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Abstract

Reward function specification, which requires
considerable human effort and iteration, remains a
major impediment for learning behaviors through
deep reinforcement learning. In contrast, provid-
ing visual demonstrations of desired behaviors
presents an easier and more natural way to teach
agents. We consider a setting where an agent is
provided a fixed dataset of visual demonstrations
illustrating how to perform a task, and must learn
to solve the task using the provided demonstra-
tions and unsupervised environment interactions.
This setting presents a number of challenges in-
cluding representation learning for visual observa-
tions, sample complexity due to high dimensional
spaces, and learning instability due to the lack
of a fixed reward or learning signal. Towards
addressing these challenges, we develop a varia-
tional model-based adversarial imitation learning
(V-MAIL) algorithm. The model-based approach
provides a strong signal for representation learn-
ing, enables sample efficiency, and improves the
stability of adversarial training by enabling on-
policy learning. Through experiments involving
several vision-based locomotion and manipula-
tion tasks, we find that V-MAIL learns successful
visuomotor policies in a sample-efficient man-
ner, has better stability compared to prior work,
and also achieves higher asymptotic performance.
We further find that by transferring the learned
models, V-MAIL can learn new tasks from visual
demonstrations without any additional environ-
ment interactions. All results including videos can
be found online at https://sites.google.
com/view/variational-mail.
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1. Introduction
The ability of reinforcement learning (RL) agents to au-
tonomously learn by interacting with the environment
presents a promising approach for learning diverse skills.
However, reward specification has remained a major chal-
lenge in the deployment of RL in practical settings (Amodei
et al., 2016; Everitt & Hutter, 2019; Rajeswaran et al., 2018).
The ability to imitate humans or other expert trajectories
allows us to avoid the reward specification problem, while
also circumventing challenges related to exploration in RL.
Visual demonstrations are also a more natural way to teach
robots various tasks and skills in real-world applications.
However, this setting is also fraught with a number of tech-
nical challenges including representation learning for visual
observations, sample complexity due to the high dimen-
sional observation spaces, and learning instability (Portelas
et al., 2020; Khetarpal et al., 2020; Lowe et al., 2017) due
to lack of a stationary learning signal. We aim to over-
come these challenges and to develop an algorithm that
can learn from limited demonstration data as well as scale
to high-dimensional observation and action spaces often
encountered in robotics applications.

Behaviour cloning (BC) is a classic algorithm to imitate
expert demonstrations (Pomerleau, 1988), which uses su-
pervised learning to greedily match the expert behaviour
at demonstrated expert states. Due to environment stochas-
ticity, covariate shift, and policy approximation error, the
agent may drift away from the expert state distribution and
ultimately fail to mimic the demonstrator (Ross et al., 2011).
While a wide initial state distribution (Spencer et al., 2021)
or the ability to interactively query the expert policy (Ross
et al., 2011) can circumvent these difficulties, such con-
ditions require additional supervision and are difficult to
meet in practical applications. An alternate line of work
based on inverse RL (Finn et al., 2016b; Fu et al., 2018)
and adversarial imitation learning (Ho & Ermon, 2016; Finn
et al., 2016a) aims to not only match actions at demon-
strated states, but also the long term visitation distribution
(Ghasemipour et al., 2019). These approaches explicitly
train a GAN-based classifier (Goodfellow et al., 2014) to
distinguish the visitation distribution of the agent from the
expert, and use it as a reward signal for training the agent
with RL. While these methods have achieved substantial im-
provement over behaviour cloning without additional expert

https://sites.google.com/view/variational-mail
https://sites.google.com/view/variational-mail
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Visual Adversarial Imitation Learning using Variational Models

supervision, they are difficult to deploy in realistic scenarios,
primarily due to three reasons: (1) the objective requires
on-policy data collection leading to high sample complexity;
(2) the non-stationarity reward function changes as the RL
agent learns; and (3) high-dimensional observation spaces
require representation learning and exacerbate the optimiza-
tion challenges.

Our main contribution in this work is the development of a
new algorithm, variational model-based adversarial imita-
tion learning (V-MAIL), which aims to overcome each of
the aforementioned challenges within a single framework.
As illustrated in Figure 1, V-MAIL trains a variational latent-
space dynamics model and a discriminator that provides a
learning reward signal by distinguishing latent rollouts of
the agent from the expert. The key insight of our approach
is that variational models can address these challenges si-
multaneously by (a) making it possible to collect on-policy
roll-outs inside the model without environment interaction,
leading to an efficient and stable optimization process and
(b) providing a rich auxiliary objective for efficiently learn-
ing compact state representations and which regularizes the
discriminator. Furthermore, the variational model also al-
lows V-MAIL to perform zero-shot transfer to new imitation
learning tasks. By generating on-policy rollouts within the
model, and training the discriminator using these rollouts
along with demonstrations of a new task, V-MAIL can learn
policies for new tasks without any additional environment
interactions.

