© ® N O O A W N =

Interpreting learned search: finding a transition model
and value function in an RNN that plays Sokoban

Anonymous Author(s)
Affiliation
Address

email

Abstract

We partially reverse-engineer a convolutional recurrent neural network (RNN)
trained with model-free RL to play the puzzle game Sokoban. Prior work showed
that this RNN represents plans internally which evolve over time. This work
shows that the RNN produces these plans using an algorithm akin to classical
search, with several analogous components. The plan is represented in the RNN’s
convolutional 3D state. Many channels are associated with directions and represent,
for each spatial grid location, whether the agent will move in their associated
direction when reaching that location. These channels’ activations are analogous
to a state-action value function—their values describe future actions, and also
determine when to backtrack and which plan branch survives pruning. Specialized
convolutional kernels extend these channels forwards and backwards for valid
moves only, forming a transition model. The RNN is also unlike classical planning
in some ways: it represents the future states of each Sokoban box separately and
resolves contradictions between them heuristically. Our analysis shows that NNs
are capable of learning to plan, with an internal value function and transition model
which we can locate and understand.

1 Introduction

Traditional online planning algorithms such as A* or Monte Carlo Tree Search (MCTS) attempt to
accomplish a goal by exploring many possible courses of action (plans) using a transition model 25|
11},54]. These algorithms can use additional compute to improve decisions by increasing the number
of plans evaluated or the length of considered plans (the planning horizon). At each environment step,
the algorithm considers many plans, ranks each according to its outcome, and picks the first action
of the best plan. Often, the goal is further away than the horizon, so the outcome of intermediate
states at the horizon must be evaluated with an approximate value function. To consider fewer plans
(and thus be able to search deeper), these algorithms use move generation heuristics to simplify the
problem and avoid exploring some action

It is difficult to craft heuristics and value functions for complex environments, leading to work
such as AlphaGo and AlphaZero that combines MCTS with machine-learned evaluation and move
generation [[61} /62, [11]. This hybrid approach uses the model for high-quality move generation and
evaluation, while the search backbone uses extra compute to improve performance via more and
deeper exploration. Meanwhile, other neural networks (NNs) such as LLMs are trained without
explicit heuristics and value, but can exhibit goal-directed behavior and utilize more compute to make
better decisions [46l |13} test-time scaling]. Unlike previous examples, it is unclear ow these NNs can
use extra compute to improve performance, or if they have an internal representation of the objective.

'In some MCTS variants, the heuristics corresponds to the prior policy [62]. A* uses the heuristic function
for both move generation and evaluation.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36
37
38
39
40
41

42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59

WTA at
Box down box,
L1H17 target
& Plan Plan
Extension Extension
Observation Step 0 tick1 T Step 1 tick 2 T Step 2 tick1
Winner Takes All (WTA) Linear Plan Extension (LPE) kernels Turn Plan Extension (TPE) kernels
© 0.5 °
< 2
53V e 15 _ 02
Sy o 5 Ly iz e || o
a4
g g t 1 T - 02
& -0.5 S 04
4\ \l/ é 9 B 4\ ¢ é 9 Leftto Upto Right Down to
Up Down Left Right Up Dowun Left Right Down é] Left toUp Right
Input Channel

Figure 1: Tllustration of a situation with two equally good paths from the box M to the target M,
and how the described mechanisms apply to it. Top: the puzzle in question, along with the sum of
box-down (L1H17) and channels at three different steps (see Section@for ‘tick’).
This shows that the network searches forward from the box M and backward from the target ™. Bottom:
average weights of the convolutional channels that implement two of the mechanisms. Winner Takes
All (WTA) kernels, shown averaged for each input and output channel, causes contradictory plans
(such as the down-then-right and right-then-down paths) to resolve; the negative weights between
different path directions cause them to inhibit each other. Linear Plan Extension (LPE) and Turn Plan
Extension (TPE) kernels, shown averaged over location, extend the plan in straight directions and
corners (Section [3).

In this paper we study a model organism for agency and test-time scaling: a Deep Repeating
ConvLSTM (DRC) trained to solve Sokoban puzzles [22| |63]]. We focus on the DRC because
previous work has established that it causally represents future actions and benefits from test-time
compute, making it more likely to represent goals internally and use them for planning [2| 63].
Additionally, actions and goals in Sokoban are concrete and observable, in contrast to the unclear
goals and state-action space of LLMs: tokens are concrete, but LLM goals and world models likely
only make sense at a higher level of abstraction.

Our primary contribution is to partially reverse-engineer the algorithm that the DRC learned. We
find that the DRC contains several analogues to classic online search (a transition model, value
function and heuristics), and performs bidirectional search as argued by Bush et al. [2]]. To the best of
our knowledge, this work advances the Pareto frontier between the completeness of a mechanistic
explanation and the complexity of the explained model (see Section[6), and is therefore a valuable
case study for mechanistic interpretability tools and theories (e.g. about concept representation).

Representation. To explain the algorithm, we first focus on data representation. Since a convo-
lutional RNN repeats the same local computations for each grid location with limited feedforward
depth, it cannot use more “memory" to represent longer plans. Instead, the DRC uses a distributed
representation: at each grid location (square), the activations of agent and box direction path channels
(Section) encode the direction to go after reaching that square. The DRC uses short- and long-term
path channels to represent going in different directions at different times the square is visited. A path
is represented by adjacent squares having path channel activations that indicate a move to the next
square in the sequence. How are these path channel activations constructed?

Algorithm. These path channel activations are initialized by the encoder kernels to begin plan
segments at the agent, boxes, and targets (Section [5.I). The plan segments are then extended
bidirectionally by forward and backward plan extension kernels which extend them linearly or with a
turn until an obstacle is met, functioning as a transition function that extends plans with valid next

60
61
62
63
64

65
66
67
68

69
70
71
72
73
74
75
76

77

78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

105

106
107
108
109

actions (Section[5.2)). These plan extension kernels also double to propagate negative activations
bidirectionally, pruning unpromising paths (Section [5.3). A winner-takes-all (WTA) mechanism
strengthens the strongest directions in the path channel activations and inhibits the weaker directions
which, along with the sigmoid nonlinearities, causes the plan segments to commit to the higher
activation directions when there are multiple options available (Section[5.3).

Taken together, the backtracking and WTA mechanisms show that the path channel activations are
analogous to a value function, propagating positive and negative value information along a path, and
being used to select high value subplans. This provides a mechanism for specialized heuristics to
influence the final plan: simply add or subtract activation to strengthen or inhibit a path.

(Dis)analogies to classical algorithms. Thus, the DRC has analogues to key components of
classical algorithms in the form of a plan representation in the path channel activations, which are
repurposed as a valuation mechanism, and constructed according to a transition function. However,
the convolutional computational structure imposes subtle differences. The plan’s representation
is distributed across activations for each square, leading to potential inconsistencies that need to
be suppressed by the WTA mechanism. These activations are used as a value function, but they
propagate subplan value information along the path via the convolutional plan extension kernels so
that the effective value of the plan is the result of an equilibrium rather than a variable assignment.

2 Background

Mechanistic interpretability. Linear probing and PCA have been widely successful in finding
representations of spatial information [[67]] or state representations and game-specific concepts in
games like Maze [28], |32} /40|, Othello [|33}142], and chess [37, 58| 30]. However, these works are
limited to input feature attribution and concept representation, and do not analyze the algorithm
learned by the network. Recent work has sought to go beyond representations and understand key
circuits in agents. It is inspired by earlier work in convolutional image models [5]] discovering the
circuits responsible for computing key features like edges, curves, and spatial frequency [4} 44, |57].
In particular, recent work has found mechanistic evidence for few-step lookahead in superhuman
chess networks [29),|58]], and future token predictions in LLMs on tasks like poetry and simple block
stacking [34, |38 |48]]. However, these works still focus on particular mechanisms in the network
rather than a comprehensive understanding of the learned algorithm.

Planning in Sokoban. Sokoban is a grid-based puzzle game with walls B, floors [], movable
boxes M, and target tiles M where the goal of the agent I is to push all boxes onto target tiles. Since
boxes can only be pushed (not pulled), some wrong moves can make the puzzle unsolvable, making
Sokoban a challenging game that is PSPACE-complete [12], requires long-term planning, and a
popular planning benchmark [49] |52} 23]]. Guez et al. [22]] introduced the DRC architecture family and
showed that DRC(3, 3) achieves state-of-the-art performance on Sokoban amongst model-free RL
approaches and rival model-based agents like MuZero [56| 9]]. They argue that the network exhibits
planning behavior since it is data-efficient in training, generalizes to multiple boxes, and benefits from
additional compute. Specifically, the solve rate of the DRC improves by 4.7% when the network is
given extra thinking time by feeding in the first observation ten times during inference. Bush et al. [3]]
use logistic regression probes to find a causal representation of the plan in the DRC, which improves
with compute, and speculate that it might be performing bidirectional search. Taufeeque et al. [63]]
find that training incentivizes the DRC to often wait for a few steps before acting and during those
waiting steps the plan changes more quickly, indicating the policy has a meta-strategy of seeking
test-time compute when needed.

3 Methodology

3.1 Network architecture

We analyze the open-source DRC(3, 3) network trained by Taufeeque et al. [63] to solve Sokoban,
who closely followed the training setup of Guez et al. [22]]. The network consists of a convolutional
encoder, a stack of 3 ConvLSTM layers, and an MLP head for policy and value function (in the sense
of the RL policy training, not path valuation) prediction. Each ConvLSTM block perform 3 ticks

110
111
112

113
114
115
116
17
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134

135

136
137
138

140

141
142
143
144
145
146

147
148
149

150
151
152
153
154

155
156
157

158
159
160

of recurrent computation per step. The encoder block E consists of two 4 x 4 convolutional layers
without nonlinearity, which process the H x W x 3 RGB observation x; into an H x W x C' output
e¢ with height H, width W, and C' channels, at environment step .

