
Under review as a conference paper at ICLR 2023

CLASSIFICATION OF INCOMPLETE DATA USING AUG-
MENTED MLP

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new way to train a Multi-Layer Perceptron (MLP) to classify in-
complete data. To achieve this, we train an MLP using a two-phased approach.
In the first phase, we train an MLP using complete data. Before the second phase
of training, we create an augmented dataset. For this, we use non-missing data,
delete each feature once, and then fill it using some predefined points. After that,
in the second phase, we retrain the network using the augmented dataset. The aim
of this type of training is to predict the class label of an incomplete dataset. At the
time of testing, when a feature vector with a missing value appears, we initially
impute it using the predefined points and find the class label of the feature vec-
tor using the trained network. We compare the proposed method with an original
MLP on twelve datasets using four imputation strategies. The proposed method’s
performance is better compared to the originally trained MLP.

1 INTRODUCTION

Handling missing data is a common problem while handling physical world datasets. Let, X be
the data set and xk ∈ X ⊆ Rp. Now X is an incomplete dataset if xk has q ∈ {1, 2, · · · , p}
missing values. Many real-life systems are affected due to incomplete data Garcı́a-Laencina et al.
(2010). The two main types of missing data are as Little & Rubin (2014): (1) Missing completely
at random (MCAR) and (2) Missing at random (MAR). Missing values are handled using various
ways. A simple strategy to handle missing values is to delete the data points with missing values.
But this procedure is not performed well when a large number of data contains missing values.
The second process of handling missing values is filling the missing values using some judiciously
chosen techniques. This process is known as imputation. There are various techniques to impute
missing values. In Garcı́a-Laencina et al. (2010), authors clustered it into two groups. The first
one is statistical imputation methods, and the second one is imputation based on machine learning-
based methods. In the first method, i.e., in Statistical based methods, missing values are imputed by
some statistical methods. For example, in zero imputation, incomplete values are imputed by zeros.
In the case of random imputation, incomplete values are filled by some random values. In mean
imputation, incomplete values are imputed by the mean values of the non-missing data points of the
complete features.

When we consider missing value handling using machine learning techniques, k−nearest neighbor
imputation is a popular machine learning imputation method. If k = 1, we say this as 1−nearest
neighbor imputation method. k−nearest neighbor (k−NN) Dixon (1979) is a popular process where
the incomplete value(/s) are imputed by the complete feature value of the nearest neighbors. Here,
distances are measured using the observed subspace, and the missing data are imputed by the mean
or median value of the corresponding k nearest neighbor data point feature. In k−NNI, normally,
Euclidean distance is used while the distance is measured. After imputation, there are various meth-
ods to check the performance of imputation. In many cases, after that, the performance of imputation
is examined using classification or clustering. Here, we trained a network in such a way that it clas-
sifies incomplete data.

In Choudhury & Pal (2021b; 2019b; 2021a; 2019a; 2022) the authors modify 1−NN imputation
method and proposed a modified version of 1−NN imputation for initial imputation of missing
values. Here 1−NN imputation is done using some predefined points. They do not use total training
data for 1−NN imputation. Here, in this article, we also use a similar modified 1−NN imputation

1

Under review as a conference paper at ICLR 2023

technique to impute the missing values. Similar to Choudhury & Pal (2021b; 2019b; 2021a; 2019a),
here, we train a multi-layer perceptron (MLP) using an augmented dataset and we fill it using the
modified 1−NN imputation technique at the testing time. After the initial imputation, we put the
complete feature vector into the newly trained MLP and try to find the class label of the incomplete
datum.

The remaining part of the article is organized as follows. In the next section i.e., in Section 2
describes the Methodology. Experimental results and analysis are discussed in Section 3. After that,
an extension of the proposed method is discussed in Section 4. In the last section i.e., Section 5
concludes the paper.

2 METHODOLOGY

In this section, we describe the methodology for doing the experiments. We use a modified version
of Multi-Layer Perceptron (MLP) for computing all operations. We begin by describing the MLP
classifier used in our experiment. Then we describe the training procedure of MLP and the testing
procedure using the trained MLP.

