
Interpreting learned search: finding a transition model
and value function in an RNN that plays Sokoban

Anonymous Author(s)
Affiliation
Address
email

Abstract

We partially reverse-engineer a convolutional recurrent neural network (RNN)1

trained with model-free RL to play the puzzle game Sokoban. Prior work showed2

that this RNN represents plans internally which evolve over time. This work3

shows that the RNN produces these plans using an algorithm akin to classical4

search, with several analogous components. The plan is represented in the RNN’s5

convolutional 3D state. Many channels are associated with directions and represent,6

for each spatial grid location, whether the agent will move in their associated7

direction when reaching that location. These channels’ activations are analogous8

to a state-action value function—their values describe future actions, and also9

determine when to backtrack and which plan branch survives pruning. Specialized10

convolutional kernels extend these channels forwards and backwards for valid11

moves only, forming a transition model. The RNN is also unlike classical planning12

in some ways: it represents the future states of each Sokoban box separately and13

resolves contradictions between them heuristically. Our analysis shows that NNs14

are capable of learning to plan, with an internal value function and transition model15

which we can locate and understand.16

1 Introduction17

Traditional online planning algorithms such as A* or Monte Carlo Tree Search (MCTS) attempt to18

accomplish a goal by exploring many possible courses of action (plans) using a transition model [25,19

11, 54]. These algorithms can use additional compute to improve decisions by increasing the number20

of plans evaluated or the length of considered plans (the planning horizon). At each environment step,21

the algorithm considers many plans, ranks each according to its outcome, and picks the first action22

of the best plan. Often, the goal is further away than the horizon, so the outcome of intermediate23

states at the horizon must be evaluated with an approximate value function. To consider fewer plans24

(and thus be able to search deeper), these algorithms use move generation heuristics to simplify the25

problem and avoid exploring some actions1.26

It is difficult to craft heuristics and value functions for complex environments, leading to work27

such as AlphaGo and AlphaZero that combines MCTS with machine-learned evaluation and move28

generation [61, 62, 11]. This hybrid approach uses the model for high-quality move generation and29

evaluation, while the search backbone uses extra compute to improve performance via more and30

deeper exploration. Meanwhile, other neural networks (NNs) such as LLMs are trained without31

explicit heuristics and value, but can exhibit goal-directed behavior and utilize more compute to make32

better decisions [46, 13, test-time scaling]. Unlike previous examples, it is unclear how these NNs can33

use extra compute to improve performance, or if they have an internal representation of the objective.34

1In some MCTS variants, the heuristics corresponds to the prior policy [62]. A* uses the heuristic function
for both move generation and evaluation.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Box down
L1H17

Box right
L1H17

Step 0 tick 1 Step 1 tick 2 Step 2 tick 1

Turn Plan Extension (TPE) kernels

Input Channel

0.5

-0.5

0

0.4
0.2

-0.2
-0.4

0
1

2

O
ut

pu
t C

ha
nn

el

Ba
ck

w
ar

d

Up Down RightUp Down Right

Up
Do

w
n

Ri
gh

t

Down
Up to Right

to Up
Down to
Right

Right to
Down

Up to Right
to Up

Down to
Right

Fo
rw

ar
d

& Plan
Extension

Plan
Extension

WTA at
box,

target

Winner Takes All (WTA)

Observation

Linear Plan Extension (LPE) kernels

Figure 1: Illustration of a situation with two equally good paths from the box to the target ,
and how the described mechanisms apply to it. Top: the puzzle in question, along with the sum of
box-down (L1H17) and box-right (L1H13) channels at three different steps (see Section 3.1 for ‘tick’).
This shows that the network searches forward from the box and backward from the target . Bottom:
average weights of the convolutional channels that implement two of the mechanisms. Winner Takes
All (WTA) kernels, shown averaged for each input and output channel, causes contradictory plans
(such as the down-then-right and right-then-down paths) to resolve; the negative weights between
different path directions cause them to inhibit each other. Linear Plan Extension (LPE) and Turn Plan
Extension (TPE) kernels, shown averaged over location, extend the plan in straight directions and
corners (Section 5).

In this paper we study a model organism for agency and test-time scaling: a Deep Repeating35

ConvLSTM (DRC) trained to solve Sokoban puzzles [22, 63]. We focus on the DRC because36

previous work has established that it causally represents future actions and benefits from test-time37

compute, making it more likely to represent goals internally and use them for planning [2, 63].38

Additionally, actions and goals in Sokoban are concrete and observable, in contrast to the unclear39

goals and state-action space of LLMs: tokens are concrete, but LLM goals and world models likely40

only make sense at a higher level of abstraction.41

Our primary contribution is to partially reverse-engineer the algorithm that the DRC learned. We42

find that the DRC contains several analogues to classic online search (a transition model, value43

function and heuristics), and performs bidirectional search as argued by Bush et al. [2]. To the best of44

our knowledge, this work advances the Pareto frontier between the completeness of a mechanistic45

explanation and the complexity of the explained model (see Section 6), and is therefore a valuable46

case study for mechanistic interpretability tools and theories (e.g. about concept representation).47

Representation. To explain the algorithm, we first focus on data representation. Since a convo-48

lutional RNN repeats the same local computations for each grid location with limited feedforward49

depth, it cannot use more “memory" to represent longer plans. Instead, the DRC uses a distributed50

representation: at each grid location (square), the activations of agent and box direction path channels51

(Section 4) encode the direction to go after reaching that square. The DRC uses short- and long-term52

path channels to represent going in different directions at different times the square is visited. A path53

is represented by adjacent squares having path channel activations that indicate a move to the next54

square in the sequence. How are these path channel activations constructed?55

Algorithm. These path channel activations are initialized by the encoder kernels to begin plan56

segments at the agent, boxes, and targets (Section 5.1). The plan segments are then extended57

bidirectionally by forward and backward plan extension kernels which extend them linearly or with a58

turn until an obstacle is met, functioning as a transition function that extends plans with valid next59

2

actions (Section 5.2). These plan extension kernels also double to propagate negative activations60

bidirectionally, pruning unpromising paths (Section 5.3). A winner-takes-all (WTA) mechanism61

strengthens the strongest directions in the path channel activations and inhibits the weaker directions62

which, along with the sigmoid nonlinearities, causes the plan segments to commit to the higher63

activation directions when there are multiple options available (Section 5.3).64

Taken together, the backtracking and WTA mechanisms show that the path channel activations are65

analogous to a value function, propagating positive and negative value information along a path, and66

being used to select high value subplans. This provides a mechanism for specialized heuristics to67

influence the final plan: simply add or subtract activation to strengthen or inhibit a path.68

(Dis)analogies to classical algorithms. Thus, the DRC has analogues to key components of69

classical algorithms in the form of a plan representation in the path channel activations, which are70

repurposed as a valuation mechanism, and constructed according to a transition function. However,71

the convolutional computational structure imposes subtle differences. The plan’s representation72

is distributed across activations for each square, leading to potential inconsistencies that need to73

be suppressed by the WTA mechanism. These activations are used as a value function, but they74

propagate subplan value information along the path via the convolutional plan extension kernels so75

that the effective value of the plan is the result of an equilibrium rather than a variable assignment.76

2 Background77

Mechanistic interpretability. Linear probing and PCA have been widely successful in finding78

representations of spatial information [67] or state representations and game-specific concepts in79

games like Maze [28, 32, 40], Othello [33, 42], and chess [37, 58, 30]. However, these works are80

limited to input feature attribution and concept representation, and do not analyze the algorithm81

learned by the network. Recent work has sought to go beyond representations and understand key82

circuits in agents. It is inspired by earlier work in convolutional image models [5] discovering the83

circuits responsible for computing key features like edges, curves, and spatial frequency [4, 44, 57].84

In particular, recent work has found mechanistic evidence for few-step lookahead in superhuman85

chess networks [29, 58], and future token predictions in LLMs on tasks like poetry and simple block86

stacking [34, 38, 48]. However, these works still focus on particular mechanisms in the network87

rather than a comprehensive understanding of the learned algorithm.88

Planning in Sokoban. Sokoban is a grid-based puzzle game with walls , floors , movable89

boxes , and target tiles where the goal of the agent is to push all boxes onto target tiles. Since90

boxes can only be pushed (not pulled), some wrong moves can make the puzzle unsolvable, making91

Sokoban a challenging game that is PSPACE-complete [12], requires long-term planning, and a92

popular planning benchmark [49, 52, 23]. Guez et al. [22] introduced the DRC architecture family and93

showed that DRC(3, 3) achieves state-of-the-art performance on Sokoban amongst model-free RL94

approaches and rival model-based agents like MuZero [56, 9]. They argue that the network exhibits95

planning behavior since it is data-efficient in training, generalizes to multiple boxes, and benefits from96

additional compute. Specifically, the solve rate of the DRC improves by 4.7% when the network is97

given extra thinking time by feeding in the first observation ten times during inference. Bush et al. [3]98

use logistic regression probes to find a causal representation of the plan in the DRC, which improves99

with compute, and speculate that it might be performing bidirectional search. Taufeeque et al. [63]100

find that training incentivizes the DRC to often wait for a few steps before acting and during those101

waiting steps the plan changes more quickly, indicating the policy has a meta-strategy of seeking102

test-time compute when needed.103

3 Methodology104

3.1 Network architecture105

We analyze the open-source DRC(3, 3) network trained by Taufeeque et al. [63] to solve Sokoban,106

who closely followed the training setup of Guez et al. [22]. The network consists of a convolutional107

encoder, a stack of 3 ConvLSTM layers, and an MLP head for policy and value function (in the sense108

of the RL policy training, not path valuation) prediction. Each ConvLSTM block perform 3 ticks109

3

of recurrent computation per step. The encoder block E consists of two 4× 4 convolutional layers110

without nonlinearity, which process the H ×W × 3 RGB observation xt into an H ×W ×C output111

et with height H , width W , and C channels, at environment step t.112

ConvConvConvConvPool

or

co
nc
at

encode

Figure 2: The ConvLSTM block in the DRC. Note
the use of convolutions instead of linear layers,
and the last layer of the previous tick (hn−1

D) as
input to the first layer. “Pool” refers to a weighted
combination of mean- and max-pooling.

Figure 2 visualizes the computation of the Con-113

vLSTM layer. Each of the ConvLSTM layers114

at depth d and tick n in the DRC maintains hid-115

den states hn
d , c

n
d with dimensions H ×W × C116

and takes as input the encoder output et, the117

previous layer’s hidden state hn
d−1, c

n−1
d , and118

its own hidden state hn−1
d from the previous119

step. The ConvLSTM layer computes four par-120

allel gates i, j, f, o using convolutional opera-121

tions with 3 × 3 kernels that are combined to122

update the hidden state. For the first ConvLSTM123

layer (d = 0), the architecture uses the top-down124

skip connection from the last ConvLSTM layer125

(d = 2). This gives the network 3 · 3 = 9 layers126

of sequential computation to determine the next127

action at each step. The final layer’s hidden state128

at the last tick is processed through an MLP head to predict the next action and value function. The129

DRC(3, 3) architecture is shown in Figure 9, with additional architecture, training, and dataset details130

provided in Sections B and C. Unless mentioned otherwise, the dataset of levels for all results is the131

medium-difficulty validation set from Boxoban [21].132

Notation Each DRC tick (n = 0, 1, 2) involves three ConvLSTM layers (d = 0, 1, 2), each133

providing six 32-channel tensors (hd, cd, id, jd, fd, od). Channel c of tensor vd is denoted LdVc.134

3.2 Interpretability Techniques135

This paper employs the following techniques from the mechanistic interpretability literature [17, 44,136

60] to reverse-engineer the planning algorithm of the DRC(3, 3) network. The first four help us form137

hypotheses (denoted [H]) about the DRC, and the last two help us test them (denoted [T]). Through138

the synthesis of these techniques, we build a mechanistic account of how the DRC(3, 3) network139

represents, searches for, refines, and executes plans to solve Sokoban puzzles.140

[H] Feature Identification and Label. Interpretability requires identifying legible features that141

the network uses to make decisions [31, 44]. We analyze individual channels of the hidden state142

h, seeking to label all channels by their purpose. Wherever necessary to explain a mechanism, we143

further decompose the activations of the hidden state channels into the components received from the144

c, i, j, f, o gates based on Equations (7) and (8). To label channels, we observe them, form hypotheses145

about their purpose, and test these using a test set, causal interventions or ablation.146

[H] Kernel Visualization. After identifying what the channel activations represent, we visualize the147

convolutional kernels connecting various input channels in the network to intuitively understand the148

mechanisms (or “circuit”) involved in computing an output channel [65, 4].149

[H] Encoder Simplification. Individually, the encoder weights have no privileged basis [16]. To150

interpret the weights of the encoder, we use the associativity of linear operations to combine the151

convolution kernels of the encoder and the i, j, f, o gate weights that process the encoder output152

et into a single convolutional layer. This results in 9 × 9 convolution kernels directly mapping153

observations to each gate (Figures 4 and 22).154

[H] Direct effect. To study which inputs channels contribute the most to an output channel gate, we155

sort and filter the input channels by their direct effect, computed as the largest magnitude of activation156

added to the output across all squares in the grid.157

[T] Causal Intervention. To ground our interpretation of the activations and weights in the158

network’s behavior, we intervene on the activations [33, 19, 69] and weights of the network and159

observe whether the network’s behavior changes as expected based on the intervention x′ ← α ·x+c,160

4

where x can represent the activations or weights depending on the experiment, α is a constant161

multiplier, and c is a constant steering vector [64, 53].162

[T] Ablation. Ablation is one specific causal intervention technique used to ‘remove’ components163

from a neural network and thus understand their importance [69, 66, 10]. We perform mean-ablation164

on the activations as x′ ← E[x] replacing the activations of a component with its mean over some165

episode distribution, and measure the drop in performance to decide which components to focus on166

in our analysis. We also perform zero-ablation on the kernel weights by replacing a set of kernel167

weights with zero to validate our interpretation of the kernels [39].168

4 The Plan Representation169

At each layer, the DRC has C channels, each of which is a H ×W array. The DRC repeats the same170

computations convolutionally over each square. This results in a subset of channels representing the171

plan where each channel corresponds to a movement direction. If the agent or a box is at a position172

where the channel is activated, this causes the DRC to choose that channel’s direction as the action173

(Figure 3, left).174

Table 1: Channel groups, their definitions and counts for each direction (up, down, left, right).
Group Definitions Channels
Box-movement Path of box (short- and long-term) 20 (3, 6, 5, 6)
Agent-movement Path of agent (short- and long-term) 10 (3, 2, 1, 4)
Grid Next Action (GNA) Immediate next action, represented at agent square 4 (1, 1, 1, 1)
Pooled Next Action (PNA) Pools GNA to represent next action in all squares 4 (1, 1, 1, 1)
Entity Target, agent, or box locations 8
Combined path Aggregate 2+ directions from movement channels 29
No label Difficult to interpret channels 21

0 20 40
Steps

60

80

100

A
U

C
 (%

)

Short term
Long term

20 0 20
Centered time steps (t)

0.0

0.2

0.4

Av
g

ac
tiv

at
io

n
(d

ow
n)

Long term
Short term

Figure 3: Left: illustration of path channels. Each channel is a 2D slice of the 3D activations, which
activates highly at a square to indicate the direction it is associated with. Middle: The network
represents actions at different horizons separately to express concepts like “first time go right, second
time go down.” Short-term box-movement channels accurately predict (> 95%) the next 10 steps
of box-movement. For later box-movements, long-term channels represent actions accurately, with
AUC approaching > 95%. Right: Average activations of short-term (L0H2, L1H17, L1H19) and
long-term (L0H14, L0H20, L1H14) box-down channels averaged across squares where a non-down
action is taken at the centered time step t = 0 and a down action is taken at t > 0. The down action
is stored in the long-term channel at t < 0 and transferred into the short-term channels after the
non-down action occurs and down becomes the next action to take at that square.