Figure [2] visualizes the computation of the Con- Rl
vLSTM layer. Each of the ConvLSTM layers
at depth d and tick n in the DRC maintains hid- ¢;'—» X + ~ b
den states A7y, ¢ with dimensions H x W x C l ol
and takes as input the encoder output e, the p2_ o m e fon

i : n—1 p l—b—b d Jd Izd d
previous layer’s hidden state hy_;,c;” ", and .0 _ O 0 tah tenh
its own hidden state hg’_l from the previous Pool E Conv. Conv Conv Conv

n- ° 51] 1) n

step. The ConvLSTM layer computes four par- #; 1—’_27" > hg
allel gates ¢, j, f, o using convolutional opera- 2, s

tions with 3 x 3 kernels that are combined to

update the hidden state. For the first ConvLSTM Figure 2: The ConvLSTM block in the DRC. Note
layer (d = 0), the architecture uses the top-down the use of convolutions instead of linear layers,
skip connection from the last ConvLSTM layer .. the last layer of the previous tick (h%ﬁl) as

(d=2). This gives the.network 3- 3 = 9 layers input to the first layer. “Pool” refers to a weighted
of sequential computation to determine the next g 1o w0 o pda and max-pooling.

action at each step. The final layer’s hidden state

at the last tick is processed through an MLP head to predict the next action and value function. The
DRC(3, 3) architecture is shown in Figure@], with additional architecture, training, and dataset details
provided in Sections[B]and[C| Unless mentioned otherwise, the dataset of levels for all results is the
medium-difficulty validation set from Boxoban [21].

Notation Each DRC tick (n = 0,1,2) involves three ConvLSTM layers (d = 0,1, 2), each
providing six 32-channel tensors (hq, ¢4, %4, jd, fd, 04)- Channel ¢ of tensor v, is denoted LdVe.

3.2 Interpretability Techniques

This paper employs the following techniques from the mechanistic interpretability literature [[17} 44,
60] to reverse-engineer the planning algorithm of the DRC(3, 3) network. The first four help us form
hypotheses (denoted [H]) about the DRC, and the last two help us test them (denoted [T]). Through
the synthesis of these techniques, we build a mechanistic account of how the DRC(3, 3) network
represents, searches for, refines, and executes plans to solve Sokoban puzzles.

[H] Feature Identification and Label. Interpretability requires identifying legible features that
the network uses to make decisions [31} 44]]. We analyze individual channels of the hidden state
h, seeking to label all channels by their purpose. Wherever necessary to explain a mechanism, we
further decompose the activations of the hidden state channels into the components received from the
¢, i, J, f, o gates based on Equations (7) and (8). To label channels, we observe them, form hypotheses
about their purpose, and test these using a fest set, causal interventions or ablation.

[H] Kernel Visualization. After identifying what the channel activations represent, we visualize the
convolutional kernels connecting various input channels in the network to intuitively understand the
mechanisms (or “circuit”) involved in computing an output channel [65} 4].

[H] Encoder Simplification. Individually, the encoder weights have no privileged basis [16]]. To
interpret the weights of the encoder, we use the associativity of linear operations to combine the
convolution kernels of the encoder and the i, j, f, 0 gate weights that process the encoder output
e; into a single convolutional layer. This results in 9 x 9 convolution kernels directly mapping
observations to each gate (Figures] and [22).

[H] Direct effect. To study which inputs channels contribute the most to an output channel gate, we
sort and filter the input channels by their direct effect, computed as the largest magnitude of activation
added to the output across all squares in the grid.

[T] Causal Intervention. To ground our interpretation of the activations and weights in the
network’s behavior, we intervene on the activations [33] |19, |69]] and weights of the network and
observe whether the network’s behavior changes as expected based on the intervention x’ < a-x+¢,

161
162

163
164
165
166
167
168

169

170
171
172
173
174

175
176
177
178
179
180
181
182

where x can represent the activations or weights depending on the experiment, « is a constant
multiplier, and c is a constant steering vector [64, 53]

[T] Ablation. Ablation is one specific causal intervention technique used to ‘remove’ components
from a neural network and thus understand their importance [[69, |66, |10]. We perform mean-ablation
on the activations as x’ <— E[x] replacing the activations of a component with its mean over some
episode distribution, and measure the drop in performance to decide which components to focus on
in our analysis. We also perform zero-ablation on the kernel weights by replacing a set of kernel
weights with zero to validate our interpretation of the kernels [[39].

4 The Plan Representation

At each layer, the DRC has C channels, each of which is a H x W array. The DRC repeats the same
computations convolutionally over each square. This results in a subset of channels representing the
plan where each channel corresponds to a movement direction. If the agent or a box is at a position
where the channel is activated, this causes the DRC to choose that channel’s direction as the action
(Figure 3] left).

Table 1: Channel groups, their definitions and counts for each direction (up, down, left, right).

Group Definitions Channels
Box-movement Path of box (short- and long-term) 20 (3,6, 5,6)
Agent-movement Path of agent (short- and long-term) 10(3,2,1,4)

Grid Next Action (GNA) Immediate next action, represented at agent square 4 (1,1, 1, 1)
Pooled Next Action (PNA) Pools GNA to represent next action in all squares 4(1,1,1,1)

Entity Target, agent, or box locations 8
Combined path Aggregate 2+ directions from movement channels 29
No label Difficult to interpret channels 21

100 {oms g
NS \ S04 m
X 80 =
i =]
o s, Tty
3 60 Short term B 0.2 = Long term
Q
= Long term :D Short term
KKK . . . 2001 . .
% i i 0 20 40 20 0 20
VIVl Steps Centered time steps (t)
VIVIvIv
vV[v[v

Figure 3: Left: illustration of path channels. Each channel is a 2D slice of the 3D activations, which
activates highly at a square to indicate the direction it is associated with. Middle: The network
represents actions at different horizons separately to express concepts like “first time go right, second
time go down.” Short-term box-movement channels accurately predict (> 95%) the next 10 steps
of box-movement. For later box-movements, long-term channels represent actions accurately, with
AUC approaching > 95%. Right: Average activations of short-term (LOH2, L1H17, L1H19) and
long-term (LOH14, LOH20, L1H14) box-down channels averaged across squares where a non-down
action is taken at the centered time step ¢ = 0 and a down action is taken at ¢ > 0. The down action
is stored in the long-term channel at £ < 0 and transferred into the short-term channels after the
non-down action occurs and down becomes the next action to take at that square.

Manual inspection of every channel across all layers revealed that most channels are interpretable
(Table[T). Detailed labels are in Tables[7]and [§]of the Appendix. We group the channels into seven
categories: 1) box-movement and 2) agent-movement channels that, for each cardinal direction,
activate highly on a square in the grid if the box or agent moves in that direction from that square at a
future timestep. The probes from Taufeeque et al. [63]] and Bush et al. [3]] aggregated information
from these channels. 3) The combined path channels that aggregate various directions from the box-
and agent-movement channels. 4) The GNA channels that extract the next action from the previous
groups of channels. 5) The PNA channels that pool the GNA channels which are then picked up by the

183
184
185
186
187
188

190
191
192

193
194
195
196
197

199

201
202
203
204
205

207
208

210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

234
235

MLP to predict the next action. 6) The entity channels that predominantly represent target [locations,
with some also representing box M and agent [locations, and 7) Some channels we understand
very little of (‘no-label’). We define the path channels as the set comprising the box-movement,
agent-movement, and combined path categories, as they collectively maintain the complete plan of
action for the agent. The remaining groups (GNA, PNA, entity, and no-label) are termed non-path
channels, storing primarily short-term information, with some state for move selection heuristics. The
box- and agent-movement channels further decompose into short- and long-term channels (Table[7}
Section[L[)). As illustrated in Figure [3] (middle), these channels collectively predict future movements
up to 50 steps ahead with high accuracy (AUC > 95%, area under the ROC curve). Figure [14|shows
the AUC curves for each channel separately.

Long-term path channels. The network utilizes the long-term channels to manage spatially
overlapping plans for different boxes intended for different times. Figure [3| (right) illustrates this: in
cases where two boxes pass through the same square sequentially in different directions with the first
box moving at ¢ = 0, the long-term channel for the second move activates well in advance (¢t < 0),
while its corresponding short-term channel only becomes active after the first move is completed
(t = 0). Figure[I6]shows the mechanism of this transfer is primarily mediated through the j-gate.

Ablating the state. To test whether non-path channels hold state, we performed a single-step cache
ablation. This ablation replaces the activations of a target group of channels with the hidden state
generated from running the policy on the previous observation starting from a zero state, effectively
removing long-term dependencies while preserving short-term computations within those channels.
Intervening on the 59 path channels caused a substantial 57.6% drop in the solve rate. By contrast,
intervening on the 37 non-path channels resulted in a 10.5% performance decrease ((a significantly
smaller, yet non-negligible, decrease). Controlling for channel count, intervening on a random subset
of 37 path channels still led to a 41.3% drop in solve rate. This evidence strongly suggests that the
computations essential for long-term planning on difficult levels are primarily carried out within the
identified path channels.

Uncharted behaviors and channels. The DRC does more things that we do not yet understand.
For example, the plan extension has a tendency to move towards boxes and targets, as opposed to
exploring every possible direction, but only when the box and target are at most 10-15 squares apart.
There are many channels for which we do not have labels, though we are confident that these channels
only affect the action through the short-term path channels because several short-term channels have
> 99% AUC (Figure [3) for predicting the next action. However, their activations are sometimes
important and they appear to be used on more difficult levels, so we call these channels heuristics.

Causal intervention We verify the channel labels Tupie 2: Causal intervention scores for dif-
by performing causal interventions on the channels. farant channel groups, alongside comparative
We modify the channel activations based on their la- probe scores from Taufeeque et al. [63].

bels to make the agent take a different action than the
one originally predicted by the network. We collect a
dataset of 10,000 transitions by running the network -
on the Boxoban levels [21]], measuring the fraction of ~ Pooled Next Action (PNA) 99.7 £ 0.2

Group Score (%)

transitions where the intervention succeeds at causing Grid Next Action (GNA) 98.9+04
the agent to take any alternate target action, follow- Box- and agent-movement ~ 88.1 +1.9
ing the approach of Taufeeque et al. [63]. Table[] ~ Box-movement 86.3 4+ 2.1
shows high intervention scores for every group ex- ~ Agent-movement 932+ 2.1
cept the agent-movement channels. The lower score probe: box movement 82.5 4+ 2.5
for agent-movement channels is because they are probe: agent movement 20.7 + 0.7

causally relevant only when the agent is not pushing
a box, a condition we did not filter for. We also compare our results to probes trained by Taufeeque
et al. [63] to predict box and agent movements and find that intervening based on our channel labels
is more effective than using their probes. In Section[E] we further validate our channel labels.