Through experiments on a collection of vision-based loco-
motion and manipulation tasks, we find that V-MAIL can
learn successful visuomotor control policies through imi-
tation learning. In particular, V-MAIL exhibits stable and
near-monotonic learning, is highly sample efficient, and
asymptotically matches the expert level performance on
most tasks. In contrast, prior algorithms exhibit unstable
learning and poor asymptotic performance, often achieving
less that 20% of expert level performance. We further show
the ability to transfer our models to novel task and acquire
qualitatively new behaviors using only a few demonstrations
and no additional environment interactions. To our knowl-
edge this is the first approach to use variational model-based
training for zero-shot or few-shot imitation learning.

2. Related Work
Here, we review the relevant literature on imitation learning
and image-based RL.

Imitation Learning. Recent model-free imitation learn-
ing can be categorized as either adversarial or non-
adversarial. Adversarial methods inspired by GANs (Good-
fellow et al., 2014) train an explicit classifier between expert
and policy behaviour and optimize the agent in a two-player

minimax game. GAIL (Ho & Ermon, 2016) and AIRL
(Fu et al., 2018) are two such algorithms; however they of-
ten have poor sample efficiency due to the requirement of
on-policy rollouts in the environment. To address sample ef-
ficiency issues, off-policy variants such as DAC (Kostrikov
et al., 2019) and SAM (Blondé & Kalousis, 2019) have been
developed, however they suffer from an objective mismatch
when using off-policy data (Kostrikov et al., 2020a), often
resulting in learning instability (Blondé et al., 2020).

An alternate line of research attempts to forego adversarial
training: SQIL (Reddy et al., 2020) frames the problem
as regularized behaviour cloning and trains an off-policy
algorithm with rewards of 1 for expert trajectories and 0
for policy ones. RCE (Eysenbach et al., 2021) uses a very
similar approach, but derives it as maximizing probability
of task success, which they show is equivalent to minimiz-
ing the Hellinger distance between the policy occupation
distribution and a particular target distribution. ValueDICE
(Kostrikov et al., 2020a) uses the same key result for itera-
tive distribution matching as RCE in conjunction with the
Donsker-Varadhan representation to obtain an off-policy
distribution matching algorithm. In Swamy et al. (2021) the
authors derive distribution matching as a bound on policy
under-performance, similar to our analysis in Section 4.1
and propose a practical non-adversarial algorithm AdVIL,
however in reported experiments it does not outperform
behaviour cloning. A few papers have considered model-
based imitation learning as well: Baram et al. (2016) is an
adversarial algorithm conceptually similar to our approach,
but only focuses on low-dimensional state-based tasks and
train the discriminator using off-policy replay buffer, which
does not allow it to generalize to new tasks. Related to
our method is Finn et al. (2016b) which uses a similar re-
ward learning in combination with a locally linear dynamics
model, which leads to trajectory centric algorithms and the
inability to transfer the model to new tasks. Das et al. (2020)
considers a similar setting for inverse RL using a simplified
parameterization of the cost function. In this work we de-
velop end-to-end model for adversarial imitation learning
in high-dimensional POMDPs and generalization to novel
tasks without hand-designed features.

Reinforcement Learning From Images with Variational
Models. Reinforcement learning from images is an inher-
ently difficult task, since the agent needs to learn meaningful
visual representations to support policy learning. A recent
line of research (Gelada et al., 2019; Hafner et al., 2019; Lee
et al., 2020; Hafner et al., 2020; Rafailov et al., 2020) train a
variational model of the image-based environment as an aux-
iliary task, either for representation learning only (Gelada
et al., 2019; Lee et al., 2020) or for additionally generat-
ing on-policy data by rolling out the model (Hafner et al.,
2020). Our method builds upon these ideas, but unlike these
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Visual Adversarial Imitation Learning using Variational Models

Figure 1. Left: the variational dynamics model, which enables joint representation learning from visual inputs and a latent space dynamics
model, and the discriminator which is trained to distinguish latent states of expert demonstrations from that of policy rollouts. Dashed
lines represent inference and solid lines represent the generative model. Right: the policy training, which uses the discriminator as the
reward function, so that the policy induces a latent state visitation distribution that is indistinguishable from that of the expert. The learned
policy network is composed with the image encoder from the variational model to recover a visuomotor policy.

prior works, considers the problem of learning from visual
demonstrations without access to rewards.

3. Preliminaries
We consider the problem setting of learning in partially
observed Markov decision processes (POMDPs), which can
be described with the tuple: M = (S,A,X ,R, T ,U , γ),
where s ∈ S is the state space, a ∈ A is the action space,
x ∈ X is the observation space and r = R(s,a) is a reward
function. The state evolution is Markovian and governed by
the dynamics as s′ ∼ T (·|s,a). Finally, the observations
are generated through the observation model x ∼ U(·|s).
The widely studied Markov decision process (MDP) is a
special case of this 7-tuple where the underlying state is
directly observed in the observation model.