Manual inspection of every channel across all layers revealed that most channels are interpretable175

(Table 1). Detailed labels are in Tables 7 and 8 of the Appendix. We group the channels into seven176

categories: 1) box-movement and 2) agent-movement channels that, for each cardinal direction,177

activate highly on a square in the grid if the box or agent moves in that direction from that square at a178

future timestep. The probes from Taufeeque et al. [63] and Bush et al. [3] aggregated information179

from these channels. 3) The combined path channels that aggregate various directions from the box-180

and agent-movement channels. 4) The GNA channels that extract the next action from the previous181

groups of channels. 5) The PNA channels that pool the GNA channels which are then picked up by the182

5

MLP to predict the next action. 6) The entity channels that predominantly represent target locations,183

with some also representing box and agent locations, and 7) Some channels we understand184

very little of (‘no-label’). We define the path channels as the set comprising the box-movement,185

agent-movement, and combined path categories, as they collectively maintain the complete plan of186

action for the agent. The remaining groups (GNA, PNA, entity, and no-label) are termed non-path187

channels, storing primarily short-term information, with some state for move selection heuristics. The188

box- and agent-movement channels further decompose into short- and long-term channels (Table 7,189

Section L). As illustrated in Figure 3 (middle), these channels collectively predict future movements190

up to 50 steps ahead with high accuracy (AUC > 95%, area under the ROC curve). Figure 14 shows191

the AUC curves for each channel separately.192

Long-term path channels. The network utilizes the long-term channels to manage spatially193

overlapping plans for different boxes intended for different times. Figure 3 (right) illustrates this: in194

cases where two boxes pass through the same square sequentially in different directions with the first195

box moving at t = 0, the long-term channel for the second move activates well in advance (t≪ 0),196

while its corresponding short-term channel only becomes active after the first move is completed197

(t = 0). Figure 16 shows the mechanism of this transfer is primarily mediated through the j-gate.198

Ablating the state. To test whether non-path channels hold state, we performed a single-step cache199

ablation. This ablation replaces the activations of a target group of channels with the hidden state200

generated from running the policy on the previous observation starting from a zero state, effectively201

removing long-term dependencies while preserving short-term computations within those channels.202

Intervening on the 59 path channels caused a substantial 57.6% drop in the solve rate. By contrast,203

intervening on the 37 non-path channels resulted in a 10.5% performance decrease ((a significantly204

smaller, yet non-negligible, decrease). Controlling for channel count, intervening on a random subset205

of 37 path channels still led to a 41.3% drop in solve rate. This evidence strongly suggests that the206

computations essential for long-term planning on difficult levels are primarily carried out within the207

identified path channels.208

Uncharted behaviors and channels. The DRC does more things that we do not yet understand.209

For example, the plan extension has a tendency to move towards boxes and targets, as opposed to210

exploring every possible direction, but only when the box and target are at most 10-15 squares apart.211

There are many channels for which we do not have labels, though we are confident that these channels212

only affect the action through the short-term path channels because several short-term channels have213

> 99% AUC (Figure 3) for predicting the next action. However, their activations are sometimes214

important and they appear to be used on more difficult levels, so we call these channels heuristics.215

Table 2: Causal intervention scores for dif-
ferent channel groups, alongside comparative
probe scores from Taufeeque et al. [63].

Group Score (%)
Pooled Next Action (PNA) 99.7± 0.2
Grid Next Action (GNA) 98.9± 0.4
Box- and agent-movement 88.1± 1.9
Box-movement 86.3± 2.1
Agent-movement 53.2± 2.1

Probe: box movement 82.5± 2.5
Probe: agent movement 20.7± 0.7

Causal intervention We verify the channel labels216

by performing causal interventions on the channels.217

We modify the channel activations based on their la-218

bels to make the agent take a different action than the219

one originally predicted by the network. We collect a220

dataset of 10,000 transitions by running the network221

on the Boxoban levels [21], measuring the fraction of222

transitions where the intervention succeeds at causing223

the agent to take any alternate target action, follow-224

ing the approach of Taufeeque et al. [63]. Table 2225

shows high intervention scores for every group ex-226

cept the agent-movement channels. The lower score227

for agent-movement channels is because they are228

causally relevant only when the agent is not pushing229

a box, a condition we did not filter for. We also compare our results to probes trained by Taufeeque230

et al. [63] to predict box and agent movements and find that intervening based on our channel labels231

is more effective than using their probes. In Section E, we further validate our channel labels.232

We thus conclude that the network’s plan resides primarily within the identified box-movement and233

agent-movement channels, which are mapped to the next action through the GNA/PNA channels. In234

Section F, we explain the mechanisms that map these plans to the next actions.235

6

5 The Planning Algorithm236

Bush et al. [2] observed qualitatively with their box-movement probe that the DRC(3, 3) network237

forms plans by forward chaining from boxes and backward chaining from targets in parallel in the238

first few steps. We find concrete evidence of this in the weights of the network by analyzing the239

kernels associated with the path channels.240

5.1 Initializing the plan241

+L0O24 (up) -L0O24 (up) +L0O20 (down) -L0O20 (down) +L0O23 (left) -L0O23 (left) +L0O17 (right) -L0O17 (right)

Figure 4: Visualizations of combined kernels that map from the RGB input to the o-gate of the up,
down, left, and right box-movement channels of layer 0. The negative and positive RGB components
are visualized separately. The kernels activate squares along (for agent and box) and against (for
target) the channel’s direction to initialize the forward and backward plan chains, respectively. The
kernel for L0O17 (right) initializes plan chains only on the agent and box square.

Analysis of the combined encoder kernels mapping to box-movement channels (Figure 4) reveals242

structures that initiate planning. These kernels detect relevant features—such as targets, boxes or the243

agent’s position—a few squares away along (for box) or against (for target) the channel’s specified244

cardinal direction. This allows the network to activate initial plan segments, effectively starting the245

bidirectional search.246

5.2 The Transition Model247

Figure 5: The effect of convolving a movement
channel with the plan extension kernels. Both for-
ward and backward turns happen with the same
turn kernel. The up channel is spatially offset (1
square right and down) to place turn activation at
the correct square.

The DRC’s kernels contain convolutions analo-248

gous to the transition model of a classical plan-249

ning algorithm because they encode how the250

environment changes in response to the agent’s251

actions or how to reach a state. They strongly252

bias the plan expansion process towards valid253

state transitions.254

Plan Extension Kernels. While encoder ker-255

nels initiate plan fragments, connecting these256

forward and backward chains requires an ex-257

tension mechanism operating in the recurrent258

hidden state. This is accomplished by special-259

ized “plan-extension kernels” within the recur-260

rent weight matrices.261

Linear plan extension (LPE) kernels (see also262

Figure 1) propagate the plan linearly, extending263

it one square at a time along the channel direction label. Separate kernels exist to facilitate both264

forward chaining from boxes and backward chaining from targets. Turn Plan Extension (TPE)265

kernels (see also Figure 1) switch activations from one channel to another channel that represents a266

different direction. The LPE kernels have larger weight magnitudes compared to the TPE kernels,267

thus encoding agent’s preference to take turns only when linear plan extension stops expanding along268

a direction.In Section M, we demonstrate that weight steering based on our insights into the plan269

extension mechanism can help solve larger adversarial levels previously identified by Taufeeque et al.270

[63].271

These kernels constitute a transition model in the sense that they encode the dynamics of Sokoban. If272

the agent or box moves in a direction, then the adjacent square in that direction is activated, with a273

default of continuing in the same direction.274

7

Stopping Plan Extension. Plan extension does not continue indefinitely. It must stop at appropriate275

boundaries like targets, squares adjacent to boxes, or walls. We observe (Figure 6) that this stopping276

mechanism is implemented via negative contributions to the path channels at relevant locations.277

These stopping signals originate from either the encoder or hidden state channels that represent static278

environmental features (such as those in the ‘entity’ channel group, Table 7), effectively preventing279

the plan from extending beyond targets or into obstacles.This aspect of the transition model prevents280

the DRC from adding impossible transitions to its path.281

−4
−2
0
2

−4
−2
0
2

−4
−2
0
2

−4
−2
0
2

= + +

Observation L1O13 L0H17 Encoder Target from L0

Figure 6: Plan stopping mechanism demonstration
shown through o-gate contributions of the box-
right channel (L1H13). The direct effect shows
that convolving the forward and backward right-
plan-extension kernel on the converged box-right
channel (L0H17) spills into the squares of the box
and the target. The encoder and the target channels
from layer 0 add a negative contribution to coun-
teract the spillover and stop the plan extension.

State transitions. In Section G, we show the282

mechanisms that update the plan representation283

on state transitions, solidifying the notion that284

the DRC has an internal transition model.285

5.3 The Valuation Mechanism286

The value function is a key component of classi-287

cal planning algorithms. We now argue that the288

activations of the path channels are used anal-289

ogously to a value function: aggregating and290

propagating reward information about a path,291

and being used to select high-value plans.292

Backtracking mechanism. The plan extension kernels are cleverly repurposed to allow the algo-293

rithm to backtrack from bad paths. As part of its bidirectional planning, the DRC has forward and294

backward plan extension kernels, so negative activations at the end of a path are propagated to the295

beginning by the backward kernel, and negative activations at the beginning of a path are propagated296

to the end by the forward kernel. This allows the DRC to propagate negative activations along a path,297

thus pruning unpromising path fragments. See Section I for an example.298

This is analogous to backward chaining in a classical game tree expansion algorithm, in that it299

propagates negative reward information backward from invalid or low-reward paths. However, it is300

somewhat more complex: rather than every path channel in a single plan having the same activation,301

the activation propagates forward and backward along the path using the plan extension kernels.302

Bidirectional planning. This allows the DRC to construct paths using something like a standard303

bidirectional search algorithm – plan fragments get extended by the transition model in the plan304

extension kernels, stopped by obstacles, and backtracked entirely to prune bad branches. But how305

does it stitch the fragments together into a consistent, high-value plan?306

0

0.5

1
L1H17

0

0.5

1
L1H13

Observation

O
rig

in
al

A
bl

at
ed

Step: 0 Step: 1 Step: 2

Figure 7: After zero-ablating the kernels connect-
ing the box-down and box-right channels, the WTA
mechanism cannot suppress the right-down plan.

Winner-takes-all mechanism. To select a sin-307

gle path for a box when multiple options ex-308

ist, the network employs a Winner-Takes-All309

(WTA) mechanism among short-term path chan-310

nels. Excluding the long-term path channels311

allows the DRC to maintain plans for later execu-312

tion without inhibiting them. Figure 1 (bottom-313

left) shows that weights connecting path chan-314

nels for various directions cause the path chan-315

nel activations to inhibit each other at the same316

square. The direction with the strongest activa-317

tion suppresses activations in alternative direc-318

tions which, combined with the sigmoid activation, ensures that only one direction’s path channels319

remain active for imminent execution. We construct a level with equally viable paths to causally320

demonstrate (Figure 7): initially, both paths have similar activations, but the slightly stronger one321

quickly dominates in steps 1 and 2 and deactivates the other via this inhibitory interaction. Zero-322

ablating the kernels between the channels of the two directions eliminates the WTA effect, leaving323

both potential paths simultaneously active. Thus, we conclude that kernels connecting various324

short-term box-movement path channels implement this crucial selection mechanism.325

8

Path channel activations as a value function analogue. These findings show that not only do the326

path channel activations represent the plan, they are analogues to the DRC’s value function. The plan327

extension kernels propagate and aggregate value information forward and backward along a path. The328

WTA mechanism ensures that the highest value plans are chosen, and cause the path to connect to329

higher value segments when connecting bidirectional plan segments. This distributed representation330

works with the DRC’s convolutional architecture and allows the repeated application of the same331

computations at each square to propagate value information through the constructed paths.332

6 Related work and discussion333

Mechanistic explanations. To the best of our knowledge, our work advances the Pareto frontier334

of the complexity of a neural network, versus the level of detail in the description of its mechanism.335

Much work focuses on the mechanisms of large language models. LLMs are more complex than the336

DRC, but the algorithms these papers explain are simpler as measured by the size of the abstract337

causal graph [19, 6]. Examples include work on GPT-2 small [66, 24, 15], Gemma 2-2B [35, 43],338

Claude 3.5 Haiku [34, 36], and others [71]. A possible exception is Lindsey et al. [34], which contains339

many simple explanations whose graphs together would add up to a graph larger than that of the340

present work. However, their explanations rely only on empirical causal effects and are local (only341

valid in their prompt), contrasting with weight-level analysis that applies to all inputs. Pioneering342

work in understanding vision models [44, 57, 65] is very thorough in labeling features but provides a343

weight-level explanation for only a small part of InceptionV1 [4]. Other work focuses on tiny toy344

models and explains their mechanisms very thoroughly, such as in modular addition [41, 8, 70, 51,345

20, 68], binary addition [50], small language transformers [45, 26], or a transformer that finds paths346

in small binary trees [1].347

DRC in Sokoban. Taufeeque et al. [63] and Bush et al. [3] find internal plan representations in the348

DRC by predicting future box and agent moves from its activations using logistic regression probes.349

Some of their probes are causal, others can be used to generalize the DRC to larger levels; however,350

further analysis is primarily based on qualitative probe and model behavior rather than mechanisms.351

Mesa-optimizers. Hubinger et al. [27] introduced the concept of a mesa-optimizer, an AI that learns352

to pursue goals via internal reasoning. Examples of mesa-optimizers did not exist at the time, so353

subsequent work studied the problem of whether the learned goal could differ from the training signal,354

reward misgeneralization [14, 59]. Oswald et al. [47] argued that transformers do in-context linear355

regression and are thus mesa-optimizing the linear regression loss, which is hardly agentic behavior.356