We thus conclude that the network’s plan resides primarily within the identified box-movement and
agent-movement channels, which are mapped to the next action through the GNA/PNA channels. In
Section[F} we explain the mechanisms that map these plans to the next actions.

236

237
238

240

241

242
243
244
245
246

247

248
249

251
252
253
254

255
256
257
258
259

261

262

264
265
266
267
268
269
270
271

272
273
274

5 The Planning Algorithm

Bush et al. [2] observed qualitatively with their box-movement probe that the DRC(3, 3) network
forms plans by forward chaining from boxes and backward chaining from targets in parallel in the
first few steps. We find concrete evidence of this in the weights of the network by analyzing the
kernels associated with the path channels.

5.1 Initializing the plan

+L0024 (up) -L0024 (up) +L0020 (down) -L0OO20 (down) +L0023 (left) -L0023 (lefty +L0O17 (right) -LOO17 (right)

Figure 4: Visualizations of combined kernels that map from the RGB input to the o-gate of the up,
down, left, and right box-movement channels of layer 0. The negative and positive RGB components
are visualized separately. The kernels activate squares along (for agent ™ and box M) and against (for
target [7) the channel’s direction to initialize the forward and backward plan chains, respectively. The
kernel for LOO17 (right) initializes plan chains only on the agent and box square.

Analysis of the combined encoder kernels mapping to box-movement channels (Figure @) reveals
structures that initiate planning. These kernels detect relevant features—such as targets, boxes or the
agent’s position—a few squares away along (for box) or against (for target) the channel’s specified
cardinal direction. This allows the network to activate initial plan segments, effectively starting the
bidirectional search.

5.2 The Transition Model

The DRC’s kernels contain convolutions analo-
gous to the transition model of a classical plan-
ning algorithm because they encode how the
environment changes in response to the agent’s Linearright Right move
actions or how to reach a state. They strongly forward kernel channel

bias the plan expansion process towards valid
state transitions. Right move *
channel

Plan Extension Kernels. While encoder ker- Turn right Offset up
nels initiate plan fragments, connecting these forward kernel - move channel
forward and backward chains requires an ex-
tension mechanism operating in the recurrent
hidden state. This is accomplished by special-
ized “plan-extension kernels” within the recur-
rent weight matrices.

Figure 5: The effect of convolving a movement
channel with the plan extension kernels. Both for-
ward and backward turns happen with the same
turn kernel. The up channel is spatially offset (1
square right and down) to place turn activation at
Linear plan extension (LPE) kernels (see also the correct square.

Figure[T) propagate the plan linearly, extending

it one square at a time along the channel direction label. Separate kernels exist to facilitate both
forward chaining from boxes and backward chaining from targets. Turn Plan Extension (TPE)
kernels (see also Figure[T)) switch activations from one channel to another channel that represents a
different direction. The LPE kernels have larger weight magnitudes compared to the TPE kernels,
thus encoding agent’s preference to take turns only when linear plan extension stops expanding along
a direction.In Section[M] we demonstrate that weight steering based on our insights into the plan
extension mechanism can help solve larger adversarial levels previously identified by Taufeeque et al.
[63]].

These kernels constitute a transition model in the sense that they encode the dynamics of Sokoban. If
the agent or box moves in a direction, then the adjacent square in that direction is activated, with a
default of continuing in the same direction.

275
276
277
278
279
280
281

282
283
284
285

286

287
288
289
290
291
292

293
294
295
296
297
298

299
300
301
302

303
304
305
306

307
308
309

311
312
313
314
315

317
318
319
320
321
322

324
325

Stopping Plan Extension. Plan extension does not continue indefinitely. It must stop at appropriate
boundaries like targets, squares adjacent to boxes, or walls. We observe (Figure [6) that this stopping
mechanism is implemented via negative contributions to the path channels at relevant locations.
These stopping signals originate from either the encoder or hidden state channels that represent static
environmental features (such as those in the ‘entity’ channel group, Table[7), effectively preventing
the plan from extending beyond targets or into obstacles.This aspect of the transition model prevents

the DRC from adding impossible transitions to its path.
2
0
+ + i o)
—4

LOH17 Encoder Target from LO

State transitions. In Section[G] we show the
mechanisms that update the plan representation | -
on state transitions, solidifying the notion that

the DRC has an internal transition model.

Observation L1013

Figure 6: Plan stopping mechanism demonstration
shown through o-gate contributions of the box-
right channel (L1H13). The direct effect shows

5.3 The Valuation Mechanism

The value function is a key component of classi-
cal planning algorithms. We now argue that the
activations of the path channels are used anal-
ogously to a value function: aggregating and

that convolving the forward and backward right-
plan-extension kernel on the converged box-right
channel (LOH17) spills into the squares of the box
and the target. The encoder and the target channels

propagating reward information about a path,
and being used to select high-value plans.

from layer O add a negative contribution to coun-
teract the spillover and stop the plan extension.

Backtracking mechanism. The plan extension kernels are cleverly repurposed to allow the algo-
rithm to backtrack from bad paths. As part of its bidirectional planning, the DRC has forward and
backward plan extension kernels, so negative activations at the end of a path are propagated to the
beginning by the backward kernel, and negative activations at the beginning of a path are propagated
to the end by the forward kernel. This allows the DRC to propagate negative activations along a path,
thus pruning unpromising path fragments. See Section [[| for an example.

This is analogous to backward chaining in a classical game tree expansion algorithm, in that it
propagates negative reward information backward from invalid or low-reward paths. However, it is
somewhat more complex: rather than every path channel in a single plan having the same activation,
the activation propagates forward and backward along the path using the plan extension kernels.

Bidirectional planning. This allows the DRC to construct paths using something like a standard
bidirectional search algorithm — plan fragments get extended by the transition model in the plan
extension kernels, stopped by obstacles, and backtracked entirely to prune bad branches. But how
does it stitch the fragments together into a consistent, high-value plan?

Winner-takes-all mechanism. To select a sin- L1H17

gle path for a box when multiple options ex-
ist, the network employs a Winner-Takes-All
(WTA) mechanism among short-term path chan-
nels. Excluding the long-term path channels
allows the DRC to maintain plans for later execu-
tion without inhibiting them. Figure[T] (bottom-
left) shows that weights connecting path chan-

0.5
0

Original
-
Co—

[—

L1H13

0.5

Ablated
n

[—]

s —

Observation Step: 0 Step: 1 Step: 2

nels for various directions cause the path chan-
nel activations to inhibit each other at the same
square. The direction with the strongest activa-

Figure 7: After zero-ablating the kernels connect-
ing the box-down and box-right channels, the WTA
mechanism cannot suppress the right-down plan.

tion suppresses activations in alternative direc-

tions which, combined with the sigmoid activation, ensures that only one direction’s path channels
remain active for imminent execution. We construct a level with equally viable paths to causally
demonstrate (Figure[/): initially, both paths have similar activations, but the slightly stronger one
quickly dominates in steps 1 and 2 and deactivates the other via this inhibitory interaction. Zero-
ablating the kernels between the channels of the two directions eliminates the WTA effect, leaving
both potential paths simultaneously active. Thus, we conclude that kernels connecting various
short-term box-movement path channels implement this crucial selection mechanism.

326
327
328
329
330
331
332

333

334
335
336
337
338
339
340
341
342

344
345
346
347

348
349
350
351

352
353
354
355
356

358
359
360
361
362
363
364

365

366
367
368
369
370
371
372
373

374
375
376

Path channel activations as a value function analogue. These findings show that not only do the
path channel activations represent the plan, they are analogues to the DRC’s value function. The plan
extension kernels propagate and aggregate value information forward and backward along a path. The
WTA mechanism ensures that the highest value plans are chosen, and cause the path to connect to
higher value segments when connecting bidirectional plan segments. This distributed representation
works with the DRC’s convolutional architecture and allows the repeated application of the same
computations at each square to propagate value information through the constructed paths.

6 Related work and discussion

Mechanistic explanations. To the best of our knowledge, our work advances the Pareto frontier
of the complexity of a neural network, versus the level of detail in the description of its mechanism.
Much work focuses on the mechanisms of large language models. LLMs are more complex than the
DRC, but the algorithms these papers explain are simpler as measured by the size of the abstract
causal graph [[19] 6]]. Examples include work on GPT-2 small [66, 24} 15], Gemma 2-2B [35] |43]],
Claude 3.5 Haiku [34,/36], and others [[71]. A possible exception is Lindsey et al. [[34]], which contains
many simple explanations whose graphs together would add up to a graph larger than that of the
present work. However, their explanations rely only on empirical causal effects and are local (only
valid in their prompt), contrasting with weight-level analysis that applies to all inputs. Pioneering
work in understanding vision models [44]} 57} 65] is very thorough in labeling features but provides a
weight-level explanation for only a small part of InceptionV1 [4]]. Other work focuses on tiny toy
models and explains their mechanisms very thoroughly, such as in modular addition [4 1} 8} (70, |51}
20\, 68, binary addition [50], small language transformers [45}26]], or a transformer that finds paths
in small binary trees [[1].

DRC in Sokoban. Taufeeque et al. [63]] and Bush et al. [3] find internal plan representations in the
DRC by predicting future box and agent moves from its activations using logistic regression probes.
Some of their probes are causal, others can be used to generalize the DRC to larger levels; however,
further analysis is primarily based on qualitative probe and model behavior rather than mechanisms.

Mesa-optimizers. Hubinger et al. [27] introduced the concept of a mesa-optimizer, an Al that learns
to pursue goals via internal reasoning. Examples of mesa-optimizers did not exist at the time, so
subsequent work studied the problem of whether the learned goal could differ from the training signal,
reward misgeneralization [|14,|59]]. Oswald et al. [47] argued that transformers do in-context linear
regression and are thus mesa-optimizing the linear regression loss, which is hardly agentic behavior.
Modern Al agents appear to reason, but whether they internally optimize a goal is unresolved.