In this work, we study imitation learning in unknown
POMDPs. Thus, we do not have access to the underly-
ing dynamics, the true state representation of the POMDP,
or the reward function. In place of the rewards, the agent
is provided with a fixed set of expert demonstrations col-
lected by executing an expert policy πE , which we assume
is optimal under the unknown reward function. The agent
can interact with the environment and must learn a policy
π(at|x≤t) that mimics the expert.

3.1. Imitation learning as divergence minimization

In line with prior work, we interpret imitation learning as
a divergence minimization problem (Ho & Ermon, 2016;
Ghasemipour et al., 2019; Ke et al., 2019). For simplicity of
exposition, we consider the MDP case in this section, and

discuss POMDP extensions in Section 4.2. Let ρπM(s,a) =
(1− γ)

∑∞
t=0 γ

tP (st = s,at = a) be the discounted state-
action visitation distribution of a policy π in MDPM. Then,
a divergence minimization objective for imitation learning
corresponds to

min
π

D(ρπM, ρEM), (1)

where ρEM is the discounted visitation distribution of the
expert policy πE , and D is a divergence measure between
probability distributions such as KL-divergence, Jensen-
Shannon divergence, or a generic f−divergence. To see
why this is a reasonable objective, let J(π,M) denote the
expected value of a policy π inM. Inverse RL (Ziebart et al.,
2008; Ho & Ermon, 2016; Finn et al., 2016a) interprets the
expert as the optimal policy under some unknown reward
function. With respect to this unknown reward function, the
sub-optimality of any policy π can be bounded as:∣∣∣J(πE ,M)− J(π,M)

∣∣∣ ≤ Rmax

1− γ
DTV (ρπM, ρEM),

since the policy performance is J(π,M) =
E(s,a)∼ρπM

[
r(s,a)

]
. We use DTV to denote total

variation distance. Since various divergence measures
are related to the total variation distance, optimizing the
divergence between visitation distributions in state space
amounts to optimizing a bound on the policy sub-optimality.

3.2. Generative Adversarial Imitation Learning
(GAIL)

With the divergence minimization viewpoint, any standard
generative modeling technique including density estimation,
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Visual Adversarial Imitation Learning using Variational Models

VAEs, GANs etc. can in principle be used to minimize
Eq. 1. However, in practice, use of certain generative mod-
eling techniques can be difficult. A standard density estima-
tion technique would involve directly parameterizing ρπM,
say through auto-regressive flows, and learning the density
model. However, a policy that induces the learned visita-
tion distribution inM is not guaranteed to exist and may
prove hard to recover. Similar challenges prevent the direct
application of a VAE based generative model as well. In con-
trast, GANs allow for a policy based parameterization, since
it only requires the ability to sample from the generative
model and does not require the likelihood. This approach
was followed in GAIL, leading to the optimization:

max
π

min
Dψ

E(s,a)∼ρEM

[
− logDψ(s,a)

]
+ (2)

E(s,a)∼ρπM

[
− log

(
1−Dψ(s,a)

)]
, (3)

where Dψ is a discriminative classifier used to distinguish
between samples from the expert distribution and the pol-
icy generated distribution. Results from Goodfellow et al.
(2014) and Ho & Ermon (2016) suggest that the learning
objective in Eq. 2 corresponds to the divergence minimiza-
tion objective in Eq. 1 with Jensen-Shannon divergence. In
order to estimate the second expectation in Eq. 2 we require
on-policy samples from π, which is data-inefficient. Adver-
sarial off-policy algorithms, such as (Kostrikov et al., 2019;
Blondé & Kalousis, 2019) replace the expectation under the
policy distribution with expectation under the current replay
buffer distribution, which allows for off-policy training, but
no longer guarantee that the policy marginal distribution
will match the expert.

4. Variational Model-Based Adversarial
Imitation Learning

Generative modeling in the context of imitation learning
poses unique challenges. Improving the generative distribu-
tion (policy in our case) requires samples from ρπM, which
requires rolling out π in the environment. Furthermore,
the complex optimization landscape of a saddle point prob-
lem requires many iterations of learning, each of which
requires on-policy rollouts. This is unlike typical genera-
tive modeling applications where generating samples from
the generator is cheap and does not require any environ-
ment interactions. To overcome this challenge, we present
a model-based imitation learning algorithm. For concep-
tual clarity and ease of exposition, we will first present our
conceptual algorithm in the MDP setting in Section 4.1.
Subsequently, we will extend this algorithm to the POMDP
case in Section 4.2. Finally, we present a practical version
of our algorithm in Section 4.3.

