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Abstract

We partially reverse-engineer a convolutional recurrent neural network (RNN)
trained with model-free reinforcement learning to play the box-pushing game
Sokoban. We find that the RNN stores future moves (plans) as activations in
particular channels of the hidden state, which we call path channels. A high
activation in a particular location means that, when a box is in that location, it
will get pushed in the channel’s assigned direction. We examine the convolutional
kernels between path channels and find that they encode the change in position
resulting from each possible action, thus representing part of a learned transition
model. The RNN constructs plans by starting at the boxes and goals. These kernels,
extend activations in path channels forwards from boxes and backwards from the
goal. Negative values are placed in channels at obstacles. This causes the extension
kernels to propagate the negative value in reverse, thus pruning the last few steps
and letting an alternative plan emerge; a form of backtracking. Our work shows that
a precise understanding of the plan representation allows us to directly understand
the bidirectional planning-like algorithm learned by model-free training in more
familiar terms.

1 Introduction

Modern AI systems can accomplish a wide variety of complicated tasks, but neural networks trained
using deep learning are often difficult to understand. This may be concerning in the context of agentic
behavior, where the AI takes a complicated sequence of actions to accomplish a goal. In such cases,
agents may accomplish potentially challenging tasks in ways that are difficult to anticipate, making
the consequences of their actions hard to foresee. Can the behavior of machine-learned agents be
understood? This work answers in the affirmative for the case of an agent trained to play the puzzle
game Sokoban using model-free reinforcement learning.

We study Sokoban due to consensus in the literature that a particular architecture exhibits planning
behavior, forming an internal representation of its anticipated future states and actions which can be
extracted using linear probes. Sokoban is a grid-based puzzle game with walls , floors , movable
boxes , and target tiles where the agent’s goal is to push all boxes onto target tiles. Since boxes
can only be pushed (not pulled), wrong moves can make the puzzle unsolvable, making Sokoban
a challenging game that is PSPACE-complete [Culberson, 1997], requires long-term planning, and
a popular planning benchmark [Peters et al., 2023, Racanière et al., 2017, Hamrick et al., 2021].
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Figure 1: A level with channel activations for a single channel from every group in table 1. Note the
clear activations for the box move channels along the box ’s path to the target .

Guez et al. [2019] introduced the DRC architecture family and showed that DRC(3, 3) achieves
state-of-the-art performance on Sokoban amongst model-free RL approaches and rival model-based
agents like MuZero [Schrittwieser et al., 2019, Chung et al., 2024]. They argue that the network
exhibits planning behavior since it is data-efficient in training, generalizes to multiple boxes, and
benefits from additional compute. Specifically, the solve rate of the DRC improves by 4.7% when
the network is fed the first observation ten times during inference, giving the network extra thinking
time.Bush et al. [2025] use logistic regression probes to find a causal representation of the plan
in the DRC, and qualitatively suggest, based on these representations, that the algorithm performs
bidirectional search. Taufeeque et al. [2024] find that the DRC often pauses for a few steps before
acting and that the plan changes more quickly during those steps, indicating that the policy seeks
test-time compute when needed.

Our contributions are to substantially reverse-engineer the representation that the DRC agent uses
to represent its future states and actions, as well as the mechanisms which construct its plan. We
find that many channels of the DRC(3, 3) network directly represent the propensity to move in a
given direction in the short or long term, calling them path channels. This removes the need for
linear probes used in prior work [Bush et al., 2025, Taufeeque et al., 2024], reducing the analysis to
simply reading channel representations. We then analyze convolutional kernels, as well as activations’
evolution over time, to mechanistically understand the agent’s planning algorithm.

2 The Plan Representation

In contrast to the linear probes discovered by earlier works, we radically simplify the representation.
Hidden state channel activations in the DRC(3, 3) architecture from Guez et al. [2019] directly
represent the propensity of the agent or box to move in particular direction.

2.1 Network architecture
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Figure 2: The ConvLSTM block in the DRC. Note
the use of convolutions instead of linear layers,
and the last layer of the previous tick (hn−1

D ) as
input to the first layer. “Pool” refers to a weighted
combination of mean- and max-pooling.

We analyze the open-source DRC(3, 3) network
trained by Taufeeque et al. [2024] to solve
Sokoban, who closely followed the training
setup of Guez et al. [2019]. The network con-
sists of a convolutional encoder, a stack of 3 Con-
vLSTM layers, and an MLP head for the policy
and RL value function prediction. Each ConvL-
STM block perform 3 ticks of recurrent compu-
tation per in-game timestep. The encoder block
E consists of two 4×4 convolutional layers with-
out nonlinearity, which process the H ×W × 3
RGB observation xt into an H ×W ×C output
et with height H , width W , and C channels, at
environment step t.
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Figure 2 visualizes the computation of the Con-
vLSTM layer. Each of the ConvLSTM layers at depth d and tick n in the DRC maintains hidden states
hn
d , c

n
d with dimensions H ×W × C and takes as input the encoder output et, the previous layer’s

hidden state hn
d−1, c

n−1
d , and its own hidden state hn−1

d from the previous step. The ConvLSTM
layer computes four parallel gates i, j, f, o using convolutional operations with 3× 3 kernels that are
combined to update the hidden state. For the first ConvLSTM layer (d = 0), the architecture uses the
top-down skip connection from the last ConvLSTM layer (d = 2). This gives the network 3 · 3 = 9
layers of sequential computation to determine the next action at each step. The final layer’s hidden
state at the last tick is processed through an MLP head to predict the next action and value function.
The DRC(3, 3) architecture is shown in fig. 13, with additional architecture, training, and dataset
details provided in sections B and C. Unless mentioned otherwise, the dataset of levels for all results
is the medium-difficulty validation set from Boxoban [Guez et al., 2018].

Notation Each DRC tick (n = 0, 1, 2) involves three ConvLSTM layers (d = 0, 1, 2), each
providing six 32-channel tensors (hd, cd, id, jd, fd, od). Channel c of tensor vd is denoted LdVc.

2.2 Path Channels

With the architecture and notation defined, we now describe how the DRC(3, 3) agent plan is
representing in path channels of the hidden states h0, h1, and h3.

Figure 3: An idealized path chan-
nels diagram.

At each layer, the DRC has C channels, each of which is a
H ×W array. The DRC repeats the same computations convo-
lutionally over each square. This results in a subset of hidden
state channels hd representing the plan where each channel
corresponds to a movement direction. If the agent or a box is at
a position where the channel is activated, this causes the DRC
to choose that channel’s direction as the action. Section 2.2
illustrates box path channels, where the box moves down
twice then right twice to reach the target . Since the path
channels are hidden convolutional states, each hidden state is
repeated for the H×W game grid, with the 6 squares extending
behind the game representing channels C. In the figure, the
blue down channels are activated at the two locations where the
box moves down, and the purple right channels are activated
at the two locationns where the box moves right. This figure
has only one down channel and one right channel, while the real DRC(3, 3) network has several.

Table 1: Channel groups, their definitions and counts for each direction (up, down, left, right).
Group Definitions Channels
Box-movement Path of box (short- and long-term) 20 (3, 6, 5, 6)
Agent-movement Path of agent (short- and long-term) 10 (3, 2, 1, 4)
Grid Next Action (GNA) Immediate next action, represented at agent square 4 (1, 1, 1, 1)
Pooled Next Action (PNA) Pools GNA to represent next action in all squares 4 (1, 1, 1, 1)
Entity Target, agent, or box locations 8
Combined path Aggregate 2+ directions from movement channels 29
No label Difficult to interpret channels 21

Manual inspection of every channel across all layers revealed that most channels are interpretable
(table 1). Detailed labels are in tables 7 and 8 of the Appendix. We group the channels:

1) Box-movement and 2) Agent-movement channels that, for each cardinal direction, activate highly
on a square in the grid if the box or agent moves in that direction from that square at a future timestep.
The probes from Taufeeque et al. [2024], Bush et al. [2025] aggregated information from these
channels.

3) Combined path channels that aggregate directions from the box- and agent-movement channels.

4) GNA channels that extract the next action from the previous groups of channels.

5) PNA channels that pool the GNA channels to be picked up by the MLP to predict the next action.

3



6) The entity channels that predominantly represent target locations, with some also representing
box and agent locations.

7) ’no label’ channels for which we could not discern a pattern.

We define the path channels as the set comprising the box-movement, agent-movement, and combined
path categories, as they collectively maintain the complete plan of action for the agent. The remaining
groups (GNA, PNA, entity, and no-label) are termed non-path channels, storing primarily short-term
information, with some state for move selection heuristics.

2.3 Quantitative evidence

Ablating the state. First, we tested our classification of channels as being path channels or non-path
channels by performing a single-step cache ablation. Specifically, we set the relevant hidden state
channel’s previous value to zero, and recompute its activation based on the previous observation only.
This removes long-term information from the ablated channel by zeroing it out, while still preserving
information from short-term computations based on the encoder and non-ablated channels. This
keeps the ablated channel’s activations more in line with what the network encounters during training,
while removing the ablated channel’s ability to store plan information across multiple timesteps.
Intervening on the 59 path channels caused a substantial 57.6% drop in the solve rate. By contrast,
intervening on the 37 non-path channels resulted in a 10.5% performance decrease ((a significantly
smaller, yet non-negligible, decrease). Controlling for channel count, intervening on a random subset
of 37 path channels still led to a 41.3% drop in solve rate. This evidence strongly suggests that the
computations essential for long-term planning on difficult levels are primarily carried out within the
identified path channels.