Modern AI agents appear to reason, but whether they internally optimize a goal is unresolved.357

The present work answers agentic mesa-optimizer existence in the affirmative. We present a mesa-358

optimizer, then point to its internal planning process and to its learned value function. The value359

function differs from what it should be from the training reward, in benign ways: the training reward360

has a −0.1 per-step term, but the value encoded in the path channels do not capture plan length at all.361

In fact, which path the DRC picks is a function of which one connects to the target first, encoding the362

preference for shorter paths purely in the LPE and TPE kernels (Section J). To compute the value363

head (critic), the DRC likely counts how many squares are active in the path channels.364

7 Conclusion365

This partial reverse-engineering shows that, while the DRC develops several analogues of components366

of classical planning such as a plan representation, transition function, and value function, its367

implementation is deeply influenced by its convolutional structure and is characterized by frequent368

reuse. The plan is represented as activations in path channels for each square, which are repurposed369

as a valuation mechanism. Plan extension kernels extend plan fragments bidirectionally, while370

propagating value information along the path. The winner-takes-all mechanism stabilizes the plan371

into taking single actions at a time at each square, and chooses the highest-value subplan segments.372

The DRC does everything everywhere all at once, implementing familiar mechanisms in alien ways.373

We were able to understand a planning algorithm, which was learned completely model-free, in374

familiar terms. This raises the hope that, if LLM agents are internally performing search, it is possible375

to find, audit, and correct their goals.376

9

References377

[1] Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. “A378

Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task.”379

In: arXiv (2024). arXiv: 2402.11917 [cs.LG]. URL: http://arxiv.org/abs/2402.380

11917v2.381

[2] Thomas Bush, Stephen Chung, Usman Anwar, Adrià Garriga-Alonso, and David Krueger.382

“Interpreting Emergent Planning in Model-Free Reinforcement Learning.” In: The Thirteenth383

International Conference on Learning Representations. 2025. URL: https://openreview.384

net/forum?id=DzGe40glxs.385

[3] Thomas Bush, Stephen Chung, Usman Anwar, Adrià Garriga-Alonso, and David Krueger.386

“Interpreting Emergent Planning in Model-Free Reinforcement Learning.” In: International387

Conference on Learning Representations (2025). URL: https://openreview.net/forum?388

id=DzGe40glxs.389

[4] Nick Cammarata, Gabriel Goh, Shan Carter, Chelsea Voss, Ludwig Schubert, and Chris Olah.390

“Curve Circuits.” In: Distill 6.1 (2021), e00024–006.391

[5] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. “Activation392

Atlas.” In: Distill (2019). https://distill.pub/2019/activation-atlas. DOI: 10.23915/distill.393

00015.394

[6] Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny395

Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. “Causal Scrubbing: A396

Method for Rigorously Testing Interpretability Hypotheses.” In: Alignment Forum. 2022.397

[7] Chess Programming Wiki. Stockfish NNUE. Accessed: 2025-05-16. 2024. URL: https://398

www.chessprogramming.org/Stockfish_NNUE.399

[8] Bilal Chughtai, Lawrence Chan, and Neel Nanda. “A Toy Model of Universality: Reverse400

Engineering How Networks Learn Group Operations.” In: arXiv (2023). eprint: 2302.03025.401

URL: http://arxiv.org/abs/2302.03025v1.402

[9] Stephen Chung, Scott Niekum, and David Krueger. “Predicting Future Actions of Rein-403

forcement Learning Agents.” In: First Reinforcement Learning Safety Workshop. 2024. URL:404

https://openreview.net/forum?id=SohRnh7M8Q.405

[10] Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià406

Garriga-Alonso. “Towards Automated Circuit Discovery for Mechanistic Interpretability.” In:407

Advances in Neural Information Processing Systems 36 (2023), pp. 16318–16352.408

[11] Rémi Coulom. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.”409

In: Computers and Games. Ed. by H. Jaap van den Herik, Paolo Ciancarini, and410

H. H. L. M. (Jeroen) Donkers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 72–83.411

ISBN: 978-3-540-75538-8.412

[12] Joseph C. Culberson. “Sokoban is PSPACE-complete.” In: 1997. URL: https : / / api .413

semanticscholar.org/CorpusID:61114368.414

[13] DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-415

ment Learning. 2025. arXiv: 2501.12948 [cs.CL]. URL: https://arxiv.org/abs/2501.416

12948.417

[14] Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger.418

“Goal misgeneralization in deep reinforcement learning.” In: International Conference on419

Machine Learning. PMLR. 2022, pp. 12004–12019. URL: https://proceedings.mlr.420

press/v162/langosco22a.html.421

[15] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. “Transcoders find interpretable LLM422

feature circuits.” In: The Thirty-eighth Annual Conference on Neural Information Processing423

Systems. 2024. URL: https://openreview.net/forum?id=J6zHcScAo0.424

[16] Nelson Elhage, Robert Lasenby, and Christopher Olah. “Privileged bases in the transformer425

residual stream.” In: Transformer Circuits Thread (2023), p. 24.426

[17] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,427

Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep428

Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,429

Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,430

and Chris Olah. A Mathematical Framework for Transformer Circuits. 2021. URL: https:431

//transformer-circuits.pub/2021/framework/index.html.432

10

https://arxiv.org/abs/2402.11917
http://arxiv.org/abs/2402.11917v2
http://arxiv.org/abs/2402.11917v2
http://arxiv.org/abs/2402.11917v2
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
2302.03025
http://arxiv.org/abs/2302.03025v1
https://openreview.net/forum?id=SohRnh7M8Q
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://openreview.net/forum?id=J6zHcScAo0
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

[18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,433

Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.434

“IMPALA: Scalable Distributed Deep-RL With Importance Weighted Actor-Learner Architec-435

tures.” In: arXiv (2018). arXiv: 1802.01561v3 [cs.LG]. URL: http://arxiv.org/abs/436

1802.01561v3.437

[19] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. “Causal Abstractions438

of Neural Networks.” In: Advances in Neural Information Processing Systems 34 (2021),439

pp. 9574–9586.440

[20] Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufi-441

ane Noubir, and Lawrence Chan. “Compact Proofs of Model Performance Via Mechanistic442

Interpretability.” In: CoRR (2024). arXiv: 2406.11779 [cs.LG]. URL: http://arxiv.org/443

abs/2406.11779v14.444

[21] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane445

Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,446

Timothy Lillicrap, and Victor Valdes. An investigation of Model-free planning: boxoban levels.447

2018. URL: https://github.com/deepmind/boxoban-levels/.448

[22] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane449

Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,450

and Timothy Lillicrap. “An Investigation of Model-Free Planning.” In: arXiv (2019). arXiv:451

1901.03559 [cs.LG]. URL: http://arxiv.org/abs/1901.03559v2.452

[23] Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims453

Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Veličković, and Theophane Weber.454

“On the role of planning in model-based deep reinforcement learning.” In: International455

Conference on Learning Representations. 2021. URL: https://openreview.net/forum?456

id=IrM64DGB21.457

[24] Michael Hanna, Ollie Liu, and Alexandre Variengien. “How Does GPT-2 Compute Greater-458

Than.” In: Interpreting Mathematical Abilities in a Pre-Trained Language Model 2 (2023),459

p. 11.460

[25] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic determina-461

tion of minimum cost paths.” In: IEEE transactions on Systems Science and Cybernetics 4.2462

(1968), pp. 100–107.463

[26] Stefan Heimersheim and Jett Janiak. A Circuit for Python Docstrings in a 4-layer Attention-464

Only Transformer. Alignment Forum. https://www.alignmentforum.org/posts/465

u6KXXmKFbXfWzoAXn / acircuit - for - python - docstrings\ - in - a - 4 - layer -466

attention - only. 2023. URL: https : / / www . alignmentforum . org / posts /467

u6KXXmKFbXfWzoAXn/.468

[27] Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant.469

“Risks from Learned Optimization in Advanced Machine Learning Systems.” In: arXiv (2019).470

arXiv: 1906.01820 [cs.AI]. URL: https://arxiv.org/abs/1906.01820.471

[28] Michael Ivanitskiy, Alexander F Spies, Tilman Räuker, Guillaume Corlouer, Christopher472

Mathwin, Lucia Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, Katsumi473

Inoue, and Samy Wu Fung. “Linearly Structured World Representations in Maze-Solving474

Transformers.” In: UniReps: the First Workshop on Unifying Representations in Neural Models.475

2023. URL: https://openreview.net/forum?id=pZakRK1QHU.476

[29] Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.477

“Evidence of Learned Look-Ahead in a Chess-Playing Neural Network.” In: CoRR (2024).478

arXiv: 2406.00877 [cs.LG]. URL: http://arxiv.org/abs/2406.00877v1.479

[30] Adam Karvonen. “Emergent World Models and Latent Variable Estimation in Chess-Playing480

Language Models.” In: CoRR (2024). arXiv: 2403.15498v2 [cs.LG]. URL: http://arxiv.481

org/abs/2403.15498v2.482

[31] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.483

“Interpretability beyond Feature Attribution: Quantitative Testing with Concept Activation484

Vectors (TCAV).” In: International conference on machine learning. PMLR. 2018, pp. 2668–485

2677.486

11

https://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
https://arxiv.org/abs/2406.11779
http://arxiv.org/abs/2406.11779v14
http://arxiv.org/abs/2406.11779v14
http://arxiv.org/abs/2406.11779v14
https://github.com/deepmind/boxoban-levels/
https://arxiv.org/abs/1901.03559
http://arxiv.org/abs/1901.03559v2
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://openreview.net/forum?id=pZakRK1QHU
https://arxiv.org/abs/2406.00877
http://arxiv.org/abs/2406.00877v1
https://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2

[32] Brandon Knutson, Amandin Chyba Rabeendran, Michael Ivanitskiy, Jordan Pettyjohn, Cecilia487

Diniz-Behn, Samy Wu Fung, and Daniel McKenzie. “On Logical Extrapolation for Mazes488

With Recurrent and Implicit Networks.” In: CoRR (2024). arXiv: 2410.03020 [cs.LG]. URL:489

http://arxiv.org/abs/2410.03020v1.490

[33] Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin491

Wattenberg. “Emergent World Representations: Exploring a Sequence Model Trained on492

a Synthetic Task.” In: International Conference on Learning Representations. 2023. URL:493

https://openreview.net/forum?id=DeG07%5C_TcZvT.494

[34] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.495

Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael496

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas497

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam498

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. “On the499

Biology of a Large Language Model.” In: Transformer Circuits Thread (2025). URL: https:500

//transformer-circuits.pub/2025/attribution-graphs/biology.html.501

[35] Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.502

“Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language503

Models.” In: CoRR (2024). arXiv: 2403.19647 [cs.LG]. URL: http://arxiv.org/abs/504

2403.19647v3.505

[36] Samuel Marks, Johannes Treutlein, Trenton Bricken, Jack Lindsey, Jonathan Marcus, Siddharth506

Mishra-Sharma, Daniel Ziegler, Emmanuel Ameisen, Joshua Batson, Tim Belonax, Samuel R.507

Bowman, Shan Carter, Brian Chen, Hoagy Cunningham, Carson Denison, Florian Dietz, Satvik508

Golechha, Akbir Khan, Jan Kirchner, Jan Leike, Austin Meek, Kei Nishimura-Gasparian,509

Euan Ong, Christopher Olah, Adam Pearce, Fabien Roger, Jeanne Salle, Andy Shih, Meg510

Tong, Drake Thomas, Kelley Rivoire, Adam Jermyn, Monte MacDiarmid, Tom Henighan, and511

Evan Hubinger. “Auditing Language Models for Hidden Objectives.” In: CoRR (2025). arXiv:512

2503.10965 [cs.AI]. URL: http://arxiv.org/abs/2503.10965v2.513

[37] Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Demis Hassabis, Been514

Kim, Ulrich Paquet, and Vladimir Kramnik. “Acquisition of chess knowledge in AlphaZero.”515

In: Proceedings of the National Academy of Sciences of the United States of America 119516

(2021).517

[38] Tianyi Men, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. “Unlocking518

the Future: Exploring Look-Ahead Planning Mechanistic Interpretability in Large Language519

Models.” In: CoRR (2024). arXiv: 2406.16033 [cs.CL]. URL: http://arxiv.org/abs/520

2406.16033v1.521

[39] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen. Ablation522

Studies in Artificial Neural Networks. 2019. arXiv: 1901.08644 [cs.NE]. URL: https:523

//arxiv.org/abs/1901.08644.524

[40] Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexander525

Matt Turner. “Understanding and Controlling a Maze-Solving Policy Network.” In: arXiv526

(2023). arXiv: 2310.08043 [cs.AI]. URL: http://arxiv.org/abs/2310.08043v1.527

[41] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress528

measures for grokking via mechanistic interpretability. 2023. arXiv: 2301.05217 [cs.LG].529

URL: https://arxiv.org/abs/2301.05217.530

[42] Neel Nanda, Andrew Lee, and Martin Wattenberg. “Emergent Linear Representations in531

World Models of Self-Supervised Sequence Models.” In: CoRR (2023). arXiv: 2309.00941532

[cs.LG]. URL: http://arxiv.org/abs/2309.00941v2.533

[43] Neel Nanda, Senthooran Rajamanoharan, Janos Kramar, and Rohin Shah. “Fact finding:534

Attempting to reverse-engineer factual recall on the neuron level.” In: Alignment Forum. 2023,535

p. 6.536

[44] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.537

“Zoom In: An Introduction to Circuits.” In: Distill (2020). https://distill.pub/2020/circuits/zoom-538

in. DOI: 10.23915/distill.00024.001.539

[45] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom540

Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. “In-Context Learning541

and Induction Heads.” In: arXiv preprint arXiv:2209.11895 (2022).542

12

https://arxiv.org/abs/2410.03020
http://arxiv.org/abs/2410.03020v1
https://openreview.net/forum?id=DeG07%5C_TcZvT
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2403.19647
http://arxiv.org/abs/2403.19647v3
http://arxiv.org/abs/2403.19647v3
http://arxiv.org/abs/2403.19647v3
https://arxiv.org/abs/2503.10965
http://arxiv.org/abs/2503.10965v2
https://arxiv.org/abs/2406.16033
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2406.16033v1
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/2310.08043
http://arxiv.org/abs/2310.08043v1
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
http://arxiv.org/abs/2309.00941v2
https://doi.org/10.23915/distill.00024.001

[46] OpenAI. Introducing OpenAI o1-preview. 2024. URL: https://openai.com/index/543

introducing-openai-o1-preview/.544

[47] Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind545

Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Arcas,546

Max Vladymyrov, Razvan Pascanu, and João Sacramento. “Uncovering Mesa-Optimization547

Algorithms in Transformers.” In: CoRR (2023). arXiv: 2309.05858 [cs.LG]. URL: http:548