The present work answers agentic mesa-optimizer existence in the affirmative. We present a mesa-
optimizer, then point to its internal planning process and to its learned value function. The value
function differs from what it should be from the training reward, in benign ways: the training reward
has a —0.1 per-step term, but the value encoded in the path channels do not capture plan length at all.
In fact, which path the DRC picks is a function of which one connects to the target first, encoding the
preference for shorter paths purely in the LPE and TPE kernels (Section[J). To compute the value
head (critic), the DRC likely counts how many squares are active in the path channels.

7 Conclusion

This partial reverse-engineering shows that, while the DRC develops several analogues of components
of classical planning such as a plan representation, transition function, and value function, its
implementation is deeply influenced by its convolutional structure and is characterized by frequent
reuse. The plan is represented as activations in path channels for each square, which are repurposed
as a valuation mechanism. Plan extension kernels extend plan fragments bidirectionally, while
propagating value information along the path. The winner-takes-all mechanism stabilizes the plan
into taking single actions at a time at each square, and chooses the highest-value subplan segments.
The DRC does everything everywhere all at once, implementing familiar mechanisms in alien ways.

We were able to understand a planning algorithm, which was learned completely model-free, in
familiar terms. This raises the hope that, if LLM agents are internally performing search, it is possible
to find, audit, and correct their goals.

377

378
379
380

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

431
432

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. “A
Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task.”
In: arXiv (2024). arXiv: 2402. 11917 [cs.LG]. URL: http://arxiv.org/abs/2402,
11917v2.

Thomas Bush, Stephen Chung, Usman Anwar, Adria Garriga-Alonso, and David Krueger.
“Interpreting Emergent Planning in Model-Free Reinforcement Learning.” In: The Thirteenth
International Conference on Learning Representations. 2025. URL: https://openreview)
net/forum?id=DzGe40glxs|

Thomas Bush, Stephen Chung, Usman Anwar, Adria Garriga-Alonso, and David Krueger.
“Interpreting Emergent Planning in Model-Free Reinforcement Learning.” In: International
Conference on Learning Representations (2025). URL: https://openreview.net/forum?
1d=DzGe40glxs.

Nick Cammarata, Gabriel Goh, Shan Carter, Chelsea Voss, Ludwig Schubert, and Chris Olah.
“Curve Circuits.” In: Distill 6.1 (2021), e00024-006.

Shan Carter, Zan Armstrong, Ludwig Schubert, Ian Johnson, and Chris Olah. “Activation
Atlas.” In: Distill (2019). https://distill.pub/2019/activation-atlas. DOI:|10.23915/distill|
00015.

Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. “Causal Scrubbing: A
Method for Rigorously Testing Interpretability Hypotheses.” In: Alignment Forum. 2022.
Chess Programming Wiki. Stockfish NNUE. Accessed: 2025-05-16. 2024. URL: https://
www . chessprogramming. org/Stockfish_NNUE,

Bilal Chughtai, Lawrence Chan, and Neel Nanda. “A Toy Model of Universality: Reverse
Engineering How Networks Learn Group Operations.” In: arXiv (2023). eprint:[2302.03025|
URL: http://arxiv.org/abs/2302.03025v1l

Stephen Chung, Scott Niekum, and David Krueger. “Predicting Future Actions of Rein-
forcement Learning Agents.” In: First Reinforcement Learning Safety Workshop. 2024. URL:
https://openreview.net/forum?id=SohRnh7M8Q.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria
Garriga-Alonso. “Towards Automated Circuit Discovery for Mechanistic Interpretability.” In:
Advances in Neural Information Processing Systems 36 (2023), pp. 16318-16352.

Rémi Coulom. “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.”
In: Computers and Games. Ed. by H. Jaap van den Herik, Paolo Ciancarini, and
H. H. L. M. (Jeroen) Donkers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 72-83.
ISBN: 978-3-540-75538-8.

Joseph C. Culberson. “Sokoban is PSPACE-complete.” In: 1997. URL: https : //api,
semanticscholar.org/CorpusID:61114368.

DeepSeek-Al et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. 2025. arXiv: 2501.12948 [cs.CL]! URL: https://arxiv.org/abs/2501|
12948|

Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger.
“Goal misgeneralization in deep reinforcement learning.” In: International Conference on
Machine Learning. PMLR. 2022, pp. 12004-12019. URL: https://proceedings .mlr |
press/v162/langosco22a.html.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. “Transcoders find interpretable LLM
feature circuits.” In: The Thirty-eighth Annual Conference on Neural Information Processing
Systems. 2024. URL: https://openreview.net/forum?id=J6zHcScAoOl

Nelson Elhage, Robert Lasenby, and Christopher Olah. “Privileged bases in the transformer
residual stream.” In: Transformer Circuits Thread (2023), p. 24.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. A Mathematical Framework for Transformer Circuits. 2021. URL: https:
//transformer-circuits.pub/2021/framework/index.html,

10

https://arxiv.org/abs/2402.11917
http://arxiv.org/abs/2402.11917v2
http://arxiv.org/abs/2402.11917v2
http://arxiv.org/abs/2402.11917v2
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://openreview.net/forum?id=DzGe40glxs
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://doi.org/10.23915/distill.00015
https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
https://www.chessprogramming.org/Stockfish_NNUE
2302.03025
http://arxiv.org/abs/2302.03025v1
https://openreview.net/forum?id=SohRnh7M8Q
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://api.semanticscholar.org/CorpusID:61114368
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://openreview.net/forum?id=J6zHcScAo0
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

433
434
435
436
437

438
439
440

441
442
443
444

445
446
447
448

449
450
451
452

454
455
456
457

458
459
460

461
462

464
465
466
467
468

469
470
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
“IMPALA: Scalable Distributed Deep-RL With Importance Weighted Actor-Learner Architec-
tures.” In: arXiv (2018). arXiv: 1802.01561v3 [cs.LG]. URL: http://arxiv.org/abs/
1802.01561v3l

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. “Causal Abstractions
of Neural Networks.” In: Advances in Neural Information Processing Systems 34 (2021),
pp- 9574-9586.

Jason Gross, Rajashree Agrawal, Thomas Kwa, Euan Ong, Chun Hei Yip, Alex Gibson, Soufi-
ane Noubir, and Lawrence Chan. “Compact Proofs of Model Performance Via Mechanistic
Interpretability.” In: CoRR (2024). arXiv: 2406.11779 [cs.LG]. URL: http://arxiv.org/
abs/2406.11779v14,

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sebastien Racaniere, Theophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
Timothy Lillicrap, and Victor Valdes. An investigation of Model-free planning: boxoban levels.
2018. URL: https://github.com/deepmind/boxoban-1levels/.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racaniere, Théophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
and Timothy Lillicrap. “An Investigation of Model-Free Planning.” In: arXiv (2019). arXiv:
1901.03559 [cs.LG]. URL: http://arxiv.org/abs/1901.03559v2.

Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims
Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Velickovi¢, and Theophane Weber.
“On the role of planning in model-based deep reinforcement learning.” In: International
Conference on Learning Representations. 2021. URL: https://openreview.net/forum?
1d=IrM64DGB21.

Michael Hanna, Ollie Liu, and Alexandre Variengien. “How Does GPT-2 Compute Greater-
Than.” In: Interpreting Mathematical Abilities in a Pre-Trained Language Model 2 (2023),
p- 11.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic determina-
tion of minimum cost paths.” In: IEEE transactions on Systems Science and Cybernetics 4.2
(1968), pp. 100-107.

Stefan Heimersheim and Jett Janiak. A Circuit for Python Docstrings in a 4-layer Attention-
Only Transformer. Alignment Forum. https : //www . alignmentforum . org/posts/
ub6KXXmKFbXfWzoAXn / acircuit - for - python - docstrings\ - in - a - 4 - layer -
attention - only. 2023. URL: https : / / www . alignmentforum . org / posts /
ub6KXXmKFbXfWzoAXn/.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant.
“Risks from Learned Optimization in Advanced Machine Learning Systems.” In: arXiv (2019).
arXiv:[1906.01820 [cs.AI]. URL: https://arxiv.org/abs/1906.01820.

Michael Ivanitskiy, Alexander F Spies, Tilman Rauker, Guillaume Corlouer, Christopher
Mathwin, Lucia Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, Katsumi
Inoue, and Samy Wu Fung. “Linearly Structured World Representations in Maze-Solving
Transformers.” In: UniReps: the First Workshop on Unifying Representations in Neural Models.
2023. URL: https://openreview.net/forum?id=pZakRK1QHU.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell.
“Evidence of Learned Look-Ahead in a Chess-Playing Neural Network.” In: CoRR (2024).
arXiv: 2406.00877 [cs.LG]. URL: http://arxiv.org/abs/2406.00877v1l

Adam Karvonen. “Emergent World Models and Latent Variable Estimation in Chess-Playing
Language Models.” In: CoRR (2024). arXiv: 2403.15498v2 [cs.LG]. URL: http://arxiv)}
org/abs/2403.15498v2,

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
“Interpretability beyond Feature Attribution: Quantitative Testing with Concept Activation
Vectors (TCAV).” In: International conference on machine learning. PMLR. 2018, pp. 2668—
26717.

11

https://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
http://arxiv.org/abs/1802.01561v3
https://arxiv.org/abs/2406.11779
http://arxiv.org/abs/2406.11779v14
http://arxiv.org/abs/2406.11779v14
http://arxiv.org/abs/2406.11779v14
https://github.com/deepmind/boxoban-levels/
https://arxiv.org/abs/1901.03559
http://arxiv.org/abs/1901.03559v2
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://openreview.net/forum?id=IrM64DGB21
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-docstrings\-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://openreview.net/forum?id=pZakRK1QHU
https://arxiv.org/abs/2406.00877
http://arxiv.org/abs/2406.00877v1
https://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2
http://arxiv.org/abs/2403.15498v2

487
488
489
490

491
492
493
494
495
496
497
498
499
500
501
502
503

505
506
507
508
509
510
511

514

534

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Brandon Knutson, Amandin Chyba Rabeendran, Michael Ivanitskiy, Jordan Pettyjohn, Cecilia
Diniz-Behn, Samy Wu Fung, and Daniel McKenzie. “On Logical Extrapolation for Mazes
With Recurrent and Implicit Networks.” In: CoRR (2024). arXiv: 2410.03020 [cs.LG]. URL:
http://arxiv.org/abs/2410.03020v1.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. “Emergent World Representations: Exploring a Sequence Model Trained on
a Synthetic Task.” In: International Conference on Learning Representations. 2023. URL:
https://openreview.net/forum?id=DeGO7%5C_TcZvT.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.
Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael
Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas
Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam
Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. “On the
Biology of a Large Language Model.” In: Transformer Circuits Thread (2025). URL: https:
//transformer-circuits.pub/2025/attribution-graphs/biology.htmll

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
“Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language
Models.” In: CoRR (2024). arXiv: 2403.19647 [cs.LG]. URL: http://arxiv.org/abs/
2403.19647v3.