Area under the curve analysis. Second, we find that each path channel is predictive of the box
or agent’s future movements. Figure 4 shows the AUC for using the box or agent path channels for
predicting the box or agent movement for different numbers of timesteps in the future. Note that the
path channels further decompose into short- and long-term channels (table 7, section K).
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Figure 4: AUC scores for predicting box and agent movements from the path channels at different #s
of timesteps out. Short-term channels have high AUC for up to 10 steps, while long-term channels
show a high AUC for predicting actions beyond 10 steps until the end of the episode. The GNA/PNA
path channels only exist for the agent, and have high AUC (∼100%) for only the next action.
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Figure 5: Activations of the long- and short-term channels for all directions when a different direction
action takes place at t = 0. All directions except the up direction show the long-term channel
activations decreasing after the other action takes place at t = 0. The mechanism of this transfer of
activation from long to short-term is shown in fig. 16.

Long-term path channels. The network utilizes the long-term channels to manage spatially
overlapping plans for different boxes intended for different times. Figure 5 illustrates this: in cases
where two boxes pass through the same square sequentially in different directions with the first box
moving at t = 0, the long-term channel for the second move activates well in advance (t ≪ 0), while
its corresponding short-term channel only becomes active after the first move is completed (t = 0).
Figure 16 shows the mechanism of this transfer is primarily mediated through the j-gate.

Table 2: Causal intervention scores for differ-
ent channel groups.

Group Score (%)
Pooled Next Action (PNA) 99.7± 0.2
Grid Next Action (GNA) 98.9± 0.4
Box- and agent-movement 88.1± 1.9
Box-movement 86.3± 2.1
Agent-movement 53.2± 2.1

Probe: box movement 82.5± 2.5
Probe: agent movement 20.7± 0.7

Causal intervention Finally, we tested the causal
effect of modifying path channel activations.

We verify the channel labels by performing causal
interventions on the channels. We modify the channel
activations based on their labels to make the agent
take a different action than the one originally pre-
dicted by the network. We collect a dataset of 10,000
transitions by running the network on the Boxoban
levels [Guez et al., 2018], measuring the fraction of
transitions where the intervention succeeds at causing
the agent to take any alternate target action, follow-
ing the approach of Taufeeque et al. [2024]. Table 2
shows high intervention scores for every group ex-
cept the agent-movement channels, with the PNA
interventions achieving state of the art causal intervention scores as compared to the probe-based
approaches in Taufeeque et al. [2024] and Bush et al. [2025].

The lower score for agent-movement channels is because they are causally relevant only when the
agent is not pushing a box, which we did not filter for. section E further validates our channel labels.

Conclusion. We thus conclude that the network primarily represents its plan in the activations of
the identified box-movement and agent-movement channels. These plans are then mapped to the next
action through the group next action and pooled next action channels, explained in section F.

3 The Planning Algorithm

How does the plan get constructed? The plan is made by extending path segments forward from the
boxes and agent, and backward from the targets, implementing bidirectional search as qualitatively
observed by Bush et al. [2025]. The fact that path channels directly represent paths in individual
activations allows us to directly examine weight matrices in order to understand key components of
the algorithm.

First, the network uses kernels which respond to visual features of the game to initialize path
segments by activating path channels adjacent to key objects such as the agent , box , and target

. Second, plan extension kernels extend these path segments until encountering obstacles which
are represented as negative path channel activations. The plan extension kernels can propagate these
negative activations backward along path segments to prune paths which encounter problems. Finally,
a winner-takes-all mechanism inhibits the activations of conflicting path segments in favor of path
segments with stronger activations.
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Figure 6: Visualizations of combined kernels that map from the RGB input to the o-gate of the up,
down, left, and right box-movement channels of layer 0. The negative and positive RGB components
are visualized separately. The kernels activate squares along (for agent and box ) and against (for
target ) the channel’s direction. These kernels when applied on the RGB input activate (initialize)
few squares around the agent or box for forward plan chains and around the target for backward plan
chains. The kernel for L0O17 (right) initializes plan chains only on the agent and box square.

3.1 Initializing path channel activations

Analysis of simplified encoder kernels mapping from the game observations to box movement path
channels show structures that initialize path channel activations. These kernels detect relevant features
(such as targets, boxes, or the agent’s position) to add activations to initialize path segments, such as
moving towards targets or away from boxes.

Encoder Simplification. We simplify the encoders for visualization purposes. Individually, the
encoder weights have no privileged basis [Elhage et al., 2023]. To interpret the weights of the encoder,
we use the associativity of linear operations to combine the convolution operations of the encoder
output et at time t to the output gate ond for layer d tick n into a single convolutional layer. For all
layers d ∈ {1, 2, 3} and tick n ∈ {1, 2, 3} we define the combined kernel Ad

oe and bias bdoe as:

ond = tanh(W d
oe ∗ et + other terms) LSTM eq. (9)

et = WE2
∗ (WE1

∗ xt + bE1
) + bE2

LSTM eq. (3)

W d
oe ∗ et = W d

oe ∗ (WE2
∗ (WE1

∗ xt + bE1
) + bE2

) (1)

= Ad
oe ∗ xt + bdoe up to edge effects (2)

for Ad
oe = W d

oeWE2WE1 and bdoe = W d
oe(WE2bE1 + bE2).

This results in 9× 9 convolution kernels mapping observations to each gate (figs. 6 and 22).

3.2 Extending path segments

(a) Idealized path extension ker-
nels. Convolutions extend moves
in the relevant direction.
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(b) Empirical linear plan extension
kernels. Note reverse between for-
ward and backward kernels.
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(c) Empirical turn plan extension ker-
nels. Compare to “turn right forward
kernel" of subfigure (a).

Figure 7: Empirical plan extension kernels are formed by averaging over all kernels W·h2
mapping

from the previous hidden state hn−1
d to each hidden state · ∈ {i, j, f, o} for each hidden state ·.

Plan Extension Kernels. While the encoder kernels initialize path channel activations, turning
these initial moves into path segments requires an extension mechanism operating on the recurrent
hidden states. This is accomplished by specialized “plan-extension kernels” within the recurrent
weight matrices (W d

·h1 and W d
·h2

in section B). Linear plan extension kernels (fig. 7b) propagate the
plan linearly, extending it one square at a time along the channel direction label. Separate kernels
exist to facilitate both forward chaining from boxes and backward chaining from targets. Turn Plan
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Extension kernels (fig. 7c) propagate activations from one channel to another channel representing a
different direction. The linear kernels have larger weight magnitudes compared to the turn kernels,
thus encoding agent’s preference to turn only when unable to continue in the previous direction.

Figures 23 and 24, show some disaggregated linear and turn extension kernels. The idealized pattern
definitely recurs in many kernels, and most have a pattern which is not the same, but is only translated
or adds a square or two.

Weight steering. While the agent is only trained on 10 × 10 boards, in Section L we use our
knowledge of the path extension kernels to get the agent to solve a 40×40 level using weight steering.
Since plans are represented in path channels, and constructed by the path extension kernels, scaling
up the path extension kernels by a factor of 1.4 allows the agent to stabilize longer paths.
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Observation L1O13 L0H17 Encoder Target from L0

Figure 8: Plan stopping mechanism demonstration
shown through o-gate contributions of the box-
right channel (L1H13). The direct effect shows
that convolving the forward and backward right-
plan-extension kernel on the converged box-right
channel (L0H17) spills into the squares of the box
and the target. The encoder and the target channels
from layer 0 add a negative contribution to coun-
teract the spillover and stop the plan extension.

Stopping Plan Extension. Plan extension
does not continue indefinitely. It must stop at
appropriate boundaries like targets, squares ad-
jacent to boxes, or walls. We observe (fig. 8)
that this stopping mechanism is implemented
via negative contributions to the path channels
at relevant locations. These stopping signals
originate from either the encoder or hidden state
channels that represent static environmental fea-
tures (such as those in the ‘entity’ channel group,
table 7), effectively preventing the plan from ex-
tending beyond targets or into obstacles. This
aspect of the transition model prevents the DRC
from adding impossible transitions to its path.

Conclusion Using the path channel representation allows us to directly examine model weights in
order to understand model behavior. We find that the encoder initializes path channel activations near
the target and boxes, and extends them through forward and backward path extension kernels. Nega-
tive path channel activations prevent the path extension kernels from making impossible movements,
serving some of the same features of a transition model.

3.3 Pruning path segments

Backtracking mechanism. The plan extension kernels serve a dual purpose and also allow the
algorithm to backtrack from bad paths. As part of its bidirectional planning, the DRC has forward
and backward plan extension kernels, so negative activations at the end of a path are propagated to the
beginning by the backward kernel, and negative activations at the beginning of a path are propagated
to the end by the forward kernel. This allows the DRC to propagate negative activations along a path,
thus pruning unpromising path fragments. See section I for an example.
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Figure 9: After zero-ablating the kernels connect-
ing the box-down and box-right channels, the WTA
mechanism cannot suppress the right-down plan.