4.1. Model-Based Adversarial Imitation Learning

Model-based algorithms for RL and IL involve learning
an approximate dynamics model T̂ using environment in-
teractions. The learned dynamics model can be used to
construct an approximate MDP M̂. In our context of im-
itation learning, learning a dynamics model allows us to
generate samples from M̂ as a surrogate for samples from
M, leading to the objective:

min
π

D(ρπM̂, ρ
E
M), (4)

which can serve as a good proxy to Eq. 1 as long
as the model approximation is accurate. In particu-
lar, with an α-approximate dynamics model given by
DTV (T̂ (s,a), T (s,a)) ≤ α ∀(s,a), we can bound the
policy suboptimality with respect to the expert as:∣∣∣J(πE ,M)− J(π,M)

∣∣∣ (5)

≤ Rmax

1− γ
DTV (ρπM̂, ρ

E
M) +

α ·Rmax

(1− γ)2
. (6)

Thus, the divergence minimization in Eq. 4 serves as an
approximate bound on the sub-optimality with a bias that is
proportional to the model error. Thus, we ultimately propose
to solve the following saddle point optimization problem:

max
π

min
Dψ

E(s,a)∼ρEM

[
− logDψ(s,a)

]
+ (7)

E(s,a)∼ρπ
M̂

[
− log

(
1−Dψ(s,a)

)]
, (8)

which requires generating on-policy samples only from the
learned model M̂. We can interleave policy learning ac-
cording to Eq. 7 with performing policy rollouts in the real
environment to iteratively improve the model. Provided
the policy is updated sufficiently slowly, Rajeswaran et al.
(2020) show that such interleaved policy and model learning
corresponds to a stable and convergent algorithm, while
being highly sample efficient.

4.2. Extension to POMDPs

In POMDPs, the underlying state is not directly observed,
and thus cannot be directly used by the policy. In this case,
we typically use the notion of belief state, which is defined
to be the filtering distribution P (st|ht), where we denote
history with ht := (x≤t,a<t). By using the historical infor-
mation, the belief state provides more information about the
current state, and can enable the learning of better policies.
However, learning and maintaining an explicit distribution
over states can be difficult. Thus, we consider learning
a latent representation of the history zt = q(ht), so that
P (st|ht) ≈ P (st|zt). To develop an algorithm for the
POMDP setting, we first make the key observation that im-
itation learning in POMDPs can be reduced to divergence
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Algorithm 1 V-MAIL: Variational Model-Based Adversarial Imitation Learning
1: Require: Expert demos BE , environment buffer Bπ .
2: Randomly initialize variational model {qθ, T̂θ}, policy πψ and discriminator Dψ

3: for number of iterations do
4: // Environment Data Collection
5: for timestep t = 1 : T do
6: Estimate latent state from the belief distribution zt ∼ qθ(·|xt, zt−1,at−1)
7: Sample action at ∼ πψ(at|zt)
8: Step environment and get observation xt+1

9: Add data {x1:T ,a1:T−1} to policy replay buffer Bπ
10: for number of training iterations do
11: // Dynamics Learning
12: Sample a batch of trajectories {x1:T ,a1:T−1} from the joint buffer BE ∪ Bπ
13: Optimize the variational model {qθ, T̂θ} using Equation 11
14: // Adversarial Policy Learning
15: Sample trajectories from expert buffer {xE1:T ,aE1:T−1} ∼ BE
16: Infer expert latent states zE1:T ∼ qθ(·|xE1:T ,aE1:T−1) using the belief model qθ
17: Generate latent rollouts zπψ1:H using the policy πψ from the forward model T̂θ
18: Update the discriminator Dψ with data zE1:T , z

πψ
1:H using Equation 9

19: Update the policy πψ to improve the value function in Equation 13

minimization in the latent belief state representation. To
formalize this, we introduce the following theorem. A for-
mal version of the theorem and proof are provided in the
appendix.

Theorem 1. (Divergence bound in latent space; Infor-
mal) Consider a POMDP M, and let zt be a latent
space representation of the history and belief state such
that P (st|x≤t,a<t) = P (st|zt). Let Df be a generic
f−divergence. Then the following inequalities hold:

Df (ρ
π
M(x,a)||ρEM(x,a)) ≤ Df (ρ

π
M(s,a)||ρEM(s,a))

≤ Df (ρ
π
M(z,a)||ρEM(z,a))

Theorem 1 suggests that the divergence of visitation dis-
tributions in the latent space represents an upper bound of
the divergence in the state and observation spaces. This
is particularly useful, since we do not have access to the
ground-truth states of the POMDP and matching the expert
marginal distribution in the high-dimensional observation
space (such as images) could be difficult. Furthermore,
based on the results in Section 3.1, minimizing the state
divergence results in minimizing a bound on policy sub-
optimality as well. These results provide a direct way to
extend the results from Section 4.1 to the POMDP setting.
If we can learn an encoder zt = q(x≤t,a<t) that captures
sufficient statistics of the history, and a latent state space
dynamics model zt+1 ∼ T̂ (·|zt,at), then we can learn the
policy by extending Eq. 7 to the induced MDP in the latent

space as:

max
π

min
Dψ

E(z,a)∼ρEM(z,a)

[
− logDψ(z,a)

]
+ (9)

E(z,a)∼ρπ
M̂

(z,a)

[
− log

(
1−Dψ(z,a)

)]
.