Samuel Marks, Johannes Treutlein, Trenton Bricken, Jack Lindsey, Jonathan Marcus, Siddharth
Mishra-Sharma, Daniel Ziegler, Emmanuel Ameisen, Joshua Batson, Tim Belonax, Samuel R.
Bowman, Shan Carter, Brian Chen, Hoagy Cunningham, Carson Denison, Florian Dietz, Satvik
Golechha, Akbir Khan, Jan Kirchner, Jan Leike, Austin Meek, Kei Nishimura-Gasparian,
Euan Ong, Christopher Olah, Adam Pearce, Fabien Roger, Jeanne Salle, Andy Shih, Meg
Tong, Drake Thomas, Kelley Rivoire, Adam Jermyn, Monte MacDiarmid, Tom Henighan, and
Evan Hubinger. “Auditing Language Models for Hidden Objectives.” In: CoRR (2025). arXiv:
2503.10965 [cs.AI]. URL: http://arxiv.org/abs/2503.10965v2.

Thomas McGrath, Andrei Kapishnikov, Nenad TomaSev, Adam Pearce, Demis Hassabis, Been
Kim, Ulrich Paquet, and Vladimir Kramnik. “Acquisition of chess knowledge in AlphaZero.”
In: Proceedings of the National Academy of Sciences of the United States of America 119
(2021).

Tianyi Men, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. “Unlocking
the Future: Exploring Look-Ahead Planning Mechanistic Interpretability in Large Language
Models.” In: CoRR (2024). arXiv: 2406.16033 [cs.CL]. URL: http://arxiv.org/abs/
2406.16033v1.

Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen. Ablation
Studies in Artificial Neural Networks. 2019. arXiv: 1901 . 08644 [cs.NE], URL: https !
//arxiv.org/abs/1901.08644|

Ulisse Mini, Peli Grietzer, Mrinank Sharma, Austin Meek, Monte MacDiarmid, and Alexander
Matt Turner. “Understanding and Controlling a Maze-Solving Policy Network.” In: arXiv
(2023). arXiv: 2310.08043 [cs.AI]l URL: http://arxiv.org/abs/2310.08043v1l
Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. 2023. arXiv: 2301.05217 [cs.LG].
URL: https://arxiv.org/abs/2301.05217.

Neel Nanda, Andrew Lee, and Martin Wattenberg. “Emergent Linear Representations in
World Models of Self-Supervised Sequence Models.” In: CoRR (2023). arXiv: 2309.00941
[cs.LG]! URL: http://arxiv.org/abs/2309.00941v2,

Neel Nanda, Senthooran Rajamanoharan, Janos Kramar, and Rohin Shah. “Fact finding:
Attempting to reverse-engineer factual recall on the neuron level.” In: Alignment Forum. 2023,
p. 6.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
“Zoom In: An Introduction to Circuits.” In: Distill (2020). https://distill.pub/2020/circuits/zoom-
in. DOI:|10.23915/disti11.00024.001.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. “In-Context Learning
and Induction Heads.” In: arXiv preprint arXiv:2209.11895 (2022).

12

https://arxiv.org/abs/2410.03020
http://arxiv.org/abs/2410.03020v1
https://openreview.net/forum?id=DeG07%5C_TcZvT
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2403.19647
http://arxiv.org/abs/2403.19647v3
http://arxiv.org/abs/2403.19647v3
http://arxiv.org/abs/2403.19647v3
https://arxiv.org/abs/2503.10965
http://arxiv.org/abs/2503.10965v2
https://arxiv.org/abs/2406.16033
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2406.16033v1
http://arxiv.org/abs/2406.16033v1
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/2310.08043
http://arxiv.org/abs/2310.08043v1
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
http://arxiv.org/abs/2309.00941v2
https://doi.org/10.23915/distill.00024.001

543
544

545
546
547
548
549

550
551

553
554
555

556
557
558

559
560
561

562
563
564

565
566
567
568
569
570
571
572

573
574
575

576
577

578
579

580
581
582
583

585
586
587
588
589
590
591
592
593
594
595

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

OpenAl. Introducing OpenAl ol-preview. 2024. URL: https : //openai . com/ index /
introducing-openai-ol-preview/.

Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agiieray Arcas,
Max Vladymyrov, Razvan Pascanu, and Jodo Sacramento. “Uncovering Mesa-Optimization
Algorithms in Transformers.” In: CoRR (2023). arXiv: 2309 .05858 [cs.LG]. URL: http:
//arxiv.org/abs/2309.05858v2.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. “Future Lens:
Anticipating Subsequent Tokens from a Single Hidden State.” In: Proceedings of the 27th
Conference on Computational Natural Language Learning (CoNLL). Ed. by Jing Jiang, David
Reitter, and Shumin Deng. Singapore: Association for Computational Linguistics, Dec. 2023,
pp- 548-560. DOI: |10. 18653 /v1/2023. conll-1.37. URL: https://aclanthology |
org/2023.conll-1.37/.

Niklas Sandhu Peters, Marc Alexa, and Special Field Neurotechnology. Solving Sokoban
efficiently: Search tree pruning techniques and other enhancements. 2023. URL: https :
//doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf.

Casey Primozic. Reverse Engineering a Neural Network’s Clever Solution to Binary Addition.
https://cprimozic.net/blog/reverse-engineering-a-small-neural-network/|

Accessed: 2025-05-15. 2023.

Philip Quirke and Fazl Barez. “Understanding addition in transformers.” In: arXiv preprint
arXiv:2310.13121 (2023). arXiv: 2310.13121 [cs.LG]. URL: http://arxiv.org/abs/
2310.13121v9.

Sébastien Racaniere, Theophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yu-
jia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wier-
stra. “Imagination-Augmented Agents for Deep Reinforcement Learning.” In: Advances
in Neural Information Processing Systems. Ed. by 1. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,
2017. URL: https://proceedings .neurips.cc/paper_files/paper/2017/file/
9e82757e9alcl2cb710ad680db11f6f1-Paper. pdf.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. “Steering Llama 2 via Contrastive Activation Addition.” In: arXiv (2023). eprint:
2312.06681. URL: https://arxiv.org/abs/2312.06681|

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd. Prentice Hall Press,
Upper Saddle River, NJ, USA, 2009. 1SBN: 9780136042594.

Max-Philipp B. Schrader. gym-sokoban. 2018. URL: https://github.com/mpSchrader/
gym-sokoban.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy
Lillicrap, and David Silver. “Mastering Atari, Go, Chess and Shogi By Planning With a
Learned Model.” In: (2019). arXiv:|1911.08265 [cs.LG]. URL: http://arxiv.org/abs/
1911.08265v1.

Ludwig Schubert, Chelsea Voss, Nick Cammarata, Gabriel Goh, and Chris Olah. “High-Low
Frequency Detectors.” In: Distill (2021). https://distill.pub/2020/circuits/frequency-edges. DOI:
10.23915/distill.00024.005.

Lisa Schut, Nenad Tomasev, Tom McGrath, Demis Hassabis, Ulrich Paquet, and Been Kim.
“Bridging the Human-Ai Knowledge Gap: Concept Discovery and Transfer in Alphazero.”
In: CoRR (2023). arXiv: [2310. 16410 [cs.AI]. URL: http://arxiv.org/abs/2310.
16410v1.

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan
Uesato, and Zac Kenton. “Goal misgeneralization: why correct specifications aren’t enough
for correct goals.” In: arXiv preprint arXiv:2210.01790 (2022). URL: https://arxiv.org/
abs/2210.01790.

13

https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2309.05858
http://arxiv.org/abs/2309.05858v2
http://arxiv.org/abs/2309.05858v2
http://arxiv.org/abs/2309.05858v2
https://doi.org/10.18653/v1/2023.conll-1.37
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://aclanthology.org/2023.conll-1.37/
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://doc.neuro.tu-berlin.de/bachelor/2023-BA-NiklasPeters.pdf
https://cprimozic.net/blog/reverse-engineering-a-small-neural-network/
https://arxiv.org/abs/2310.13121
http://arxiv.org/abs/2310.13121v9
http://arxiv.org/abs/2310.13121v9
http://arxiv.org/abs/2310.13121v9
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
2312.06681
https://arxiv.org/abs/2312.06681
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://github.com/mpSchrader/gym-sokoban
https://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265v1
http://arxiv.org/abs/1911.08265v1
http://arxiv.org/abs/1911.08265v1
https://doi.org/10.23915/distill.00024.005
https://arxiv.org/abs/2310.16410
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2310.16410v1
http://arxiv.org/abs/2310.16410v1
https://arxiv.org/abs/2210.01790
https://arxiv.org/abs/2210.01790
https://arxiv.org/abs/2210.01790

596
597
598
599
600
601
602

603
604
605
606
607
608
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

633
634
635
636
637
638
639
640
641
642
643
644

646
647
648

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman,
Adria Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg,
Nandi Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William
Saunders, David Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet,
and Tom McGrath. “Open Problems in Mechanistic Interpretability.” In: CoRR (2025). arXiv:
2501.16496 [cs.LG]. URL: http://arxiv.org/abs/2501.16496v1,

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
“Mastering the game of Go with deep neural networks and tree search.” In: Nature 529.7587
(2016), pp. 484-489. DOI:10.1038/nature16961. URL: https://doi.org/10.1038/
naturel6961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play.” In: Science 362.6419 (2018), pp. 1140-1144.
DOI: [10.1126/science . aar6404, eprint: https://www.science.org/doi/pdf /10|
1126 / science . aar6404. URL: https://www . science.org/doi/abs/10. 1126/
science.aar6404.