2.1 MULTI LAYER PERCEPTRON

A multi-layer perceptron (MLP) has three parts: the input layer, hidden layers, and output layer.

Let there be a single hidden layer in our proposed MLP model. In the first layer, i.e. in the input
layer, p number of input features are present. In the second layer i.e., in the hidden layer q nodes are
present, and the activation function of each node is δ(·). In the last layer, i.e., in the output layer, the
target output of jth node of kth data point is tkj , the total data points are n, and the total number of
output nodes i.e, number of classes for a particular problem is r. There are different types of MLP
present in the literature. From that, we adopt the MLP which is described in Kumar (2004). In MLP,
the first layer, i.e. the input layer is a fan-out layer. That means the input and output of the first layer
are the same. Mathematically, it is like this:

δ (xki) = xki, i = 1, · · · , p;
δ (xk0) = 1,∀k; (1)

here the ith feature of the input vector xk is xki and the bias of input layer is δ (xk0). For the second
layer, i.e., in the hidden layer:

zkh =

p∑
i=0

wihδ (xki) , h = 1, · · · , q

δ (zkh) = max(0, zkh), h = 1, · · · , q;
δ (zk0) = 1,∀k;

(2)

where the connection between hth hidden node and ith input node is wih, the bias connection of the
hth hidden neuron is w0h and the bias of hidden layer is δ (z0). For the last layer, i.e. the output
layer:

ykj =

q∑
h=0

whjδ (zkh) , j = 1, · · · , r

okj = δ (ykj) = max(0, ykj), j = 1, · · · , r.
(3)

here the weight between jth output node and hth hidden node is whj and the bias of the jth output
node is w0j . So, the instantaneous system error for the kth training pattern can be written as follows:

Ek = −
r∑

j=1

tkj log(okj) (4)

For a classifier, typically, tkj ∈ {0, 1}. Instead of cross-entropy, one can use other loss functions
such as square loss. Similarly, in place of the rectified linear unit (ReLU) activation function, other
choices can also be used like the sigmoidal function. The network connection weights are ran-
domly initialized and then they are updated to reduce the loss. There are different learning methods
including the back-propagation method Kumar (2004).

2

Under review as a conference paper at ICLR 2023

Algorithm 1 : Training of the MLP using augmented dataset
INPUT: XTR: Training data set; p: Number of features; r: Number of classes; nc, c = 1, 2, · · · , r: Number of clusters in class c; N1:
Number of epochs for the first phase of training; N2: Number of epochs for the second phase of training.
BEGIN
1: Set Ṽ = ∅, V̂ = ∅.
2: while i=1 to r do
3: Set X̂i = {x|x ∈ XTR and x belongs to the ith class}.
4: Set ṽi = 1

|X̂i|

∑
x∈X̂i

x.

5: Ṽ = Ṽ ∪ ṽi.
6: Divide X̂i using the k-means algorithm into nc clusters and extract nc cluster centers V̂i = {v̂i1, v̂i2, · · · , v̂inc} ; v̂i ∈ Rp.
7: V̂ = V̂ ∪ V̂i.
8: end while
9: Set Ṽ ′ = Ṽ ∪ V̂ .
10: while s=1 to p do
11: To create Xs, in every x ∈ XTR, we find out xs by replacing xs (the sth component of x) using vls if l =

argmink′
{
||x − ṽ′

k′ ||2∗
}

, where ||.||∗ is measured using all features except sth feature.

12: end while
13: Trained an MLP by XTR for N1 epochs.
14: Retrained the same MLP for N2 epochs by XTotal = XTR ∪ {X1 ∪ X2 ∪ · · · ∪ Xp}. For all x ∈ XTR and its corresponding

xs ∈ Xs, the target vector is same as the class label of x ∈ XTR.
END

2.2 TRAINING PROCEDURE

Let, X ⊆ Rp be a dataset. Now each data point of X ⊆ Rp, xi ∈ Rp has a class label ci,
where ci ∈ {1, · · · , r}. For training and testing we divide X ⊆ Rp into two equal parts X =
XTR ∪ XTE , XTR ∩ XTE = ϕ. From these two parts, we use XTR for training and XTE for
testing.

