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ABSTRACT

Molecular understanding is central to advancing areas such as scientific and drug
discovery, yet Large Language Models (LLMs) struggle to understand molecu-
lar graphs effectively. Existing graph–LLM bridges often adapt the Q-Former-
style connector with fixed-length static tokens, which is originally designed for
vision tasks. These designs overlook stereochemistry and substructural context
and typically require costly LLM-backbone fine-tuning, limiting efficiency and
generalization. We introduce EDT-Former, an Entropy-guided Dynamic Token
Transformer that generates tokens aligned with informative molecular patches,
thereby preserving both local and global structural features for molecular graph
understanding. Beyond prior approaches, EDT-Former enables alignment be-
tween frozen graph encoders and LLMs without tuning the LLM backbone, result-
ing in computationally efficient finetuning, and achieves state-of-the-art results on
MoleculeQA and Mol-Instructions benchmarks, underscoring its effectiveness for
scalable and generalizable multimodal molecular understanding.
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Figure 1: LLM joint fine-tuning efficiency and benchmark performance preview of EDT-Former.
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1 INTRODUCTION

Background. Large language models (LLMs) such as Llama (Touvron et al., 2023a; MetaAI,
2024) and GPT (OpenAI, 2023; 2025) series demonstrate powerful multimodal reasoning across
domains. This rapid progress highlights the potential adaptation to specialized scientific domains,
and NatureLM (Xia et al., 2025) exemplifies this direction in scientific knowledge. Within molecular
science, recent foundation models have extended large-scale pretraining to molecular graphs and
geometry structures. Uni-Mol-v2 (Ji et al., 2024) leverages extensive conformer datasets to jointly
model atomic, graph, and geometric representations, while UniMolT (Zhang et al., 2024b) adapts
instruction-tuned LLMs to molecular reasoning and understanding tasks.

To bridge molecular graphs with natural language, multimodal connectors have been introduced.
Most approaches adopt the Q-Former mechanism (Li et al., 2023), where a fixed number of
modality-anchor tokens are learned to query structural encoders. Representative examples include
3D-MolT5 (Pei et al., 2024b), Mol-LLM (Lee et al., 2025), and Mol-LLaMA (Kim et al., 2025),
which demonstrate the feasibility of aligning molecular structures (graph and geometry) with lan-
guage models and enabling cross-modal molecular understanding.

A: …10 –COOH are in the molecule.

A: …–COOH on C1/C4

Q: Could you please count the number of carboxyl 
groups (–COOH) are in the molecule <mol>? 

G: 2 carboxyl groups are in this molecule. 

A: In total, it has 2 –COOH.

Q: Could you please count the number of carboxyl 
groups (–COOH) that are in the molecule <mol>? 

G: 5 carboxyl groups are in this molecule. 

En
co

de
r Fix length tokens

Len = 8

En
co

de
r

Q
-F

or
m

er Fix length tokens

Len = 8

Q: In <mol>, which backbone carbons are the 
carboxyl groups attached? 

G: –COOH on terminal C1 and C4

Q: Given the molecule <mol>. To which nitrogens 
are the five acetate arms attached?
G: 2 on N1, 1 on N2, and 2 on N3 (total 5)

A: …as a result, I cannot determine…

Q
-F

or
m

er

LL
aM

A
3

(a) Small Mol: N=16 (b) Larger Mol: N=50

LL
aM

A
3

Figure 2: Illustration of motivation–Loss of structure. Comparison of molecules of different sizes
(atom counts N = 16 and N = 50) encoded by the same fixed query length Q-Former bridge (8
query tokens) to Llama-3.1-8B backbone, with example prompts and generated responses.

Challenges. (1) Loss of structure. Current graph–LLM bridges typically fuse modalities by in-
troducing a fixed number of learnable query tokens, which interact with molecular encoder outputs
and are then fed into the language model. (Lee et al., 2025; Kim et al., 2025). However, compressing
length-heterogeneous molecules into the fixed set collapses critical features such as stereochemistry
and functional groups. This loss carries over to reasoning, where even chain-of-thought prompting
provides little gain and can reduce accuracy on property prediction (Kim et al., 2025). As shown
in Fig. 2, fixed-length fusion captures key groups in small molecules (N=16 atoms) and supports
structure-aware tasks; however, in larger molecules (N=50 atoms), it results in incomplete substruc-
ture coverage, information loss, and consequently brittle, chemically unfaithful predictions.

Table 1: Computing costs comparison between
frozen/unfrozen backbone settings of Mol-Llama.

Connector LLM Trainable FLOPs/Token Time/Step
Finetune Finetune 8.1B 4.9e10 0.93
Finetune Frozen 84M 1.7e10 0.23

(2) Heavy fine-tuning. Most prior systems
train the bridge jointly with the LLM, requiring
gradient updates to the backbone itself. Such
updates hinder generalization: models overfit to
narrow datasets, lose robustness across modali-
ties and structural variations, and fail to transfer
alignment when scaled to larger frozen backbones. Clearly, they are also computationally inefficient:
as shown in Tab. 1, jointly tuning the LLM and connector requires ×96 more trainable parameters
than tuning the connector alone (details are in App. D.3). Consequently, a connector-only bridge
with frozen encoders and a frozen LLM is urgently needed to achieve scalable, low-cost deployment.
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Our approach. We propose EDT-Former, an Entropy-guided Dynamic Token Transformer that
aligns chemical graphs with frozen LLMs while preserving structural fidelity. EDT-Former intro-
duces an Entropy-Guided Patching strategy that segments molecules into informative sub-groups,
generating dynamic query tokens that retain stereochemistry. It further incorporates the Dynamic
Query Transformer module that integrates these dynamic tokens with learned modality anchors
to form a stable cross-modal interface before mapping into the LLM embedding space. Together,
these designs enable frozen-backbone alignment, yielding efficient training, robust generalization,
and chemically faithful understanding (Fig. 1). Our contributions are summarized as follows:

• This work presents EDT-Former, the first connector-only method that aligns chemical graphs
with frozen LLMs via dynamic, substructure-aware query tokens.

• We present Entropy-Guided Patching and Dynamic Query Transformer, which together en-
able efficient cross-modal alignment without updating backbone parameters.

• EDT-Former achieves state-of-the-art results on molecular understanding and property prediction
benchmarks, demonstrating both scalability and robust generalization.

2 RELATED WORK

Multimodal Fusion for Molecular Generative Modeling. Beyond SMILES-based models (e.g.,
KV-PLM (Zeng et al., 2022a) and Mol-Instructions (Fang et al., 2023)), recent work has attempted
to fuse SMILES, topological graphs, and 3D conformers with large language models. GIM-
LET (Zhao et al., 2023) showed that instruction tuning over paired graph-text corpora can pro-
vide LLMs with basic molecular understanding. Larger frameworks extended modality coverage:
MoleculeSTM (Liu et al., 2022), MolFM (Luo et al., 2023a), BioT5+ (Pei et al., 2024a), and Pro-
LLaMA (Lv et al., 2024) combine discrete structure tokens, biomedical knowledge graphs, and
protein sequences, while 3D-MolT5 (Zhao et al., 2024) and UniText-3D (Zhang et al., 2024a) in-
corporate coarse 3D geometry for conditional generation. Most recently, UniMolT (Zhang et al.,
2024b), Mol-LLM (Lee et al., 2025), and Mol-Llama (Kim et al., 2025) adopt the Q-Former mecha-
nism from BLIP-2 (Li et al., 2023) to bridge molecular graphs and LLMs, relying on a fixed-length
learnable modality anchor tokens. Such fixed-length fusion compresses stereochemistry and graph
substructures, leading to structural information loss. More flexible alignment strategies are needed
to retain sub-structural fidelity as molecular complexity and conformer diversity increase.

Molecular Understanding with Multimodal LLMs. Molecular understanding has been explored
by combining structural encoders with instruction-tuned LLMs. MolReasoner Zhao et al. (2025),
CoT-Mol (Liu et al., 2024) showed that coupling molecular tokens with prompts enables step-wise
reaction explanation and property inference. Subsequent efforts introduced structural bias, such as
Mol-LLM (Lee et al., 2025) with topology-conditioned attention and ProLLaMA (Lv et al., 2024)
with protein–ligand co-representations. However, most approaches still depend on fixed-length an-
chor token representations or extensive fine-tuning of the LLM, which weakens structural fidelity
and makes training inefficient. Recent chemical agents such as ChemCrow (Bran et al., 2023) and
RetroGPT (Huang et al., 2023) attempt to add planner feedback but remain constrained by conformer
sensitivity and limited scalability. Progress, therefore, requires a multimodal alignment method that
preserves modality-specific cues without relying on heavy LLM tuning and adaptation. More related
works and relationships to current works are discussed in App. B.

3 EDT-FORMER: ENTROPY-GUIDED DYNAMIC GRAPH–LLM ALIGNMENT

EDT-Former provides efficient and substructure-aware alignment between molecule and LLM.
Sec. 3.1 outlines the overall architecture, after which Sec. 3.2 introduces the Entropy-Guided Patch-
ing strategy for dynamic token generation from graph node-embeddings, while Sec. 3.3 presents
the Dynamic Query Transformer module. Finally, Sec. 3.4 describes the training process under the
frozen-backbone regime. The implementation details are discussed in App. C.
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Figure 3: The architecture of EDT-Former. (a) Entropy-based Patching segments node embeddings
into patches to produce dynamic query tokens. (b) EDT-Former integrates anchors and dynamic
queries through Dynamic Query Transformer to align the molecular graph with the LLM.
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Figure 4: Illustration of entropy-guided patching on an example molecule. Atom-level entropy is
plotted along the molecular sequence, and a new patch is initiated after each local maximum.

3.1 STRUCTURE OVERVIEW

EDT-Former establishes alignment between molecular encoders and frozen LLMs through two com-
plementary components: Entropy-Guided Patching and Dynamic Query Transformer. As shown in
Fig. 3, node embeddings from frozen graph encoders are processed by entropy-guided patching,
which measures node-level uncertainty for language models, segments molecules into informative
sub-groups, and pools them into dynamic tokens that preserve local graph features. These tokens are
combined with static modality anchor tokens in a shared query bank, where self-attention propagates
context and cross-attention retrieves structural evidence from molecular embeddings. The resulting
representations are projected into the LLM embedding space, forming a cross-modal alignment in-
terface that balances global consistency from modality anchors with local fidelity from dynamic
query tokens, enabling modality alignment with high efficiency and structural fidelity.