Mohammad Taufeeque, Philip Quirke, Maximilian Li, Chris Cundy, Aaron David Tucker,
Adam Gleave, and Adria Garriga-Alonso. “Planning in a recurrent neural network that plays
Sokoban.” In: arXiv (2024). arXiv: 2407 .15421 [cs.LG]. URL: https://arxiv.org/abs/
2407.15421.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid.
“Activation Addition: Steering Language Models Without Optimization.” In: arXiv e-prints
(2023), arXiv-2308.

Chelsea Voss, Nick Cammarata, Gabriel Goh, Michael Petrov, Ludwig Schubert, Ben
Egan, Swee Kiat Lim, and Chris Olah. “Visualizing Weights.” In: Distill (2021).
https://distill.pub/2020/circuits/visualizing-weights. DOI: 110.23915/distill.00024.007.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Stein-
hardt. “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2
Small.” In: International Conference on Learning Representations. 2023. URL: https://api.
semanticscholar.org/CorpusID: 260445038,

Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, and Dhruv Batra.
“Emergence of Maps in the Memories of Blind Navigation Agents.” In: International Con-
ference on Learning Representations. 2023. URL: https://openreview.net/forum?id=
1Tt4KjHSsyl.

Chun Hei Yip, Rajashree Agrawal, Lawrence Chan, and Jason Gross. Modular addition without
black-boxes: Compressing explanations of MLPs that compute numerical integration. 2025.
URL: https://openreview.net/forum?id=yBhSORdXqq.

Fred Zhang and Neel Nanda. “Towards Best Practices of Activation Patching in Language
Models: Metrics and Methods.” In: The Twelfth International Conference on Learning Repre-
sentations. 2024. URL: https://openreview.net/forum?id=Hf 17y6u9BC.

Zigian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. “The Clock and the Pizza: Two
Stories in Mechanistic Explanation of Neural Networks.” In: Thirty-seventh Conference on
Neural Information Processing Systems. 2023. URL: https://openreview.net/forum?
id=S5wmbQciWe.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. “Pre-trained Large Language Models
Use Fourier Features to Compute Addition.” In: The Thirty-eighth Annual Conference on
Neural Information Processing Systems. 2024. URL: https://openreview.net/forum?
1d=14MutM2TZbl

14

https://arxiv.org/abs/2501.16496
http://arxiv.org/abs/2501.16496v1
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/pdf/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://www.science.org/doi/abs/10.1126/science.aar6404
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://arxiv.org/abs/2407.15421
https://doi.org/10.23915/distill.00024.007
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://api.semanticscholar.org/CorpusID:260445038
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=lTt4KjHSsyl
https://openreview.net/forum?id=yBhSORdXqq
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb

649

650

651

652

653
654

655

656
657

658

659

660
661

662
663

664
665

666

667
668

669

670
671

672

673
674
675

676
677

679
680

Appendix

A Common components of search algorithmns

A search algorithm requires four key components:

1. A representation of states.

2. A transition model that defines which nodes (states) are reachable from a currently expanded
node when taking a certain action.

3. A heuristic function that determines which nodes to expand.

4. A value function that determines which plan to choose once the search ends (in online search
algorithms, only the first action from the chosen plan is taken).

The heuristic varies by algorithm:

 For A*, it is distance(n) + heuristic(n). [54]

* For iterative-deepening alpha-beta search (as used in Stockfish), the heuristic comprises
move ordering and pruning criteria. [[7]

* For AlphaZero/MuZero MCTS, it uses the UCT formula pre-rollout, incorporating backed-
up value functions and a policy with Dirichlet noise. [62}56]

In all cases, the expansion process influences the relative evaluation of actions in the starting state.
The final action selection relies on a value function:

* A*: Uses the actual path distance when plans have been fully expanded. [|54]]

* AlphaZero/MuZero MCTS: Employs backpropagated estimated values combining rollout
and final score. [62,(56]

e Stockfish 16+: Utilizes the machine-learned evaluation function at leaf nodes. [[7]]

In the body of the paper, we show how various parts of the trained DRC correspond to these four
components.

B Network architecture

The DRC architecture consists of an convolutional encoder E without any non-linearities, followed
by D ConvLSTM layers that are repeated /N times per environment step, and an MLP block that
maps the final layer’s hidden state to the value function and action policy.

The encoder maps the observation z; at timestep ¢ to the encoded state e;. For all d > 1, the
ConvLSTM layer updates the hidden state h/}, c}; at each tick n using the following equations:

et = E(xt) = Wg, * (Wg, x2: + bg,) + bg, €))

¢, h = ConvLSTMg(eq, hlj_1, it ALt)

iy = tanh(Wi; x e, + Wi, * hli_y + Wipa x b1+ b)) 3)
35 = o (Wi * ex + Win, x hii_y + Wyn, * By ™' + b)) “)
fi =0 (Wrixer +Winy * hi_y + Wi, % hiy™" +by) ©)
oy = tanh(Wy; x es + Wop, * hlj_1 + Wop, * hg_l + b,) (6)
ci=fioc +igo Y
hy == o © tanh(c}) (3)

Here * denotes the convolution operator, and ® denotes point-wise multiplication. Note that 6, =
(Wi, W, Ws.,, W, b;,bj, by, b,)q parameterizes the computation of the ¢, j, f, o gates. For the first

15

681
682

683
684
685
686

687
688
689

690
691
692
693

694

695
696
697
698

699
700
701
702

703
704
705
706
707

709
710
71
712
713
714

715
716
717
718
719
720
721
722
723

ConvLSTM layer, the hidden state of the final ConvLSTM layer is used as the previous layer’s hidden
state.

A linear combination of the mean- and max-pooled ConvLSTM activations is injected into the next
step, enabling quick communication across the receptive field, known as pool-and-inject. A boundary
feature channel with ones at the boundary of the input and zeros inside is also appended to the input.
These are ignored in the above equations for brevity.

Finally, an MLP with 256 hidden units transforms the flattened ConvLSTM outputs A% into the
policy (actor) and value function (critic) heads. In our setup, D = N = 3 and C' = 32 matching Guez
et al. [22]’s original hyperparameters. An illustration of the full architecture is shown in Figure 0]

Encoder Simplification To interpret the weights of the encoder, we use the associativity of linear
operations to combine the convolution operation of the encoder and the convolution kernels that map
the encoder output e, to the hidden state i} into a single convolutional layer. For all d > 0 and

c € {i,j, f, 0}, we define the combined kernel W< and bias b, as:

W = Wi s Wea x Wer)
b i= Wil (bea + Wea # ber) (10)
Wﬁ * ey = er * Ty + bge (up to edge effects) (11)

C Network training details

The network was trained using the IMPALA V-trace actor-critic [18]] reinforcement learning (RL)
algorithm for 2 - 10° environment steps with Guez et al.’s Deep Repeating ConvLSTM (DRC)
recurrent architecture consisting of three layers repeated three times per environment step, as shown
in Figure 0]

The observations are H x W RGB images with height H and width WW. The agent, boxes, and targets
are represented by the green '/, brown M, and red I¥ pixels respectively [55]], as illustrated in Figure|[8]
The environment has -0.1 reward per step, +10 for solving a level, +1 for putting a box on a target
and -1 for removing it.

Dataset The network was trained on 900k levels from the unfiltered train set of the Boxoban
dataset [21]]. Boxoban separates levels into train, validation, and test sets with three difficulty levels:
unfiltered, medium, and hard. The hard set is a single set with no splitting. Guez et al. [22] generated
these sets by filtering levels unsolvable by progressively better-trained DRC networks. So easier sets
occasionally contain difficult levels. Each level in Boxoban has 4 boxes in a grid size of H = W = 10.
The H x W observations are normalized by dividing each pixel component by 255. The edge tiles in
the levels from the dataset are always walls, so the playable area is 8 x 8. The player has four actions
available to move in cardinal directions (Up, Down, Left, Right). The reward is -0.1 per step, +1
for placing a box on a target, -1 for removing it, and +10 for finishing the level by placing all of the
boxes. In this paper, we evaluate the network on the validation-medium and hard sets of the Boxoban
dataset. We also often evaluate the network on custom levels with different grid sizes and number of
boxes to clearly demonstrate certain mechanisms in isolation.

Action probe for evaluation on larger grid sizes The DRC(3, 3)network is trained on a fixed
H x W grid size with the hidden state channels flattened to a H x W x C tensor before passing it to
the MLP layer for predicting action. Due to this limitation, the network cannot be directly evaluated
on larger grid sizes. Taufeeque et al. [63]] trained a probe using logitic regression with 135 parameters
on the hidden state / of the final ConvLSTM layer to predict the next action. They found that the
probe can replace the 0.8M parameter MLP layer to predict the next action with a 77.9% accuracy.
They used this probe to show that the algorithm learned by the DRC backbone generalizes to grid
sizes 2-3 times larger in area than the training grid size of 10 x 10. We use these action probes to run
the same network on larger grid sizes in this paper.

16

724

725
726
727
728
729

731
732
733
734

735
736

737
738

Figure 8: High resolution visualization of a Sokoban level along with the corresponding symbolic
representation that the network observes. The agent, boxes, and targets are represented by the green
, brown M, and red M squares respectively.

V. Tt
MLP

(B3, 3)orree 03 03 N 03 > (10, 00

bheeeeep (hi(fu\mg(,ﬂ))

(hgt’cgt) ________ > 01 AT (hﬁ“‘”,fﬁ“‘”)

Figure 9: DRC(3, 3)architecture. Blocks parametrized by 6 represent the ConvLSTM module shown
in Figure[2] There are three layers of ConvLSTM modules with all the layers repeated applied three
times before predicting the next action.