In the proposed method we assume that X = XTR ∪ XTE , XTR ∩ XTE = ϕ in such a way that
all r classes data points are present in XTR. Now let, XTR = ∪r

i=1X̂i, where X̂i = {xk|xk ∈
the ith class}.

Before training, we try to find out some predefined points from XTR. First, we find out some
predefined points using the class center. So, the ith class center is as:

ṽi =
1
ni

∑
xj∈X̂i

xj . (5)

As there are r classes, we find out r predefined points as: Ṽ = {ṽ1, ṽ2, · · · , ṽr} ; ṽi ∈ Rp. After
finding the predefined points from cluster centers, we try to increase the predefined points by clus-
tering X̂i into nc clusters. Here, nc is the user-defined cluster number. For clustering, we can use
any clustering algorithm. The k−means algorithm is used as the clustering algorithm.

As there are r classes, in that step we find (nc × r) cluster centers as predefined points: V̂ ={
v̂1, v̂2, · · · , v̂(nc×r)

}
; v̂i ∈ Rp.

Then we combine first set of predefined points with second set of predefined points as: Ṽ ′ = V̂ ∪ Ṽ .
Thus total (r + nc × r) predefined points are generated. After, finding predefined points we try
to create an augmented dataset from the training dataset XTR. The augmented dataset creation
procedure is as follows. For creating an augmented dataset, we delete each feature of XTR and
impute it using the predefined points. The augmented dataset is a collection of p modified data sets.
The procedure to generate p new data set is Xs, s = 1, 2, · · · , p as follows. In Xs, for xj ∈ XTR,

xjs is modified by vls if l = argmink′

{
||xj − ṽ′

k′ ||2∗
}

.

After creating an augmented dataset, we train MLP in two phases. In the first phase, we train the
MLP using XTR for N1 epochs. Then in the second phase, we retrain the same network for N2

epochs using XTotal = XTR ∪p
s=1 X

s. For any xj ∈ XTR and xs
j ∈ Xs, the target vector is taken

as the class label of xj ∈ XTR.

The whole training procedure is summarized in an algorithmic form in Algorithm 1. A similar
training procedure to training an auto-encoder is very effective to handle missing values Choudhury
& Pal (2021b; 2019b; 2021a; 2019a).

3

Under review as a conference paper at ICLR 2023

Table 1: Details of the 7 UCI data sets
Dataset # Instances # Feature # Class

Iris 150 4 3
Glass 214 9 7
Seeds 210 7 3

Balance 625 4 3
Monk1 556 6 2
Monk2 601 6 2
Monk3 554 6 2
Vehicle 94 18 4
Pima 768 8 2
Wine 178 13 3
Wdbc 569 32 2
WPBC 194 34 2

2.3 TESTING PROCEDURE

As stated earlier, here, XTR is used for training and XTE is used for testing. We assume that missing
values are present in only XTE and each testing data point may have up to (P2) features missing.
We impute the missing values of XTE using the predefined points. The sth missing feature value
of xi, xis is filled by vls if l = argminj

{
||xi − ṽ′

j ||2∗
}

where ||.||∗ is measured only using the
observed feature space of xi. After imputation, we pass xi through the trained MLP and generate
its class labels.

3 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe the dataset, specifications for training the MLP model, and different
results using the MLP.

3.1 DATA SETS

To test the effectiveness of the proposed method, we take 12 well-known data sets Mertz & Murphy
(2005). We randomly shuffle it and divide the dataset into two parts: training and testing. In the
training dataset, no feature values are missing, whereas in the testing dataset at each point, we
randomly remove up to (p2) features. For creating a missing dataset we follow the same procedure
as described in Datta et al. (2016). The summary of the 12 datasets used is listed in Table 1.

3.2 EXPERIMENTAL SET UP

In this section, the specifications used to train our MLP model have been given. Here, we describe
the number of epochs (N1 and N2), nodes in the hidden layer (q), the learning rate to train the
network, and the number of clusters (nc). All results reported here are the average of 25 random
runs.