//arxiv.org/abs/2309.05858v2.549

[48] Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. “Future Lens:550

Anticipating Subsequent Tokens from a Single Hidden State.” In: Proceedings of the 27th551

Conference on Computational Natural Language Learning (CoNLL). Ed. by Jing Jiang, David552

Reitter, and Shumin Deng. Singapore: Association for Computational Linguistics, Dec. 2023,553

pp. 548–560. DOI: 10.18653/v1/2023.conll-1.37. URL: https://aclanthology.554

org/2023.conll-1.37/.555

[49] Niklas Sandhu Peters, Marc Alexa, and Special Field Neurotechnology. Solving Sokoban556

efficiently: Search tree pruning techniques and other enhancements. 2023. URL: https:557

//doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf.558

[50] Casey Primozic. Reverse Engineering a Neural Network’s Clever Solution to Binary Addition.559

https://cprimozic.net/blog/reverse-engineering-a-small-neural-network/.560

Accessed: 2025-05-15. 2023.561

[51] Philip Quirke and Fazl Barez. “Understanding addition in transformers.” In: arXiv preprint562

arXiv:2310.13121 (2023). arXiv: 2310.13121 [cs.LG]. URL: http://arxiv.org/abs/563

2310.13121v9.564

[52] Sébastien Racanière, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez,565

Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yu-566

jia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wier-567

stra. “Imagination-Augmented Agents for Deep Reinforcement Learning.” In: Advances568

in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio,569

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,570

2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/571

9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf.572

[53] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt573

Turner. “Steering Llama 2 via Contrastive Activation Addition.” In: arXiv (2023). eprint:574

2312.06681. URL: https://arxiv.org/abs/2312.06681.575

[54] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. Prentice Hall Press,576

Upper Saddle River, NJ, USA, 2009. ISBN: 9780136042594.577

[55] Max-Philipp B. Schrader. gym-sokoban. 2018. URL: https://github.com/mpSchrader/578

gym-sokoban.579

[56] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,580

Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy581

Lillicrap, and David Silver. “Mastering Atari, Go, Chess and Shogi By Planning With a582

Learned Model.” In: (2019). arXiv: 1911.08265 [cs.LG]. URL: http://arxiv.org/abs/583

1911.08265v1.584

[57] Ludwig Schubert, Chelsea Voss, Nick Cammarata, Gabriel Goh, and Chris Olah. “High-Low585

Frequency Detectors.” In: Distill (2021). https://distill.pub/2020/circuits/frequency-edges. DOI:586

10.23915/distill.00024.005.587

[58] Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim.588

“Bridging the Human-Ai Knowledge Gap: Concept Discovery and Transfer in Alphazero.”589

In: CoRR (2023). arXiv: 2310.16410 [cs.AI]. URL: http://arxiv.org/abs/2310.590

16410v1.591

[59] Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan592

Uesato, and Zac Kenton. “Goal misgeneralization: why correct specifications aren’t enough593

for correct goals.” In: arXiv preprint arXiv:2210.01790 (2022). URL: https://arxiv.org/594

abs/2210.01790.595

13

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2309.05858
http://arxiv.org/abs/2309.05858v2
http://arxiv.org/abs/2309.05858v2
http://arxiv.org/abs/2309.05858v2
https://doi.org/10.18653/v1/2023.conll-1.37
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://cprimozic.net/blog/reverse-engineering-a-small-neural-network/
https://arxiv.org/abs/2310.13121
http://arxiv.org/abs/2310.13121v9
http://arxiv.org/abs/2310.13121v9
http://arxiv.org/abs/2310.13121v9
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
2312.06681
https://arxiv.org/abs/2312.06681
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265v1
http://arxiv.org/abs/1911.08265v1
http://arxiv.org/abs/1911.08265v1
https://doi.org/10.23915/distill.00024.005
https://arxiv.org/abs/2310.16410
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2310.16410v1
https://arxiv.org/abs/2210.01790
https://arxiv.org/abs/2210.01790
https://arxiv.org/abs/2210.01790

[60] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas596

Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman,597

Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg,598

Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William599

Saunders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet,600

and Tom McGrath. “Open Problems in Mechanistic Interpretability.” In: CoRR (2025). arXiv:601

2501.16496 [cs.LG]. URL: http://arxiv.org/abs/2501.16496v1.602

[61] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den603

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,604

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-605

thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.606

“Mastering the game of Go with deep neural networks and tree search.” In: Nature 529.7587607

(2016), pp. 484–489. DOI: 10.1038/nature16961. URL: https://doi.org/10.1038/608

nature16961.609

[62] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur610

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,611

Karen Simonyan, and Demis Hassabis. “A general reinforcement learning algorithm that612

masters chess, shogi, and Go through self-play.” In: Science 362.6419 (2018), pp. 1140–1144.613

DOI: 10.1126/science.aar6404. eprint: https://www.science.org/doi/pdf/10.614

1126/science.aar6404. URL: https://www.science.org/doi/abs/10.1126/615

science.aar6404.616

[63] Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker,617

Adam Gleave, and Adrià Garriga-Alonso. “Planning in a recurrent neural network that plays618

Sokoban.” In: arXiv (2024). arXiv: 2407.15421 [cs.LG]. URL: https://arxiv.org/abs/619

2407.15421.620

[64] Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid.621

“Activation Addition: Steering Language Models Without Optimization.” In: arXiv e-prints622

(2023), arXiv–2308.623

[65] Chelsea Voss, Nick Cammarata, Gabriel Goh, Michael Petrov, Ludwig Schubert, Ben624

Egan, Swee Kiat Lim, and Chris Olah. “Visualizing Weights.” In: Distill (2021).625

https://distill.pub/2020/circuits/visualizing-weights. DOI: 10.23915/distill.00024.007.626

[66] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Stein-627

hardt. “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2628

Small.” In: International Conference on Learning Representations. 2023. URL: https://api.629

semanticscholar.org/CorpusID:260445038.630

[67] Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, and Dhruv Batra.631

“Emergence of Maps in the Memories of Blind Navigation Agents.” In: International Con-632

ference on Learning Representations. 2023. URL: https://openreview.net/forum?id=633

lTt4KjHSsyl.634

[68] Chun Hei Yip, Rajashree Agrawal, Lawrence Chan, and Jason Gross. Modular addition without635

black-boxes: Compressing explanations of MLPs that compute numerical integration. 2025.636

URL: https://openreview.net/forum?id=yBhSORdXqq.637

[69] Fred Zhang and Neel Nanda. “Towards Best Practices of Activation Patching in Language638

Models: Metrics and Methods.” In: The Twelfth International Conference on Learning Repre-639

sentations. 2024. URL: https://openreview.net/forum?id=Hf17y6u9BC.640

[70] Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. “The Clock and the Pizza: Two641

Stories in Mechanistic Explanation of Neural Networks.” In: Thirty-seventh Conference on642

Neural Information Processing Systems. 2023. URL: https://openreview.net/forum?643

id=S5wmbQc1We.644

[71] Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. “Pre-trained Large Language Models645

Use Fourier Features to Compute Addition.” In: The Thirty-eighth Annual Conference on646

Neural Information Processing Systems. 2024. URL: https://openreview.net/forum?647

id=i4MutM2TZb.648

14

https://arxiv.org/abs/2501.16496
http://arxiv.org/abs/2501.16496v1
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://doi.org/10.23915/distill.00024.007
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=yBhSORdXqq
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb

Appendix649

A Common components of search algorithmns650

A search algorithm requires four key components:651

1. A representation of states.652

2. A transition model that defines which nodes (states) are reachable from a currently expanded653

node when taking a certain action.654

3. A heuristic function that determines which nodes to expand.655

4. A value function that determines which plan to choose once the search ends (in online search656

algorithms, only the first action from the chosen plan is taken).657

The heuristic varies by algorithm:658

• For A*, it is distance(n) + heuristic(n). [54]659

• For iterative-deepening alpha-beta search (as used in Stockfish), the heuristic comprises660

move ordering and pruning criteria. [7]661

• For AlphaZero/MuZero MCTS, it uses the UCT formula pre-rollout, incorporating backed-662

up value functions and a policy with Dirichlet noise. [62, 56]663

In all cases, the expansion process influences the relative evaluation of actions in the starting state.664

The final action selection relies on a value function:665

• A*: Uses the actual path distance when plans have been fully expanded. [54]666

• AlphaZero/MuZero MCTS: Employs backpropagated estimated values combining rollout667

and final score. [62, 56]668

• Stockfish 16+: Utilizes the machine-learned evaluation function at leaf nodes. [7]669

In the body of the paper, we show how various parts of the trained DRC correspond to these four670

components.671

B Network architecture672

The DRC architecture consists of an convolutional encoder E without any non-linearities, followed673

by D ConvLSTM layers that are repeated N times per environment step, and an MLP block that674

maps the final layer’s hidden state to the value function and action policy.675

The encoder maps the observation xt at timestep t to the encoded state et. For all d > 1, the676

ConvLSTM layer updates the hidden state hn
d , c

n
d at each tick n using the following equations:677

et := E(xt) = WE2
∗ (WE2

∗ xt + bE1
) + bE2

(1)

cnd , h
n
d := ConvLSTMd(et, h

n
d−1, c

n−1
d , hn−1

d) (2)
678

ind := tanh(Wii ∗ et +Wih1
∗ hn

d−1 +Wih2 ∗ hn−1
d + bi) (3)

jnd := σ(Wji ∗ et +Wjh1 ∗ hn
d−1 +Wjh2 ∗ hn−1

d + bj) (4)

fn
d := σ(Wfi ∗ et +Wfh1

∗ hn
d−1 +Wfh2

∗ hn−1
d + bf) (5)

ond := tanh(Woi ∗ et +Woh1
∗ hn

d−1 +Woh2
∗ hn−1

d + bo) (6)

cnd := fn
d ⊙ cn−1

d + ind ⊙ jnd (7)
hn
d := ond ⊙ tanh(cnd) (8)

Here ∗ denotes the convolution operator, and ⊙ denotes point-wise multiplication. Note that θd =679

(Wi·,Wj·,Wf ·,Wo·, bi, bj , bf , bo)d parameterizes the computation of the i, j, f, o gates. For the first680

15

ConvLSTM layer, the hidden state of the final ConvLSTM layer is used as the previous layer’s hidden681

state.682

A linear combination of the mean- and max-pooled ConvLSTM activations is injected into the next683

step, enabling quick communication across the receptive field, known as pool-and-inject. A boundary684

feature channel with ones at the boundary of the input and zeros inside is also appended to the input.685

These are ignored in the above equations for brevity.686

Finally, an MLP with 256 hidden units transforms the flattened ConvLSTM outputs hN
D into the687

policy (actor) and value function (critic) heads. In our setup, D = N = 3 and C = 32 matching Guez688

et al. [22]’s original hyperparameters. An illustration of the full architecture is shown in Figure 9.689

Encoder Simplification To interpret the weights of the encoder, we use the associativity of linear690

operations to combine the convolution operation of the encoder and the convolution kernels that map691

the encoder output et to the hidden state hn
d into a single convolutional layer. For all d > 0 and692

c ∈ {i, j, f, o}, we define the combined kernel W d
ce and bias bdce as:693

W d
ce := W d

ii ∗We2 ∗We1 (9)

bdce := W d
ii ∗ (be2 +We2 ∗ be1) (10)

W d
ii ∗ et = W d

ce ∗ xt + bdce (up to edge effects) (11)

C Network training details694

The network was trained using the IMPALA V-trace actor-critic [18] reinforcement learning (RL)695

algorithm for 2 · 109 environment steps with Guez et al.’s Deep Repeating ConvLSTM (DRC)696

recurrent architecture consisting of three layers repeated three times per environment step, as shown697

in Figure 9.698

The observations are H×W RGB images with height H and width W . The agent, boxes, and targets699

are represented by the green , brown , and red pixels respectively [55], as illustrated in Figure 8.700

The environment has -0.1 reward per step, +10 for solving a level, +1 for putting a box on a target701

and -1 for removing it.702

Dataset The network was trained on 900k levels from the unfiltered train set of the Boxoban703

dataset [21]. Boxoban separates levels into train, validation, and test sets with three difficulty levels:704

unfiltered, medium, and hard. The hard set is a single set with no splitting. Guez et al. [22] generated705

these sets by filtering levels unsolvable by progressively better-trained DRC networks. So easier sets706

occasionally contain difficult levels. Each level in Boxoban has 4 boxes in a grid size of H = W = 10.707

The H ×W observations are normalized by dividing each pixel component by 255. The edge tiles in708

the levels from the dataset are always walls, so the playable area is 8× 8. The player has four actions709

available to move in cardinal directions (Up, Down, Left, Right). The reward is -0.1 per step, +1710

for placing a box on a target, -1 for removing it, and +10 for finishing the level by placing all of the711

boxes. In this paper, we evaluate the network on the validation-medium and hard sets of the Boxoban712

dataset. We also often evaluate the network on custom levels with different grid sizes and number of713

boxes to clearly demonstrate certain mechanisms in isolation.714

Action probe for evaluation on larger grid sizes The DRC(3, 3)network is trained on a fixed715

H ×W grid size with the hidden state channels flattened to a H ×W ×C tensor before passing it to716

the MLP layer for predicting action. Due to this limitation, the network cannot be directly evaluated717

on larger grid sizes. Taufeeque et al. [63] trained a probe using logitic regression with 135 parameters718

on the hidden state h of the final ConvLSTM layer to predict the next action. They found that the719

probe can replace the 0.8M parameter MLP layer to predict the next action with a 77.9% accuracy.720

They used this probe to show that the algorithm learned by the DRC backbone generalizes to grid721

sizes 2-3 times larger in area than the training grid size of 10× 10. We use these action probes to run722

the same network on larger grid sizes in this paper.723

16

Figure 8: High resolution visualization of a Sokoban level along with the corresponding symbolic
representation that the network observes. The agent, boxes, and targets are represented by the green

, brown , and red squares respectively.

MLP

Figure 9: DRC(3, 3)architecture. Blocks parametrized by θ represent the ConvLSTM module shown
in Figure 2. There are three layers of ConvLSTM modules with all the layers repeated applied three
times before predicting the next action.

