maximum reuse rate in each iteration is restricted to 50%. We observe that
with b ≤ 0.05η and 2000 iterations, there is minimal performance degradation, even with a reuse rate
of approximately 30%.

Table 11: The objective value of different reusable distance bound b with a restricted maximum reuse
rate.

reusable distance bound b = 0 b = 0.01η b = 0.05η b = 0.1η b = 0.5η b = η

objective value (iter=500) 0.133 0.164 0.183 0.255 0.312 0.341
objective value (iter=2000) 0.053 0.046 0.054 0.063 0.075 0.074
total reuse rate 0% 11.4% 34.2% 41.9% 47.9% 48.9%

21



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are clearly presented in the abstract and introduction, and are
further elaborated and substantiated throughout the subsequent sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Sec.5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Refer to Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In our paper, we provide detailed descriptions of each step of the algorithm,
the pseudocode, and all settings required to replicate the experiments. Additionally, we
commit to making the code publicly available by the time of the camera-ready submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Refer to Sec.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Refer to Sec.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Sec.4. and Appendix C.1 (e.g. the training epochs and the clock time
of experiments are provided.)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Refer to Sec.5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of all assets used in the paper are properly
credited, and the licenses and terms of use are explicitly mentioned and fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

26

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Related Work
	The Proposed ReLIZO Method
	Rethinking Gradient Estimation as QCLP
	Reusing the Queries in the Prior Iterations
	Reducing the Computation Complexity by Indexing
	Convergence Analysis
	Relationship with Linear Interpolation Methods

	Experiment
	Protocols
	Experiments on the Simulation Benchmark
	Experiments on Black-Box Adversarial Attacks
	Experiments on Neural Architecture Search
	Experiments on Parameter Efficient Fine-tuning

	Conclusion, Limitations and Future Work
	Convergence Analysis
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Proposition 3.3

	Comparison of Computation Complexity
	Supplementary Experiments
	Experiments on Extreme Conditions
	Discussion on the Line Search
	Ablation Studies on Other Problems
	Improved Sampling Strategy with Momentum
	Additional Experimental Results on the Reusable Distance Bound b