3.2.1 EPOCHS:

We use N1 = 1000 and N2 = 1000 in all cases in our experiment, where N1 refers to the number
of epochs used for training the MLP on a normal dataset and N2 refers to the number of epochs for
training MLP on an augmented dataset. The proposed method uses N1 + N2 epochs to train the
model.

3.2.2 HIDDEN LAYERS:

We use 1 hidden layer in our MLP model for all cases (normal training & augmented training).
However, the nodes in the hidden layer vary as per the input features. If there are p input features,
we set the number of nodes in the hidden layer q is 10p , i.e. q = 10p.

4

Under review as a conference paper at ICLR 2023

3.2.3 LEARNING RATE:

Using a few trial and error experiments we set learning rates (LR) = 0.001 for all datasets.

3.2.4 CLUSTERS:

We set the number of clusters (nc) as described in Algorithm 1 as 2 to reduce the time complexity
as much as possible.

3.3 RESULTS AND ANALYSIS

In this section, we compare the performance of different imputation methods using an MLP (where
we use only N1 epochs for training) and augmented MLP (where we use both N1 and N2 epochs
for training).

In Fig. 1, we compare the performance of different imputation methods using an MLP and the act
of MLP on a dataset where no missing values are present. Here, we use 12 datasets. If we consider
the imputation methods, mean imputation performs the best in 9 datasets among 12 datasets.

Figure 1: Comparing different imputation method using MLP on different dataset

In Fig. 2, we compare the performance of different imputation methods using augmented MLP
(AMLP) and the performance of AMLP where no missing values are present on the same set of 12
datasets. If we consider the imputation methods, mean imputation performs the best in 6 out of 12
datasets, and 1−NN imputation performs the best on 5 of them.

Figure 2: Comparing different imputation method using AMLP on different dataset

Next, we compare the performance of different methods using MLP and AMLP. First, in Fig. 3, we
compare the performance of MLP and AMLP where no missing value is present. From Fig. 3, we
can conclude that if no missing values are present in a dataset, MLP performs better than AMLP.
Among the 12 datasets, MLP classifies better than AMLP in 9 of them.

In Fig. 4, we compare the performance of MLP and AMLP on different datasets when missing
values are present, and imputed with zero. Out of 12 cases, AMLP wins in 9 cases. So, we can say
that if missing values are present and they are imputed with zero, AMLP performs better than MLP.

5

Under review as a conference paper at ICLR 2023

Figure 3: Comparing MLP and AMLP on different dataset when no value is missing

Figure 4: Comparing MLP and AMLP on different dataset when missing values are imputed by zero

In the succeeding figure, i.e., in Fig. 5, we also compare the performance of MLP and AMLP when
missing values are present in a dataset and imputed randomly. Here also, AMLP performs better
than an MLP. Particularly, out of 12 datasets, AMLP performs better in 7 of them.

Figure 5: Comparing MLP and AMLP on different dataset when missing values are imputed randomly

In Fig. 6 and Fig. 7, we compare the performance of MLP and AMLP when missing values are
present in a dataset using two other imputation strategies. In Fig. 6, the missing values are filled
using mean imputation, and in Fig. 7, the missing values are filled using 1−NN imputation (from
some predefined points). In both cases, AMLP performs better than MLP. Particularly, in the first
case (in Fig. 6) AMLP performs better in 10 and in the second case (in Fig. 7) AMLP performs

6

Under review as a conference paper at ICLR 2023

better in 11 out of 12 datasets. In conclusion, we can say that if some values are missing in a dataset
and it is filled by any method, AMLP performs better than MLP.

Figure 6: Comparing MLP and AMLP on different dataset when missing values are imputed by mean imputation

Figure 7: Comparing MLP and AMLP on different dataset when missing values are imputed by 1-NN imputation

3.4 PARAMETER SENSITIVITY:

In Table 2 we compare the accuracy of AMLP on 4 datasets (Iris, Monk2, Balance, WPBC) using
various nc (i.e. the number of clusters for identifying predefined points). For comparing the per-
formance we take nc = 2, 3, 5. Similar to previous experiments average of 25 randomly runs is
reported here. The detailed result of the experiments is as follows.