D Gate importance724

We identify here the components that are important and others which can be ignored. We noticed725

that our analysis can be simplified by ignoring components like the previous cell-state c and forget726

gate f that don’t have much effect. On mean-ablating the cell-state c at the first tick n = 0 of every727

step for all the layers, we find that the network’s performance drops by 21.28%± 0.04%. The same728

ablation on the forget gate f results in a drop of 2.66%±0.03%. On the other hand, the same ablation729

procedure on any of the other gates i, j, o, or the hidden state h breaks the network and results in a730

drop of 100.00% with no levels solved at all. This shows that the forget gate is not as important as731

other gates in regulating the information in the cell-state, and the information in the cell-state itself is732

not relevant for solving most levels. The only place we found the forget gates to be important is for733

accumulating the next-action in the GNA channels (Section F).734

The mean-ablation experiment shows that the network computation from previous to the current step735

can be simplified to the following:736

cnd ≈ E[fn
d]⊙ E[cn−1

d] + ind ⊙ jnd = µ+ ind ⊙ jnd (12)
hn
d = ond ⊙ tanh(cnd) ≈ ond ⊙ tanh(µ+ ind ⊙ jnd) (13)

We therefore focus more on the i, j, o gates and the hidden state h in our analysis in this paper.737

Qualitatively, it also looks like the cell-state c is very similar to the hidden state h. Note that the cell738

17

Figure 10: 16× 16 zig-zag level that the original DRC(3, 3) network fails to solve. Steering W d
ch1

and W d
ch2

by a factor of 1.2 solves this level and similar zig-zag levels for sizes upto 25× 25.

Table 3: Comparison of network intervened with single-step cache across different channel groups.
We report the percentage drop of solve rate compared to the original network (%) on medium-difficulty
levels.

Group # Channels Performance Drop
Non-planning 37 10.5
Planning 59 57.6
Random planning subset 37 41.3

state c not being much relevant doesn’t imply that the network is not using information from previous739

hidden states, since most of the information from the previous hidden states hn−1
d flows through the740

W d
ch2

kernels.741

E Label verification and offset computation742

We see from Table 8 that most channels can be represented with some combination of features that743

can be derived from observation image (base feature) and future box or agent movements (future744

features). We compute the following 5 base features: agent, floor, boxes not on target, boxes on745

target, and empty targets. For future features, we get 3 features for each direction: box-movement,746

agent-movement, and a next-action feature that activates positively on all squares if that action is747

taken by the network at the current step. We perform a linear regression on the 5 base and 12 future748

features to predict the activations of each channel in the hidden state h.749

Offset computation On visualizing the channels of the DRC(3, 3)network, we found that the750

channels are not aligned with the actual layout of the level. The channels are spatially-offset by751

a few squares in the cardinal directions. To automatically compute the offsets, we perform linear752

regression on the base and future features to predict the channel activation by shifting the features753

along x, y ∈ {−2,−1, 0, 1, 2} and selecting the offset regression model with the lowest loss. The754

channels offsets are available in Table 4. We manually inspected all the channels and the offset and755

found that this approach accurately produces the correct offset for all the 96 channels in the network.756

All channel visualization in the paper are shown after correcting the offset.757

Correlation The correlation between the predicted and actual activations of the channels is provided758

in the Tables 5 and 6. We find that box-movement, agent-movement, combined-plan, and target759

channels have a correlation of 66.4%, 50.8%, 48.0%, and 76.7%. As expected, the unlabeled channels760

do not align with our feature set and have the lowest correlation of 40.2%. Crucially, a baseline761

regression using only base features yielded correlations below 20% for all channels, confirming that762

the channels are indeed computing plans using future movement directions. These correlations should763

18

−1

−0.5

0

0.5

1

N
or
m
al
iz
ed

A
ct
iv
at
io
n

Agent right
(L2H5)

Agent up
(L1H29)

GNA
(L2H26)

PNA
(L2H3)

Target
(L0H6)

Combined plan
(L2H14)

No-label
(L0H3)

Observation Box left
(L1H27)

Box down
(L1H17)

Box right
(L0H17)

Box up
(L0H24)

Agent left
(L2H31)

Agent down
(L1H18)

Figure 11: A toy observation with demonstrations of a single channel from every channel group in
Table 7.

Observation
Agent | Boxes | Targets

| Adjacent squares
L0O9 | L0O16 | L0O6 | L0O24 ...

§5.1 Initialize plan
§G Transition update

Encoder

Action

§F Map to agent plan
L1H29, L1H18, L2H31, L1H21

§F Next action in grid
L2H28, L2H4, L2H23, L2H26

§F Pooled next action
L2H29, L2H8, L2H27, L2H3

L2
 o

nl
y:

 A
ct

io
n

 S
el

ec
tio

n

A
dd

tu
rn

s

Ex
te

nd
lin

ea
rly

Stop plan extension

§5.2 Plan extension
(expanded)

H
eu

ris
tic

s

§4 Long term plan
L0H24, L0H14, L0H23, L1H15

§4 Short term plan
L0H13, L0H2, L0H31, L0H9

§5.2 Plan extension

§5.2 Plan extension

§4 Long term plan
L0H24, L0H14, L0H23, L1H15

§4 Short term plan
L0H13, L0H2, L0H31, L0H9

step n-1 step n

§5.3 Winner-takes-
all mechanism

§5.3 Backtrack
invalid plan

§H Decay & remove

Legend

Plan channels (U,D,L,R)
Non-plan channels (U.D,L,R)
Previous step hidden state

Mechanism / Transfer
Intermediate mechanism
Input / Output

Figure 12: The planning algorithm circuit learned by DRC(3, 3). While the plan nodes are present
and updated across all the layers, this circuit only shows the short and long-term plan nodes in
the first layer’s hidden state (L0HX) with a channel X for each direction up, down, left, and right.
Mechanisms are annotated with the sub-section (§) they are described in.

be treated as lower bounds, as this simple linear approach on the binary features cannot capture764

many activation dynamics like continuous development, representation of rejected alternative plans765

(Section 5.3), or the distinct encoding of short- vs. long-term plans.766

F Plan Representation to Action Policy767

The plan formed by the box movement channels are transferred to the agent movement channels.768

For example, Figure 21b shows that the agent down movement channel L1H18 copies the box down769

movement channel L1H17 by shifting it one square up, corresponding to where the agent will push770

the box. The kernels also help in picking a single path if the box can go down through multiple paths.771

Once the box-plan transfers to the agent-movement channels, these channels are involved in their772

own agent-path extension mechanism. Figure 21a show that the agent-movement channels have773

19

their own linear-plan-extension kernels. These channels also have stopping conditions that stop the774

plan-extension at the box squares and agent square. Thus, as a whole, the box-movement channels775

find box to target paths and the agent-movement channels copy those paths and also find agent to box776

paths.777

Finally, the network needs to find the next action to take from the complete agent action plan778

represented in agent-movement channels. We find that the network dedicates separate channels that779

extract the next agent action. We term these channels as the grid-next-action (GNA) channels (Table 7).780

There exists one GNA channel for each of the four action directions. A max-pooling operation on781

these channels transfers the high activation of an action to the entire grid of the corresponding agent782

action channel. We term these as the pooled-next-action (PNA) channels (Table 7). Lastly, the MLP783

layer aggregates the flattened neurons of the PNA channels to predict the next action. We verify that784

the PNA and GNA channels are completely responsible for predicting the next action by performing785

causal intervention that edits the activation of the channel based on our understanding to cause the786

agent to take a random action at any step in a level. Table 2 shows that both the PNA and GNA787

channels are highly accurate in modifying the next action. We now describe how the network extracts788

only the next agent move into the GNA channels.789

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Observation Agent
(L2H27)

Box-down
(L1H17)

Agent-down
(L1H18)

L2
F4

L2
F2

6

+

+

+

+

Figure 13: Left: Observation at step 3 where the
agent moves down.Right: The GNA channels,
which represent the direction that the agent will
move in at the next step, predict the agent mov-
ing down primarily through f -gate. The box- and
agent-down channels are offset and subtracted to
get the action at the agent square. The checkered
agent location pattern from L2H27 also helps in
isolating the action on the agent square. The active
f -gate square accumulates activation in the cell-
state c which after max-pooling and MLP layer
decodes to the down action being performed.

The individual gates of the GNA channels copy790

activations of the agent-movement channels.791

Some gates perform subtraction of the agent and792

box movement channels to get agent-exclusive793

moves and the next agent box push. Figure 13794

(top-right) shows one such example where the795

agent and box movement channels from layer 1796

are subtracted resulting in an activation exclu-797

sively at the agent square. The GNA gates also798

receive positive activation on the agent square799

through L2H27 which detects agent at the first800

tick n = 0 of a step. Figure 13 shows that the801

f -gate of all GNA channels receives a positive802

contribution from the agent square. To counter-803

act this, the agent-movement channels of one804

direction contribute negatively to the GNA chan-805

nels of all other directions. All of this results806

in the agent square of the GNA channel of the807

next move activating strongly at the second tick808

n = 1.809

Thus we have shown that the complete plan is filtered through the GNA channels to extract the next810

action which activates the PNA channel for the next action to be taken.811

G State Transition Update812

We have understood how the plan representation is formed and mapped to the next action to be813

taken. However, once an action is taken, the network needs to update the plan representation to814

reflect the new state of the world. We saw in Figure 3 that the plan representation is updated by815

deactivating the square that represented the last action in the plan. This allowed a different future816

action to be represented at the same square in the short-term channel which was earlier stored only in817

the long-term channel. We now show how a square is deactivated in the plan representation.818

After an action is taken, the network receives the updated observation on the first tick n = 0 with the819

new agent or box positions. The combined W d
ce kernels for each layer that map to the path channels820

contain filters that detect only the agent, box, or target, often with the opposite sign of activation of821

the plan in the channel (Figure 22). Hence, when the observation updates with the agent in a new822

position, the agent kernels activates with the opposite sign of the plan activation that deletes the last823

move from the plan activation in the hidden state. The activation contributions in Figure 6 shows824

the negative contribution from the encoder kernels on the agent and the square to the left of the box.825

Therefore, the agent and the boxes moving through the level iteratively remove squares from the plan826

20

0 20 40

40

60

80

100
Agent up

L0H18
L1H5
L1H29
L2H28
L2H29

0 20 40

Agent down

L0H10
L1H18
L2H4
L2H8

0 20 40

Agent left

L2H23
L2H27
L2H31

0 20 40

Agent right

L1H21
L1H28
L2H3
L2H5
L2H26
L2H21

Steps

A
U

C
 (%

)

0 20 40

40

60

80

100

Box up

L0H13
L0H24
L2H6

0 20 40

Box down

L0H2
L0H14
L0H20
L1H14
L1H17
L1H19

0 20 40

Box left

L0H23
L0H31
L1H11
L1H27
L2H20

0 20 40

Box right

L0H9
L0H17
L1H13
L1H15
L2H9
L2H15

Steps

A
U

C
 (%

)

Figure 14: AUC scores of agent and boxes for all directions. The two channels in agent directions
that quickly fall are the GNA/PNA channel which have a high AUC (100%) only for the next action.
Short-term channel show a high AUC for predicting actions 10 steps in advance whereas the long-term
channels show a high AUC for predicting agent’s actions beyond 10 steps until the end of the episode.

20 0 20
Centered time steps (t)

0.0

0.2

0.4

0.6

Av
er

ag
e

ac
tiv

at
io

n

Up long term
Up short term

20 0 20
Centered time steps (t)

0.0

0.2

0.4

Av
er

ag
e

ac
tiv

at
io

n

Down long term
Down short term

20 0 20
Centered time steps (t)

0.2

0.4

Av
er

ag
e

ac
tiv

at
io

n

Left long term
Left short term

20 0 20
Centered time steps (t)

0.0

0.2

0.4

Av
er

ag
e

ac
tiv

at
io

n

Right long term
Right short term

Figure 15: Activations of the long- and short-term channels for all directions when a different
direction action takes place at t = 0. All direction except the up direction shows the long-term
channel activations decreasing after the other action takes place at t = 0. The mechanism of this
transfer of activation from long to short-term is shown in Figure 16.

when they are executed with the plan-stopping mechanism ensuring that the plan doesn’t over-extend827

beyond the new positions from the latest observation.828

H Activation transfer mechanism between long and short term channels829

Consider a scenario where two different actions, A1 and A2 (A1 ̸= A2), are planned for the same830

location ("square") at different timesteps, t1 and t2, with t1 < t2. As illustrated in Section 5.3,831

Figure 3 (right) and further detailed in Figure 15, the later action (A2 at t2) is initially stored in the832

long-term channel for timesteps t < t1. This information is transferred to the short-term channel833

only after the earlier action (A1) is executed at t = t1. We now describe the specific mechanism834

responsible for this transfer of activation from the long-term to the short-term channel.835

In Figure 16, the activations transfer into L1H17 (short-term-down) from L0H14 (long-term-down)836

and L0H2 (short-term-down) channels when a right action is taken at t = 0 represented in L0H9837

(short-term-right). The short-term-right channel L0H9 imposes a large negative contribution via the838

j-gate to inhibit L1H17, keeping it inactive even as the long-term-down channel tries to transfer a839

signal through the j and o-gates for t < 0. Once the first move completes (t = 0), short-term-right is840

no longer active and so the inhibition ceases. The removal of the negative input allows the j-gate’s841

activation to rise, enabling the long-term-down activation transfer through o-gate, making it the new842

active short-term action at the square. This demonstrates how long-term channels hold future plans,843

insulated from immediate execution conflicts by the winner takes all (WTA) mechanism (Section 5.3844

and Figure 1) acting on short-term channels.845

21

50 0 50
Centered time steps (t)

 j

1

0

1

Av
g

ac
tiv

at
io

n
(L

1H
17

)

50 0 50
Centered time steps (t)

 o

50 0 50
Centered time steps (t)

 h≈ σ(j) · tanh(o)

H2: short-term H9: short-term H14: long-term Sum

Figure 16: Transfer mechanism from long to short-term channel shown through contributions into
the gates of the short-term-down (L1H17) channel averaged across squares where a right box-push
happens at t = 0 and down box-push later on. The long-term-down channel L0H14 contributes to the
o-gate at all steps t. However, L0H9 (short-term-right) activates negatively in the sigmoid j-gate, thus
deactivating L1H17. As the right move gets played at t = 0, L0H9’s negative contribution vanishes,
enabling the transfer of L0H14 and L0H2 into L1H17.

I Case study: Backtracking mechanism846

(a) Observation

D1

D2D3

(b) All box channels
step 1 tick 0

(c) L2H9 (right)
step 5 tick 1

(d) L2I9 (right)
step 5 tick 1

(e) L2O9 (right)
step 5 tick 1

(f) L2H9 (right)
step 9 tick 1

(g) L2H9 (right)
Abl. step 9 tick 1

Figure 17: (a) 20 × 20 level we term as the “backtrack level” with key decision nodes D1-D3 for
backward chaining. (b) The sum of box-movement channels at step 1 tick 0 indicates forward (from
box) and backward (from target) chaining. (c-e) Activation of the box-right channel L2H9 involved
in backward chaining at step 5 tick 1. Backward chaining moved up from D1 to D2 and then hitting a
wall at D3, which initiates backtracking towards D2 through negative plan extension. The negative
wall activation comes from the o-gate of L2H9. (f) Successful pathfinding at T28 after backtracking
redirected the search. (g) Ablation: Forcing positive activation at D3 (by setting it to its absolute
value) prevents backtracking, hindering correct solution finding (L2H9 Abl., T28).
In particular, the forced positive ablation at D3 results in an incorrect plan (g) which seemingly goes
right all the way through the wall, as opposed to the correct plan (f) which goes right on a valid path.