Winner-takes-all mechanism. To select a sin-
gle path for a box when multiple options ex-
ist, the network employs a Winner-Takes-All
(WTA) mechanism among short-term path chan-
nels. Excluding the long-term path channels
allows the DRC to maintain plans for later execu-
tion without inhibiting them. Figure 10 (bottom-
left) shows that weights connecting path chan-
nels for various directions cause the path chan-
nel activations to inhibit each other at the same
square. The direction with the strongest activa-
tion suppresses activations in alternative direc-
tions which, combined with the sigmoid activation, ensures that only one direction’s path channels
remain active for imminent execution. We construct a level with equally viable paths to causally
demonstrate (fig. 9): initially, both paths have similar activations, but the slightly stronger one quickly
dominates in steps 1 and 2 and deactivates the other via this inhibitory interaction. Zero-ablating
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the kernels between the channels of the two directions eliminates the WTA effect, leaving both
potential paths simultaneously active. Thus, we conclude that kernels connecting various short-term
box-movement path channels implement this crucial selection mechanism.

3.4 Putting it all together

We provide an example where the winner takes all mechanism chooses between two paths, with the
plan extension kernels propagating the path selection back to the box and stabilizing the plan.
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Figure 10: A situation with two equally good paths from the box to the target . The sum of
box-down (L1H17) and box-right (L1H13) channels shows that the network searches forward from
the box and backward from the target. Both paths (down-then-right and right-then-down) are visible
at step 0 tick 1 (left) due to the encoder; and the down and right channels have similar activations
on the box square (gray). From step 0 tick 1 until step 2 tick 1 (section 2.1 defines ‘tick’), the plans
are extended in the same direction by Linear Plan Extension (LPE) kernels (bottom-middle) and
extended into switching directions by Turn Plan Extension kernels (bottom-right), stopping (fig. 8)
on signals corresponding to reaching the target or hitting obstacles. The plan at the box square is
resolved at step 1 tick 2 using a Winner-Takes-All (WTA) mechanism. The average WTA kernel
weights (bottom-left figure, averaging over W·h1 and W·h2 for · ∈ {i, j, f, o}) subtract each channel
from all the others, which through a sigmoid approximates an argmax. The magnitude of the diagonal
entries (stronger for down than right) break ties.

4 Related work

Mechanistic explanations. To the best of our knowledge, our work advances the Pareto frontier
between complexity of a network and the detail of its characterization, providing the most detailed
description of a neural network of this complexity. Much work focuses on the mechanisms of large
language models. LLMs are more complex than the DRC, but the algorithms these papers explain
are simpler as measured by the size of the abstract causal graph [Geiger et al., 2021, Chan et al.,
2022]. Examples include work on GPT-2 small [Wang et al., 2023, Hanna et al., 2023, Dunefsky
et al., 2024], Gemma 2-2B [Marks et al., 2024, Nanda et al., 2023c], Claude 3.5 Haiku [Lindsey
et al., 2025, Marks et al., 2025], and others [Zhou et al., 2024]. A possible exception is Lindsey et al.
[2025], which contains many simple explanations whose graphs together would add up to a graph
larger than that of the present work. However, their explanations rely only on empirical causal effects
and are local (only valid in their prompt), contrasting with weight-level analysis that applies to all
inputs. Pioneering work in understanding vision models [Olah et al., 2020, Schubert et al., 2021,
Voss et al., 2021] is very thorough in labeling features but provides a weight-level explanation for
only a small part of InceptionV1 [Cammarata et al., 2021]. Other work focuses on tiny toy models
and explains their mechanisms very thoroughly, such as in modular addition [Nanda et al., 2023a,
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Chughtai et al., 2023, Zhong et al., 2023, Quirke and Barez, 2023, Gross et al., 2024, Yip et al., 2025],
binary addition [Primozic, 2023], small language transformers [Olsson et al., 2022, Heimersheim and
Janiak, 2023], or a transformer that finds paths in small binary trees [Brinkmann et al., 2024].

DRC in Sokoban. Taufeeque et al. [2024], Bush et al. [2025] find internal plan representations
in the DRC by predicting future box and agent moves from its activations using logistic regression
probes. Some of their probes are causal, others can be used to generalize the DRC to larger levels;
however, further analysis is primarily based on qualitative probe and model behavior rather than
mechanisms. Our analysis of bidirectional planning is much more mechanistic, and the representation
we uncover is much simpler – instead of a probe, it is simply reading off of a channel.

5 Discussion and Conclusion

Now we discuss broader takeaways from our analysis of the path representation and construction.

Probes find a predictive, not causal representation. Prior probes on the Sokoban network assign
weight to both path channels along with channels that are spuriously correlated. The probes thus had
lower causal intervention scores compared to the path channels we directly identified.

Transition model. Despite training with model-free reinforcement learning, we find some compo-
nents of a transition model. The plan extension kernels place activation on the tiles that would result
from moving in a particular direction. The model also generates negative activation for invalid moves,
such as moving into a wall.

Path channel activations as a value function. So far, we have discussed the path channel activa-
tions as a representation of the path. We believe that the path channel activations also bear similarities
to an internal value function, or more precisely a Q function, evaluating whether to take an action
at a particular state. Firstly, the plan extension kernels propagate positive and negative activations
along path segments to propagate reward information forward and backward. Targets anchor positive
activation for moving in that direction, while obstacles generate negative activation. Negative activa-
tion at the end of a path can propagate backwards until it prunes the path segment entirely. Secondly,
the winner takes all mechanism uses the path channel activations to choose between conflicting path
segments, stabilizing the path to choose (generally) higher activation rewards.

It differs from a typical Q function or informal reward function in several important ways. Firstly,
the activations do not appear to correspond to discounted or penalized reward. In the Sokoban
environment, each step costs 0.1 reward, so the reward should decrease over time, with longer paths
having a weaker activation. Instead, the activation functions represent the preference for shorter
paths implicitly in the dynamics of the planning mechanism. The path extension kernels only extend
the path a few moves forward per tick, and so shorter paths to the target generally have their path
segments reach boxes before longer path segments. In Section J, we exploit this insight to make
the agent take the longer of two paths. Secondly, there are various biases in the winner takes all
mechanism. An astute reader might look at Figure 10 and note that the kernel is biased rather than
treating all values symmetrically.

Mesa-optimizers. Hubinger et al. [2019] introduced the concept of a mesa-optimizer, an AI that
learns to pursue goals via internal reasoning. Examples of mesa-optimizers did not exist at the time,
so subsequent work studied the problem of whether the learned goal could differ from the training
signal, reward misgeneralization [Di Langosco et al., 2022, Shah et al., 2022]. Oswald et al. [2023]
argued that transformers do in-context linear regression and are thus mesa-optimizing the linear
regression loss, but this doesn’t constitute agentic behavior. Modern AI agents appear to reason, but
whether they internally optimize a goal is unresolved.

This work answers, in the affirmative, the question of whether or not agentic mesa-optimizers exist.
We present a model organism of mesa-optimization, then point to its internal planning process and to
its learned value function. The value function differs from what it should be from the training reward,
albeit in benign ways: the training reward has a −0.1 per-step term, but the value encoded in the path
channels do not capture plan length at all. In fact, which path the DRC picks is a function of which
one connects to the target first, encoding the preference for shorter paths purely in the LPE and TPE
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kernels (section J). To compute the value head (critic), the DRC likely counts how many squares are
active in the path channels.

Conclusion In conclusion, we discover a simple representation of the DRC(3, 3) agent’s intended
path as activations in its path channels. These path channels are initialized by encoder kernels, then
extended bidirectionally by forward and backward plan extension kernels, and stabilized by a winner
takes all kernel. The agent is able to plan forward and backtrack by increasing or decreasing path
channel activations via the same plan extension kernels.

LLM Usage Statement

LLMs were used for basic writing feedback and title brainstorming, but not direct contribution.
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Appendix

A Common components of search algorithmns

A search algorithm requires four key components:

1. A representation of states.
2. A transition model that defines which nodes (states) are reachable from a currently expanded

node when taking a certain action.
3. A heuristic function that determines which nodes to expand.
4. A value function that determines which plan to choose once the search ends (in online search

algorithms, only the first action from the chosen plan is taken).

The heuristic varies by algorithm:

• For A*, it is distance(n) + heuristic(n). [Russell and Norvig, 2009]
• For iterative-deepening alpha-beta search (as used in Stockfish), the heuristic comprises

move ordering and pruning criteria. [Chess Programming Wiki, 2024]
• For AlphaZero/MuZero MCTS, it uses the UCT formula pre-rollout, incorporating backed-

up value functions and a policy with Dirichlet noise. [Silver et al., 2018, Schrittwieser et al.,
2019]

In all cases, the expansion process influences the relative evaluation of actions in the starting state.
The final action selection relies on a value function:

• A*: Uses the actual path distance when plans have been fully expanded. [Russell and Norvig,
2009]

• AlphaZero/MuZero MCTS: Employs backpropagated estimated values combining rollout
and final score. [Silver et al., 2018, Schrittwieser et al., 2019]

• Stockfish 16+: Utilizes the machine-learned evaluation function at leaf nodes. [Chess
Programming Wiki, 2024]

In the body of the paper, we show how various parts of the trained DRC correspond to these four
components.