(10)

Once learned, the policy can be composed with the encoder
for deployment in the POMDP.

4.3. Practical Algorithm with Variational Models

The divergence bound of Theorem 1 allows us to develop
a practical algorithm if we can learn a good belief state
representation. Towards that end we turn to the theory of
deep Bayesian filters (Karl et al., 2017) and begin with the
likelihood:

logP (x1:T |a1:T ) =

log

∫ T∏
t=1

U(xt|st)T (st|at−1, st−1)ds1:T

We can introduce the belief distribution
q(z1:T |x1:T ,a1:T−1) =

∏T
t=1 q(zt|xt, zt−1,at−1),

which considers only model classes that satisfy the the
sufficient statistics requirement. Using the introduced belief
distribution as the variational distribution, we derive the
evidence lower bound (ELBO) (Blei et al., 2016; Kingma &
Welling, 2014):

logP (x1:T |a1:T ) ≥

Eq(z1:T |x1:T ,a1:T−1)

log T∏
t=1

U(xt|zt)
T (zt|at−1, zt−1)
q(zt|xt, zt−1,at−1)
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To estimate the expectation, we can use sequential sampling
from the belief distribution zt ∼ q(·|xt, zt−1,at−1), t =
1 : T and the reparameterization trick (Kingma & Welling,
2014). This ultimately leads to the empirical variational
model training objective:

max
θ

Êqθ
[ T∑
t=1

log Ûθ(xt|zt)︸ ︷︷ ︸
reconstruction

− (11)

DKL(qθ(zt|xt, zt−1,at−1)||T̂θ(zt|zt−1,at−1))︸ ︷︷ ︸
forward model

]
. (12)

That is, we jointly train a belief representation qθ and a
Markovian dynamics model T̂ , which allows us to optimize
Eq. 7 in our learned belief space. A number of recent
works have considered similar models (Watter et al., 2015;
Zhang et al., 2019; Lee et al., 2020; Gelada et al., 2019;
Hafner et al., 2019; 2020). We base our architectural choice
on the recurrent state space model (Hafner et al., 2019;
2020), as it has shown strong performance in RL tasks from
images. In principle, any on-policy RL algorithm can be
used to train the policy using Eq. 9. In our setup, the RL
objective is a differentiable function of the policy, model,
and discriminator parameters. Based on this, we setup a
K step value expansion objective (Feinberg et al., 2018;
Buckman et al., 2019) given below, and use it for policy
learning.

V Kθ,ψ(zt) = Eπψ,T̂θ

t+K−1∑
τ=t

γτ−t logDψ(z
πψ
τ ,a

πψ
τ )

+γKVψ(z
πψ
t+K)

]
(13)

Finally, we train the discriminator Dψ using Eq. 7 with
on-policy rollots from the model T̂ . Our full approach is
outlined in Algorithm 1.

4.4. Zero-Shot Transfer to New Imitation Tasks

Our model-based approach is well suited to the problem
of zero-shot transfer to new imitation learning tasks, i.e.
transferring to a new task using a modest number of demon-
strations and no additional samples collected in the envi-
ronment.. In particular, we assume a set of source tasks
{T i}, each with a buffer of expert demonstrations BiE . Each
source task corresponds to a different POMDP with different
underlying rewards, but shared dynamics. The underlying
state space may also change across tasks, but the dynamics
and observation model are shared across tasks. During train-
ing, the agent can interact with each source environment and
collect additional data. At test time, we’re introduced with
a new target task T with corresponding expert demonstra-
tions BE and the goal is to obtain a policy that achieves high
reward without additional interaction with the environment.

Algorithm 2 Zero-Shot Transfer with V-MAIL
1: Require: Expert demos BiE for each source task, expert

demos BE for target task
2: Randomly initialize policy πψ , and discriminator Dψ

3: Train Alg 1 on source tasks, yielding shared model
{qθ, T̂θ} and aggregated replay buffer Bπ

4: for number of training iterations do
5: // Dynamics Fine-Tuning using

Expert Trajectories
6: Update the variational model {qθ, T̂θ} using Equa-

tion 11 with data from BE ∪ Bπ
7: // Adversarial Policy Learning
8: Update discriminator Dψ and policy πψ with Equa-

tions 9 and 13.