In the Iris dataset when we increase nc the performance varies a little bit; whereas in the Balance
dataset when nc increases the accuracy decreases. The behavior of Monk2 is the opposite of Balance.
In Monk2 when nc increases the accuracy also increases. The behavior of WPBC is a little bit
different from the previously described datasets. Here, when nc increases, first the performance
decreases, and then it increases. So, each dataset has an optimal nc. We can find out an optimal nc

for a dataset using cross-validation.

4 EXTENDED METHOD

In this section, an extension of the proposed method is discussed. The aim of the proposed method
is to train an MLP in such a way that it classifies incomplete data. For that, during training, we
use an incomplete datum as input and the original datum class label as the target. In the extended
proposed method, with the cross-entropy loss, we try to minimize the latent space representation
of the same class data points and, try to maximize the latent space representation of different class
label data points. For latent space representation, we use the hidden layer representation of the MLP.

7

Under review as a conference paper at ICLR 2023

Table 2: Accuracy of AMLP on 4 datasets using various nc

Dataset nc = 2 nc = 3 nc = 5

No Missing

Iris 0.97 0.96 0.97
Balance 0.82 0.81 0.78
Monk2 0.73 0.80 0.84
WPBC 0.68 0.55 0.70

Zero Imputation

Iris 0.49 0.49 0.51
Balance 0.82 0.81 0.78
Monk2 0.61 0.63 0.65
WPBC 0.66 0.63 0.70

Rand Imputation

Iris 0.52 0.53 0.52
Balance 0.60 0.60 0.60
Monk2 0.58 0.59 0.61
WPBC 0.66 0.63 0.70

Mean Imputation

Iris 0.63 0.62 0.62
Balance 0.68 0.68 0.66
Monk2 0.68 0.71 0.72
WPBC 0.69 0.55 0.70

1-NN Imputation

Iris 0.79 0.79 0.78
Balance 0.66 0.65 0.63
Monk2 0.66 0.67 0.68
WPBC 0.68 0.55 0.70

The instantaneous system error for the kth training pattern of the extended proposed method is as
follows:

Ek = −
r∑

j=1

tkj log(okj) + α

n∑
i1=1

n∑
i2=1,ci1=ci2

(||δ (Zi1)− δ (Zi2) ||) (6)

− β

n∑
i1=1

n∑
i2=1,ci1 ̸=ci2

(||δ (Zi1)− δ (Zi2) ||) (7)

where, α, β is the coefficient of two regulizer and δ (Zi) is the hidden layer representation of ith
data point. We take α = β = 1 for this experiment.

Here, we proposed two extended methods: MLP with regularizer (MLP+R) and AMLP with regu-
larizer (AMLP+R). We repeat the whole process 5 times with N1 = N2 = 15 and with LR=0.01.
Here, in Table 3, we compare the accuracy of AMLP and MLP with their regularized methods on
4 datasets (Iris, Glass, Seeds, Balance). In most cases, the performance of a method with an aug-
mented dataset is better than the method with the original dataset. But, using a regularizer, there
is no effect on the performance. Maybe this is because we use a less number of iterations here.
Since at the training phase, in each epoch we have to do |XTR|2 number of calculations, the total
computational complexity of the extended proposed method is very high, and we use less number of
iterations.

5 CONCLUSION

Here, we proposed a new way to train an MLP which can handle missing data properly. We com-
pare the proposed method with an MLP on twelve different datasets using four types of imputation
methods. In most cases, when we use a newly proposed MLP, the performance improves for missing
data handling. The performance of the proposed MLP varies with nc (i.e., the number of clusters
for identifying predefined points). We also extend our method using two regularizers. This type
of training method for handling incomplete data can applies to other classifiers also (like the k-NN
classifier). In the future, we want to explore this.