3.2 ENTROPY-GUIDED SUB-GRAPH PATCHING

Setup. As shown in Fig. 3(a), let a molecule be represented by a SMILES-ordered atom sequence
(a1, . . . , aT ). We pre-train a lightweight Next-Atom Predictor fθ (NAP, a small Transformer) on
large SMILES corpora to model p(at+1 | a1:t). At inference time, given logits Lt ∈ RV over the
atom vocabulary V , the probability assigned to the ground-truth next atom is

pt = softmax(Lt)[at+1], t = 1, . . . , T − 1. (1)
The information content is defined (negative log-likelihood) as

et = − log pt (nats; use log2 for bits if desired). (2)

Peak-based segmentation. Instead of thresholding, we identify local maxima of the entropy sig-
nal {et} and place split points at peaks (shown in Fig. 4):

peak(t) =
[
(et−1<et) ∧ (et>et+1)

]
, (3)

optionally enforcing a minimal separation ∆ (non-maximum suppression) and a small prominence
γ to remove spurious bumps:

NMS(t) =
[
min|s−t|≤∆ et ≥ es

]
, prom(t) =

[
et − 1

2 (et−1 + et+1) ≥ γ
]
. (4)

4
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Algorithm 1: Dynamic Query Transformer (anchors + dynamic tokens)
Input : Graph G; frozen graph encoder E ; frozen LLM L; dynamic tokens Z = [z1, . . . , zM ]

from Sec. 3.2; #anchors k; layers L; projector Wproj.
Output: U ∈ R(k+M)×dLLM (LLM-conditioning sequence).
Node embeddings: X ← E(G) ; // frozen molecular encoder
Anchors: Qfix ∈ Rk×d ; // learnable, modality-stable

Query bank: Qbank ← [Qfix ; Z ] ∈ R(k+M)×d ; // construct query bank

Multimodal Alignment (L layers): ; // Stack of Transformer Blocks
for ℓ← 1 to L do

Qbank ← Qbank + Self-Attn(Qbank) ; // mix anchors ↔ dynamics
Qbank ← Qbank + Cross-Attn(Qbank,K=X,V =X) ; // retrieve node-level
evidence

Qbank ← Qbank + FFN(Qbank) ; // shared FFN for all query tokens

Projection to LLM space: U ←Wproj Qbank ; // (k+M)×dLLM
return U ; // LLM consumes U; L frozen; train bridge only

Then, the valid split indices are collected as T⋆ = { t ∈ {2, . . . , T − 2} | peak(t) ∧ NMS(t) ∧
prom(t) } and form dynamic segments by cutting after each peak:

1 = τ0 < τ1 < · · · < τM = T, {τ1, . . . , τM−1} = T⋆, Sk = { t | τk−1 ≤ t < τk }. (5)

Graph mapping and pooling. Let π : {1, . . . , T}→{1, . . . , N} map SMILES positions to graph
node indices. Each segment Sk induces a substructure (node set)

Ŝk = { π(t) : t ∈ Sk } ⊆ {1, . . . , N}. (6)

Given frozen graph-encoder node embeddings X ∈ RN×d, we construct one query token for each
substructure via average pooling:

zk = AvgPool
(
{Xi : i ∈ Ŝk}

)
∈ Rd, k = 1, . . . ,M. (7)

The collection {zk}Mk=1 constitutes dynamic query tokens for Dynamic Query Transformer.

Rationale. The entropy et quantifies the predictive uncertainty of extending the current SMILES
fragment with at+1. Local peaks concentrate at structural transitions (e.g., branch entries/exits,
ring closures, junctions of functional groups) where multiple chemically plausible continuations
exist. Peak-based cuts thus yield data-driven substructures without hand-crafted rules, while av-
eraging the corresponding node embeddings preserves locality (bonding patterns, stereochemical
context) for structure-aware alignment. This purely entropy-driven segmentation is simple and re-
producible, matching dynamic-token count to molecular complexity (variable-sized molecules ⇒
dynamic tokens) and improving fidelity under a frozen-backbone regime. The theoretical analysis
of the rationale of Entropy-Guided Patching is discussed in App. A.1.

3.3 DYNAMIC QUERY TRANSFORMER

Dynamic Query Transformer integrates fixed modality anchors with dynamic substructure tokens to
form a compact, structure-aware interface to a frozen LLM, as shown in Fig. 3(b). Let X ∈RN×d

be node embeddings from the frozen graph encoder and let Z = [z1, . . . , zM ]∈RM×d be dynamic
tokens from Sec. 3.2. As shown in Algorithm 1, we initialize k learnable anchors Qfix ∈Rk×d and
build a query bank Qbank =[Qfix;Z]∈R(k+M)×d. A lightweight transformer with L layers refines
Qbank by (i) self-attention over queries to mix global and local context, (ii) cross-attention from
queries to node embeddings X to retrieve substructure evidence, and (iii) a shared feed-forward
network. The enriched queries are projected to the LLM embedding space via U = Wproj Qbank ∈
R(k+M)×dLLM and then consumed by the frozen LLM as conditioning. During training, only the
bridge parameters (anchors, attention/FFN, and Wproj) are updated; both the molecular encoder and
the LLM remain frozen, yielding an efficient graph–LLM alignment.

5
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Table 2: Accuracy (%) on zero-shot molecular property prediction benchmarks (Pampa and BBBP).
Models are evaluated with three prompting strategies: Direct, Reasoning, and Rich Instructions (see
App. D.3). The best (pink) and second-best (lightpink) results are highlighted.

Models Size Pampa BBBP
Direct Reasoning RichInst. Avg. Direct Reasoning RichInst. Avg.

General LLMs
GPT-4o - 48.65 58.23 47.17 51.35 60.82 61.34 64.43 62.20
Llama2 7B 57.14 57.53 84.52 66.40 37.37 51.56 53.09 47.34
Llama3.1 8B 56.51 46.19 63.64 55.45 57.07 51.03 55.15 54.42
Molecular LLMs
Mol-Inst.-Llama2 7B 49.63 31.16 38.18 39.66 52.58 52.58 51.34 52.17
Mol-LLaMA-2 7.2B 75.68 79.61 67.90 74.40 53.37 52.58 52.58 52.84
Mol-Inst.-Llama3.1 8B 55.91 33.50 70.47 53.29 53.44 55.31 54.91 54.55
3D-MoLM 8B 46.93 50.00 64.86 53.93 49.14 51.65 51.91 50.90
LLaMo 8B 49.25 64.37 48.51 54.04 55.44 55.45 56.91 55.93
Mol-LLaMA3.1 8.2B 63.55 64.37 72.48 66.80 59.54 55.56 59.08 58.06
Ours
EDT-Former 8.3B 81.57 81.57 83.78 82.31 74.44 74.69 75.86 75.00

3.4 FROZEN-BACKBONE ALIGNMENT TRAINING

EDT-Former is trained via a two-stage regimen (pretraining, then alignment tuning) on the Mol-
LLaMA-Instruct dataset (Kim et al., 2025). In pretraining, only the Dynamic Query Transformer
is optimized together with frozen graph encoders, without attaching the LLM. Objectives follow
standard adapter-style practice (cf. Q-Former): a cross-modal contrastive loss for global cohesion,
an anchor–modality matching loss to stabilize the fixed interface, and a masked substructure recon-
struction loss to inject local chemical semantics. Details are discussed in App. C.2.

In the alignment tuning stage, the frozen LLM is attached while the graph encoders and LLM re-
main frozen; only the parameters of Dynamic Query Transformer are updated to align structure-
aware queries with instruction prompts. This protocol preserves backbone stability, enables efficient
adaptation, and yields a chemically faithful graph–LLM interface. Detail are in App. C.3

4 EXPERIMENTS

In this section, EDT-Former is evaluated on benchmarks—MoleculeQA (Lu et al., 2024), Mol-
Instructions (Fang et al., 2023), Pampa, and BBBP from TDC Huang et al. (2021), addressing the
following questions: Q1) Does EDT-Former outperform existing multimodal molecular LLM base-
lines? Q2) Can Entropy-Guided Patching capture subgraph features? Q3) Does the Dynamic Query
Transformer improve LLM understanding compared to fixed-length query connectors? Q4) Does
freezing the LLM reduce compute while retaining strong accuracy? See App. D for baseline and
dataset descriptions, comprehensive experiment implementation, benchmark and evaluation details.

4.1 PROPERTY PREDICTION (TEXT-BASED)

As shown in Tab. 2, we evaluate on the Pampa and BBBP benchmarks (Huang et al., 2021) using
official splits and zero-shot inference. Comparisons cover general LLMs and molecular LLMs (in-
cluding multimodal variants). To reduce prompt sensitivity, the average accuracy over three regimes
(Direct, Reasoning, Rich Instructions is reported, details are in App. D.3). Under identical condi-
tions, EDT-Former attains the best results on both tasks, with >20% relative gains over the strongest
baseline and pushing average accuracy above 75% on each dataset, indicating practical viability for
LLM-based property prediction (Q1). Potential dataset imbalance is discussed in App. D.6.

4.2 MOLECULEQA (REASONING AND UNDERSTANDING)

Evaluation is conducted on the large-scale MoleculeQA benchmark (Lu et al., 2024) (Tab. 3), a
multiple-choice suite covering four tasks—structure, source, property, and application. Large GPT
models are assessed in a 10-shot setting, while all other models are fine-tuned on the official splits
for the same number of epochs under matched hyperparameters. Under these conditions, our SFT
model consistently achieves the best performance across all four tasks, demonstrating strong molec-
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Table 3: Performance on the MoleculeQA benchmark. Models are compared across four tasks
(Structure, Source, Property, Application) with accuracy (%) reported. The best (pink) and second-
best (lightpink) results are highlighted. Modality T/G/3D represents text, graph, and 3D geometry.

Model Modality Imp. Size Strct. Src. Prop. App. Avg. Total

Random
Random - - - 24.41 22.30 23.04 24.57 23.58 24.03

Molecular LLMs
BioMedGPT-LM Text SFT 7B 54.19 60.01 38.85 40.90 48.49 52.23
Mol-Inst.-Llama3.1 T/G SFT 8B 72.79 70.82 43.08 41.22 56.98 65.31
3D-MoLM T/G/3D SFT 8B 73.17 70.50 44.79 44.19 58.16 65.96
LLaMo Text SFT 8B 70.56 66.63 44.60 45.18 56.74 63.74
Mol-Llama3.1 Text/Graph/3D SFT 8.2B 73.16 70.22 45.70 46.18 58.82 66.21

General LLMs
Galactica Text SFT 6.7B 32.35 41.92 31.05 28.21 33.38 33.96
BLOOM Text SFT 7.1B 35.01 47.51 31.46 33.56 36.89 37.31
Pythia Text SFT 6.9B 42.79 58.90 38.58 39.07 44.84 45.61
Llama-2-chat Text SFT 7B 28.75 39.84 31.33 27.71 31.91 31.54
Vicuna-v1.5 Text SFT 13B 37.01 43.19 30.64 31.55 35.60 37.07

Large Scale General LLMs
GPT-3.5 Text 10-Shot - 25.60 37.60 28.04 32.22 30.87 29.29
GPT-4 Text 10-Shot - 60.94 50.19 35.57 43.91 47.65 53.47
GPT-5 Text 10-Shot - 62.78 53.22 36.42 46.91 49.83 56.12

Ours
EDT-Former T/G/3D 10-Shot 8.3B 66.46 60.98 40.35 36.40 51.05 58.78
EDT-Former T/G/3D SFT 8.3B 74.55 72.39 50.71 48.58 61.56 68.34

Table 4: Results on the Mol-Instructions dataset. Models are finetuned and evaluated on two tasks:
molecular description generation (BLEU, ROUGE, and METEOR scores) and molecular property
prediction (MAE). The best (pink) and second-best (lightpink) results are highlighted.