B Network architecture

The DRC architecture consists of an convolutional encoder E without any non-linearities, followed
by D ConvLSTM layers that are repeated N times per environment step, and an MLP block that
maps the final layer’s hidden state to the value function and action policy.

The encoder maps the observation xt at timestep t to the encoded state et. For all d > 1, the
ConvLSTM layer updates the hidden state hn

d , c
n
d at each tick n using the following equations:

et := E(xt) = WE2
∗ (WE1

∗ xt + bE1
) + bE2

(3)

cnd , h
n
d := ConvLSTMd(et, h

n
d−1, c

n−1
d , hn−1

d ) (4)

ind := tanh(W d
ie ∗ et +W d

ih1
∗ hn

d−1 +W d
ih2

∗ hn−1
d + bi) (5)

fn
d := σ(W d

fe ∗ et +W d
fh1

∗ hn
d−1 +W d

fh2
∗ hn−1

d + bf ) (6)

jnd := σ(W d
je ∗ et +W d

jh1
∗ hn

d−1 +W d
jh2

∗ hn−1
d + bj) (7)

cnd := fn
d ⊙ cn−1

d + ind ⊙ jnd (8)

ond := tanh(W d
oe ∗ et +W d

oh1
∗ hn

d−1 +W d
oh2

∗ hn−1
d + bo) (9)

hn
d := ond ⊙ tanh(cnd ) (10)
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Figure 11: The planning algorithm circuit learned by DRC(3, 3). While the plan nodes are present
and updated across all the layers, this circuit only shows the short and long-term plan nodes in
the first layer’s hidden state (L0HX) with a channel X for each direction up, down, left, and right.
Mechanisms are annotated with the sub-section they are studied in ??.

Here ∗ denotes the convolution operator, and ⊙ denotes point-wise multiplication. Note that θd =
(Wi·,Wj·,Wf ·,Wo·, bi, bj , bf , bo)d parameterizes the computation of the i, j, f, o gates. For the first
ConvLSTM layer, the hidden state of the final ConvLSTM layer is used as the previous layer’s hidden
state.

A linear combination of the mean- and max-pooled ConvLSTM activations is injected into the next
step, enabling quick communication across the receptive field, known as pool-and-inject. A boundary
feature channel with ones at the boundary of the input and zeros inside is also appended to the input.
These are ignored in the above equations for brevity.

Finally, an MLP with 256 hidden units transforms the flattened ConvLSTM outputs hN
D into the

policy (actor) and value function (critic) heads. In our setup, D = N = 3 and C = 32 matching
Guez et al. [2019]’s original hyperparameters. An illustration of the full architecture is shown in
fig. 13.

C Network training details

The network was trained using the IMPALA V-trace actor-critic [Espeholt et al., 2018] reinforcement
learning (RL) algorithm for 2 · 109 environment steps with Guez et al.’s Deep Repeating ConvLSTM
(DRC) recurrent architecture consisting of three layers repeated three times per environment step, as
shown in fig. 13.

The observations are H × W RGB images with height H and width W . The agent, boxes, and
targets are represented by the green , brown , and red pixels respectively [Schrader, 2018], as
illustrated in fig. 12. The environment has -0.1 reward per step, +10 for solving a level, +1 for putting
a box on a target and -1 for removing it.

Dataset The network was trained on 900k levels from the unfiltered train set of the Boxoban dataset
[Guez et al., 2018]. Boxoban separates levels into train, validation, and test sets with three difficulty
levels: unfiltered, medium, and hard. The hard set is a single set with no splitting. Guez et al. [2019]
generated these sets by filtering levels unsolvable by progressively better-trained DRC networks. So
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Figure 12: High resolution visualization of a Sokoban level along with the corresponding symbolic
representation that the network observes. The agent, boxes, and targets are represented by the green

, brown , and red squares respectively.

MLP

Figure 13: DRC(3, 3)architecture. Blocks parametrized by θ represent the ConvLSTM module shown
in fig. 2. There are three layers of ConvLSTM modules with all the layers repeated applied three
times before predicting the next action.

easier sets occasionally contain difficult levels. Each level in Boxoban has 4 boxes in a grid size
of H = W = 10. The H ×W observations are normalized by dividing each pixel component by
255. The edge tiles in the levels from the dataset are always walls, so the playable area is 8× 8. The
player has four actions available to move in cardinal directions (Up, Down, Left, Right). The reward
is -0.1 per step, +1 for placing a box on a target, -1 for removing it, and +10 for finishing the level by
placing all of the boxes. In this paper, we evaluate the network on the validation-medium and hard
sets of the Boxoban dataset. We also often evaluate the network on custom levels with different grid
sizes and number of boxes to clearly demonstrate certain mechanisms in isolation.

Action probe for evaluation on larger grid sizes The DRC(3, 3)network is trained on a fixed
H ×W grid size with the hidden state channels flattened to a H ×W × C tensor before passing
it to the MLP layer for predicting action. Due to this limitation, the network cannot be directly
evaluated on larger grid sizes. Taufeeque et al. [2024] trained a probe using logitic regression with
135 parameters on the hidden state h of the final ConvLSTM layer to predict the next action. They
found that the probe can replace the 0.8M parameter MLP layer to predict the next action with a
77.9% accuracy. They used this probe to show that the algorithm learned by the DRC backbone
generalizes to grid sizes 2-3 times larger in area than the training grid size of 10× 10. We use these
action probes to run the same network on larger grid sizes in this paper.
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Figure 14: 16× 16 zig-zag level that the original DRC(3, 3) network fails to solve. Steering W d
ch1

and W d
ch2

by a factor of 1.2 solves this level and similar zig-zag levels for sizes upto 25× 25.

Table 3: Comparison of network intervened with single-step cache across different channel groups.
We report the percentage drop of solve rate compared to the original network (%) on medium-difficulty
levels.

Group # Channels Performance Drop
Non-planning 37 10.5
Planning 59 57.6
Random planning subset 37 41.3

D Gate importance

We identify here the components that are important and others which can be ignored. We noticed
that our analysis can be simplified by ignoring components like the previous cell-state c and forget
gate f that don’t have much effect. On mean-ablating the cell-state c at the first tick n = 0 of every
step for all the layers, we find that the network’s performance drops by 21.28%± 0.04%. The same
ablation on the forget gate f results in a drop of 2.66%±0.03%. On the other hand, the same ablation
procedure on any of the other gates i, j, o, or the hidden state h breaks the network and results in a
drop of 100.00% with no levels solved at all. This shows that the forget gate is not as important as
other gates in regulating the information in the cell-state, and the information in the cell-state itself is
not relevant for solving most levels. The only place we found the forget gates to be important is for
accumulating the next-action in the GNA channels (section F).

The mean-ablation experiment shows that the network computation from previous to the current step
can be simplified to the following:

cnd ≈ E[fn
d ]⊙ E[cn−1

d ] + ind ⊙ jnd = µ+ ind ⊙ jnd (11)
hn
d = ond ⊙ tanh(cnd ) ≈ ond ⊙ tanh(µ+ ind ⊙ jnd ) (12)

We therefore focus more on the i, j, o gates and the hidden state h in our analysis in this paper.
Qualitatively, it also looks like the cell-state c is very similar to the hidden state h. Note that the cell
state c not being much relevant doesn’t imply that the network is not using information from previous
hidden states, since most of the information from the previous hidden states hn−1

d flows through the
W d

ch2
kernels.

E Label verification and offset computation

We see from table 8 that most channels can be represented with some combination of features that
can be derived from observation image (base feature) and future box or agent movements (future
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features). We compute the following 5 base features: agent, floor, boxes not on target, boxes on
target, and empty targets. For future features, we get 3 features for each direction: box-movement,
agent-movement, and a next-action feature that activates positively on all squares if that action is
taken by the network at the current step. We perform a linear regression on the 5 base and 12 future
features to predict the activations of each channel in the hidden state h.

Offset computation On visualizing the channels of the DRC(3, 3)network, we found that the
channels are not aligned with the actual layout of the level. The channels are spatially-offset by
a few squares in the cardinal directions. To automatically compute the offsets, we perform linear
regression on the base and future features to predict the channel activation by shifting the features
along x, y ∈ {−2,−1, 0, 1, 2} and selecting the offset regression model with the lowest loss. The
channels offsets are available in table 4. We manually inspected all the channels and the offset and
found that this approach accurately produces the correct offset for all the 96 channels in the network.
All channel visualization in the paper are shown after correcting the offset.