Consider the level depicted in Figure 17 (a). The network begins by chaining forward from the box847

and backward from the target(Figure 17, b). Upon reaching the square marked D1, the plan can848

continue upwards or turn left. Here, the linear and turn plan-extension kernels activate the box-down849

and the box-right channels, respectively. However, the box-down activation is much higher because850

the weights of the linear extension kernels are much larger than the turn kernels (as seen in Figure 1).851

Due to this, the winner-takes-all mechanism leads to the search continuing upwards in the box-down852

channel. Upon hitting a wall at D2, the chain turns right along the ‘box-right channel‘ (L2H9) and853

continues until it collides with another wall at D3. (Figure 17, c).854

This triggers backtracking. While both i-gate and o-gate activations contribute to plan extension,855

the o-gate also activates strongly negatively on wall squares like D3 (Figure 17d, e). This leads to a856

dominant negative activation in the ‘box-right‘ channel, which then propagates backward along the857

explored path (from D3 towards D2) via the forward plan-extension kernels of L2H9.858

22

Figure 18: A level with two paths, one longer than the other. We initialize the starting hidden state
with the two paths shown such that they both have two squares left to reach the target. We find that
the expands both paths and picks the left (longer) path through the winner-takes-all mechanism since
it reaches there with higher activation through linear-plan-extension.

This weakens the dominant ‘box-down‘ activation at D1, allowing the alternative ‘box-right‘ path859

from D1 to activate. The search then proceeds along this new route, allowing the backward chain to860

connect with the forward chain, resulting in the correct solution (Figure 17, f).861

To verify this mechanism, we performed an intevention by forcing the activation at the wall squares862

near D3 to be positive (by taking their absolute values). This blocked backtracking, and the network863

incorrectly attempted to connect the chains through the wall (Figure 17, g). This confirms that864

negative activation generated at obstacles is the key driver for backtracking, and is what allows the865

network to discard failed paths and explore alternatives. We quantitatively test this claim further by866

performing the same intervention on transitions from 512 levels where a plan’s activation is reduced867

by more than half in a single step which was preceded by a neighboring square having negative868

activation in the path channel. We define the intervention successful if forcing the negative square869

to an absolute value doesn’t reduce the activation of the adjacent plan square. The intervention870

results in a success rate with 95% confidence intervals of 85.1% ± 5.0% and 48.9% ± 3.3% for871

long- and short-term channels, respectively. This checks out with the fact that long-term channels872

represent plans not in the immediate future which would get backtracked through negative path873

activations. On the other hand, negative activations in the short-term channels are also useful during874

the winner-takes-all (WTA) mechanism and deadlock prevention heuristics. Filtering such activations875

for short-term channels from the intervention dataset would improve the numbers.876

J Case study: making the network take the longer path877

The network usually computes the shortest paths from a box to a target by forward (from box) and878

backward (from target) chaining linear segments until they connect at some square as illustrated879

in Figure 1. As soon as a valid plan is found for a box along one direction, the winner-takes-all880

mechanism stabilizes that plan through its stronger activations and deletes any other plans being881

searched for the box. From this observation, we hypothesize that the network values finding valid882

plans in least number of steps than picking the shorter one. We verify this value preference of the883

network by testing the network with on the level shown in Figure 18 with the starting state initialized884

with the two paths shown. The left path (length=13) is longer than the right path (length=7) for885

reaching from the box to target. Both paths are initialized in the starting hidden state to have two886

arrow left to complete the path. We find that in this case, both the paths reach the target, but the left887

one is stronger due to linear plan extension kernels reaching with higher activation. This makes the888

network pick the left path and prune out the shorter right path. If we modify the starting state such889

23

that left and right paths have 3 and 2 square left to the reach the target, then the right path wins and890

the left path is pruned out. This confirms that the network’s true value in this case is to pick a valid891

plan closer to target than to pick a shorter plan. However, since convolution moves plan one square892

per operation, the network usually seems to have the value of picking the shorter plan.893

K Unsuccessful methods894

Section 3 describes the methods we found useful to understand the learned algorithm of the DRC(3, 3)895

network. We also tried the following popular interpretability methods but found them to not work896

well for our network: Network Pruning, Automated Circuit Discovery, explicitly coding the causal897

abstract graph [6], and Sparse Autoencoders.898

L Channel Redundancy899

We see from Table 7 that the network represents many channels per box-movement and agent-900

movement direction. We find at least two reasons for why this redundancy is useful.901

First, it facilitates faster spatial propagation of the plan. Since the network uses 3 × 3 kernels902

in the ConvLSTM block, information can only move 1 square in each direction per convolution903

operation. By using redundant channels across multiple layers, the network can effectively move904

plan information several squares within a single time step’s forward pass (one square per relevant905

layer). Evidence for this rapid propagation is visible in Figure 17(b), where plan activations extend906

7-10 squares from from the target and the box within the first four steps on a 20× 20 level.907

Second, the network dedicates separate channels to represent the plan at different time horizons. We908

identified distinct short-term (approximately 0-10 steps ahead) and long-term (approximately 10-50909

steps ahead) channels within the box and agent-movement categories.910

This allows the network to handle scenarios requiring the same location to be traversed at different911

future times. For example, if a box must pass through the same square at time t1 and later at time912

t2, the network can use the short-term channel to represent the first push at t1 and the long-term913

channel to represent the second push at t2. Figure 3 (right) illustrates this concept, showing activation914

transferring from a long-term to a short-term box-down-movement channel once the earlier action at915

that square is taken by the agent.916

M Weight steering fixes failure on larger levels917

Previous work [63] showed that, although the DRC(3, 3) network can solve much bigger levels than918

10×10 grid size on which it was trained, it is easy to contruct simple and natural adversarial examples919

which the network fails to solve. For example, the n× n zig-zag level in Figure 10 that can be scaled920

arbitrarily by adding more alleys and making them longer, is only solved for n ≤ 15 and fails on all921

n > 15. The big level shown in Figure 17 (a) is solved by the network on the 20× 20 grid size but922

fails on 30× 30 or 40× 40 grid size.923

Figure 20 (a) visualizes the sum of activations of the box-movement channels on a 40× 40 variant of924

the backtrack level in which we see the reason why larger levels fail: the channel activations decay925

as the plan gets extended further and further. This makes sense as the network only saw 10 × 10926

levels during training and hence the kernel weights were learned to only be strong enough to solve927

levels where targets and boxes are not too far apart. We find that multiplying the weights of W d
ch1928

and W d
ch2

, the kernels that update and maintain the hidden state, by a factor of 1.2 helps the network929

extend the plan further. This weight steering procedure is able to solve the zig-zag levels for sizes up930

to n = 25 and the backtrack level for sizes up to 40× 40. Figure 20 (b, c) show that upon weight931

steering, the box-movement channels are able to maintain their activations for longer, enabling the932

network to solve the level. However, for much larger levels, weightsteered networks also fall into the933

same trap of decaying activations, failing to extend the plan. Further weight steering with a larger934

factor can help but we find that it can become brittle, as the planning representation gets stuck in935

wrong paths, unable to backtrack, with the activations becoming chaotic (Figure 19). We also tried936

other weight steering approaches such as multiplying all the weights of the network by a factor or937

24

Figure 19: Sum of activations of box-movement channels on the 40× 40 backtrack level with the
network weights W d

ch1 and W d
ch2

steered by a factor of 1.4. The planning representation gets stuck in
the loop shown, unable to backtrack and explore other paths. The activations of other squares become
chaotic, changing rapidly and randomly on each step.

a subset such as the kernels of path channels, but find that they do not work as well as the weight938

steering of W d
ch1 and W d

ch2
.939

N Limitations940

Our paper has several limitations. First, we only reverse-engineer one DRC(3, 3) network in this941

paper. We are fairly confident that our results generalize to any DRC(3, 3) network trained on942

Sokoban using model-free reinforcement learning, but can’t prove it. The network having similar943

performance and capabilities such as utilizing extra test-time compute across multiple papers who944

trained it independently suggests that the learned algorithm is a pretty stable minima [22, 63, 3].945

Second, we only reverse-engineer DRC and no other networks. It is possible that the inductive biases946

of other networks such as transformer, Conv-ResNet, or 1D-LSTM may end up learning an algorithm947

that is different from what we found. Our results are also only on Sokoban and it is possible that948

the learned algorithm for other game-playing network looks very different from the one learned for949

Sokoban.950

We also do not fully reverse-engineer the network. We have observed the following behaviors that951

cannot be explained yet with our current understanding of the learned algorithm:952

• Agent sometimes executes some steps of the plan for box 1, then box 2, then back to box953

1, to minimize distance. Our explanation doesn’t account for how and when the network954

switches between boxes.955

• Sometimes the heuristics inexplicably choose where to go based on seemingly irrelevant956

things. Slightly changing the shape or an obstacle or moving the agent’s position by 1 can957

sometimes change which plan gets chosen, in a manner that doesn’t correspond to optimal958

plan.959

O Societal Impact960

This research into interpretability can make models more transparent, which helps in making models961

predictable, easier to debug and ensure they conform to specifications.962

Specifically, we analyze a model organism which is planning. We hope that this will catalyze further963

research on identifying, evaluating and understanding what goal a model has. We hope that directly964

identifying a model’s goal lets us monitor for and correct goal misgeneralization [14].965

25

Figure 20: The sum of activations of the box-movement channels on a 40×40 variant of the backtrack
level from Figure 17 for (a) the original network at step 50, and the weight-steered network at (b)
step 50 and (c) step 100 when the agent reaches halfway through. The original network fails to solve
the level as the plan decays and cannot be extended beyond 10− 15 squares. Upon weight steering,
the plan activations travel farther without decaying thus solving the level.

0.5

1

1.5

2

Up Down Left Right

Fo
rw

ar
d

B
ac

kw
ar

d

(a) Forward and backward plan extension kernels
averaged over agent-movement channels. Agent-
movement channels also extend the agent moves for-
ward and backward similar to the box-plan extension.

−0.5
0
0.5
1

i j f o

(b) The kernels that map L1H17 (box-down) to L1H18
(agent-down) by shifting the activation one square up.
L1H17 activates negatively, therefore the j and f ker-
nels are negative since they use the sigmoid activation
function. The i and o kernels are positive which results
in negatively activating i and o-gates, which after mul-
tiplication results in L1H18 activating positively. The
opposite signed weights on the lower-corner squares
of the kernel help in picking a single path out of mul-
tiple parallel paths.

Figure 21: Plan extension and box path to agent path kernels.

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Box up Activates on squares from where a box would
be pushed up

L0H13, L0H24*, L2H6

Box down Activates on squares from where a box would
be pushed down

L0H2, L0H14*, L0H20*, L1H14*,
L1H17, L1H19

Box left Activates on squares from where a box would
be pushed left

L0H23*, L0H31, L1H11, L1H27,
L2H20

Box right Activates on squares from where a box would
be pushed right

L0H9, L0H17, L1H13, L1H15*,
L2H9*, L2H15

Agent up Activates on squares from where an agent
would move up

L0H18, L1H5, L1H29, L2H28,
L2H29

Agent down Activates on squares from where an agent
would move down

L0H10, L1H18, L2H4, L2H8

Agent left Activates on squares from where an agent
would move left

L2H23, L2H27, L2H31

Agent right Activates on squares from where an agent
would move right

L1H21, L1H28, L2H3, L2H5,
L2H21*, L2H26

Continued on next page

26

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Combined
Plan

Channels that combine plan information from
multiple directions

L0H15, L0H16, L0H28, L0H30,
L1H0, L1H4, L1H8, L1H9, L1H20,
L1H25, L2H0, L2H1, L2H13,
L2H14, L2H17, L2H18, L0H7,
L0H1, L0H21, L1H2, L1H23,
L2H11, L2H22, L2H24, L2H25,
L2H12, L2H16, L0H19, L2H30

Entity Highly activate on target tiles. Some also
activate on agent or box tiles

L0H6, L0H26, L1H6, L1H10,
L1H22, L1H31, L2H2, L2H7

No label Uninterpreted channels. These channels do
not have a clear meaning but they are also not
very useful

L0H0, L0H3, L0H4, L0H5, L0H8,
L0H22, L0H25, L0H27, L0H29,
L1H1, L1H3, L1H12, L1H16,
L1H26, L1H30, L2H10, L2H19,
L0H11, L0H12, L1H7, L1H24

Grid-Next-
Action
(GNA)

Channels that activate on squares that the
agent will move in the next few moves. One
separate channel for each direction

L2H28 (up), L2H4 (down), L2H23
(left), L2H26 (right)

Pooled-
Next-
Action
(PNA)

A channel for each action that activates highly
across all squares at the last tick (n = 2) to
predict the action

L2H29 (up), L2H8 (down), L2H27
(left), L2H3 (right)

Table 8: Informal description of all channels

Channel Long-
term

Description

L0H0 No some box-left-moves?
L0H1 No box-to-target-lines which light up when agent comes close to the box.
L0H2 No H/-C/-I/J/-O: +future box down moves [1sq left]
L0H5 No [1sq left]
L0H6 No H/-C: +target -box -agent . F: +agent +agent future pos. I: +agent. O: -agent

future pos. J: +target -agent[same sq]
L0H7 No (0.37 corr across i,j,f,o).
L0H9 No -H/-C/-O/I/J/F: +agent +future box right moves -box. -H/J/F: +agent-near-

future-down-moves [on sq]
L0H10 No H: -agent-exclusive-down-moves [1sq left,down]. Positively activates on

agent-exclusive-up-moves.
L0H11 No H: CO. O: box-right moves C/I: -box future pos [1sq up (left-right noisy)]
L0H12 No H: very very faint horizontal moves (could be long-term?). I/O: future box

horizontal moves (left/right). [on sq]
L0H13 No H/C/I/J/O: +future box up moves [1sq up]
L0H14 Yes H/-I/O/C/H: -future-box-down-moves. Is more future-looking than other

channels in this group. Box down moves fade away as other channels also
start representing them. Sometimes also activates on -agent-right-moves [on
sq]

L0H15 No H/I/J/-F/-O: +box-future-moves. More specifically, +box-down-moves +box-
left-moves. searchy (positive field around target). (0.42 corr across i,j,f,o).