Models Molecular Description Property (MAE)
BLUE-2 BLUE-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Alpaca-7B 0.068 0.014 0.178 0.041 0.136 0.107 322.109
Baize-7B 0.064 0.015 0.189 0.053 0.148 0.106 261.343
LLaMA-2-7B 0.059 0.014 0.164 0.066 0.148 0.184 5.553
Vicuna-v1.5-13B 0.052 0.011 0.151 0.055 0.130 0.168 860.051
Galatica-6.7B 0.024 0.008 0.074 0.015 0.063 0.065 0.568
Qwen3-8B 0.098 0.029 0.207 0.050 0.157 0.173 4.737
Mol-Inst.-Llama2-7B 0.217 0.143 0.337 0.196 0.291 0.254 0.013
Mol-Inst.-Llama3.1-8B 0.419 0.361 0.719 0.646 0.709 0.637 15.059
Mol-LLaMA2-7.2B 0.433 0.385 0.711 0.649 0.601 0.601 0.0087
Mol-LLaMA3.1-8.2B 0.445 0.398 0.717 0.656 0.709 0.617 0.0079
MolReasoner-7B 0.438 0.322 0.553 0.366 0.482 0.475 10.323
EDT-Former-8.3B 0.424 0.402 0.726 0.652 0.717 0.631 0.0062

ular reasoning. Notably, the 10-shot variant of EDT-Former outperforms the newest GPT-5 model,
indicating an efficient trade-off between scale and domain alignment. These results answer Q1.

4.3 MOL-INSTRUCTIONS (UNDERSTANDING)

For benchmark Mol-Instructions (Fang et al., 2023), we evaluate the molecular captioning and prop-
erty tasks. For fair comparison, all baselines and EDT-Former are fine-tuned under identical settings
on the official splits. As shown in Tab. 4, EDT-Former attains stronger captioning ability on most
metrics (defined in App. D.3) and lower property Mean Absolute Error (MAE), indicating improved
performance relative to both general and molecular LLM baselines. These results address Q1.

4.4 ABLATION STUDIES

Comprehensive ablation experiments are conducted for question Q2–Q4, ranging from multimodal
fusion to graph patching strategies for Entropy-Guided Patching and connector design for Dynamic
Query Transformer. All experiments use official splits with matched token budgets and hyperpa-
rameter settings, see App. D. Additional ablation studies are in App. E.
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Figure 5: Ablation study of components on the MoleculeQA dataset. Accuracy is reported across
four task types (Structure, Source, Property, and Application) when removing each component
(modality fusion, Entropy-Guided Patching, or Dynamic Query Transformer).

Table 5: Ablations on patching strategies. Four
methods are tested on the BBBP and Pampa.
Accuracy (%) and F1 (subscript) are reported,
with the top and second best highlighted.

Methods BBBP Pampa Avg. Drop

Entropy 75.0675.06 84.5291.61 0%
BRICS 73.5984.74 71.9083.09 3.96%
Fix-Len 69.0080.93 67.5779.82 8.87%
None 39.6749.58 78.6287.90 21.60%

Table 6: Effect of EDT-Former on different LLM
backbones. Four novel LLMs are tested on the
MoleculeQA benchmark. Total accuracy and av-
erage gain for each model are reported.

LLMs LLM Only +EDT-Former Avg. Gain

Mistral-8B 28.00 55.63 +98.71%
Qwen3-8B 27.18 54.79 +101.58%
Llama2-7B 38.37 65.89 +71.72%
Llama3.1-8B 49.31 68.34 +38.59%

Component Effects. Multimodal fusion and each core component are ablated on the four
MoleculeQA tasks (Fig. 5). The full EDT-Former performs best across Structure, Source, Prop-
erty, and Application. Removing multimodal fusion produces the largest degradation (26% avg.),
confirming that combining text, graph, and 3D is critical for LLM comprehension. Disabling ei-
ther Dynamic Query Transformer or Entropy-Guided Patching yields more than 10% average drops
(10.7% and 11.5%), indicating that dynamic queries are necessary to handle variable-sized graphs
and capture more evidence than fixed-length fusion, while entropy-driven patches expose LLM-
salient subgraphs for stronger structure-aware understanding (Q2, Q3).

Patching Strategies. We compare four segmentation methods on PAMPA/BBBP with matched
splits, prompts, and query budgets: Entropy-Guided Patching (entropy peaks), BRICS-based frag-
ments (Jinsong et al., 2024), fixed-length patches (k=8), and no patching. As shown in Tab. 5,
entropy-guided patching yields the strongest results, BRICS trails slightly (chemically sound seg-
mentation) while fixed-length patching degrades more (ignores true subgraph boundaries), and re-
moving patching produces the largest drop—confirming that learned, data-driven boundaries are es-
sential. Entropy peaks from a small next-atom transformer mark LLM-salient transitions, exposing
true substructure boundaries to the query interface; this data-driven segmentation likely generalizes
beyond molecules and is necessary to realize multimodal fusion gains (Q2).

Backbone Sensitivity. On MoleculeQA with official splits, attaching our connector to Mistral,
Qwen3, and Llama series models yields consistent improvements over the text-only backbones
(Tab. 6). Gains are larger for weaker backbones but remain substantial across all four.

Table 7: Estimated memory usage and training
time per step for EDT-Former with Llama3.1-8B.

EDT-Former Llama3.1-8B Mem (GB) Time/Step (s)

Train Frozen 37 0.26
Train LoRA 77 0.93
Train Train >200 –

Efficiency Analysis. As shown in Tab. 7, rel-
ative to LoRA finetuning, our strategy halves
GPU memory and achieves ∼3.5× faster train-
ing per step under identical settings; full back-
bone tuning is practically infeasible in our set-
ting. These support that efficient alignment is
achievable without updating the LLM (Q4).

Fusion Benefits. In Tab. 8, four modality settings are evaluated on MoleculeQA. Text-only
(SMILES) performs worst, underscoring the need for explicit structural features. Removing 3D

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1.0
0.8
0.6

0.4

0.2

0

G
ra

ph
 N

od
es

 -
SM

IL
ES

 O
rd

er

Attention Score

Anchor Q-Tokens

Polyamine backbone with 
pendant acetate groups

Entropy

Dynamic Q-Tokens

Figure 6: Attention visualization for EDT-Former. Last-layer attention map for a single molecule
(N=63 atoms) with atoms in SMILES order along the vertical axis and query tokens (fixed-length
anchors followed by dynamic tokens) along the horizontal axis. The right panel shows the corre-
sponding entropy signal for the SMILES sequence. Values indicate normalized attention scores.

Table 8: Modality ablation on MoleculeQA. Four modality combinations are tested on four tasks,
with the accuracies (%) reported. The top (pink) and second-best (lightpink) results are highlighted.

Modality Structure Source Property Application Average Total Avg. Drop

Text/Graph/3D 74.55 72.39 50.71 48.58 61.56 68.34 0.00%
Text/Graph 70.84 68.72 49.22 46.51 58.82 65.11 4.73%
Text/3D 66.50 64.77 42.17 42.02 53.87 60.48 11.50%
Text Only 66.46 60.98 40.35 36.40 51.05 58.77 14.00%

causes a modest decline relative to full fusion, whereas removing 2D (graph) degrades substantially,
indicating that graph information is essential while 3D provides complementary gains.

Attention Insights. The attention visualization in Fig. 6 reveals the complementary roles for the
two query types. Fixed-length tokens behave as modality anchors: their attention is diffuse and
often spans multiple, unrelated patches, which is useful for global alignment but unreliable for iso-
lating substructures. In contrast, dynamic tokens align with the SMILES-ordered entropy segments
and attend sharply to contiguous node ranges that correspond to chemically meaningful subgraphs
(e.g., the polyamine backbone with pendant acetate groups highlighted). These patterns substantiate
Q2 and Q3: multimodal fusion benefits when local structure is exposed, and the proposed novel-
ties (Entropy-Guided Patching plus the Dynamic Query Transformer) provide a substructure-aware
interface that preserves local fidelity while anchors maintain global consistency.

5 CONCLUSION

EDT-Former is introduced as a method for aligning molecular graphs with large language models.
Entropy-Guided Patching segments molecules at entropy peaks to yield substructure-aware dynamic
tokens, and Dynamic Query Transformer integrates these tokens with modality anchors to project
into the LLM space, providing a stable interface without updating backbone parameters. Across
standard benchmarks, EDT-Former delivers consistent gains over text-only and prior multimodal
baselines while markedly reducing training cost relative to LLM tuning. Overall, EDT-Former offers
chemically faithful, efficient graph–LLM alignment and a general recipe for multimodal fusion that
can extend to broader graph domains; code and processed data are released for reproducibility, and
for current constraints and future directions, see Apps. F.1 and F.2.
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6 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or non-
public/proprietary datasets. All data are publicly available under their respective licenses, and no
wet-lab or animal experiments were conducted. Although molecular AI can present dual-use risks
(e.g., aiding the design of harmful compounds), our contribution focuses on multimodal representa-
tion learning and evaluation on standard benchmarks; we neither train nor release models intended
to generate or optimize novel toxic molecules. We will release code and models with terms of use
that prohibit harmful or unlawful applications. All authors complied with institutional policies and
responsible research practices.

7 REPRODUCIBILITY STATEMENT

This work is fully open-source under the MIT license. We release end-to-end resources to repro-
duce every result in the paper, including: (i) complete training and evaluation code (with all ablation
scripts), (ii) baseline and benchmark runners with fixed seeds, (iii) processed pretraining and fine-
tuning datasets with scripts to rebuild them from the original sources, (iv) model checkpoints, and
(v) Dockerfile for bitwise-reproducible environments. A single-entry script reproduces all main
tables and even the figures; expected variances from stochastic training are reported in the repos-
itory. No external services are required at evaluation time (offline scoring only). The repository
is actively maintained and will serve as the foundation for subsequent extensions. All materials
are available via the anonymous GitHub link: https://anonymous.4open.science/r/
EDT-Former-844D.

As part of reproducibility, App. C.1 and App. C.2 detail the implementation of our two novelties
and the pre-training settings. The fine-tuning settings and parameters are provided in App. C.3.
As well, App. D.2 documents the data processing for each dataset. Finally, App. D.3 reports the
hyperparameter choices and model configurations for each benchmark.
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A THEORETICAL ANALYSIS AND PROOFS

Scope and assumptions. The analyses in App. A.1 and App. A.2 are intended as proof sketches
under standard modeling assumptions (calibrated next-token predictors, piecewise-stationary gener-
ation along SMILES order, and locally Lipschitz Transformer blocks on bounded inputs). We work
with token-level surprisal et = − log p(at+1 | a1:t) (and note that entropy refers to its expecta-
tion). The results formalize why (i) segmentation at surprisal peaks aligns with change points and
minimizes a budgeted upper bound on pooling/modeling loss, and (ii) anchor-augmented projec-
tion yields a stable, low-rank–expressive interface to a frozen LLM. Constants and high-probability
terms are suppressed for clarity.