8

Under review as a conference paper at ICLR 2023

Table 3: Accuracy of MLP and AMLP with the regularizer

Dataset MLP + R AMLP+ R MLP AMLP

No Missing

Iris 0.69 0.83 0.74 0.92
Glass 0.32 0.37 0.32 0.39
Seeds 0.62 0.65 0.46 0.72

Balance 0.82 0.87 0.84 0.86

Zero Imputation

Iris 0.45 0.45 0.46 0.47
Glass 0.26 0.26 0.26 0.27
Seeds 0.40 0.40 0.35 0.38

Balance 0.56 0.57 0.57 0.56

Rand Imputation

Iris 0.48 0.50 0.49 0.50
Glass 0.26 0.24 0.26 0.27
Seeds 0.38 0.42 0.38 0.42

Balance 0.61 0.62 0.62 0.62

Mean Imputation

Iris 0.58 0.68 0.62 0.68
Glass 0.31 0.34 0.32 0.36
Seeds 0.45 0.52 0.39 0.54

Balance 0.67 0.69 0.69 0.69

1-NN Imputation

Iris 0.63 0.70 0.62 0.73
Glass 0.31 0.34 0.32 0.36
Seeds 0.49 0.51 0.42 0.52

Balance 0.66 0.66 0.65 0.66

REFERENCES

Suvra Jyoti Choudhury and Nikhil R Pal. Classification of incomplete data using autoencoder and
evidential reasoning. In IFIP International Conference on Artificial Intelligence Applications and
Innovations, pp. 167–177. Springer, 2019a.

Suvra Jyoti Choudhury and Nikhil R Pal. Imputation of missing data with neural networks for
classification. Knowledge-Based Systems, 2019b. URL https://doi.org/10.1016/j.
knosys.2019.07.009.

Suvra Jyoti Choudhury and Nikhil R. Pal. Classification of incomplete data integrating neural net-
works and evidential reasoning. Neural Computing and Applications, pp. 1–15, 2021a. doi: 10.
1007/s00521-021-06267-1. URL http://doi.org/10.1007/s00521-021-06267-1.

Suvra Jyoti Choudhury and Nikhil R Pal. Fuzzy clustering of single-view incomplete data using a
multi-view framework. IEEE Transactions on Fuzzy Systems, 2022.

Suvra Jyoti Choudhury and Nikhil Ranjan Pal. Deep and structure-preserving autoencoders for clus-
tering data with missing information. IEEE Transactions on Emerging Topics in Computational
Intelligence, 5(4):639 – 650, 2021b. URL https://doi.org/10.1109/TETCI.2019.
2949264.

Shounak Datta, Supritam Bhattacharjee, and Swagatam Das. Clustering with missing features: A
penalized dissimilarity measure based approach. arXiv preprint arXiv:1604.06602, 2016.

John K Dixon. Pattern recognition with partly missing data. IEEE Transactions on Systems, Man,
and Cybernetics, 9(10):617–621, 1979.

Pedro J Garcı́a-Laencina, José-Luis Sancho-Gómez, and Anı́bal R Figueiras-Vidal. Pattern classifi-
cation with missing data: a review. Neural Computing and Applications, 19(2):263–282, 2010.

Satish Kumar. Neural networks: a classroom approach. Tata McGraw-Hill Education, 2004.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley & Sons,
2014.

J Mertz and PM Murphy. University of california at irvine (uci) repository of machine learning
databases. Available ftp:/ftp. ics. uci. edu/pub/machine-learning-databases, 2005.

9

https://doi.org/10.1016/j.knosys.2019.07.009
https://doi.org/10.1016/j.knosys.2019.07.009
http://doi.org/10.1007/s00521-021-06267-1
https://doi.org/10.1109/TETCI.2019.2949264
https://doi.org/10.1109/TETCI.2019.2949264

	Introduction
	Methodology
	Multi Layer Perceptron
	Training procedure
	Testing procedure

	Experimental results and analysis
	Data Sets
	Experimental set up
	Epochs:
	Hidden Layers:
	Learning rate:
	Clusters:

	Results and Analysis
	Parameter Sensitivity:

	Extended Method
	Conclusion