Correlation The correlation between the predicted and actual activations of the channels is provided
in the tables 5 and 6. We find that box-movement, agent-movement, combined-plan, and target
channels have a correlation of 66.4%, 50.8%, 48.0%, and 76.7%. As expected, the unlabeled
channels do not align with our feature set and have the lowest correlation of 40.2%. Crucially,
a baseline regression using only base features yielded correlations below 20% for all channels,
confirming that the channels are indeed computing plans using future movement directions. These
correlations should be treated as lower bounds, as this simple linear approach on the binary features
cannot capture many activation dynamics like continuous development, representation of rejected
alternative plans (section 3.3), or the distinct encoding of short- vs. long-term plans.

F Plan Representation to Action Policy

The plan formed by the box movement channels are transferred to the agent movement channels.
For example, fig. 21b shows that the agent down movement channel L1H18 copies the box down
movement channel L1H17 by shifting it one square up, corresponding to where the agent will push
the box. The kernels also help in picking a single path if the box can go down through multiple paths.

Once the box-plan transfers to the agent-movement channels, these channels are involved in their
own agent-path extension mechanism. Figure 21a show that the agent-movement channels have
their own linear-plan-extension kernels. These channels also have stopping conditions that stop the
plan-extension at the box squares and agent square. Thus, as a whole, the box-movement channels
find box to target paths and the agent-movement channels copy those paths and also find agent to box
paths.
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Figure 15: Left: Observation at step 3 where the
agent moves down.Right: The GNA channels,
which represent the direction that the agent will
move in at the next step, predict the agent mov-
ing down primarily through f -gate. The box- and
agent-down channels are offset and subtracted to
get the action at the agent square. The checkered
agent location pattern from L2H27 also helps in
isolating the action on the agent square. The active
f -gate square accumulates activation in the cell-
state c which after max-pooling and MLP layer
decodes to the down action being performed.

Finally, the network needs to find the next ac-
tion to take from the complete agent action plan
represented in agent-movement channels. We
find that the network dedicates separate channels
that extract the next agent action. We term these
channels as the grid-next-action (GNA) chan-
nels (table 7). There exists one GNA channel
for each of the four action directions. A max-
pooling operation on these channels transfers
the high activation of an action to the entire grid
of the corresponding agent action channel.

We term these as the pooled-next-action (PNA)
channels (table 7). Lastly, the MLP layer aggre-
gates the flattened neurons of the PNA channels
to predict the next action. We verify that the
PNA and GNA channels are completely respon-
sible for predicting the next action by perform-
ing causal intervention that edits the activation
of the channel based on our understanding to
cause the agent to take a random action at any
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step in a level. Table 2 shows that both the PNA and GNA channels are highly accurate in modifying
the next action. We now describe how the network extracts only the next agent move into the GNA
channels.

The individual gates of the GNA channels copy activations of the agent-movement channels. Some
gates perform subtraction of the agent and box movement channels to get agent-exclusive moves and
the next agent box push. Figure 15 (top-right) shows one such example where the agent and box
movement channels from layer 1 are subtracted resulting in an activation exclusively at the agent
square. The GNA gates also receive positive activation on the agent square through L2H27 which
detects agent at the first tick n = 0 of a step. Figure 15 shows that the f -gate of all GNA channels
receives a positive contribution from the agent square. To counteract this, the agent-movement
channels of one direction contribute negatively to the GNA channels of all other directions. All of
this results in the agent square of the GNA channel of the next move activating strongly at the second
tick n = 1.

Thus we have shown that the complete plan is filtered through the GNA channels to extract the next
action which activates the PNA channel for the next action to be taken.

G State Transition Update

We have understood how the plan representation is formed and mapped to the next action to be taken.
However, once an action is taken, the network needs to update the plan representation to reflect the
new state of the world. We saw in ?? that the plan representation is updated by deactivating the square
that represented the last action in the plan. This allowed a different future action to be represented at
the same square in the short-term channel which was earlier stored only in the long-term channel. We
now show how a square is deactivated in the plan representation.

After an action is taken, the network receives the updated observation on the first tick n = 0 with the
new agent or box positions. The combined W d

ce kernels for each layer that map to the path channels
contain filters that detect only the agent, box, or target, often with the opposite sign of activation
of the plan in the channel (fig. 22). Hence, when the observation updates with the agent in a new
position, the agent kernels activates with the opposite sign of the plan activation that deletes the last
move from the plan activation in the hidden state. The activation contributions in fig. 8 shows the
negative contribution from the encoder kernels on the agent and the square to the left of the box.
Therefore, the agent and the boxes moving through the level iteratively remove squares from the plan
when they are executed with the plan-stopping mechanism ensuring that the plan doesn’t over-extend
beyond the new positions from the latest observation.

H Activation transfer mechanism between long and short term channels

Consider a scenario where two different actions, A1 and A2 (A1 ̸= A2), are planned for the same
location ("square") at different timesteps, t1 and t2, with t1 < t2. As illustrated in section 3.3, ??
(right) and further detailed in fig. 5, the later action (A2 at t2) is initially stored in the long-term
channel for timesteps t < t1. This information is transferred to the short-term channel only after the
earlier action (A1) is executed at t = t1. We now describe the specific mechanism responsible for
this transfer of activation from the long-term to the short-term channel.

In fig. 16, the activations transfer into L1H17 (short-term-down) from L0H14 (long-term-down)
and L0H2 (short-term-down) channels when a right action is taken at t = 0 represented in L0H9
(short-term-right). The short-term-right channel L0H9 imposes a large negative contribution via the
j-gate to inhibit L1H17, keeping it inactive even as the long-term-down channel tries to transfer a
signal through the j and o-gates for t < 0. Once the first move completes (t = 0), short-term-right is
no longer active and so the inhibition ceases. The removal of the negative input allows the j-gate’s
activation to rise, enabling the long-term-down activation transfer through o-gate, making it the new
active short-term action at the square. This demonstrates how long-term channels hold future plans,
insulated from immediate execution conflicts by the winner takes all (WTA) mechanism (section 3.3
and fig. 10) acting on short-term channels.
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Figure 16: Transfer mechanism from long to short-term channel shown through contributions into
the gates of the short-term-down (L1H17) channel averaged across squares where a right box-push
happens at t = 0 and down box-push later on. The long-term-down channel L0H14 contributes to the
o-gate at all steps t. However, L0H9 (short-term-right) activates negatively in the sigmoid j-gate, thus
deactivating L1H17. As the right move gets played at t = 0, L0H9’s negative contribution vanishes,
enabling the transfer of L0H14 and L0H2 into L1H17.

(a) Observation

D1

D2D3

(b) All box channels
step 1 tick 0

(c) L2H9 (right)
step 5 tick 1

(d) L2I9 (right)
step 5 tick 1

(e) L2O9 (right)
step 5 tick 1

(f) L2H9 (right)
step 9 tick 1

(g) L2H9 (right)
Abl. step 9 tick 1

Figure 17: (a) 20 × 20 level we term as the “backtrack level” with key decision nodes D1-D3 for
backward chaining. (b) The sum of box-movement channels at step 1 tick 0 indicates forward (from
box) and backward (from target) chaining. (c-e) Activation of the box-right channel L2H9 involved
in backward chaining at step 5 tick 1. Backward chaining moved up from D1 to D2 and then hitting a
wall at D3, which initiates backtracking towards D2 through negative plan extension. The negative
wall activation comes from the o-gate of L2H9. (f) Successful pathfinding at T28 after backtracking
redirected the search. (g) Ablation: Forcing positive activation at D3 (by setting it to its absolute
value) prevents backtracking, hindering correct solution finding (L2H9 Abl., T28).
In particular, the forced positive ablation at D3 results in an incorrect plan (g) which seemingly goes
right all the way through the wall, as opposed to the correct plan (f) which goes right on a valid path.

I Case study: Backtracking mechanism

Consider the level depicted in fig. 17 (a). The network begins by chaining forward from the box and
backward from the target(fig. 17, b). Upon reaching the square marked D1, the plan can continue
upwards or turn left. Here, the linear and turn plan-extension kernels activate the box-down and
the box-right channels, respectively. However, the box-down activation is much higher because the
weights of the linear extension kernels are much larger than the turn kernels (as seen in fig. 10). Due
to this, the winner-takes-all mechanism leads to the search continuing upwards in the box-down
channel. Upon hitting a wall at D2, the chain turns right along the ‘box-right channel‘ (L2H9) and
continues until it collides with another wall at D3. (fig. 17, c).

This triggers backtracking. While both i-gate and o-gate activations contribute to plan extension,
the o-gate also activates strongly negatively on wall squares like D3 (fig. 17d, e). This leads to a
dominant negative activation in the ‘box-right‘ channel, which then propagates backward along the
explored path (from D3 towards D2) via the forward plan-extension kernels of L2H9.
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Figure 18: A level with two paths, one longer than the other. We initialize the starting hidden state
with the two paths shown such that they both have two squares left to reach the target. We find that
the expands both paths and picks the left (longer) path through the winner-takes-all mechanism since
it reaches there with higher activation through linear-plan-extension.

This weakens the dominant ‘box-down‘ activation at D1, allowing the alternative ‘box-right‘ path
from D1 to activate. The search then proceeds along this new route, allowing the backward chain to
connect with the forward chain, resulting in the correct solution (fig. 17, f).