L0H16 No H +box-right-moves (not all). High negative square when agent has to perform
DRU actions. [1sq up,left]

L0H17 No H/I/J/F/O: +box-future-right moves. O: +agent [1sq up]
L0H18 No H: -agent-exclusive-up-moves

Continued on next page

27

Table 8: Informal description of all channels

Channel Long-
term

Description

L0H20 Yes H: box down moves. Upper right corner positively activates (0.47 start -> 0.6
in a few steps -> 0.7 very later on). I: -box down moves. O: +box down moves
-box horizontal moves. [1sq up]

L0H21 No -box-left-moves. +up-box-moves
L0H23 Yes H/C/I/J/O: box future left moves [1sq up,left]
L0H24 Yes H/C/I/J/O: -future box up moves. long-term because it doesn’t fade away after

short-term also starts firing [1sq up,left]
L0H26 No H: -agent . I/C/-O: all agent future positions. J/F: agent + target + BRwalls,

[1sq up]
L0H28 No H/C/I/J/F/-O: -future box down moves (follower?) [on sq]. Also represents

agent up,right,left directions (but not down).
L0H30 No H/I: future positions (0.47 corr across i,j,f,o).
L1H0 No H: -agent -agent near-future-(d/l/r)-moves + box-future-pos [on sq]
L1H2 No -box-left-moves
L1H4 No +box-left moves -box-right moves [1sq up].
L1H5 No H: +agent-exclusive-future-up moves [2sq up, 1sq left]
L1H6 No J: player (with fainted target)
L1H7 No H: - some left box moves or right box moves (ones that end at a target)?

Sometimes down moves? (unclear)
L1H8 No box-near-future-down-moves(-0.4),agent-down-moves(+0.3),box-near-

future-up-moves(+0.25) [on sq]
L1H9 Yes O/I/H: future pos (mostly down?) (seems to have alternate paths as well. Abla-

tion results in sligthly longer sols on some levels). Fence walls monotonically
increase in activation across steps (tracking time). [on sq]

L1H10 No J/H/C: -box + target +agent future pos. (neglible in H) O,-I: +agent +box
-agent future pos [1sq up] (very important feature – 18/20 levels changed after
ablation)

L1H11 No -box-left-moves (-0.6).
L1H13 No H: box-right-moves(+0.75),agent-future-pos(+0.02) [1sq left]
L1H14 Yes H: longer-term down moves? [1sq up]
L1H15 Yes H/-O: box-right-moves-that-end-on-target (with high activations towards tar-

get). Activates highly when box is on the left side of target [on sq].
L1H17 No H/C/I/-J/-F/O: -box-future down moves [on sq]
L1H18 No H/-O: +agent future down moves (stores alternate down moves as well?) [on

sq]
L1H19 No H/-F/-J: -box-down-moves (follower?) [1sq up]
L1H20 No +near-future-all-box-moves [1sq up].
L1H21 No H: agent-right-moves(-0.5) (includes box-right-pushes as well)
L1H22 No -target
L1H23 No -box-left-moves.
L1H24 No H: -box -agent-future-pos -agent, [1sq left]
L1H25 No all-possible-paths-leading-to-targets(-0.4),agent-near-future-pos(-

0.07),walls-and-out-of-plan-sqs(+0.1),boxes(+0.6). H: +box -agent
-empty -agent-future-pos | O/-C: -agent +future sqs (probably doing search in
init steps) | I: box + agent + walls | F: -agent future pos | J: +box +wall -agent
near-future pos [1sq up,left]

L1H27 No H: box future left moves [1sq left]
L1H28 No some-agent-exclusive-right-moves(+0.3),box-up-moves-sometimes-

unclear(-0.1)
L1H29 No agent-near-future-up-moves(+0.5) (~5-10steps, includes box-up-pushes as

well). I: future up moves (~almost all moves) + agent sq [1sq up]
L1H31 No H: squares above and below target (mainly above) [1sq left & maybe up]
L2H0 No -box-all-moves.

Continued on next page

28

Table 8: Informal description of all channels

Channel Long-
term

Description

L2H1 No H/O: future-down/right-sqs [1sq up]
L2H2 No H: high activation when agent is below a box on target and similar positions.

walls at the bottom also activate negatively in those positions.
L2H3 No H: +right action (PNA) + future box -down -right moves + future box +left

moves
L2H4 No O: +near-future agent down moves (GNA). I: +agent/box future pos [1sq left]
L2H5 No H/C/I/J: +agent-future-right-incoming-sqs, O: agent-future-sqs [1sq up, left]
L2H6 No H: +box-up-moves (~5-10 steps). -agent-up-moves. next-target (not always)

[1q left]
L2H7 No +unsolved box/target
L2H8 No down action (PNA).
L2H9 Yes H/C/I/J/O: +future box right moves [1sq up]
L2H11 No -box-left-moves(-0.15),-box-right-moves(-0.05)
L2H13 No H: +box-future-left -box-long-term-future-right(fades 5-10moves before tak-

ing right moves) moves. Sometimes blurry future box up/down moves [1sq
up]

L2H14 No H: all-other-sqs(-0.4) agent-future-pos(+0.01) O: -agent-future-pos. I: +box-
future-pos

L2H15 No -box-right-moves [1sq up,left]
L2H17 No H/C: target(+0.75) box-future-pos(-0.3). O: target. J: +target -agent +agent

future pos. I/F: target. [1sq up]
L2H18 No box-down/left-moves(-0.2). Very noisy/unclear at the start and converges later

than other box-down channels.
L2H19 No H: future agent down/right/left sqs (unclear) [1sq up]
L2H20 No H: -box future left moves [1sq left]
L2H21 Yes H: -far-future-agent-right-moves. Negatively contributes to L2H26 to remove

far-future-sqs. Also represents -agent/box-down-moves. [1sq up]
L2H22 No H: box-right-moves(+0.3),box-down-moves(0.15). O future sqs???
L2H23 No H: future left moves (does O store alternate left moves?) (GNA). [1sq left]
L2H24 No box-right/up-moves (long-term)
L2H25 No unclear but (8, 9) square tracks value or timesteps (it is a constant negative in

the 1st half episode and steadily increases in the 2nd half)?
L2H26 No H/O: near-future right moves (GNA). [on sq]
L2H27 No left action (PNA). T0: negative agent sq with positive sqs up/left.
L2H28 No near-future up moves (GNA). O: future up moves (not perfectly though) [1sq

up]
L2H29 No Max-pooled Up action channel (PNA).
L2H31 No some +agent-left-moves (includes box-left-pushes).

29

+L0O28 -L0O28 +L0O29 -L0O29 +L0O30 -L0O30 +L0O31 -L0O31

+L0O24 -L0O24 +L0O25 -L0O25 +L0O26 -L0O26 +L0O27 -L0O27

+L0O20 -L0O20 +L0O21 -L0O21 +L0O22 -L0O22 +L0O23 -L0O23

+L0O16 -L0O16 +L0O17 -L0O17 +L0O18 -L0O18 +L0O19 -L0O19

+L0O12 -L0O12 +L0O13 -L0O13 +L0O14 -L0O14 +L0O15 -L0O15

+L0O8 -L0O8 +L0O9 -L0O9 +L0O10 -L0O10 +L0O11 -L0O11

+L0O4 -L0O4 +L0O5 -L0O5 +L0O6 -L0O6 +L0O7 -L0O7

+L0O0 -L0O0 +L0O1 -L0O1 +L0O2 -L0O2 +L0O3 -L0O3

Figure 22: 9× 9 combined convolutional filters W 0
oe that map the RGB observation image to the O

gate in layer 0. The positive and negative components of each channel filters are separated visualized
by computing max(0,W 0

oe) and max(0,−W 0
oe) respectively. The green, red, and brown colors in

the filters detect the agent, target, and box squares respectively. The blue component is high only in
empty tiles, so the blue color can detect empty tiles. We find that many filters are responsible for
detecting the agent and the target like L0O5 and L0O6. A use case of such agent and box detecting
filters in the encoder is shown in Figure 6. Many filters detect whether the agent or the target are
some squares away in a particular direction like L0O20 and L0O23. Filters for other layers and gates
can be visualized using our codebase.

30

Table 4: Activation offset along (row, column) in the grid for each layer and channel
Layer 0 Layer 1 Layer 2

Channel 0 (1, 0) (0, 0) (-1, 0)
Channel 1 (0, 0) (-1, -1) (-1, -1)
Channel 2 (0, -1) (-1, 0) (0, 0)
Channel 3 (0, 0) (-1, 0) (0, 0)
Channel 4 (-1, -1) (-1, -1) (0, -1)
Channel 5 (0, -1) (-2, -1) (-1, 0)
Channel 6 (0, 0) (-1, -1) (-1, -1)
Channel 7 (-1, 0) (-1, 0) (0, 0)
Channel 8 (0, -1) (0, 0) (-1, 0)
Channel 9 (0, 0) (0, 0) (-1, 0)
Channel 10 (-1, -1) (-1, 0) (-1, 0)
Channel 11 (-1, 0) (0, -1) (0, -1)
Channel 12 (0, -1) (0, -1) (0, -1)
Channel 13 (-1, 0) (-1, 0) (-1, 0)
Channel 14 (0, 0) (0, -1) (-1, -1)
Channel 15 (0, 0) (0, 0) (-1, -1)
Channel 16 (-1, -1) (0, 0) (-1, -1)
Channel 17 (-1, 0) (0, 0) (-1, 0)
Channel 18 (-1, 0) (0, 0) (-1, 0)
Channel 19 (-1, -1) (-1, 0) (-1, -1)
Channel 20 (-1, 0) (0, -1) (0, -1)
Channel 21 (-1, 0) (-1, 0) (0, 0)
Channel 22 (0, 0) (0, 0) (-1, 0)
Channel 23 (-1, -1) (-1, 0) (0, -1)
Channel 24 (-1, -1) (0, -1) (-1, 0)
Channel 25 (-1, 0) (-1, -1) (-1, -1)
Channel 26 (-1, 0) (0, -1) (0, 0)
Channel 27 (-1, -1) (-1, -1) (0, 0)
Channel 28 (0, 0) (0, 0) (-1, 0)
Channel 29 (0, 0) (-1, 0) (0, -1)
Channel 30 (-1, 0) (0, 0) (-1, -1)
Channel 31 (-1, -1) (0, -1) (0, -1)

31

Table 5: Correlation of linear regression model’s predictions with the original activations for each
channel.

Layer 0 Layer 1 Layer 2

Channel 0 33.15 79.48 70.03
Channel 1 50.76 48.77 38.37
Channel 2 73.15 28.90 39.17
Channel 3 31.73 68.30 55.72
Channel 4 45.06 50.10 45.64
Channel 5 63.91 42.95 55.27
Channel 6 96.57 87.47 53.90
Channel 7 51.98 36.88 95.63
Channel 8 46.64 41.58 55.04
Channel 9 70.52 37.44 71.47
Channel 10 37.68 99.01 53.91
Channel 11 52.09 61.55 42.26
Channel 12 41.54 43.86 27.19
Channel 13 79.54 73.35 54.40
Channel 14 72.17 48.12 56.54
Channel 15 44.09 65.72 36.37
Channel 16 63.49 26.56 38.24
Channel 17 76.70 73.94 94.78
Channel 18 61.51 66.11 34.18
Channel 19 46.05 44.01 33.48
Channel 20 65.00 58.94 64.92
Channel 21 22.05 57.36 60.21
Channel 22 26.51 63.73 24.32
Channel 23 74.39 31.32 44.64
Channel 24 83.64 58.56 59.94
Channel 25 17.10 82.43 28.29
Channel 26 75.48 44.26 45.17
Channel 27 9.24 85.84 49.92
Channel 28 46.87 42.65 15.38
Channel 29 28.60 64.77 54.68
Channel 30 47.70 35.00 40.15
Channel 31 53.12 56.81 59.63

Table 6: Correlation of linear regression model’s predictions with the original activations averaged
over channels for each group. Includes correlation using only base features for comparison. The (all
dir) group is the average of the four directions. NGA and PNA are included in the Agent groups.

Group Correlation Base correlation

Box up 72.36 21.01
Box down 62.73 13.93
Box left 67.96 21.10
Box right 65.69 27.40
Box (all dir) 66.37 20.83
Agent up 47.86 12.69
Agent down 51.12 15.85
Agent left 51.40 7.85
Agent right 52.73 14.92
Agent (all dir) 50.80 13.33
Combined path 48.00 23.35
Entity 76.73 70.66
No label 40.25 15.53

32

Table 9: Solve rate (%) of different models without and with 6 thinking steps on held out sets of
varying difficulty.

Model No Thinking Thinking
Hard Med Unfil Hard Med Unfil

DRC(3, 3) 42.8 76.6 99.3 49.7 81.3 99.7
DRC(1, 1) 7.8 28.1 89.4 9.8 33.9 92.6
ResNet 26.2 59.4 97.9 - - -

33

NeurIPS Paper Checklist966

The checklist is designed to encourage best practices for responsible machine learning research,967

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove968

the checklist: The papers not including the checklist will be desk rejected. The checklist should969

follow the references and follow the (optional) supplemental material. The checklist does NOT count970

towards the page limit.971

Please read the checklist guidelines carefully for information on how to answer these questions. For972

each question in the checklist:973

• You should answer [Yes] , [No] , or [NA] .974

• [NA] means either that the question is Not Applicable for that particular paper or the975

relevant information is Not Available.976

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).977

The checklist answers are an integral part of your paper submission. They are visible to the978

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it979

(after eventual revisions) with the final version of your paper, and its final version will be published980

with the paper.981

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.982

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a983

proper justification is given (e.g., "error bars are not reported because it would be too computationally984

expensive" or "we were unable to find the license for the dataset we used"). In general, answering985

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we986

acknowledge that the true answer is often more nuanced, so please just use your best judgment and987

write a justification to elaborate. All supporting evidence can appear either in the main paper or the988

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification989

please point to the section(s) where related material for the question can be found.990

IMPORTANT, please:991

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",992

• Keep the checklist subsection headings, questions/answers and guidelines below.993

• Do not modify the questions and only use the provided macros for your answers.994

1. Claims995

Question: Do the main claims made in the abstract and introduction accurately reflect the996

paper’s contributions and scope?997

Answer: [Yes]998

Justification: We justify all the claims made in the paper with proper empirical evidence999

through experiments.1000

Guidelines:1001

• The answer NA means that the abstract and introduction do not include the claims1002

made in the paper.1003

• The abstract and/or introduction should clearly state the claims made, including the1004

contributions made in the paper and important assumptions and limitations. A No or1005

NA answer to this question will not be perceived well by the reviewers.1006

• The claims made should match theoretical and experimental results, and reflect how1007

much the results can be expected to generalize to other settings.1008

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1009

are not attained by the paper.1010

2. Limitations1011

Question: Does the paper discuss the limitations of the work performed by the authors?1012