Our key observation is that we can optimize Eq. 9 under
our model and still obtain an upper bound on policy sub-
optimality via Eq. 5. Furthermore, the sub-optimality is
bound by the accuracy of our model over the marginal state-
action distribution of the target task expert. Specifically,
we first train on all of the source tasks using Algorithm 1,
training a single shared variational model across the tasks.
By fine-tuning that model on data that includes the target
task expert demonstrations our hope is that we can get an
accurate model and thus a high-quality policy. Similarly to
Algorithm 1, we then train a discriminator and policy for
the target task using only model rollouts. This approach is
outlined in Algorithm 2.

5. Experiments
In our experiments, we aim to answer several questions: (1)
can V-MAIL successfully scale to environments with image
observations, (2) how does V-MAIL compare to state of the
art model-free imitation approaches, (3) can V-MAIL solve
realistic manipulation tasks and environments with complex
physical interactions, and (4) can V-MAIL enable zero-shot
transfer to new tasks? All experiments were carried out on
a single Titan RTX GPU using an internal cluster for about
1000 GPU hours.

5.1. Single-Task Experiments

Comparisons. To answer question (2), we choose to com-
pare V-MAIL to model-free adversarial and non-adversarial
imitation learning methods. For the former, we choose
DAC (Kostrikov et al., 2019) as a representative approach,
which we equip with DrQ data augmentation for greater
performance on vision-based tasks. For the latter, we con-
sider SQIL (Reddy et al., 2020), also equipped with DrQ
training. We refer to each approach with data augmenta-
tion as DA-DAC and DA-SQIL respectively. Both of these
methods are off-policy algorithms, which we expect to be
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Figure 2. Illustration of the environments used in our experiments: Cheetah, Walker, Car Racing, D’Claw, and Baoding Balls. In all
environments, the agent has access only to the RGB image frames as observations, except with additional access to proprioception in the
Baoding Balls environment.

considerably more sample efficient than on-policy methods
like GAIL (Ho & Ermon, 2016) and AIRL (Fu et al., 2018).

Environments and Demonstration Data. To answer the
above questions, we consider the five visual control en-
vironments illustrated in Figure 2. We first evaluate our
method on the visual Cheetah and visual Walker tasks from
the DeepMind Control Suite (Tassa et al., 2018). Follow-
ing SQIL (Reddy et al., 2020) we also consider the classic
Car Racing environment, which is difficult to solve even
with ground-truth rewards. In addition, we benchmark our
method on a custom D’Claw environment from the Robel
suite (Ahn et al., 2019), entirely from images without propri-
oception. This makes the task challenging due to a complex
action dynamics, contact dynamics, and occlusions from the
robot fingers. Our final environment is the Baoding balls
task from Nagabandi et al. (2019). This is an extremely chal-
lenging task for policy learning, even in the state-based case.
All tasks are from raw RGB images, while the Baoding balls
task additionally includes robot proprioception. All meth-
ods receive access to use 10 expert demonstrations, with
the exception of the Baoding environment, which uses 25
demonstrations. The demonstrations for the DeepMind Con-
trol and D’Claw tasks are generated using a policy trained
with SAC (Haarnoja et al., 2018), the expert data for the Car
Racing environment is generated using Dreamer (Hafner
et al., 2020), and the demonstrations for the Baoding task is
generated using PDDM (Nagabandi et al., 2019) from low-
dimensional states. Additional details on the experimental
set-up are provided in the appendix.

Results. Experiment results are shown in Figure 3. To
answer questions (1) and (2), we compare V-MAIL to DA-
SQIL and DA-DAC on the Cheetah and Walker tasks. We
find that V-MAIL efficiently and reliably solves both tasks;
in contrast, the model-free methods initially outperform
V-MAIL, but their performance has high variance across
random seeds and exhibits significant instability. Such sta-
bility issues have also been observed by Swamy et al. (2021),
which provides some theoretical explanation in the case of
SQIL and the suggestion of early stopping as a mitigation

technique. In the case of DAC, the reasons for instability are
less clear. Motivated by instability we observed in the critic
loss for DA-DAC, we experimented with a number of mitiga-
tion strategies in an attempt to improve DA-DAC, including
constraining the discriminator, varying the buffer and batch
sizes, and separating the convolutional encoders of the dis-
criminator and the actor/critic; however, these techniques
didn’t fully prevented the degradation in performance.

On the Car Racing environment, we find that DA-SQIL
and DA-DAC can reach or outperform behavior cloning,
but struggle to reach expert-level performance. In contrast,
V-MAIL stably and reliably achieves near-expert perfor-
mance in about 200k environment steps. Note that Reddy
et al. (2020) report expert-level performance on this task,
but in an easier setting with double the number of expert
demonstrations available (20 vs. 10). Given that tracks
are randomly generated per episode demanding significant
generalization, it is not surprising that the problem becomes
considerably more difficult with only 10 demonstrations.