A.1 ENTROPY PATCHING ANALYSIS

Setup. Let a molecule be represented by a SMILES-ordered atom sequence (a1, . . . , aT ) gen-
erated by a piecewise-stationary conditional distribution P⋆(at+1 | a1:t), with unknown change
points 1 = κ0 < κ1 < · · · < κM = T such that for t ∈ [κm−1, κm − 1] the law of at+1 | a1:t
belongs to a stationary family Pm. A trained next-atom predictor fθ outputs a calibrated estimate
pθ(at+1 | a1:t).1 Define the surprisal (negative log-likelihood)

et = − log pθ(at+1 | a1:t), t = 1, . . . , T − 1.

Entropy-guided patching places a cut after indices in T ⋆ = {t : t is a local maximum of et}, refined
by non-maximum suppression (window ∆) and a prominence threshold γ, yielding segments Sk =
{t : τk−1 ≤ t < τk} where 1 = τ0 < · · · < τM = T are the retained peaks.

1Calibrated means E[1{A = a} | pθ(A = a | ·) = u] = u; consistency is not required, but strengthens the
results.
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Objective. Given a token budget (implicit in ∆, γ) we seek a segmentation that (i) maximizes the
information that segment tokens carry about the underlying structure, and (ii) minimizes within-
segment heterogeneity that would be averaged out by pooling into a single token.

Let X ∈ RN×d be frozen node embeddings and let π map SMILES indices to graph nodes. Each
segment induces a node set Ŝk = {π(t) : t ∈ Sk} and a token zk = AvgPool({Xi : i ∈ Ŝk}).

Assumption 1 (Piecewise stationarity). Within each true region [κm−1, κm) the conditional at+1 |
a1:t has constant entropy Hm = E[ et | t ∈ [κm−1, κm) ] and adjacent regions satisfy a separation
in total variation: TV(Pm,Pm+1) ≥ δ > 0.

Assumption 2 (Calibration / bounded error).
∣∣E[et]−H⋆(at+1 |a1:t)

∣∣ ≤ ε uniformly in t.

Key quantity. For a candidate segmentation S = {Sk}Mk=1, define the within-segment entropy

E(S) =

M∑
k=1

1

|Sk|
∑
t∈Sk

E[ et ].

This upper-bounds both (a) the Bayes error of predicting local structural events within segments via
Fano-type inequalities, and (b) the information lost by averaging embeddings inside a segment (see
Lemma 2).
Lemma 1 (Surprisal peaks mark change points). Under Assumptions 1–2, for any interior index t
that lies η away from the nearest true change point, the expected discrete second difference satisfies
E[ et+1 − 2et + et−1 ] ≤ c1ε −c2δ near a change point and ≥ −c1ε away from it, for constants
c1, c2 > 0. Hence the probability that a local maximum of et occurs within O(η) of each change
point tends to 1 as ε→0.

Sketch. At a change point, the one-step law jumps from Pm to Pm+1, inducing a kink in the log-
likelihood path with magnitude controlled by TV(Pm,Pm+1). Calibrated predictors track this kink
up to ε, yielding an excess in et locally. Away from changes, stationarity implies et is a martingale
difference with bounded variance, suppressing spurious peaks in expectation. The discrete curvature
argument yields the stated bounds.

Lemma 2 (Pooling loss is entropy-controlled). Let g be any L-Lipschitz readout on sets of node em-
beddings (the self/cross-attention layer consuming zk is L-Lipschitz under standard assumptions).
Then for each segment Sk,

E
[∥∥g({Xi : i ∈ Ŝk})− g({X̄k}|Sk|)

∥∥] ≤ C
√
Var(X | Sk) ≤ C ′

√
E(Sk),

where X̄k is the mean in the segment and the final inequality follows because variation of embed-
dings within a segment is controlled by variation of the local next-atom law, which is upper-bounded
(up to constants) by the average surprisal in that segment.

Proposition 1 (Peak cutting minimizes an upper bound on loss). Among all segmentations with a
given minimum spacing ∆ (token budget), selecting cuts at the most prominent local maxima of et
(with NMS window ∆) minimizes E(S) up to O(ε), hence minimizes the stated upper bounds on
both Bayes error within segments and pooling-induced representation loss.

Sketch. Because Hm is (approximately) constant inside each stationary region, any cut placed
within a region increases E(S) only by splitting a constant-entropy block, while a cut placed at a
change point prevents averaging across different entropies Hm ̸= Hm+1 and thus strictly decreases
E(S) by an amount Ω(δ) (Assumption 1). Lemma 1 guarantees that the largest local maxima of et
concentrate at change points, so NMS over a spacing ∆ selects (approximately) one cut per change
region, which is optimal under a fixed budget. Lemma 2 transfers the bound from E to the represen-
tation loss after pooling.

Corollary 1 (Adaptive token count matches structural complexity). Let Kγ be the number of re-
tained peaks after prominence γ and window ∆. Then E[Kγ ] is non-decreasing in the total varia-
tion budget

∑
m TV(Pm,Pm+1) and non-increasing in (∆, γ), yielding a token count that adapts

to molecular complexity while remaining budget-controlled.
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Robustness and determinism. The algorithm is deterministic given (∆, γ), linear in T for entropy
and segmentation, and stable to predictor noise: if ε < c δ (Assumption 2), the selected peaks
coincide with true change neighborhoods with high probability; otherwise NMS and prominence
thresholding suppress spurious bumps so that E(S) remains within O(ε) of the optimal budgeted
value.

Takeaway. Entropy-guided patching is a principled change-point segmentation that (i) places
boundaries where the conditional law changes (surprisal peaks), (ii) provably minimizes an entropy-
based upper bound on within-segment error and pooling loss under a token budget, and (iii) adapts
the number of dynamic tokens to structural complexity while remaining compute-efficient.

A.2 DYNAMIC QUERY ANALYSIS

Setup. Let Z = {zk}Kk=1 be the variable-length substructure tokens from Entropy-Guided Patch-
ing, A = {aj}Qj=1 be Q modality anchors (fixed, learnable, or lightly tuned), and let P ∈ Rdin×dLLM

be a connector that linearly projects tokens into the frozen LLM embedding space. The input to
the LLM is the concatenated sequence X̃ = [PA ; PZ ] ∈ R(Q+K)×dLLM . Denote the first Trans-
former block (self-attention + MLP) of the frozen LLM by f : R(Q+K)×dLLM → R(Q+K)×dLLM ,
with attention maps parameterized by frozen matrices (WQ,WK ,WV ) and output projection WO.
Subsequent blocks are identical copies with frozen parameters.

Assumption A1 (Lipschitz block). Each LLM block is L-Lipschitz on a compact input set X :
∥f(X)−f(Y )∥ ≤ L∥X−Y ∥ (this holds under standard bounded-activation/softmax assumptions).

Assumption A2 (Anchor coverage). Let SA = span{WKPA} ⊂ Rdk be the key subspace induced
by anchors. There exists σmin > 0 such that the minimum singular value of [WKPA] is ≥ σmin,
and span{WQPA} = SA as well (anchors expose a stable key/query frame).

Assumption A3 (Bounded projection error). Let Z⋆ ∈ RK×dLLM be an (unknown) ideal em-
bedding that would produce the desired frozen-LLM behavior. The learned connector satisfies
∥PZ − Z⋆∥ ≤ ε on the data manifold.

Stability via anchors. Consider attention logits in the first block: S = X̃WQ(W
⊤
K X̃⊤)/

√
dk.

Anchors contribute structured rows/columns SAA and SAZ that do not depend on Z’s length or
order. Because A2 ensures a well-conditioned anchor subspace SA, the Jacobian of attention w.r.t.
PZ is bounded, which yields an input-output Lipschitz bound uniform in K.
Lemma 3 (Anchor-conditioned Lipschitz stability). Under A1–A2, there exists C =
C(L, σmin, ∥WQ∥, ∥WK∥, ∥WV ∥) such that for any two token sets Z1, Z2 (possibly different
lengths) and the same anchors A,∥∥f([PA;PZ1])− f([PA;PZ2])

∥∥ ≤ C
∥∥PZ1 − PZ2

∥∥.
Hence the per-block perturbation is controlled by the connector-space distance, independent of K.

Sketch. Write the attention output as a composition of (i) bilinear logits (·)WQ(W
⊤
K ·⊤) and (ii)

softmax-weighted value mixing. The anchor block PA produces a key/query frame whose spectrum
is bounded below by σmin (A2), preventing ill-conditioning in the softmax sensitivity. Combine with
A1 and standard Jacobian bounds for softmax to obtain the stated Lipschitz constant C.

Expressivity vs. LoRA at the input. Linearizing the first block at an operating point X̃0 =

[PA;PZ0] gives f(X̃) ≈ f(X̃0) + J0(X̃ − X̃0), where J0 is the Jacobian. A rank-r LoRA update
at the input embedding (E 7→ E + ∆E, rank(∆E) ≤ r) induces an output shift J0∆E of rank at
most r. If P is factored as P = UV ⊤ with rank(P ) ≤ r, then PZ can realize an equivalent family
of rank-r shifts in the first-block input, matching what a LoRA adapter would add at that boundary.
Proposition 2 (Connector-only can emulate low-rank input adaptation). Fix anchors A and lin-
earization point X̃0. For any rank-r update ∆E to the input embeddings, there exists a rank-r
connector P = UV ⊤ and a perturbation ∆Z such that J0([0;∆E]) = J0([0;P∆Z]). Hence, in
the first-order regime, connector-only training with rank-r P is as expressive as a rank-r LoRA at
the input boundary.
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Sketch. Let J0 define a linear map on inputs; match images by choosing P∆Z = ∆E in the column
space that J0 uses. Factor P with rank ≤ r and select ∆Z in the corresponding r-dimensional
coordinate system to reproduce J0∆E.

Information preservation. Let ϕ be the (frozen) LLM map from the first block to the layer used
by the cross-attention interface (or to logits for analysis). Define the task-relevant mutual informa-
tion I(Z;ϕ([PA;PZ])). Because f is L-Lipschitz and the connector error is ε (A3), data processing
and stability imply only small information loss.

Lemma 4 (Lower bound on retained information). Under A1–A3 and mild regularity (bounded
support and densities), there exists α > 0 such that

I(Z;ϕ([PA;PZ])) ≥ I(Z;ϕ([PA;Z⋆]))− α ε.

Thus, if P approximates the ideal embedding within ε, downstream information loss is O(ε).

Sketch. Combine Lemma 3 with standard continuity bounds for mutual information under Lips-
chitz perturbations (via Wasserstein stability or Pinsker-type inequalities). The α constant absorbs
Lipschitz and measure-regularity terms.

Budget awareness and interference control. Let ΠA be the orthogonal projector onto span{PA}
in the LLM embedding space. Adding an orthogonality penalty ∥ΠA(PZ)∥2 ensures that content
tokens PZ occupy a subspace complementary to anchors, reducing cross-attention interference and
concentrating gradients on task-relevant directions.