To verify this mechanism, we performed an intevention by forcing the activation at the wall squares
near D3 to be positive (by taking their absolute values). This blocked backtracking, and the network
incorrectly attempted to connect the chains through the wall (fig. 17, g). This confirms that negative
activation generated at obstacles is the key driver for backtracking, and is what allows the network to
discard failed paths and explore alternatives. We quantitatively test this claim further by performing
the same intervention on transitions from 512 levels where a plan’s activation is reduced by more
than half in a single step which was preceded by a neighboring square having negative activation in
the path channel. We define the intervention successful if forcing the negative square to an absolute
value doesn’t reduce the activation of the adjacent plan square. The intervention results in a success
rate with 95% confidence intervals of 85.1% ± 5.0% and 48.9% ± 3.3% for long- and short-term
channels, respectively. This checks out with the fact that long-term channels represent plans not in the
immediate future which would get backtracked through negative path activations. On the other hand,
negative activations in the short-term channels are also useful during the winner-takes-all (WTA)
mechanism and deadlock prevention heuristics. Filtering such activations for short-term channels
from the intervention dataset would improve the accuracy.

J Case study: making the network take the longer path

The network usually computes the shortest paths from a box to a target by forward (from box) and
backward (from target) chaining linear segments until they connect at some square as illustrated in
fig. 10. As soon as a valid plan is found for a box along one direction, the winner-takes-all mechanism
stabilizes that plan through its stronger activations and deletes any other plans being searched for
the box. From this observation, we hypothesize that the network values finding valid plans in least
number of steps than picking the shorter one. We verify this value preference of the network by
testing the network with on the level shown in fig. 18 with the starting state initialized with the two
paths shown. The left path (length=13) is longer than the right path (length=7) for reaching from the
box to target. Both paths are initialized in the starting hidden state to have two arrow left to complete
the path. We find that in this case, both the paths reach the target, but the left one is stronger due to
linear plan extension kernels reaching with higher activation. This makes the network pick the left
path and prune out the shorter right path. If we modify the starting state such that left and right paths
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Figure 19: Sum of activations of box-movement channels on the 40× 40 backtrack level with the
network weights W d

ch1 and W d
ch2

steered by a factor of 1.4. The planning representation gets stuck in
the loop shown, unable to backtrack and explore other paths. The activations of other squares become
chaotic, changing rapidly and randomly on each step.

have 3 and 2 square left to the reach the target, then the right path wins and the left path is pruned out.
This confirms that the network’s true value in this case is to pick a valid plan closer to target than to
pick a shorter plan. However, since convolution moves plan one square per operation, the network
usually seems to have the value of picking the shorter plan.

K Channel Redundancy

We see from table 7 that the network represents many channels per box-movement and agent-
movement direction. We find at least two reasons for why this redundancy is useful.

First, it facilitates faster spatial propagation of the plan. Since the network uses 3 × 3 kernels
in the ConvLSTM block, information can only move 1 square in each direction per convolution
operation. By using redundant channels across multiple layers, the network can effectively move
plan information several squares within a single time step’s forward pass (one square per relevant
layer). Evidence for this rapid propagation is visible in fig. 17(b), where plan activations extend 7-10
squares from from the target and the box within the first four steps on a 20× 20 level.

Second, the network dedicates separate channels to represent the plan at different time horizons. We
identified distinct short-term (approximately 0-10 steps ahead) and long-term (approximately 10-50
steps ahead) channels within the box and agent-movement categories.

This allows the network to handle scenarios requiring the same location to be traversed at different
future times. For example, if a box must pass through the same square at time t1 and later at time t2,
the network can use the short-term channel to represent the first push at t1 and the long-term channel
to represent the second push at t2. ?? (right) illustrates this concept, showing activation transferring
from a long-term to a short-term box-down-movement channel once the earlier action at that square
is taken by the agent.

L Weight steering fixes failure on larger levels

Previous work [Taufeeque et al., 2024] showed that, although the DRC(3, 3) network can solve much
bigger levels than 10× 10 grid size on which it was trained, it is easy to contruct simple and natural
adversarial examples which the network fails to solve. For example, the n× n zig-zag level in fig. 14
that can be scaled arbitrarily by adding more alleys and making them longer, is only solved for
n ≤ 15 and fails on all n > 15. The big level shown in fig. 17 (a) is solved by the network on the
20× 20 grid size but fails on 30× 30 or 40× 40 grid size.

Figure 20 (a) visualizes the sum of activations of the box-movement channels on a 40× 40 variant of
the backtrack level in which we see the reason why larger levels fail: the channel activations decay
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as the plan gets extended further and further. This makes sense as the network only saw 10 × 10
levels during training and hence the kernel weights were learned to only be strong enough to solve
levels where targets and boxes are not too far apart. We find that multiplying the weights of W d

ch1

and W d
ch2

, the kernels that update and maintain the hidden state, by a factor of 1.2 helps the network
extend the plan further. This weight steering procedure is able to solve the zig-zag levels for sizes up
to n = 25 and the backtrack level for sizes up to 40× 40. Figure 20 (b, c) show that upon weight
steering, the box-movement channels are able to maintain their activations for longer, enabling the
network to solve the level. However, for much larger levels, weightsteered networks also fall into the
same trap of decaying activations, failing to extend the plan. Further weight steering with a larger
factor can help but we find that it can become brittle, as the planning representation gets stuck in
wrong paths, unable to backtrack, with the activations becoming chaotic (fig. 19). We also tried other
weight steering approaches such as multiplying all the weights of the network by a factor or a subset
such as the kernels of path channels, but find that they do not work as well as the weight steering of
W d

ch1 and W d
ch2

.

M Related Work

Mechanistic interpretability. Linear probing and PCA have been widely successful in finding
representations of spatial information [Wijmans et al., 2023] or state representations and game-specific
concepts in games like Maze [Ivanitskiy et al., 2023, Knutson et al., 2024, Mini et al., 2023], Othello
[Li et al., 2023, Nanda et al., 2023b], and chess [McGrath et al., 2021, Schut et al., 2023, Karvonen,
2024]. However, these works are limited to input feature attribution and concept representation,
and do not analyze the algorithm learned by the network. Recent work has sought to go beyond
representations and understand key circuits in agents. It is inspired by earlier work in convolutional
image models [Carter et al., 2019] discovering the circuits responsible for computing key features like
edges, curves, and spatial frequency [Cammarata et al., 2021, Olah et al., 2020, Schubert et al., 2021].
In particular, recent work has found mechanistic evidence for few-step lookahead in superhuman
chess networks [Jenner et al., 2024, Schut et al., 2023], and future token predictions in LLMs on
tasks like poetry and simple block stacking [Lindsey et al., 2025, Men et al., 2024, Pal et al., 2023].
However, these works still focus on particular mechanisms in the network rather than a comprehensive
understanding of the learned algorithm.

N Limitations

Our paper has several limitations. First, we only reverse-engineer one DRC(3, 3) network in this
paper. We are fairly confident that our results generalize to any DRC(3, 3) network trained on
Sokoban using model-free reinforcement learning, but can’t prove it. The network having similar
performance and capabilities such as utilizing extra test-time compute across multiple papers who
trained it independently suggests that the learned algorithm is a pretty stable minima [Guez et al.,
2019, Taufeeque et al., 2024, Bush et al., 2025].

Second, we only reverse-engineer DRC and no other networks. It is possible that the inductive biases
of other networks such as transformer, Conv-ResNet, or 1D-LSTM may end up learning an algorithm
that is different from what we found. Our results are also only on Sokoban and it is possible that
the learned algorithm for other game-playing network looks very different from the one learned for
Sokoban.

We also do not fully reverse-engineer the network. We have observed the following behaviors that
cannot be explained yet with our current understanding of the learned algorithm:

• Agent sometimes executes some steps of the plan for box 1, then box 2, then back to box
1, to minimize distance. Our explanation doesn’t account for how and when the network
switches between boxes.

• Sometimes the heuristics inexplicably choose where to go based on seemingly irrelevant
things. Slightly changing the shape or an obstacle or moving the agent’s position by 1 can
sometimes change which plan gets chosen, in a manner that doesn’t correspond to optimal
plan.
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Figure 20: The sum of activations of the box-movement channels on a 40×40 variant of the backtrack
level from fig. 17 for (a) the original network at step 50, and the weight-steered network at (b) step
50 and (c) step 100 when the agent reaches halfway through. The original network fails to solve the
level as the plan decays and cannot be extended beyond 10− 15 squares. Upon weight steering, the
plan activations travel farther without decaying thus solving the level.

0.5

1

1.5

2

Up Down Left Right

Fo
rw

ar
d

B
ac

kw
ar

d

(a) Forward and backward plan extension kernels
averaged over agent-movement channels. Agent-
movement channels also extend the agent moves for-
ward and backward similar to the box-plan extension.
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(b) The kernels that map L1H17 (box-down) to L1H18
(agent-down) by shifting the activation one square up.
L1H17 activates negatively, therefore the j and f ker-
nels are negative since they use the sigmoid activation
function. The i and o kernels are positive which results
in negatively activating i and o-gates, which after mul-
tiplication results in L1H18 activating positively. The
opposite signed weights on the lower-corner squares
of the kernel help in picking a single path out of mul-
tiple parallel paths.