Finally, to answer question (3), we consider the D’Claw
and Baoding Balls tasks. In the D’Claw environment, SQIL
fails to make progress, while DA-DAC makes significant
progress initially but quickly degrades. V-MAIL solves
the task in less than 100k environment steps. In the most
challenging visual Baoding Balls problem, involving a 26-
dimensional control space, V-MAIL is the only algorithm
to reach any success.

5.2. Transfer Experiments

Transfer Scenarios. To evaluate V-MAIL’s ability to learn
new imitation tasks in a zero-shot way (i.e. without any
additional environment samples) we deploy Algorithm 2 on
two domains: in a locomotion experiment we train on the
Walker Stand and Walker Run (target speed greater than 8)
tasks and and evaluate transfer to the Walker Walk (target
speed between 2 and 4) task from the DeepMind Control
suite. In a manipulation scenario, we use a set of custom
D’Claw Screw tasks from the Robel suite (Ahn et al., 2019).
We train our model on the 3-prong tasks with clockwise
and counter-clockwise rotation, as well as the 4-prong task
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Figure 3. Learning curves showing ground truth reward versus number of environment steps for V-MAIL (ours), prior model-free imitation
learning approaches, and behavior cloning on five visual imitation tasks. We find that V-MAIL consistently outperforms prior methods in
terms of sample efficiency, final performance, and stability, particularly for the first four environments where V-MAIL reaches near-expert
performance. In the most challenging visual Baoding Balls task, which is notably difficult even with ground-truth state, only V-MAIL is
able to make some progress, but all methods struggle. Confidence intervals are shown with 1 SD over 3 runs.

with counter-clockwise rotation and evaluate transfer to the
4-prong task with clockwise rotation.

Comparisons. To our knowledge, no prior work has con-
sidered this zero-shot transfer scenario previously. Thus,
we devise several points of comparison. First, we compare
to directly applying the policy learned in the most related
source task to the target task. This tests whether the target
task demands qualitatively distinct behavior. Second, we
compare to an offline version of DAC, augmented with the
CQL approach (Kumar et al., 2020), where samples col-
lected from the source task are used to update the policy,
with the target task demonstrations used to learn the reward.
Finally, we also compare to behavior cloning on the target
task demonstrations (without leveraging any source task
data), and an oracle that performs V-MAIL on the target
task directly.

Method Walker Walk Claw Rotate

Offline DAC 8.8% -0.7%
Behavior cloning 26.8% 8.3%
Policy transfer 21.3% 5.6%
V-MAIL (ours) 92.7% 97.9%

Target task IL (oracle) 98.2% 102.3%

Table 1. Performance on zero-shot transfer to a new imitation learn-
ing task as percent of expert return. Each method is provided with
10 demonstrations of the target task, and zero additional samples
in the environment. V-MAIL can solve the target tasks within its
learned model without any additional samples, while model-free
transfer learning approaches fail.

Results. Our results are shown in Table 1. Policy trans-
fer performs poorly, suggesting that the target task indeed
requires qualitatively different behaviour from the few train-
ing tasks available. Further, behavior cloning on the target
demonstrations is not sufficient to learn the task. Offline
DAC also shows poor performance. Finally, we see that
V-MAIL almost matches the performance of the agent ex-
plicitly trained on task, indicating the learned model and the
algorithm for training within that model can be used not just
for efficient visual imitation learning, but also for zero-shot
transfer to new tasks.

6. Conclusion
In this work we presented V-MAIL, a model-based imita-
tion learning algorithm that works from high-dimensional
image observations. V-MAIL learns a model of the environ-
ment, which serves a strong supervision signal for visual
representation learning, as well as allowing us to train an
imitation learning algorithm on-policy, without sacrificing
sample efficiency. V-MAIL achieves better asymptotic re-
turns, is more stable, and matches the sample efficiency
of off-policy model-free approaches. We also find that by
training a policy using only model rollouts, our approach is
a strong procedure for zero-shot transfer to novel imitation
learning tasks.
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A. Theoretical Proofs
We base our approach on the main theoretical result of the paper:

Theorem 2. Consider a POMDPM, and let zt be a latent space representation of the history and belief state such that
P (st|x≤t,a<t) = P (st|zt). Also assume that P (st|zt,at) = P (st|zt). Let Df be a generic f−divergence. Then the
following inequalities hold:

Df (ρ
π
M(x,a)||ρEM(x,a)) ≤ Df (ρ

π
M(s,a)||ρEM(s,a)) ≤ Df (ρ

π
M(z,a)||ρEM(z,a))