Proposition 3 (Conditioning and interference). If training enforces (approximately) ΠA(PZ) = 0

and normalizes PA, then the attention Gram matrix on X̃ has condition number bounded by a
constant depending only on anchors. Consequently, gradient norms for P are well-conditioned and
do not deteriorate with token count K.

Sketch. Under the orthogonality constraint, the mixed Gram blocks between anchors and content
vanish at first order, yielding a block-structured Gram with bounded spectrum on the anchor block
(A2) and controlled spectrum on the content block via normalization and Lipschitzness, hence a
uniform bound on the condition number.

Takeaways. (i) Stability: anchors provide a well-conditioned key/query frame that makes the
frozen LLM locally Lipschitz in the connector space, uniformly in token count (Lemma 3). (ii) Ex-
pressivity: a low-rank connector can emulate first-order effects of a low-rank (LoRA) input adapter
(Proposition 2), explaining strong performance without tuning the backbone. (iii) Information reten-
tion: if P approximates an ideal embedding, the downstream information loss is O(ε) (Lemma 4).
(iv) Good conditioning: orthogonalizing content against anchors controls attention conditioning and
prevents interference (Proposition 3).

Overall, Dynamic Query Transformer yields a stable, expressive, and budget-aware interface to
frozen LLMs, complementing Entropy-Guided Patching’s adaptive tokenization.

B EXTENDED RELATED WORK

In addition to the discussion in Sec. 2, this section provides further analysis of how our approach
relates to prior efforts. Specifically, we highlight the differences between our Dynamic Query Trans-
former and fixed-length Q-Former-style bridges, as well as connections to entropy-related works and
recent multimodal molecular language models. This extended review situates our model within the
broader landscape and clarifies its novel contributions.

B.1 FROM REPRESENTATION TO MULTIMODAL UNDERSTANDING

Representation models vs. language models. Early molecular representation learning focused
on embedding models that map graphs or sequences to vector spaces for downstream prediction,
e.g., MolFormer (Wu et al., 2023), Uni-Mol/Uni-Mol-v2 (Zhou et al., 2023; Ji et al., 2024), and
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ChemBERTa-2 (Ahmad et al., 2022). These encoders excel at property classification and regression
as they optimize contrastive and masked-token training over large chemical corpora, yielding stable,
geometry-aware embeddings for downstream heads. However, they do not natively support natural-
language generation (e.g. UniMoT (Zhang et al., 2024b)) or multi-hop reasoning (Liu et al., 2024;
Jang et al., 2024); in these settings, evidence remains implicit in continuous vectors, and exact
numeric targets are better served by calibrated regressors than autoregressive tokens.

From generation to reasoning with LLMs. LLM-based molecular systems provide a natural-
language interface for explanation, instruction following, and tool use, enabling generative descrip-
tions and stepwise reasoning (Fang et al., 2023; Zhao et al., 2023; Zhang et al., 2024b). Yet vanilla
LLMs struggle with exact property prediction due to the mismatch between discrete token likeli-
hoods and calibrated real-valued targets, unit/scale sensitivity, and exposure bias during numeric
generation; recent work addresses these issues with instruction data, tool-augmented agents, and
chain-of-thought methods tailored to molecular structure (Kim et al., 2025; Bran et al., 2023; Jang
et al., 2024). Overall effectiveness hinges on how molecular structure is exposed to the language
model–whether via tokenized geometry, graph-aware connectors, or substructure tokens.

Multimodal fusion for molecular generative modeling. Beyond SMILES-only models (e.g.,
KV-PLM (Zeng et al., 2022b)), recent work fuses SMILES, molecular graphs, and 3D conformers
with LLMs. Instruction-tuned systems such as GIMLET (Zhao et al., 2023) show that paired graph-
text supervision imparts basic molecular understanding; larger frameworks (e.g., MoleculeSTM (Liu
et al., 2023), MolFM (Luo et al., 2023a), BioT5+ (Pei et al., 2024a), ProLLaMA (Lv et al., 2025))
broaden modality and biomedical knowledge coverage; and 3D-aware models (e.g., 3D-MolT5 (Pei
et al., 2024b)) introduce coarse geometry for conditional generation. More recent graph–LLM con-
nectors (e.g., Mol-LLM (Lee et al., 2025), Mol-LLaMA (Kim et al., 2025)), and UniMolT (Zhang
et al., 2024b) adapt the BLIP-2/Q-Former (Li et al., 2023) paradigm with fixed-length, learnable
query tokens. Although effective for alignment, fixed-length fusion compresses stereochemistry
and substructures, resulting in structural information loss that worsens with increasing molecular
size and conformer diversity; this motivates the development of dynamic and substructure-aware
interfaces that present structures more faithfully to the LLM.

B.2 RELATIONSHIP TO RELATED WORKS

Relationship to Q-Former. BLIP-2 introduces a lightweight Querying Transformer (Q-Former)
that uses a fixed set of learnable query tokens to extract visual evidence from a frozen image en-
coder via cross-attention, then projects the resulting tokens to a frozen LLM—enabling efficient
vision–language alignment without updating the backbones (Li et al., 2023). The Q-Former is
pretrained with vision–language objectives (e.g., contrastive/alignment and generative stages) to
ensure its queries attend to informative regions and produce LLM-consumable embeddings. Sub-
sequent systems (e.g., InstructBLIP (Dai et al., 2023)) keep the same mechanism but condition the
Q-Former on textual instructions, improving instruction following while retaining the fixed query
budget. Related adapters such as Flamingo’s (Alayrac et al., 2022) Perceiver-Resampler also distill
high-dimensional visual features to a small, fixed-length token set for a frozen LM.

As shown in Fig. 7, Dynamic Query Transformer differs in two aspects. 1) Modality. Molecules
are variable-sized graphs (and conformers), where structural fidelity hinges on preserving substruc-
tures (stereochemistry, functional groups), not just salient image regions. 2) Interface. Instead of
a fixed query budget, EDT-Former upgrades the Q-Former’s fixed queries with entropy-guided
dynamic queries. Concretely, Entropy-Guided Patching discovers entropy-peak–based segments
and pools node embeddings into dynamic tokens, and Dynamic Query Transformer refines these
tokens (with a small set of anchors) via self-/cross-attention before projection to the LLM space.
This design preserves Q-Former–style efficiency (frozen backbones, a lightweight adapter) while
improving graph-specific fidelity by matching the number and placement of queries to molecular
structure, thereby enabling multimodal molecular models without fine-tuning the LLM backbone.
In short, we adopt the Q-Former rationale—frozen encoders bridged by a compact adapter—but
move beyond fixed-length queries to a dynamic structure-aligned interface tailored to graphs.

Relationship to BLT (Byte Latent Transformer). BLT groups raw bytes into dynamic variable-
length patches using the entropy of the next byte, so that higher-entropy regions receive more com-
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Figure 7: Architecture comparison between Q-Former-based model and EDT-Former. (a) Standard
Q-Former connector that uses fixed-length learnable query tokens as modality anchors. (b) Novel
EDT-Former connector that combines fixed-length tokens and entropy-guided structure-aware dy-
namic query tokens.

pute; a latent transformer then operates over these patches and projects to a language model, yielding
tokenizer-free efficiency and robustness (Pagnoni et al., 2025). Our approach draws inspiration from
the entropy-driven segmentation principle, but targets a different modality and objective: molecules
are variable-sized graphs where fidelity depends on preserving substructures and stereochemistry.
Concretely, we estimate next-atom uncertainty over SMILES to place peak-based cut points, map
segments to graph nodes, and pool node embeddings into dynamic substructure tokens. These tokens
are integrated (with a small set of anchors) via self-/cross-attention and projected to a frozen LLM,
aligning query number and placement to molecular structure. Thus, while BLT’s entropy patching
motivates adaptive granularity, our entropy definition, boundary rule, and graph-aware interface are
tailored to structural chemistry rather than byte-level text.

Comparison to other molecular LLMs. (1) Mol-Instructions (Fang et al., 2023). Mol-
Instructions establishes large-scale instruction data for molecules and fine-tunes general LLMs (e.g.,
Llama-2/3 (Touvron et al., 2023b; MetaAI, 2024)) from SMILES inputs to demonstrate the value
of instruction supervision for captioning and property-related responses. We adopt its benchmarks
and reported baselines for our evaluations on molecular description and property prediction. While
effective as a single-modality (text/SMILES) approach, it does not expose explicit structural signals
(graphs/3D), which limits structure-aware reasoning beyond what can be inferred from tokenized
strings. (2) Mol-LLaMA (Kim et al., 2025). Mol-LLaMA bridges molecular structure and language
using a Q-Former–style connector: a fixed set of learnable query tokens cross-attends to strong
encoders and conditions an LLM. This design proves the feasibility of graph–LLM alignment but
inherits the fixed-length bottleneck, which compresses substructures and stereochemistry as molec-
ular size and conformer diversity grow. In contrast, our method retains the lightweight adapter
philosophy while replacing fixed queries with dynamic entropy-guided substructure tokens refined
by a dynamic query transformer. For completeness, we employ recognized 2D/3D encoders (e.g.,
MoleculeSTM (Liu et al., 2023), Uni-Mol (Zhou et al., 2023)) and comparable processed training
data when reproducing baselines; these choices standardize comparisons but are orthogonal to the
core novelty.
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Table 9: Configurations and Training settings for the Next-Atom Prediction (NAP) model, architec-
ture, hyperparameters, together with the resulting compute footprint and parameter count.

Configurations Pre-Training

Item Value Item Value

Vocabulary size 39 Learning rate 1× 10−4

Model architecture GPT-2LMHead Batch size 64
Maximum position embeddings 1024 Training epochs 1
Context window 512 Training steps 4,929
Transformer layers 2 Weight decay 0.01
Attention heads per layer 2 Total FLOPs 7.5395× 1013

Hidden size (embedding dimension) 128 Model size 0.538M
Activation function GELU Dataset Pubchem
Dropout - residual connections 0.10 Max Length 128
Dropout - token/position embeddings 0.10 Concat Data True
Dropout - attention 0.10 Precision FP16
LayerNorm epsilon 1× 10−5 Objective NAP

C IMPLEMENTATION DETAILS

This section details the implementation for reproducibility. It begins with the entropy-guided patch-
ing algorithm, including entropy computation, peak detection, the next-token predictor, and a brief
rationale recap. Attention computations for integrating dynamic tokens with anchors are then for-
malized. Configurations of EDT-Former, covering both graph encoders and LLM backbones, are
described next. The section concludes with pretraining settings (objectives, prompts, and hyperpa-
rameters) and finetuning protocols (setups, prompts, and representative inference examples).

C.1 ENTROPY-GUIDED PATCHING

Algorithm of Entropy-Guided Patching. Algorithm 2 segments a SMILES sequence into dy-
namic substructures using an entropy signal from a lightweight next-atom predictor (NAP). For
each position, the predictor provides the probability of the ground-truth next atom; its negative log-
probability defines the entropy trace. Local maxima are detected with a prominence threshold and
non-maximum suppression, and cuts are placed after the retained peaks. Segments are mapped
from SMILES indices to graph nodes and average-pooled over frozen node embeddings to form dy-
namic substructure tokens. The procedure is simple, deterministic given (∆, γ), linear in sequence
length for entropy and segmentation, and produces structure-aware tokens aligned with molecular
complexity.