D Gate importance

We identify here the components that are important and others which can be ignored. We noticed
that our analysis can be simplified by ignoring components like the previous cell-state ¢ and forget
gate f that don’t have much effect. On mean-ablating the cell-state c at the first tick n = 0 of every
step for all the layers, we find that the network’s performance drops by 21.28% =+ 0.04%. The same
ablation on the forget gate f results in a drop of 2.66% +0.03%. On the other hand, the same ablation
procedure on any of the other gates ¢, j, o, or the hidden state / breaks the network and results in a
drop of 100.00% with no levels solved at all. This shows that the forget gate is not as important as
other gates in regulating the information in the cell-state, and the information in the cell-state itself is
not relevant for solving most levels. The only place we found the forget gates to be important is for
accumulating the next-action in the GNA channels (Section[F).

The mean-ablation experiment shows that the network computation from previous to the current step
can be simplified to the following:

&~ E[f}] 0Bl +il 0] =p+i) 04 (12)
7 =0} ®tanh(c))) ~ o ® tanh(u + iy © j7) (13)

We therefore focus more on the ¢, j, 0 gates and the hidden state h in our analysis in this paper.
Qualitatively, it also looks like the cell-state c is very similar to the hidden state /. Note that the cell

17

739
740
741

742

743
744
745
746
747
748
749

750
751
752

754
755
756
757

758
759
760
761
762
763

s

Figure 10: 16 x 16 zig-zag level that the original DRC(3, 3) network fails to solve. Steering W< |
and Wf,w by a factor of 1.2 solves this level and similar zig-zag levels for sizes upto 25 x 25.

Table 3: Comparison of network intervened with single-step cache across different channel groups.
We report the percentage drop of solve rate compared to the original network (%) on medium-difficulty
levels.

Group # Channels Performance Drop
Non-planning 37 10.5
Planning 59 57.6
Random planning subset 37 41.3

state ¢ not being much relevant doesn’t imply that the network is not using information from previous
hidden states, since most of the information from the previous hidden states hsfl flows through the
W4, kernels.

E Label verification and offset computation

We see from Table [§]that most channels can be represented with some combination of features that
can be derived from observation image (base feature) and future box or agent movements (future
features). We compute the following 5 base features: agent, floor, boxes not on target, boxes on
target, and empty targets. For future features, we get 3 features for each direction: box-movement,
agent-movement, and a next-action feature that activates positively on all squares if that action is
taken by the network at the current step. We perform a linear regression on the 5 base and 12 future
features to predict the activations of each channel in the hidden state h.

Offset computation On visualizing the channels of the DRC(3, 3)network, we found that the
channels are not aligned with the actual layout of the level. The channels are spatially-offset by
a few squares in the cardinal directions. To automatically compute the offsets, we perform linear
regression on the base and future features to predict the channel activation by shifting the features
along z,y € {—2,—1,0, 1,2} and selecting the offset regression model with the lowest loss. The
channels offsets are available in Table[d] We manually inspected all the channels and the offset and
found that this approach accurately produces the correct offset for all the 96 channels in the network.
All channel visualization in the paper are shown after correcting the offset.

Correlation The correlation between the predicted and actual activations of the channels is provided
in the Tables 5] and [6] We find that box-movement, agent-movement, combined-plan, and target
channels have a correlation of 66.4%, 50.8%, 48.0%, and 76.7%. As expected, the unlabeled channels
do not align with our feature set and have the lowest correlation of 40.2%. Crucially, a baseline
regression using only base features yielded correlations below 20% for all channels, confirming that
the channels are indeed computing plans using future movement directions. These correlations should

18

764

766

767

769
770
771

772
773

o
n

Observation Box left Box down Box right Box up Agent left Agent down

(=]
Normalized Activation

E’Iﬂﬂ!llﬂﬂi

(L1H27) (L1H17) (LOH17) (LOH24) (L2H31) (L1HI18)
....... .
-1
Agent right Agent up GNA PNA Target Combined plan No-label
(L2H5) (L1H29) (L2H26) (L2H3) (LOH6) (L2H14) (LOH3)

Figure 11: A toy observation with demonstrations of a single channel from every channel group in
Table [7}

Legend Action
Plan channels (U,D,L,R) —» Mechanism / Transfer
Non-plan channels (U.D,L,R) Intermediate mechanism oo b SR N
——] . : §F Pooled next action o
L_1 Previous step hidden state Input / Output i 09 Lo, L Lo EEE
! 4 s
. 1 50
§5.2 Plan extension ', §F Next action in grid €9 |
:‘ L2H28, L2H4, L2H23, L2H26 (3 l:
________ §5.3 Winner-takes- R e
|r§4 Short term plan | all mechanism §4 Short term plan —» §F Map to agent plan
1 LOH13, LOH2, LOH31, LOH9] LOH13, LOH2, LOH31, LOH9 L1H29, L1H18, L2H31, L1H21

§H Decay & remove
§5.2 Plan extension

|r§4 Long term plan | §5.2 Plan extension §4 Long term plan (expanded)
| LOH24. LOH14, LoH23, L1H1s | LOH24, LOH14, LOH23, L1H15 Stop plan extension
step n-1 §5.3 Backtrack l step n

invalid plan

)
o
<

ob i Encoder Agent.l Boxes | Targets g5 1 |nitialize plan)
servation | Adjacent squares §G Transition update
L0OO9 | LOO16 | LOOG | L0024 ...

Extend

>
=
©
(J]
=

Figure 12: The planning algorithm circuit learned by DRC(3, 3). While the plan nodes are present
and updated across all the layers, this circuit only shows the short and long-term plan nodes in
the first layer’s hidden state (LOHX) with a channel X for each direction up, down, left, and right.
Mechanisms are annotated with the sub-section (§) they are described in.

be treated as lower bounds, as this simple linear approach on the binary features cannot capture
many activation dynamics like continuous development, representation of rejected alternative plans
(Section[5.3), or the distinct encoding of short- vs. long-term plans.

F Plan Representation to Action Policy

The plan formed by the box movement channels are transferred to the agent movement channels.
For example, Figure 2Tb|shows that the agent down movement channel L1H18 copies the box down
movement channel L1H17 by shifting it one square up, corresponding to where the agent will push
the box. The kernels also help in picking a single path if the box can go down through multiple paths.

Once the box-plan transfers to the agent-movement channels, these channels are involved in their
own agent-path extension mechanism. Figure show that the agent-movement channels have

19

774
775
776
77

778
779
780
781
782

784
785
786
787
788

790
791
792
793
794
795
796
797

799
800
801
802
803
804
805
806
807
808
809

810
811

812

813
814

816
817
818

819
820
821
822
823
824
825
826

their own linear-plan-extension kernels. These channels also have stopping conditions that stop the
plan-extension at the box squares and agent square. Thus, as a whole, the box-movement channels
find box to target paths and the agent-movement channels copy those paths and also find agent to box
paths.

Finally, the network needs to find the next action to take from the complete agent action plan
represented in agent-movement channels. We find that the network dedicates separate channels that
extract the next agent action. We term these channels as the grid-next-action (GNA) channels (Table[7).
There exists one GNA channel for each of the four action directions. A max-pooling operation on
these channels transfers the high activation of an action to the entire grid of the corresponding agent
action channel. We term these as the pooled-next-action (PNA) channels (Table |Z[) Lastly, the MLP
layer aggregates the flattened neurons of the PNA channels to predict the next action. We verify that
the PNA and GNA channels are completely responsible for predicting the next action by performing
causal intervention that edits the activation of the channel based on our understanding to cause the
agent to take a random action at any step in a level. Table [2] shows that both the PNA and GNA
channels are highly accurate in modifying the next action. We now describe how the network extracts
only the next agent move into the GNA channels.
2
d

f-gate

The individual gates of the GNA channels copy
activations of the agent-movement channels.
Some gates perform subtraction of the agent and
box movement channels to get agent-exclusive
moves and the next agent box push. Figure[T3]
(top-right) shows one such example where the
agent and box movement channels from layer 1
are subtracted resulting in an activation exclu-
sively at the agent square. The GNA gates also
receive positive activation on the agent square
through L2H27 which detects agent at the first
tick n = 0 of a step. Figure [[3]shows that the
f-gate of all GNA channels receives a positive
contribution from the agent square. To counter-
act this, the agent-movement channels of one

0.5

=05

"'Jr
. .‘

Box-down Agent-down
(LIH17) (LIHIS)

Observation Agent

(L2H27)
Figure 13: Left: Observation at step 3 where the
agent moves down.Right: The GNA channels,
which represent the direction that the agent will
move in at the next step, predict the agent mov-
ing down primarily through f-gate. The box- and
agent-down channels are offset and subtracted to
get the action at the agent square. The checkered

direction contribute negatively to the GNA chan-
nels of all other directions. All of this results
in the agent square of the GNA channel of the
next move activating strongly at the second tick

agent location pattern from L2H27 also helps in
isolating the action on the agent square. The active
f-gate square accumulates activation in the cell-
state ¢ which after max-pooling and MLP layer
decodes to the down action being performed.

n=1.

Thus we have shown that the complete plan is filtered through the GNA channels to extract the next
action which activates the PNA channel for the next action to be taken.

G State Transition Update

We have understood how the plan representation is formed and mapped to the next action to be
taken. However, once an action is taken, the network needs to update the plan representation to
reflect the new state of the world. We saw in Figure 3] that the plan representation is updated by
deactivating the square that represented the last action in the plan. This allowed a different future
action to be represented at the same square in the short-term channel which was earlier stored only in
the long-term channel. We now show how a square is deactivated in the plan representation.

After an action is taken, the network receives the updated observation on the first tick n = 0 with the
new agent or box positions. The combined W& kernels for each layer that map to the path channels
contain filters that detect only the agent, box, or target, often with the opposite sign of activation of
the plan in the channel (Figure[22). Hence, when the observation updates with the agent in a new
position, the agent kernels activates with the opposite sign of the plan activation that deletes the last
move from the plan activation in the hidden state. The activation contributions in Figure [6] shows
the negative contribution from the encoder kernels on the agent and the square to the left of the box.
Therefore, the agent and the boxes moving through the level iteratively remove squares from the plan

20

827

829

830
831
832
833

835

836
837
838
839
840
841
842
843
844
845

Agent up Agent down Agent left Agent right

100

— L1H21
7 I ‘\-_\A | | i —
— LOHI18 — L2H3
L1H5 = LOHI0 — [2H5 !

g w
O — LIH29 m L1HI8 M — L2H23 — L2H26 A
2 40 o - roms 4 - Lona 4 - rom7 i — L2H21
— L2H29 — L2H8 — L2H31 —_——
T T T T T T T T T T T T
0 20 40 0 20 40 0 20 40 0 20 40
Steps
Box up Box down Box left Box right
100 . .
— LOH9
s 7 i B | Ay K\'\‘\»\,w_’
s — LIHI3
O g0 4 — Lomi3 | 4 - Lims
2 LOH24 — L2H9
— L2H6 — L2HIS Q
40 . . .
T T T T T T T T T T T T
0 20 40 0 20 40 0 20 40 0 20 40

Steps

Figure 14: AUC scores of agent and boxes for all directions. The two channels in agent directions
that quickly fall are the GNA/PNA channel which have a high AUC (100%) only for the next action.
Short-term channel show a high AUC for predicting actions 10 steps in advance whereas the long-term
channels show a high AUC for predicting agent’s actions beyond 10 steps until the end of the episode.