Figure 21: Plan extension and box path to agent path kernels.

O Societal Impact

This research into interpretability can make models more transparent, which helps in making models
predictable, easier to debug and ensure they conform to specifications.

Specifically, we analyze a model organism which is planning. We hope that this will catalyze further
research on identifying, evaluating and understanding what goal a model has. We hope that directly
identifying a model’s goal lets us monitor for and correct goal misgeneralization [Di Langosco et al.,
2022].

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Box up Activates on squares from where a box would
be pushed up

L0H13, L0H24*, L2H6

Box down Activates on squares from where a box would
be pushed down

L0H2, L0H14*, L0H20*, L1H14*,
L1H17, L1H19

Box left Activates on squares from where a box would
be pushed left

L0H23*, L0H31, L1H11, L1H27,
L2H20

Continued on next page
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Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Box right Activates on squares from where a box would
be pushed right

L0H9, L0H17, L1H13, L1H15*,
L2H9*, L2H15

Agent up Activates on squares from where an agent
would move up

L0H18, L1H5, L1H29, L2H28,
L2H29

Agent down Activates on squares from where an agent
would move down

L0H10, L1H18, L2H4, L2H8

Agent left Activates on squares from where an agent
would move left

L2H23, L2H27, L2H31

Agent right Activates on squares from where an agent
would move right

L1H21, L1H28, L2H3, L2H5,
L2H21*, L2H26

Combined
Plan

Channels that combine plan information from
multiple directions

L0H15, L0H16, L0H28, L0H30,
L1H0, L1H4, L1H8, L1H9, L1H20,
L1H25, L2H0, L2H1, L2H13,
L2H14, L2H17, L2H18, L0H7,
L0H1, L0H21, L1H2, L1H23,
L2H11, L2H22, L2H24, L2H25,
L2H12, L2H16, L0H19, L2H30

Entity Highly activate on target tiles. Some also
activate on agent or box tiles

L0H6, L0H26, L1H6, L1H10,
L1H22, L1H31, L2H2, L2H7

No label Uninterpreted channels. These channels do
not have a clear meaning but they are also not
very useful

L0H0, L0H3, L0H4, L0H5, L0H8,
L0H22, L0H25, L0H27, L0H29,
L1H1, L1H3, L1H12, L1H16,
L1H26, L1H30, L2H10, L2H19,
L0H11, L0H12, L1H7, L1H24

Grid-Next-
Action
(GNA)

Channels that activate on squares that the
agent will move in the next few moves. One
separate channel for each direction

L2H28 (up), L2H4 (down), L2H23
(left), L2H26 (right)

Pooled-
Next-
Action
(PNA)

A channel for each action that activates highly
across all squares at the last tick (n = 2) to
predict the action

L2H29 (up), L2H8 (down), L2H27
(left), L2H3 (right)

Table 8: Informal description of all channels

Channel Long-
term

Description

L0H0 No some box-left-moves?
L0H1 No box-to-target-lines which light up when agent comes close to the box.
L0H2 No H/-C/-I/J/-O: +future box down moves [1sq left]
L0H5 No [1sq left]
L0H6 No H/-C: +target -box -agent . F: +agent +agent future pos. I: +agent. O: -agent

future pos. J: +target -agent[same sq]
L0H7 No (0.37 corr across i,j,f,o).
L0H9 No -H/-C/-O/I/J/F: +agent +future box right moves -box. -H/J/F: +agent-near-

future-down-moves [on sq]
L0H10 No H: -agent-exclusive-down-moves [1sq left,down]. Positively activates on

agent-exclusive-up-moves.
L0H11 No H: CO. O: box-right moves C/I: -box future pos [1sq up (left-right noisy)]
L0H12 No H: very very faint horizontal moves (could be long-term?). I/O: future box

horizontal moves (left/right). [on sq]
L0H13 No H/C/I/J/O: +future box up moves [1sq up]

Continued on next page
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Table 8: Informal description of all channels

Channel Long-
term

Description

L0H14 Yes H/-I/O/C/H: -future-box-down-moves. Is more future-looking than other
channels in this group. Box down moves fade away as other channels also
start representing them. Sometimes also activates on -agent-right-moves [on
sq]

L0H15 No H/I/J/-F/-O: +box-future-moves. More specifically, +box-down-moves +box-
left-moves. searchy (positive field around target). (0.42 corr across i,j,f,o).

L0H16 No H +box-right-moves (not all). High negative square when agent has to perform
DRU actions. [1sq up,left]

L0H17 No H/I/J/F/O: +box-future-right moves. O: +agent [1sq up]
L0H18 No H: -agent-exclusive-up-moves
L0H20 Yes H: box down moves. Upper right corner positively activates (0.47 start -> 0.6

in a few steps -> 0.7 very later on). I: -box down moves. O: +box down moves
-box horizontal moves. [1sq up]

L0H21 No -box-left-moves. +up-box-moves
L0H23 Yes H/C/I/J/O: box future left moves [1sq up,left]
L0H24 Yes H/C/I/J/O: -future box up moves. long-term because it doesn’t fade away after

short-term also starts firing [1sq up,left]
L0H26 No H: -agent . I/C/-O: all agent future positions. J/F: agent + target + BRwalls,

[1sq up]
L0H28 No H/C/I/J/F/-O: -future box down moves (follower?) [on sq]. Also represents

agent up,right,left directions (but not down).
L0H30 No H/I: future positions (0.47 corr across i,j,f,o).
L1H0 No H: -agent -agent near-future-(d/l/r)-moves + box-future-pos [on sq]
L1H2 No -box-left-moves
L1H4 No +box-left moves -box-right moves [1sq up].
L1H5 No H: +agent-exclusive-future-up moves [2sq up, 1sq left]
L1H6 No J: player (with fainted target)
L1H7 No H: - some left box moves or right box moves (ones that end at a target)?

Sometimes down moves? (unclear)
L1H8 No box-near-future-down-moves(-0.4),agent-down-moves(+0.3),box-near-

future-up-moves(+0.25) [on sq]
L1H9 Yes O/I/H: future pos (mostly down?) (seems to have alternate paths as well. Abla-

tion results in sligthly longer sols on some levels). Fence walls monotonically
increase in activation across steps (tracking time). [on sq]

L1H10 No J/H/C: -box + target +agent future pos. (neglible in H) O,-I: +agent +box
-agent future pos [1sq up] (very important feature – 18/20 levels changed after
ablation)

L1H11 No -box-left-moves (-0.6).
L1H13 No H: box-right-moves(+0.75),agent-future-pos(+0.02) [1sq left]
L1H14 Yes H: longer-term down moves? [1sq up]
L1H15 Yes H/-O: box-right-moves-that-end-on-target (with high activations towards tar-

get). Activates highly when box is on the left side of target [on sq].
L1H17 No H/C/I/-J/-F/O: -box-future down moves [on sq]
L1H18 No H/-O: +agent future down moves (stores alternate down moves as well?) [on

sq]
L1H19 No H/-F/-J: -box-down-moves (follower?) [1sq up]
L1H20 No +near-future-all-box-moves [1sq up].
L1H21 No H: agent-right-moves(-0.5) (includes box-right-pushes as well)
L1H22 No -target
L1H23 No -box-left-moves.
L1H24 No H: -box -agent-future-pos -agent, [1sq left]

Continued on next page
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Table 8: Informal description of all channels

Channel Long-
term

Description

L1H25 No all-possible-paths-leading-to-targets(-0.4),agent-near-future-pos(-
0.07),walls-and-out-of-plan-sqs(+0.1),boxes(+0.6). H: +box -agent
-empty -agent-future-pos | O/-C: -agent +future sqs (probably doing search in
init steps) | I: box + agent + walls | F: -agent future pos | J: +box +wall -agent
near-future pos [1sq up,left]

L1H27 No H: box future left moves [1sq left]
L1H28 No some-agent-exclusive-right-moves(+0.3),box-up-moves-sometimes-

unclear(-0.1)
L1H29 No agent-near-future-up-moves(+0.5) (~5-10steps, includes box-up-pushes as

well). I: future up moves (~almost all moves) + agent sq [1sq up]
L1H31 No H: squares above and below target (mainly above) [1sq left & maybe up]
L2H0 No -box-all-moves.
L2H1 No H/O: future-down/right-sqs [1sq up]
L2H2 No H: high activation when agent is below a box on target and similar positions.

walls at the bottom also activate negatively in those positions.
L2H3 No H: +right action (PNA) + future box -down -right moves + future box +left

moves
L2H4 No O: +near-future agent down moves (GNA). I: +agent/box future pos [1sq left]
L2H5 No H/C/I/J: +agent-future-right-incoming-sqs, O: agent-future-sqs [1sq up, left]
L2H6 No H: +box-up-moves (~5-10 steps). -agent-up-moves. next-target (not always)