The NAP model configuration. As summarized in Tab. 9, the NAP model adopts a GPT-2 ar-
chitecture with a maximum input context of 512 tokens. This context window bounds the effective
sequence length used during training and inference. The SMILES atom vocabulary shows in Tab. 10)
comprises 39 tokens and spans major chemical groups–halogens, noble gases, alkali/alkaline earth
metals, transition/post-transition metals, metalloids, and other nonmetals–providing broad elemental
coverage for next-atom prediction.

Pre-training of NAP. We train the NAP model with standard autoregressive next-token prediction
over SMILES. Given a tokenized sequence x1:T (prepended with ⟨bos⟩ and optionally terminated
by ⟨eos⟩), a causal Transformer parameterized by θ defines the left-to-right factorization

pθ(x1:T ) =

T∏
t=1

pθ(xt |x<t) . (8)

We optimize the negative log-likelihood (cross-entropy) under teacher forcing, averaged over non-
padding tokens:

L(θ) = − 1∑T
t=1 mt

T∑
t=1

mt log pθ(xt |x<t) , (9)
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Table 10: Molecular atom vocabulary from SMILES grouped by category for the NAP (Next-Atom
Prediction) model, with per-category counts (total tokens = 39, including 3 special tokens).

Category Symbols Count

Special tokens <pad>, <bos>, <eos> 3

Halogens F, Cl, Br, I 4
Noble gases He, Ne, Ar, Kr, Xe 5
Alkali metals Li, Na 2
Alkaline earth metals Mg, Ca 2
Transition metals Fe, Co, Ni, Cu, Zn, Ag, Au, Pd, Pt, Mn, Hg 11
Post-transition metals Al, Sn 2
Metalloids B, Si, Sb, Te 4
Other nonmetals C, N, O, P, S, Se 6

Total 39

where mt ∈ {0, 1} masks out ⟨pad⟩ (and any positions beyond the context window). In practice,
logits are computed over the 39-token vocabulary; optional label smoothing can be applied by re-
placing the one-hot targets with a smoothed distribution. During inference, we sample (or decode
greedily) from pθ(· | x<t) until ⟨eos⟩ or the 512-token context limit is reached.

Computing costs analysis of NAP model. Using the settings in Tab. 9 on a single RTX 3090, end-
to-end training lands in the “single-digit minutes” range (well below 0.1 GPU-hours for a full pass),
so the cost is effectively negligible. The model is tiny (≈ 0.54 M parameters) and can also be trained
comfortably on a modern multi-core CPU within an hour, avoiding the need for a GPU altogether.
Compared with a typical 8B-parameter model, this NAP setup is ≈ 150× smaller and ≈ 1000×
faster for both training and inference, so it does not increase the training or inference budget.

Entropy peaks from the NAP predictor identify structural transition points in SMILES; cutting at
these peaks yields data-driven substructures and dynamic tokens that preserve locality and align
cleanly with the language stream–simple, rule-free, and robust under a frozen backbone. The
pipeline adds negligible overhead and does not materially affect training or inference costs.

C.2 DYNAMIC QUERY TRANSFORMER

Modeling Details with Anchors and Dynamic Tokens. We keep standard Transformer machinery
and only specify the routed, two-stream updates. Let Q(ℓ)

fix ∈ Rk×d (anchors) and Z(ℓ) ∈ RM×d

(dynamic tokens).

Q
(ℓ)
fix,sa = Q

(ℓ)
fix + SelfAttnfix

(
Q

(ℓ)
fix , Z

(ℓ)
)
, (10)

Z(ℓ)
sa = Z(ℓ) + SelfAttnZ

(
Q

(ℓ)
fix , Z

(ℓ)
)
. (11)

With graph node embeddings X ∈ RN×d, each stream retrieves evidence independently:

Q̂
(ℓ)
fix = Q

(ℓ)
fix,sa + CrossAttnfix

(
Q

(ℓ)
fix,sa, X

)
, (12)

Ẑ(ℓ) = Z(ℓ)
sa + CrossAttnZ

(
Z(ℓ)
sa , X

)
. (13)

A shared FFN is applied to each stream separately:

Q
(ℓ+1)
fix = Q̂

(ℓ)
fix + FFN

(
Q̂

(ℓ)
fix

)
, Z(ℓ+1) = Ẑ(ℓ) + FFN

(
Ẑ(ℓ)

)
. (14)

After L layers, project to the LLM space and concatenate to form the conditioning sequence:

U =
[
Q

(L)
fix Wproj ; Z

(L)Wproj

]
∈ R(k+M)×dLLM . (15)

Configurations and pre-training settings. We pretrain the Dynamic Query Transformer bridge
with a fixed anchor/dynamic query budget, moderate-depth Transformer, and a standard mixed-
precision schedule with warmup, cosine decay, and weight decay; full hyperparameters and decod-
ing settings are reported in Tab. 11.
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Algorithm 2: Entropy-Guided Patching
Input : SMILES atom sequence (a1, . . . , aT ); trained next-atom predictor fθ; node

embeddings X∈RN×d (frozen graph encoder); map π (SMILES→graph); NMS
window ∆; prominence γ.

Output: Dynamic tokens {zk}Mk=1; SMILES segments {Sk}Mk=1.

Entropy computation:;
for t← 1 to T − 1 do

Lt ← fθ(a1:t) ; // logits over atom vocab V
pt ← softmax(Lt)[at+1] ; // prob. of ground-truth next atom
et ← − log pt ; // information content (nats); O(T ) total

Peak detection (local maxima + prominence):;
T⋆ ← ∅ ; // candidate split indices
for t← 2 to T − 2 do

isLocalMax← (et−1 < et) ∧ (et > et+1) ; // strict peak
prominent←

(
et − 1

2 (et−1 + et+1) ≥ γ
)

; // remove shallow bumps
if isLocalMax ∧ prominent then
T⋆ ← T⋆ ∪ {t} ; // keep peak t

Non-maximum suppression (window ∆):;
Sort T⋆ by descending et to get (t(1), t(2), . . . ) ; // highest entropy first;
O(|T⋆| log |T⋆|)
T ← ∅ ; // final peak set

foreach u ∈ (t(1), t(2), . . . ) do
if ∀v ∈ T , |u− v| > ∆ then
T ← T ∪ {u} ; // suppress neighbors within ∆

Segmentation (cut after peaks):;
Set 1 = τ0 < τ1 < · · · < τM−1 < τM = T with {τ1, . . . , τM−1} = T ;
// deterministic cuts

for k ← 1 to M do
Sk ← { t | τk−1 ≤ t < τk } ; // SMILES index segment

Ŝk ← {π(t) : t ∈ Sk } ; // map to graph nodes

Pooling to dynamic tokens (avg-pool):;
for k ← 1 to M do

zk ← AvgPool
(
{Xi : i ∈ Ŝk }

)
∈ Rd ; // substructure token; linear in

|Ŝk|
return {zk}Mk=1, {Sk}Mk=1 ; // dynamic structure-aware tokens

Pre-training objectives. The Dynamic Query Transformer is pre-trained with three complementary
objectives on Mol-Llama-Instruct dataset (Kim et al., 2025): (1) cross-modal contrastive alignment
to pull together representations of the same molecule across modalities and push apart different
molecules; (2) modality–matching to make fixed anchors decode the modality identity, enforcing a
shared semantic interface; and (3) masked substructure reconstruction to teach dynamic tokens to
preserve fine-grained structural content.

(1) Cross-modal contrastive loss. For a mini-batch B, and modalities m and m′, we use an InfoNCE
objective

Lcontrast = −
1

|B|
∑

(i,m)∈B

log
exp

(
sim(z(i,m), z(i,m

′))/τ
)∑

j∈B exp
(
sim(z(i,m), z(j,m′))/τ

) , (16)

where z(i,m) ∈ Rd is the pooled query embedding of molecule i in modality m, sim is cosine
similarity, and τ is a temperature.
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Table 11: Configurations and pre-training settings of Dynamic Query Transformer. The model
configuration is based on SciBERT and trained from scratch.

Item Value Item Value

Base config SciBERT Embedding dimension 512
Max dynamic queries 64 Anchor queries 16
Max input tokens 594 Batch size 48
Attention heads 8 Transformer layers 8
Training epochs 10 Total steps 15,599
Precision bf16-mixed Scheduler cosine lr
Initial learning rate 1.0× 10−4 Minimum learning rate 1.0× 10−5

Warmup learning rate 1.0× 10−6 Warmup steps 500
Weight decay 0.05 Temperature 0.10
Top-k 50 Top-p 1.0
Repetition penalty 1.0 Accumulate grad batches 1

(2) Modality-matching loss. Fixed-length anchors Qfix must predict the modality identity via an
M -way classification:

Lmatch =
1

|B|
∑

(i,m)∈B

CE
(
W⊤

m z̄(i), m
)
, (17)

where z̄(i) is the average of the k anchor outputs for molecule i, Wm are classifier parameters, and
CE is cross-entropy.

(3) Masked substructure reconstruction loss. Dynamic queries Qdyn are trained to recover masked
fragments within each modality:

Lrecon =
1

|B|M
∑

(i,m)∈B

CE
(
f
(m)
dec (z

(i,m)), masked tokens(i,m)
)
, (18)

where f
(m)
dec is a modality-specific decoder and masked tokens(i,m) are the targets.

The total objective is a weighted sum:

Ltotal = λ1 Lcontrast + λ2 Lmatch + λ3 Lrecon, λ1, λ2, λ3 > 0. (19)

C.3 EDT-FORMER SETTINGS AND FINETUNING

After pre-training the Dynamic Query Transformer, the next stage is finetuning this connector with
frozen LLMs.

Selection of LLMs. 6 After pre-training the Dynamic Query Transformer bridge, we finetune only
the connector jointly with graph encoders and the LLM, while keeping both the encoders and the
LLM frozen. We screen several 7–8B backbones, including Mistral-8B (Mistral AI, 2024), Qwen3-
8B (Yang et al., 2025), Llama2-7B (Touvron et al., 2023b), and Llama3.1-8B (MetaAI, 2024)–
covering strong base and reasoning-oriented models. As shown in Tab. 6, Llama3.1-8B yields con-
sistent performance on the MoleculeQA (Lu et al., 2024) benchmark. We therefore adopt Llama3.1-
8B as the default backbone for subsequent experiments, as it provides the strongest raw molecular
understanding and the best absolute performance once paired with our connector. Notably, EDT-
Former delivers consistent gains across all LLM backbones, underscoring the effectiveness of our
connector design and its robustness to different architectures. For the frozen backbone, we freeze
the main layers and retain the embedding layers trainable to ensure a stable convergence process, as
the graph tokens from the Dynamic Query Transformer are mapped into LLM’s embedding space.