Answer: [Yes]1013

34

Justification: We discuss some limitations in the discussion section and in the limitation1014

section in Section N.1015

Guidelines:1016

• The answer NA means that the paper has no limitation while the answer No means that1017

the paper has limitations, but those are not discussed in the paper.1018

• The authors are encouraged to create a separate "Limitations" section in their paper.1019

• The paper should point out any strong assumptions and how robust the results are to1020

violations of these assumptions (e.g., independence assumptions, noiseless settings,1021

model well-specification, asymptotic approximations only holding locally). The authors1022

should reflect on how these assumptions might be violated in practice and what the1023

implications would be.1024

• The authors should reflect on the scope of the claims made, e.g., if the approach was1025

only tested on a few datasets or with a few runs. In general, empirical results often1026

depend on implicit assumptions, which should be articulated.1027

• The authors should reflect on the factors that influence the performance of the approach.1028

For example, a facial recognition algorithm may perform poorly when image resolution1029

is low or images are taken in low lighting. Or a speech-to-text system might not be1030

used reliably to provide closed captions for online lectures because it fails to handle1031

technical jargon.1032

• The authors should discuss the computational efficiency of the proposed algorithms1033

and how they scale with dataset size.1034

• If applicable, the authors should discuss possible limitations of their approach to1035

address problems of privacy and fairness.1036

• While the authors might fear that complete honesty about limitations might be used by1037

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1038

limitations that aren’t acknowledged in the paper. The authors should use their best1039

judgment and recognize that individual actions in favor of transparency play an impor-1040

tant role in developing norms that preserve the integrity of the community. Reviewers1041

will be specifically instructed to not penalize honesty concerning limitations.1042

3. Theory assumptions and proofs1043

Question: For each theoretical result, does the paper provide the full set of assumptions and1044

a complete (and correct) proof?1045

Answer: [NA]1046

Justification: NA1047

Guidelines:1048

• The answer NA means that the paper does not include theoretical results.1049

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1050

referenced.1051

• All assumptions should be clearly stated or referenced in the statement of any theorems.1052

• The proofs can either appear in the main paper or the supplemental material, but if1053

they appear in the supplemental material, the authors are encouraged to provide a short1054

proof sketch to provide intuition.1055

• Inversely, any informal proof provided in the core of the paper should be complemented1056

by formal proofs provided in appendix or supplemental material.1057

• Theorems and Lemmas that the proof relies upon should be properly referenced.1058

4. Experimental result reproducibility1059

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1060

perimental results of the paper to the extent that it affects the main claims and/or conclusions1061

of the paper (regardless of whether the code and data are provided or not)?1062

Answer: [Yes]1063

Justification: We have open-sourced the code, model, and data to reproduce our experiments.1064

Guidelines:1065

35

• The answer NA means that the paper does not include experiments.1066

• If the paper includes experiments, a No answer to this question will not be perceived1067

well by the reviewers: Making the paper reproducible is important, regardless of1068

whether the code and data are provided or not.1069

• If the contribution is a dataset and/or model, the authors should describe the steps taken1070

to make their results reproducible or verifiable.1071

• Depending on the contribution, reproducibility can be accomplished in various ways.1072

For example, if the contribution is a novel architecture, describing the architecture fully1073

might suffice, or if the contribution is a specific model and empirical evaluation, it may1074

be necessary to either make it possible for others to replicate the model with the same1075

dataset, or provide access to the model. In general. releasing code and data is often1076

one good way to accomplish this, but reproducibility can also be provided via detailed1077

instructions for how to replicate the results, access to a hosted model (e.g., in the case1078

of a large language model), releasing of a model checkpoint, or other means that are1079

appropriate to the research performed.1080

• While NeurIPS does not require releasing code, the conference does require all submis-1081

sions to provide some reasonable avenue for reproducibility, which may depend on the1082

nature of the contribution. For example1083

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1084

to reproduce that algorithm.1085

(b) If the contribution is primarily a new model architecture, the paper should describe1086

the architecture clearly and fully.1087

(c) If the contribution is a new model (e.g., a large language model), then there should1088

either be a way to access this model for reproducing the results or a way to reproduce1089

the model (e.g., with an open-source dataset or instructions for how to construct1090

the dataset).1091

(d) We recognize that reproducibility may be tricky in some cases, in which case1092

authors are welcome to describe the particular way they provide for reproducibility.1093

In the case of closed-source models, it may be that access to the model is limited in1094

some way (e.g., to registered users), but it should be possible for other researchers1095

to have some path to reproducing or verifying the results.1096

5. Open access to data and code1097

Question: Does the paper provide open access to the data and code, with sufficient instruc-1098

tions to faithfully reproduce the main experimental results, as described in supplemental1099

material?1100

Answer: [Yes]1101

Justification: Yes, the code, model, data is open-sourced and also provided in the supple-1102

mentary material.1103

Guidelines:1104

• The answer NA means that paper does not include experiments requiring code.1105

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1106

public/guides/CodeSubmissionPolicy) for more details.1107

• While we encourage the release of code and data, we understand that this might not be1108

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1109

including code, unless this is central to the contribution (e.g., for a new open-source1110

benchmark).1111

• The instructions should contain the exact command and environment needed to run to1112

reproduce the results. See the NeurIPS code and data submission guidelines (https:1113

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1114

• The authors should provide instructions on data access and preparation, including how1115

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1116

• The authors should provide scripts to reproduce all experimental results for the new1117

proposed method and baselines. If only a subset of experiments are reproducible, they1118

should state which ones are omitted from the script and why.1119

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized1120

versions (if applicable).1121

• Providing as much information as possible in supplemental material (appended to the1122

paper) is recommended, but including URLs to data and code is permitted.1123

6. Experimental setting/details1124

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1125

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1126

results?1127

Answer: [Yes]1128

Justification: See Sections B and C.1129

Guidelines:1130

• The answer NA means that the paper does not include experiments.1131

• The experimental setting should be presented in the core of the paper to a level of detail1132

that is necessary to appreciate the results and make sense of them.1133

• The full details can be provided either with the code, in appendix, or as supplemental1134

material.1135

7. Experiment statistical significance1136

Question: Does the paper report error bars suitably and correctly defined or other appropriate1137

information about the statistical significance of the experiments?1138

Answer: [Yes]1139

Justification: We include error bars in all our tables and plots. We compute the 95%1140

confidence interval using the bootstrap method from the sklearn library on a 1000 resamples1141

from the dataset.1142

Guidelines:1143

• The answer NA means that the paper does not include experiments.1144

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1145

dence intervals, or statistical significance tests, at least for the experiments that support1146

the main claims of the paper.1147

• The factors of variability that the error bars are capturing should be clearly stated (for1148

example, train/test split, initialization, random drawing of some parameter, or overall1149

run with given experimental conditions).1150

• The method for calculating the error bars should be explained (closed form formula,1151

call to a library function, bootstrap, etc.)1152

• The assumptions made should be given (e.g., Normally distributed errors).1153

• It should be clear whether the error bar is the standard deviation or the standard error1154

of the mean.1155

• It is OK to report 1-sigma error bars, but one should state it. The authors should1156

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1157

of Normality of errors is not verified.1158

• For asymmetric distributions, the authors should be careful not to show in tables or1159

figures symmetric error bars that would yield results that are out of range (e.g. negative1160

error rates).1161

• If error bars are reported in tables or plots, The authors should explain in the text how1162

they were calculated and reference the corresponding figures or tables in the text.1163

8. Experiments compute resources1164

Question: For each experiment, does the paper provide sufficient information on the com-1165

puter resources (type of compute workers, memory, time of execution) needed to reproduce1166

the experiments?1167

Answer: [Yes]1168

Justification: The DRC(3, 3)network is small enough that all our experiments can run on1169

CPU.1170

37

Guidelines:1171

• The answer NA means that the paper does not include experiments.1172

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1173

or cloud provider, including relevant memory and storage.1174

• The paper should provide the amount of compute required for each of the individual1175

experimental runs as well as estimate the total compute.1176

• The paper should disclose whether the full research project required more compute1177

than the experiments reported in the paper (e.g., preliminary or failed experiments that1178

didn’t make it into the paper).1179

9. Code of ethics1180

Question: Does the research conducted in the paper conform, in every respect, with the1181

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1182

Answer: [Yes]1183

Justification: We have read and followed the Code of Ethics.1184

Guidelines:1185

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1186

• If the authors answer No, they should explain the special circumstances that require a1187

deviation from the Code of Ethics.1188

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1189

eration due to laws or regulations in their jurisdiction).1190

10. Broader impacts1191

Question: Does the paper discuss both potential positive societal impacts and negative1192

societal impacts of the work performed?1193

Answer: [Yes]1194

Justification: We discuss some impact of our work in Section O.1195

Guidelines:1196

• The answer NA means that there is no societal impact of the work performed.1197

• If the authors answer NA or No, they should explain why their work has no societal1198

impact or why the paper does not address societal impact.1199

• Examples of negative societal impacts include potential malicious or unintended uses1200

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1201

(e.g., deployment of technologies that could make decisions that unfairly impact specific1202

groups), privacy considerations, and security considerations.1203

• The conference expects that many papers will be foundational research and not tied1204

to particular applications, let alone deployments. However, if there is a direct path to1205

any negative applications, the authors should point it out. For example, it is legitimate1206

to point out that an improvement in the quality of generative models could be used to1207

generate deepfakes for disinformation. On the other hand, it is not needed to point out1208

that a generic algorithm for optimizing neural networks could enable people to train1209

models that generate Deepfakes faster.1210

• The authors should consider possible harms that could arise when the technology is1211

being used as intended and functioning correctly, harms that could arise when the1212

technology is being used as intended but gives incorrect results, and harms following1213

from (intentional or unintentional) misuse of the technology.1214

• If there are negative societal impacts, the authors could also discuss possible mitigation1215

strategies (e.g., gated release of models, providing defenses in addition to attacks,1216

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1217

feedback over time, improving the efficiency and accessibility of ML).1218

11. Safeguards1219

Question: Does the paper describe safeguards that have been put in place for responsible1220

release of data or models that have a high risk for misuse (e.g., pretrained language models,1221

image generators, or scraped datasets)?1222

38

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]1223

Justification: NA.1224

Guidelines:1225

• The answer NA means that the paper poses no such risks.1226

• Released models that have a high risk for misuse or dual-use should be released with1227

necessary safeguards to allow for controlled use of the model, for example by requiring1228

that users adhere to usage guidelines or restrictions to access the model or implementing1229

safety filters.1230

• Datasets that have been scraped from the Internet could pose safety risks. The authors1231

should describe how they avoided releasing unsafe images.1232

• We recognize that providing effective safeguards is challenging, and many papers do1233

not require this, but we encourage authors to take this into account and make a best1234

faith effort.1235

12. Licenses for existing assets1236

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1237

the paper, properly credited and are the license and terms of use explicitly mentioned and1238

properly respected?1239

Answer: [Yes]1240

Justification: We properly cite the works from where we get the model and the dataset.1241

Guidelines:1242

• The answer NA means that the paper does not use existing assets.1243

• The authors should cite the original paper that produced the code package or dataset.1244

• The authors should state which version of the asset is used and, if possible, include a1245

URL.1246

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1247

• For scraped data from a particular source (e.g., website), the copyright and terms of1248

service of that source should be provided.1249

• If assets are released, the license, copyright information, and terms of use in the1250

package should be provided. For popular datasets, paperswithcode.com/datasets1251

has curated licenses for some datasets. Their licensing guide can help determine the1252

license of a dataset.1253

• For existing datasets that are re-packaged, both the original license and the license of1254

the derived asset (if it has changed) should be provided.1255

• If this information is not available online, the authors are encouraged to reach out to1256

the asset’s creators.1257

13. New assets1258

Question: Are new assets introduced in the paper well documented and is the documentation1259

provided alongside the assets?1260

Answer: [Yes]1261

Justification: We open-source our code and also provide it in the supplementary material1262

and document the scripts to reproduce the experiments in the README file.1263

Guidelines:1264

• The answer NA means that the paper does not release new assets.1265

• Researchers should communicate the details of the dataset/code/model as part of their1266

submissions via structured templates. This includes details about training, license,1267

limitations, etc.1268

• The paper should discuss whether and how consent was obtained from people whose1269

asset is used.1270

• At submission time, remember to anonymize your assets (if applicable). You can either1271

create an anonymized URL or include an anonymized zip file.1272

14. Crowdsourcing and research with human subjects1273

39

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper1274

include the full text of instructions given to participants and screenshots, if applicable, as1275

well as details about compensation (if any)?1276

Answer: [NA]1277

Justification: NA1278

Guidelines:1279

• The answer NA means that the paper does not involve crowdsourcing nor research with1280

human subjects.1281

• Including this information in the supplemental material is fine, but if the main contribu-1282

tion of the paper involves human subjects, then as much detail as possible should be1283

included in the main paper.1284

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1285

or other labor should be paid at least the minimum wage in the country of the data1286

collector.1287

15. Institutional review board (IRB) approvals or equivalent for research with human1288

subjects1289

Question: Does the paper describe potential risks incurred by study participants, whether1290

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1291

approvals (or an equivalent approval/review based on the requirements of your country or1292

institution) were obtained?1293

Answer: [NA]1294

Justification: NA1295

Guidelines:1296

• The answer NA means that the paper does not involve crowdsourcing nor research with1297

human subjects.1298

• Depending on the country in which research is conducted, IRB approval (or equivalent)1299

may be required for any human subjects research. If you obtained IRB approval, you1300

should clearly state this in the paper.1301

• We recognize that the procedures for this may vary significantly between institutions1302

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1303

guidelines for their institution.1304

• For initial submissions, do not include any information that would break anonymity (if1305

applicable), such as the institution conducting the review.1306

16. Declaration of LLM usage1307

Question: Does the paper describe the usage of LLMs if it is an important, original, or1308

non-standard component of the core methods in this research? Note that if the LLM is used1309

only for writing, editing, or formatting purposes and does not impact the core methodology,1310

scientific rigorousness, or originality of the research, declaration is not required.1311

Answer: [NA]1312

Justification: LLMs were used for writing and editing the paper, and visualizing the plots.1313

Guidelines:1314

• The answer NA means that the core method development in this research does not1315

involve LLMs as any important, original, or non-standard components.1316

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1317

for what should or should not be described.1318

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Methodology
	Network architecture
	Interpretability Techniques

	The Plan Representation
	The Planning Algorithm
	Initializing the plan
	The Transition Model
	The Valuation Mechanism

	Related work and discussion
	Conclusion
	Common components of search algorithmns
	Network architecture
	Network training details
	Gate importance
	Label verification and offset computation
	Plan Representation to Action Policy
	State Transition Update
	Activation transfer mechanism between long and short term channels
	Case study: Backtracking mechanism
	Case study: making the network take the longer path
	Unsuccessful methods
	Channel Redundancy
	Weight steering fixes failure on larger levels
	Limitations
	Societal Impact