[1q left]
L2H7 No +unsolved box/target
L2H8 No down action (PNA).
L2H9 Yes H/C/I/J/O: +future box right moves [1sq up]
L2H11 No -box-left-moves(-0.15),-box-right-moves(-0.05)
L2H13 No H: +box-future-left -box-long-term-future-right(fades 5-10moves before tak-

ing right moves) moves. Sometimes blurry future box up/down moves [1sq
up]

L2H14 No H: all-other-sqs(-0.4) agent-future-pos(+0.01) O: -agent-future-pos. I: +box-
future-pos

L2H15 No -box-right-moves [1sq up,left]
L2H17 No H/C: target(+0.75) box-future-pos(-0.3). O: target. J: +target -agent +agent

future pos. I/F: target. [1sq up]
L2H18 No box-down/left-moves(-0.2). Very noisy/unclear at the start and converges later

than other box-down channels.
L2H19 No H: future agent down/right/left sqs (unclear) [1sq up]
L2H20 No H: -box future left moves [1sq left]
L2H21 Yes H: -far-future-agent-right-moves. Negatively contributes to L2H26 to remove

far-future-sqs. Also represents -agent/box-down-moves. [1sq up]
L2H22 No H: box-right-moves(+0.3),box-down-moves(0.15). O future sqs???
L2H23 No H: future left moves (does O store alternate left moves?) (GNA). [1sq left]
L2H24 No box-right/up-moves (long-term)
L2H25 No unclear but (8, 9) square tracks value or timesteps (it is a constant negative in

the 1st half episode and steadily increases in the 2nd half)?
L2H26 No H/O: near-future right moves (GNA). [on sq]
L2H27 No left action (PNA). T0: negative agent sq with positive sqs up/left.
L2H28 No near-future up moves (GNA). O: future up moves (not perfectly though) [1sq

up]
L2H29 No Max-pooled Up action channel (PNA).
L2H31 No some +agent-left-moves (includes box-left-pushes).
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+L0O28 -L0O28 +L0O29 -L0O29 +L0O30 -L0O30 +L0O31 -L0O31

+L0O24 -L0O24 +L0O25 -L0O25 +L0O26 -L0O26 +L0O27 -L0O27

+L0O20 -L0O20 +L0O21 -L0O21 +L0O22 -L0O22 +L0O23 -L0O23

+L0O16 -L0O16 +L0O17 -L0O17 +L0O18 -L0O18 +L0O19 -L0O19

+L0O12 -L0O12 +L0O13 -L0O13 +L0O14 -L0O14 +L0O15 -L0O15

+L0O8 -L0O8 +L0O9 -L0O9 +L0O10 -L0O10 +L0O11 -L0O11

+L0O4 -L0O4 +L0O5 -L0O5 +L0O6 -L0O6 +L0O7 -L0O7

+L0O0 -L0O0 +L0O1 -L0O1 +L0O2 -L0O2 +L0O3 -L0O3

Figure 22: 9× 9 combined convolutional filters W 0
oe that map the RGB observation image to the O

gate in layer 0. The positive and negative components of each channel filters are separated visualized
by computing max(0,W 0

oe) and max(0,−W 0
oe) respectively. The green, red, and brown colors in

the filters detect the agent, target, and box squares respectively. The blue component is high only in
empty tiles, so the blue color can detect empty tiles. We find that many filters are responsible for
detecting the agent and the target like L0O5 and L0O6. A use case of such agent and box detecting
filters in the encoder is shown in fig. 8. Many filters detect whether the agent or the target are some
squares away in a particular direction like L0O20 and L0O23. Filters for other layers and gates can
be visualized using our codebase.
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Figure 23: Each of the Box-down to box-down plan-extension kernels, centered by their channels’
relative offsets (see table 4). The first 3 rows are kernels from IJFO of layer 0 to H of layer 1, and
the next 3 from IJFO of layer 1 to the H in its next step. In many cases we see the idealized weight
pattern from fig. 7a, but in most we do not. The color scale goes from −2.0 to 2.0.
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Figure 24: Each of the Box-down to box-down plan-extension kernels, centered by their channels’
relative offsets (see table 4). The first two rows are kernels from IJFO of layer 0 to H of layer 1, the
middle two from IJFO of layer 1 to the H in its next step, and the last two from IJFO of layer 1 to H
of layer 2. In many cases we see the idealized weight pattern from fig. 7a, but in most we do not. The
color scale goes from −2.0 to 2.0.
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Table 4: Activation offset along (row, column) in the grid for each layer and channel
Layer 0 Layer 1 Layer 2

Channel 0 (1, 0) (0, 0) (-1, 0)
Channel 1 (0, 0) (-1, -1) (-1, -1)
Channel 2 (0, -1) (-1, 0) (0, 0)
Channel 3 (0, 0) (-1, 0) (0, 0)
Channel 4 (-1, -1) (-1, -1) (0, -1)
Channel 5 (0, -1) (-2, -1) (-1, 0)
Channel 6 (0, 0) (-1, -1) (-1, -1)
Channel 7 (-1, 0) (-1, 0) (0, 0)
Channel 8 (0, -1) (0, 0) (-1, 0)
Channel 9 (0, 0) (0, 0) (-1, 0)
Channel 10 (-1, -1) (-1, 0) (-1, 0)
Channel 11 (-1, 0) (0, -1) (0, -1)
Channel 12 (0, -1) (0, -1) (0, -1)
Channel 13 (-1, 0) (-1, 0) (-1, 0)
Channel 14 (0, 0) (0, -1) (-1, -1)
Channel 15 (0, 0) (0, 0) (-1, -1)
Channel 16 (-1, -1) (0, 0) (-1, -1)
Channel 17 (-1, 0) (0, 0) (-1, 0)
Channel 18 (-1, 0) (0, 0) (-1, 0)
Channel 19 (-1, -1) (-1, 0) (-1, -1)
Channel 20 (-1, 0) (0, -1) (0, -1)
Channel 21 (-1, 0) (-1, 0) (0, 0)
Channel 22 (0, 0) (0, 0) (-1, 0)
Channel 23 (-1, -1) (-1, 0) (0, -1)
Channel 24 (-1, -1) (0, -1) (-1, 0)
Channel 25 (-1, 0) (-1, -1) (-1, -1)
Channel 26 (-1, 0) (0, -1) (0, 0)
Channel 27 (-1, -1) (-1, -1) (0, 0)
Channel 28 (0, 0) (0, 0) (-1, 0)
Channel 29 (0, 0) (-1, 0) (0, -1)
Channel 30 (-1, 0) (0, 0) (-1, -1)
Channel 31 (-1, -1) (0, -1) (0, -1)
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Table 5: Correlation of linear regression model’s predictions with the original activations for each
channel.

Layer 0 Layer 1 Layer 2

Channel 0 33.15 79.48 70.03
Channel 1 50.76 48.77 38.37
Channel 2 73.15 28.90 39.17
Channel 3 31.73 68.30 55.72
Channel 4 45.06 50.10 45.64
Channel 5 63.91 42.95 55.27
Channel 6 96.57 87.47 53.90
Channel 7 51.98 36.88 95.63
Channel 8 46.64 41.58 55.04
Channel 9 70.52 37.44 71.47
Channel 10 37.68 99.01 53.91
Channel 11 52.09 61.55 42.26
Channel 12 41.54 43.86 27.19
Channel 13 79.54 73.35 54.40
Channel 14 72.17 48.12 56.54
Channel 15 44.09 65.72 36.37
Channel 16 63.49 26.56 38.24
Channel 17 76.70 73.94 94.78
Channel 18 61.51 66.11 34.18
Channel 19 46.05 44.01 33.48
Channel 20 65.00 58.94 64.92
Channel 21 22.05 57.36 60.21
Channel 22 26.51 63.73 24.32
Channel 23 74.39 31.32 44.64
Channel 24 83.64 58.56 59.94
Channel 25 17.10 82.43 28.29
Channel 26 75.48 44.26 45.17
Channel 27 9.24 85.84 49.92
Channel 28 46.87 42.65 15.38
Channel 29 28.60 64.77 54.68
Channel 30 47.70 35.00 40.15
Channel 31 53.12 56.81 59.63

Table 6: Correlation of linear regression model’s predictions with the original activations averaged
over channels for each group. Includes correlation using only base features for comparison. The (all
dir) group is the average of the four directions. NGA and PNA are included in the Agent groups.

Group Correlation Base correlation

Box up 72.36 21.01
Box down 62.73 13.93
Box left 67.96 21.10
Box right 65.69 27.40
Box (all dir) 66.37 20.83
Agent up 47.86 12.69
Agent down 51.12 15.85
Agent left 51.40 7.85
Agent right 52.73 14.92
Agent (all dir) 50.80 13.33
Combined path 48.00 23.35
Entity 76.73 70.66
No label 40.25 15.53
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Table 9: Solve rate (%) of different models without and with 6 thinking steps on held out sets of
varying difficulty.

Model No Thinking Thinking
Hard Med Unfil Hard Med Unfil

DRC(3, 3) 42.8 76.6 99.3 49.7 81.3 99.7
DRC(1, 1) 7.8 28.1 89.4 9.8 33.9 92.6
ResNet 26.2 59.4 97.9 - - -
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