Finetune configuration and settings. The graph encoders and LLM backbone use the default
settings released by the author (Zhou et al., 2023; Liu et al., 2023). The training settings of Dynamic
Query Transformer list in the Tab 12.
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Table 12: Fine-tuning settings for EDT-Former with frozen Llama-3.1-8B backbone.

Item Value Item Value

Precision bf16-mixed Epochs 2
Accumulate grad batches 8 Weight decay 0.05
Initial learning rate 1.0× 10−4 Minimum learning rate 5.0× 10−6

Warmup learning rate 1.0× 10−6 Warmup steps 1,000
Scheduler linear warmup cosine lr Temperature 0.10
LoRA rank (r) 8 LoRA alpha 32
LoRA dropout 0.10 Trainable parameters 213M
Total parameters 8.3B

Table 13: Fine-tuning dataset. Four types of in-
struction data from Mol-Llama-Instruct, the data
types and amounts are listed.

Category Amount

Detailed Structural Descriptions 77,239
Structure-to-Chemical Features 73,712
Structure-to-Biological Features 73,645
Comprehensive Conversations 60,147

Training dataset and prompt examples. As
summarized in Tab. 13, our fine-tuning corpus
from Mol-Llama-Instruct comprises four in-
struction types: (i) Detailed Structural Descrip-
tions, that elicit atom-/substructure–level narra-
tives of a molecule; (ii) Structure-to-Chemical
Features, linking structure to physicochemi-
cal properties; (iii) Structure-to-Biological Fea-
tures, covering bioactivity/ADMET–style at-
tributes; and (iv) Comprehensive Conversations
for multi-turn reasoning and explanation. The dataset contains 284,743 instances in total, providing
balanced coverage of descriptive, analytic, and conversational skills. Fig. 8 shows the prompts and
examples of the finetuning data.

D EXPERIMENTS DETAILS

Here, we provide additional experimental details to complement the main results. This section first
describes the benchmarks and baseline systems used for comparison, followed by the evaluation
setup (splits, prompts, metrics, and decoding). We then include representative response examples to
illustrate typical model behavior, and then we report our data-contamination checks and screening
procedures. Finally, we document reproducibility essentials–configurations and other necessary
information to enable faithful re-runs.

D.1 BENCHMARKS AND BASELINES

BENCHMARKS

Table 14: MoleculeQA split counts using Bemis–
Murcko scaffold-based splitting at the molecule
level to avoid scaffold overlap across splits.

Category Train / Valid / Test

Overall 49,993 / 5,795 / 5,786
Structure 32,176 / 3,314 / 3,113
Property 4,838 / 698 / 731
Application 1,917 / 558 / 599
Source 11,062 / 1,225 / 1,343

MoleculeQA. A large-scale multiple-choice
QA benchmark for molecular factuality, where
each instance pairs a human-written ques-
tion with one correct option and three dis-
tractors from authoritative molecule descrip-
tions (Lu et al., 2024). It covers four
aspects: Structure (configuration, functional
groups, backbone), Source (isolation, discov-
ery/derivation, metabolites), Property (physic-
ochemical/biological properties, safety, mecha-
nisms), and Application (therapeutic/chemical
uses, approvals, research/agricultural agents). Molecules are split by Bemis-Murcko scaffolds into
train/dev/test sets of QA pairs as a total of 61,574. Aspect-wise counts are reported in Tab. 14.

Mol-Instructions. Mol-Instructions (Fang et al., 2023) is a large-scale instruction-tuning corpus for
the biomolecular domain in instruction–response format for LLM supervision. Each example cou-
ples a natural-language prompt with target text for molecule-centric skills. We focus on two tasks:
molecular captioning (generating faithful, structure-aware descriptions) and property prediction (in-
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Comprehensive Conversations

Structural Descriptions

Structure-to-Chemical

Structure-to-Biological

System: "You are a helpful assistant specializing in chemistry and biology. The instruction that describes a task
is given, paired with molecules. Write a response that appropriately completes the request."

User: "Can you tell me about the basic structure of the given molecule?\nMolecule <mol>."
Assistant: "Certainly! The given molecule is a lactone, more specifically, a five-membered cyclic ester. It
includes a methylene group attached at the 3-position of the ring and two methyl groups at the 5-position.\n”
User: "What are the key functional groups present in the given molecule?"
Assistant: "The key functional group in the given molecule is the lactone, which is a cyclic ester. In addition, 
there's an exocyclic methylene group at the 3-position.\n"

User: "Can you tell me about the basic structure of the given molecule?\nMolecule <mol>."
Assistant: "The given molecule is a complex carbohydrate or polysaccharide derivative that contains several
monosaccharide units with multiple functional groups and modifications.\n\n1. **Core Structure**: The
backbone is based on cyclic carbohydrates. Specifically, … "

User: "Molecule <mol>.\nOffer a thorough analysis of the chemical characteristics of the compound."
Assistant: "The given molecule has a structure that combines several functional groups, imparting unique
chemical properties to it. Centrally, it contains a propenone linkage, which features a carbon-carbon double bond
conjugated with a carbonyl group. This conjugated system not only …"

User: "Offer an in-depth discussion of the biological traits of the molecule, specifically highlighting the 
relationship between the core parts of the molecule and its properties.\nMolecule <mol>."

Assistant: "The given molecule is a complex natural product found in Illicium verum, commonly known as star
anise. The biological properties of this molecule are influenced by its structural features, which include several
characteristic functional groups and substructures.\n\n### Tetracyclic Core Structure: …"

Figure 8: Prompt setup and instruction data examples of EDT-Former in the finetuning stage with
backbone frozen. One instance is shown for each data type; the comprehensive conversation cate-
gory contains multiple rounds (exceeding ten).

ferring physicochemical or bioactivity attributes from molecular inputs). The corpus spans over two
million instructions and includes the captioning and property instruction sets used in our fine-tuning.

BBBP and Pampa.We use two ADME-focused datasets from Therapeutics Data Commons
(TDC) (Huang et al., 2021). BBBP (Blood-Brain Barrier Penetration) is a binary classification task
predicting a compound’s ability to cross the blood–brain barrier. PAMPA (Parallel Artificial Mem-
brane Permeability Assay) predicts passive membrane permeability from an in vitro surrogate of
oral absorption. Both datasets are standardized in TDC for model development and fair comparison.

BASELINES

General Language Models. We compare against strong general LLMs spanning proprietary and
open releases: GPT-4o (OpenAI, 2023) and GPT-5 (OpenAI, 2025) as OpenAI’s flagship multi-
modal and next-generation reasoning models. From Meta, we include Llama2-7B and Llama3.1-
8B, widely used open backbones for downstream fine-tuning and dialogue (Touvron et al., 2023b;
MetaAI, 2024). We also consider domain/community models: Galactica for science-centric pretrain-
ing (Taylor et al., 2022), BLOOM as a large multilingual open model (Workshop, 2022), and Pythia
for scaling/analysis studies (Biderman et al., 2023). Finally, we include popular instruction-tuned
chat models derived from LLaMA/Llama-2 (Vicuna-v1.5 (Zheng et al., 2023), Alpaca-7B (Taori
et al., 2023), Baize-7B (Xu et al., 2023)) as well as Qwen3-8B as a recent multilingual/reasoning
baseline Yang et al. (2025).

Molecular Language Models. For molecular-domain LLMs spanning datasets, graph/3D align-
ment, and reasoning, Mol-Instructions (Fang et al., 2023) provides a large instruction–response
corpus tailored to molecules, while trained Llama-based Mol-Instructions model themselves. Mol-
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Table 15: Hyperparameter settings for benchmarks. For all the evaluated models and datasets,
identical finetuning or inference parameters are applied for fair comparison.

Parameter MoleculeQA Mol-Instructions PAMPA/BBBP

Batch size 2 4 32
Precision BF16-Mixed BF16-Mixed BF16-Mixed
Max epochs 5 10 –
Accumulate grad batches 64 32 –
Weight decay 0.05 0.05 –
Initial LR 1.00e-04 1.00e-04 –
Minimum LR 1.00e-05 1.00e-05 –
Warmup LR 1.00e-06 1.00e-06 –
Warmup steps 100 100 –
Scheduler Cosine LR Cosine LR –
Temperature 0.1 0.1 0.1
Max input tokens 1024 1024 512

Llama (Kim et al., 2025) targets general molecular understanding via multi-modal instruction tun-
ing. 3D-MoLM (Li et al., 2024) equips an LM with a 3D molecular encoder through a dedicated
projector for 3D-aware captioning and QA. LLaMo (Park et al., 2024) integrates a molecular graph
encoder with a multi-level graph projector to bridge graphs and language. BioMedGPT-LM (Luo
et al., 2023b) is a biomedical generative LM adapted for molecule- and biology-centric tasks. Mol-
Reasoner (Zhao et al., 2025) emphasizes interpretable chemical reasoning with a two-stage proce-
dure (supervised reasoning initialization followed by reinforcement learning).

Benchmarks span factual QA, molecular captioning/property prediction, and ADME tasks, provid-
ing complementary coverage of accuracy, reasoning, and domain grounding. Baselines include both
strong general LLMs and chemistry-specialized LLMs to isolate EDT-Former ’s contribution beyond
backbone capacity.

BASELINE RESULTS

The official benchmark protocols and data splits are adopted for all evaluations. For baselines whose
reported performance trails ours by more than 10%, we cite the results directly from the benchmark
sources (Lu et al., 2024; Fang et al., 2023; Kim et al., 2025). For competitive models (within this
margin) and for baselines not covered by the benchmark, we re-run both the baselines and our
method under a unified, fair protocol using released code and configurations. Full implementation
and evaluation details are provided in App. D.3.

D.2 DATA PROCESS

For structural inputs, we adopt Uni-Mol (Zhou et al., 2023) and MoleculeSTM (Liu et al., 2023). For
Mol-LLaMA-Instruct (Kim et al., 2025), we use the provided 3D coordinates for both pretraining
and finetuning. For other datasets (e.g., Mol-Instructions (Fang et al., 2023)), we generate eleven
conformers with RDKit and perform geometry optimization using MMFF (Merck Molecular Force
Field Halgren (1996)), a classical small molecule force field that assigns bonded and nonbonded
terms to atoms and bonds and minimizes molecular energy to a locally stable 3D geometry. After
optimization, RDKit is used to construct the 2D molecular graph (including atom and bond types,
charges, hybridization, aromaticity, and stereochemical flags). Molecules that fail RDKit sanitiza-
tion are filtered out. All processed data and scripts are released for reproducibility.

D.3 EVALUATION SETTINGS

As summarized in Tab. 15, all models evaluated on MoleculeQA (Lu et al., 2024) and Mol-
Instructions (Fang et al., 2023) are finetuned under identical hyperparameter settings to ensure a
fair comparison. For PAMPA and BBBP (Huang et al., 2021), all models are evaluated zero-shot
with a shared prompt template—BBBP as shown in Fig. 9 and PAMPA following Mol-Llama (Kim
et al., 2025). For the 10-shot setting on MoleculeQA, the support set consists of 10 randomly se-
lected examples fixed once and reused for every 10-shot model to control variance.
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System: "You are a drug discovery assistant tasked with predicting whether a molecule can penetrate the
blood-brain barrier (BBBP). Output the final decision strictly using the provided answer format string.\nYour
final answer should be formatted as either: 'Final answer: Penetrant' or 'Final answer: Non-penetrant' "
User: "Determine the BBBP class of the given molecule.\nMolecule <mol>."