Proof. The condition P (st|zt,at) = P (st|zt) essentially states that the belief distribution is independent of the policy or
that the actions of both the agent and the expert do not carry additional information about the state. This will be true of
both agents are trained using the belief, without access to the ground truth state. We should note that a similar assumption
would be needed to prove the first inequality namely: U(xt|st,at) = U(xt|st), however this holds from the structure of the
POMDP. With these assumptions, the proof is straightforward application of the following data-processing inequality (Ali &
Silvey, 1966). We will prove that Df (ρ

π
M(s,a)||ρEM(s,a)) ≤ Df (ρ

π
M(z,a)||ρEM(z,a)):

Df (ρ
π
M(z,a)||ρEM(z,a)) = Ez,a∼ρEM(z,a)

[
f

(
ρπM(z,a)

ρEM(z,a)

)]
= (14)

Ez,a∼ρEM(z,a)Es∼P (s|z)

[
f

(
ρπM(z,a)

ρEM(z,a)

P (s|z)
P (s|z)

)]
= (15)

Ez,s,a∼ρEM(z,s,a)

[
f

(
ρπM(z, s,a)

ρEM(z, s,a)

)]
= (16)

Es,a∼ρEM(s,a)

[
Ez∼ρEM(z|s,a)f

(
ρπM(z, s,a)

ρEM(z, s,a)

)]
≥ (17)

Es,a∼ρEM(s,a)

[
f

(
Ez∼ρEM(z|s,a)

ρπM(z, s,a)

ρEM(z, s,a)

)]
= (18)

Es,a∼ρEM(s,a)

[
f

(
Ez∼ρEM(z|s,a)

ρπM(s,a)ρπM(z|s,a)
ρEM(s,a)ρEM(z|s,a)

)]
= (19)

Es,a∼ρEM(s,a)

[
f

(
Ez∼ρπM(z|s,a)

ρπM(s,a)

ρEM(s,a)

)]
= (20)

Es,a∼ρEM(s,a)

[
f

(
ρπM(s,a)

ρEM(s,a)

)]
= (21)

Df (ρ
π
M(s,a)||ρEM(s,a)) (22)

The first two equalities (10-11) follow from the fact that ρπM(s|z,a) = P (s|z) = ρEM(s|z,a) from the assumptions of
the Theorem. The inequality (12) is a direct application of Jensen’s inequality and the definition of an f−divergence. The
other part of the main result follows the same reasoning, considering the observation model U(x|s), rather than the belief
distribution P (s|z).

B. Practical Off-Policy Imitation Learning Algorithms
Training reinforcement learning policies from images is challenging using environment rewards, but even more so in the case
of adversarial imitation learning. We explicitly choose to benchmark our method against SQIL and DAC, which use sample
efficient off-policy training. In addition we can augment these approaches with state of the art method DrQ (Kostrikov et al.,
2020b), which has shown up to two orders of magnitude improvement in sample efficiency when training policies from
raw pixels. The key of the DrQ approach is to introduce a family of image-augmentation functions f(s, v), where s is an
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environment state (a set of stacked images) and v are augmentation parameters, from a fixed set of transformations. Given a
batch of transition tuples (si,ai, s′i, ri) the standard Q-learning procedure is augmented as follows: the target values for the
Bellman backups are computed as:

yi = ri + γ
1

K

K∑
k=1

Qtargetθ (f(s′i, v
′
i,k),a

′
i,k) where a′i,k ∼ π(·|f(s′i, v′i,k)) (23)

while the Q-function is updated by:

θ ← θ − λ∇θ
1

NM

N,M∑
i=1,m=1

(Qθ(f(si, vi,m),ai)− yi)
2 (24)

We can directly adapt SQIL to this setup, by using stationary rewards for the expert and policy replay buffers. For DAC, we
train an additional discriminator Dψ minimizing the objective:

Es,a∼BE

[
1

K

K∑
k=1

− logDψ(f(s, vk),a)

]
+ Es,a∼Bπ

[
1

K

K∑
k=1

− log(1−Dψ(f(s, vk),a))

]
(25)

we then train the DAC with a modified version of Eq. 24:

yi =
1

K

K∑
k=1

logDψ(f(si, vi,k),ai) + γQtargetθ (f(s′i, v
′
i,k),a

′
i,k) (26)

In our implementation the discriminator, critic and policy share the same convolutional encoder, which is trained using the
discriminator and critic loss only. During training of this baseline, we noticed that periods of poor performance coincide
with instability in the critic loss, rather than the discriminator. We hypothesise that this is caused by issues with value
function bootstrapping with non-stationary rewards. We experimented with a number of mitigation strategies in an attempt to
improve performance of this baseline, including constraining the discriminator, different regularization techniques, varying
the buffer and batch sizes and separating the convolutional encoders of the discriminator and the actor/critic; however, these
techniques didn’t fully prevented the degradation in performance.