BBBP: Blood-Brain Barrier Penetration

Direct

System: "You are a drug discovery assistant tasked with predicting whether a molecule can penetrate the blood-
brain barrier (BBBP). Output the final decision strictly using the provided answer format string.\nYour final 
answer should be formatted as either: 'Final answer: Penetrant' or 'Final answer: Non-penetrant’”
User: "Determine the BBBP class of the given molecule and briefly explain your rationale.\nMolecule <mol>."

Reasoning

System: "You are a drug discovery assistant for BBBP prediction. Molecules that are lipophilic, appropriately 
sized, and not highly polar are more likely to penetrate the BBB. Consider: lipophilicity (logP), polar surface 
area, hydrogen bonding capacity, ionization state, and presence of efflux transporter motifs. Output the final 
decision strictly using the provided answer format string.\nYour final answer should be formatted as either: 
'Final answer: Penetrant' or 'Final answer: Non-penetrant' "
User: " Determine the BBBP class of the given molecule.\nMolecule <mol>."

Rich Instructions

Figure 9: Zero-shot prompt templates for BBBP (Blood–Brain Barrier Penetration). Three set-
tings are evaluated: (i) Direct, which asks for a binary decision; (ii) Reasoning, which requests
a brief rationale before the decision; and (iii) Rich Instructions, which provides domain context
(e.g., lipophilicity, PSA, H-bonding, ionization, efflux motifs) prior to answering. All prompts
enforce an identical output format: Final answer: Penetrant or Final answer:
Non-penetrant.

Evaluation Metrics. (1) MoleculeQA (Lu et al., 2024): We report task-wise accuracy (fraction
of correctly answered questions within each task). Average accuracy is the unweighted mean of the
four task accuracies, and total accuracy is the overall correct/total across all questions pooled from
the four tasks (count-based). Higher is better. (2) Mol-Instructions (Fang et al., 2023): For property
prediction we use Mean Absolute Error (MAE), MAE = 1

n

∑n
i=1|ŷi − yi| (lower is better). For

molecular description generation, we report: BLEU-2/4 (n-gram precision with a brevity penalty;
BLEU-2 uses up to bigrams, BLEU-4 up to 4-grams; higher is better), ROUGE-1/2 (recall-oriented
overlap of unigrams/bigrams; higher is better), ROUGE-L (recall-oriented longest common sub-
sequence; higher is better), and METEOR (harmonic mean of unigram precision and recall with
stemming/synonym matching and fragmentation penalty; higher is better).

D.4 DATA CONTAMINATION ANALYSIS

13-gram overlap (contamination) analysis. Following the GPT-3 practice (Brown et al., 2020),
we measure data leakage by character-level n-gram overlap with n = 13. For a text string x, let
G13(x) be the multiset of all contiguous 13-grams. For a test item t and a training document d, the
overlap score is

overlap(t, d) =

∣∣G13(t) ∩ G13(d)∣∣∣∣G13(t)∣∣ , (20)

and the contamination score for t is maxd∈Dtrain overlap(t, d). We report the fraction of test items
whose contamination score exceeds a small threshold (e.g., any non-zero match or a preset τ ).
Applying this procedure to our benchmarks, the test–train 13-gram overlap rate is below 5%. Given
that we fine-tune only the connector (the LLM remains frozen) and for fewer than two epochs,
memorization of instance-specific labels is unlikely; the observed overlap is within common LLM
practice and does not affect our conclusions.
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Table 16: Extended evaluation results on Pampa dataset. Accuracy and F1 scores are reported for
each model across three prompt settings. Top and second-best results are highlighted.

Models Direct Reasoning RichInst. Average

Acc F1 Acc F1 Acc F1 Acc F1

GPT-4o 48.65 58.78 58.23 70.41 47.17 56.73 51.35 61.97
Mol-Inst.-Llama2-7B 49.63 63.19 31.16 39.84 38.18 46.61 39.66 49.88
Mol-LLaMA2-7B 75.68 85.96 79.61 88.91 67.90 79.41 74.40 84.76
Llama3.1-8B 56.51 68.87 46.19 57.22 63.64 75.88 55.45 67.32
Mol-Inst.-Llama3.1-8B 55.91 69.84 33.50 39.84 70.47 81.46 53.29 63.71
3D-MoLM-8B 46.93 57.81 50.00 62.43 64.86 76.45 53.93 65.56
LLaMo-8B 49.25 61.78 64.37 77.11 48.51 60.66 54.04 66.52
Mol-LLaMA3.1-8.2B 63.55 75.32 64.37 76.72 72.48 83.51 66.80 78.52
EDT-Former-8.3B 81.57 89.92 81.57 89.74 83.78 91.15 82.31 90.27

D.5 REPRODUCIBILITY

Our work is fully open source under the MIT license. Unlike many prior projects, we release end-
to-end resources to reproduce every result in the paper: complete training and evaluation code (in-
cluding all ablations), scripts for baselines and benchmarks, processed pretraining and finetuning
datasets, and model weights. The repository is actively maintained and will serve as the foun-
dation for subsequent extensions. All materials are available via the anonymous GitHub link:
https://anonymous.4open.science/r/EDT-Former-844D.

D.6 DATASET IMBALANCE ANALYSIS

To account for potential class imbalance in the Pampa dataset, we additionally report F1 scores
alongside accuracy (shown in Tab. 16). As expected, EDT-Former achieves the best performance
across both metrics under all prompting strategies, confirming that its gains are not driven by skewed
label distributions but reflect genuine improvements in molecular property prediction.

E EXTENDED ABLATIONS

Ablation studies on model size, graph encoders, query token length, computational efficiency, and
training hyperparameters are provided in this section. These analyses highlight how each factor
influences performance and efficiency, underscoring the robustness of our approach.

E.1 IMPACT OF QUERY TOKEN LENGTH

As shown in Tab. 17, increasing the number of anchor tokens improves accuracy, indicating that a
larger anchor set provides a higher-bandwidth, more stable interface for aggregating global structural
cues before conditioning the LLM. By contrast, expanding the maximum dynamic length from 64 to
128 yields a negligible change (e.g., 66.75 to 66.81 at 8 anchors) and even a slight dip at 16 anchors.
This is expected: with a cap of 64, entropy-guided segmentation already covers the substructure
count of most molecules, so raising the limit rarely increases the realized number of dynamic tokens
and can introduce marginal redundancy. Overall, the best trade-off is achieved with 16 anchors and
a max dynamic length of 64.

E.2 IMPACT OF MODEL SIZE

As shown in Tab. 18, Qwen3 (Yang et al., 2025) backbones below 2B parameters perform near
random guessing on MoleculeQA, indicating insufficient capacity. Accuracy improves markedly
once scale reaches 4B, with further gains at 8B and 14B, albeit with diminishing returns from 8B ot
14B. We use the Qwen3 family because it offers a broad spread of sizes for a controlled comparison,
and we did not evaluate larger backbones due to resource constraints.
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Table 17: Effect of anchor and dynamic token
length. Different settings are evaluated on Mthe
olcueleQA dataset, with total accuracy reported
for each ablation model. The top and second-
best results are highlighted.

Anchor Length Max Dyn. Length Accuracy

4 64 64.29
8 64 66.75
8 128 66.81

16 64 68.34
16 128 68.03

Table 18: Performance across different model
sizes of backbone choices from Qwen3. Mod-
els are evaluated on the MoleculeQA bench-
mark with total accuracy reported. The top and
second-best are highlighted.

Model Size Accuracy

0.6B 27.23
1.7B 26.52
4B 36.82
8B 54.79
14B 56.84

Table 19: Ablation on finetuning hyperparameters on MoleculeQA benchmark. Accuracy is reported
for different initial learning rates, global batch sizes, and training epochs.

Init LR Accuracy. Global Batchsize Accuracy Training Epochs Accuracy

5.0× 10−4 67.92 32 67.97 2 65.23
1.0× 10−4 68.34 64 68.08 4 67.92
5.0× 10−5 67.82 128 68.34 6 68.34
1.0× 10−6 67.09 256 68.11 8 68.13

E.3 ANALYSIS OF HYPERPARAMETER

As summarized in Tab. 19, varying the initial learning rate, global batch size, and training epochs
produces only minor fluctuations in accuracy. This stability indicates that performance gains primar-
ily arise from our multimodal fusion design and entropy-guided structural cues rather than aggressive
hyperparameter tuning.

E.4 IMPACT OF GRAPH ENCODERS

We evaluated stronger molecular encoders (e.g., Uni-Mol-v2 (Ji et al., 2024)) under matched settings
and observed only minor accuracy gains relative to our base encoder. This suggests that, beyond a
reasonable encoder quality threshold, the primary bottleneck for molecular understanding lies not in
the encoder itself but in the multimodal fusion interface to the LLM. In our framework, the entropy-
guided substructure tokens and dynamic query–anchor fusion contribute the dominant improvements
by exposing chemically salient evidence to the LLM; upgrading the encoder yields diminishing
returns compared to better fusion.

F LIMITATIONS AND FUTURE WORK

F.1 LIMITATIONS

While EDT-Former demonstrates broad applicability across molecular tasks, we note several cur-
rent constraints that highlight opportunities for improvement. As a generalist molecular LLM, it
does not yet consistently match highly specialized classifiers that are trained and tuned per dataset–
a pattern commonly observed in the Mol-LLM literature. In this study, we also did not scale to
larger backbones due to practical compute limits. In addition, we did not incorporate synthetic
“reasoning” corpora, as widely used resources are predominantly GPT-generated and lack reliable
human-verified rationales, which could confound conclusions. Finally, the present system answers
end-to-end without external tools, which can increase the chance of occasional hallucinations or
arithmetic/chemistry slips. We emphasize that these constraints are scope choices rather than fun-
damental barriers and frame clear directions for progress.
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F.2 FUTURE WORK

Building on these findings, we plan to close the generalist–specialist gap via lightweight task
adapters and, where feasible, moderate scaling of both backbone and bridge with efficient fine-
tuning. We will curate and release a human-verified molecular reasoning benchmark to replace
purely synthetic rationales, and integrate tool-augmented agents (e.g., RDKit calculators (Landrum,
2013), literature retrieval, unit/constraint checks) with self-verification to reduce hallucinations and
enforce domain validity. Finally, we will broaden evaluation to include robustness under distribution
shift, calibration, and abstention, and cost/latency reporting, to make EDT-Former both reliable and
practical in real-world molecular workflows.

G LLM USAGE

Large language models (LLMs) were used only for light editorial assistance (grammar or wording
polish and minor LaTeX phrasing). They did not contribute to research ideation, experimental de-
sign, data collection, analysis, or result writing. Separately, LLMs appear in our experiments solely
as baselines/backbones within the method; all runs, configurations, and analyses were conducted
and verified by the authors. The authors take full responsibility for the paper’s contents.
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