— Leftlong term

g
S 04+

o
=
s

o
=

A,
— Rightlo
Right short tern

o

%021

o
N
L

— Up long term

Average activation

Average activation

2
Upshortterm | 2 Left short term

o
s

0 0 20 B 0 20 0 0 20
Centered time steps (t) Centered time steps (f) Centered time steps (t) Centered time steps (t)
Figure 15: Activations of the long- and short-term channels for all directions when a different
direction action takes place at ¢ = 0. All direction except the up direction shows the long-term
channel activations decreasing after the other action takes place at ¢ = 0. The mechanism of this
transfer of activation from long to short-term is shown in Figure E

when they are executed with the plan-stopping mechanism ensuring that the plan doesn’t over-extend
beyond the new positions from the latest observation.

H Activation transfer mechanism between long and short term channels

Consider a scenario where two different actions, A; and Ay (A1 # As), are planned for the same
location ("square") at different timesteps, ¢; and t5, with ¢t; < t5. As illustrated in Section @
Figure E| (right) and further detailed in Figure @ the later action (A at ¢5) is initially stored in the
long-term channel for timesteps ¢ < ¢;. This information is transferred to the short-term channel
only after the earlier action (A;) is executed at t = t;. We now describe the specific mechanism
responsible for this transfer of activation from the long-term to the short-term channel.

In Figure E the activations transfer into L1H17 (short-term-down) from LOH14 (long-term-down)
and LOH2 (short-term-down) channels when a right action is taken at ¢ = 0 represented in LOH9
(short-term-right). The short-term-right channel LOH9 imposes a large negative contribution via the
j-gate to inhibit L1IH17, keeping it inactive even as the long-term-down channel tries to transfer a
signal through the j and o-gates for ¢ < 0. Once the first move completes (¢ = 0), short-term-right is
no longer active and so the inhibition ceases. The removal of the negative input allows the j-gate’s
activation to rise, enabling the long-term-down activation transfer through o-gate, making it the new
active short-term action at the square. This demonstrates how long-term channels hold future plans,
insulated from immediate execution conflicts by the winner takes all (WTA) mechanism (Section[5.3]
and Figure|[T) acting on short-term channels.

21

846

847
848
849
850
851
852
853
854

855
856
857
858

== H2: short-term | H9: short-term — == HI14: long-term | —— Sum

&
E) W A
d ,....\.*0-" Ne~wwwy, M[-‘—_—-
g ———
g an n”*"’
2 17"]
g
2
< _1 T T T T T T T T T
=50 0 50 =50 0 50 =50 0 50
Centered time steps (¢) Centered time steps (¢) Centered time steps (t)
J o h=o(j)- tanh(o)

Figure 16: Transfer mechanism from long to short-term channel shown through contributions into
the gates of the short-term-down (L1H17) channel averaged across squares where a right box-push
happens at ¢ = 0 and down box-push later on. The long-term-down channel LOH14 contributes to the
o-gate at all steps . However, LOH9 (short-term-right) activates negatively in the sigmoid j-gate, thus
deactivating L1H17. As the right move gets played at ¢ = 0, LOH9’s negative contribution vanishes,
enabling the transfer of LOH14 and LOH2 into L1H17.

I Case study: Backtracking mechanism

(b) All box channels (c) L2H9 (right) (d) L2I9 (right)
step 1 tick 0 step 5 tick 1 step 5 tick 1

(e) L2009 (right) (f) L2H9 (right)

E

) L2H9 (right)
step 5 tick 1 step 9 tick 1 Abl step 9 tick 1

(a) Observation

Figure 17: (a) 20 x 20 level we term as the “backtrack level” with key decision nodes D1-D3 for
backward chaining. (b) The sum of box-movement channels at step 1 tick 0 indicates forward (from
box) and backward (from target) chaining. (c-e) Activation of the box-right channel L2H9 involved
in backward chaining at step 5 tick 1. Backward chaining moved up from D1 to D2 and then hitting a
wall at D3, which initiates backtracking towards D2 through negative plan extension. The negative
wall activation comes from the o-gate of L2H9. (f) Successful pathfinding at T28 after backtracking
redirected the search. (g) Ablation: Forcing positive activation at D3 (by setting it to its absolute
value) prevents backtracking, hindering correct solution finding (L2H9 Abl., T28).

In particular, the forced positive ablation at D3 results in an incorrect plan (g) which seemingly goes
right all the way through the wall, as opposed to the correct plan (f) which goes right on a valid path.

Consider the level depicted in Figure[17|(a). The network begins by chaining forward from the box
and backward from the target(Figure |[I7] b). Upon reaching the square marked D1, the plan can
continue upwards or turn left. Here, the linear and turn plan-extension kernels activate the box-down
and the box-right channels, respectively. However, the box-down activation is much higher because
the weights of the linear extension kernels are much larger than the turn kernels (as seen in Figure [I)).
Due to this, the winner-takes-all mechanism leads to the search continuing upwards in the box-down
channel. Upon hitting a wall at D2, the chain turns right along the ‘box-right channel‘ (L2H9) and
continues until it collides with another wall at D3. (Figure[T7} c).

This triggers backtracking. While both i-gate and o-gate activations contribute to plan extension,
the o-gate also activates strongly negatively on wall squares like D3 (Figure[I74d, e). This leads to a
dominant negative activation in the ‘box-right‘ channel, which then propagates backward along the
explored path (from D3 towards D2) via the forward plan-extension kernels of L2H9.

22

859
860
861

862
863

865
866
867
868
869
870
871
872
873
874
875
876

877

878
879
880
881
882
883
884
885
886

888
889

Figure 18: A level with two paths, one longer than the other. We initialize the starting hidden state
with the two paths shown such that they both have two squares left to reach the target. We find that
the expands both paths and picks the left (longer) path through the winner-takes-all mechanism since
it reaches there with higher activation through linear-plan-extension.

This weakens the dominant ‘box-down* activation at D1, allowing the alternative ‘box-right‘ path
from D1 to activate. The search then proceeds along this new route, allowing the backward chain to
connect with the forward chain, resulting in the correct solution (Figure f).

To verify this mechanism, we performed an intevention by forcing the activation at the wall squares
near D3 to be positive (by taking their absolute values). This blocked backtracking, and the network
incorrectly attempted to connect the chains through the wall (Figure g). This confirms that
negative activation generated at obstacles is the key driver for backtracking, and is what allows the
network to discard failed paths and explore alternatives. We quantitatively test this claim further by
performing the same intervention on transitions from 512 levels where a plan’s activation is reduced
by more than half in a single step which was preceded by a neighboring square having negative
activation in the path channel. We define the intervention successful if forcing the negative square
to an absolute value doesn’t reduce the activation of the adjacent plan square. The intervention
results in a success rate with 95% confidence intervals of 85.1% + 5.0% and 48.9% =+ 3.3% for
long- and short-term channels, respectively. This checks out with the fact that long-term channels
represent plans not in the immediate future which would get backtracked through negative path
activations. On the other hand, negative activations in the short-term channels are also useful during
the winner-takes-all (WTA) mechanism and deadlock prevention heuristics. Filtering such activations
for short-term channels from the intervention dataset would improve the numbers.

J Case study: making the network take the longer path

The network usually computes the shortest paths from a box to a target by forward (from box) and
backward (from target) chaining linear segments until they connect at some square as illustrated
in Figure (Il As soon as a valid plan is found for a box along one direction, the winner-takes-all
mechanism stabilizes that plan through its stronger activations and deletes any other plans being
searched for the box. From this observation, we hypothesize that the network values finding valid
plans in least number of steps than picking the shorter one. We verify this value preference of the
network by testing the network with on the level shown in Figure[I8] with the starting state initialized
with the two paths shown. The left path (length=13) is longer than the right path (length=7) for
reaching from the box to target. Both paths are initialized in the starting hidden state to have two
arrow left to complete the path. We find that in this case, both the paths reach the target, but the left
one is stronger due to linear plan extension kernels reaching with higher activation. This makes the
network pick the left path and prune out the shorter right path. If we modify the starting state such

23

890
891
892
893

894

895
896
897
898

899

900
901

902
903
904
905
906
907

908
909
910

911
912
913
914
915
916

917

918
919
920
921
922
923

924
925
926
927
928
929
930
931
932
933
934
935
936
937

that left and right paths have 3 and 2 square left to the reach the target, then the right path wins and
the left path is pruned out. This confirms that the network’s true value in this case is to pick a valid
plan closer to target than to pick a shorter plan. However, since convolution moves plan one square
per operation, the network usually seems to have the value of picking the shorter plan.

K Unsuccessful methods

Section[3|describes the methods we found useful to understand the learned algorithm of the DRC(3, 3)
network. We also tried the following popular interpretability methods but found them to not work
well for our network: Network Pruning, Automated Circuit Discovery, explicitly coding the causal
abstract graph [6[], and Sparse Autoencoders.

L. Channel Redundancy

We see from Table [/| that the network represents many channels per box-movement and agent-
movement direction. We find at least two reasons for why this redundancy is useful.

First, it facilitates faster spatial propagation of the plan. Since the network uses 3 x 3 kernels
in the ConvLSTM block, information can only move 1 square in each direction per convolution
operation. By using redundant channels across multiple layers, the network can effectively move
plan information several squares within a single time step’s forward pass (one square per relevant
layer). Evidence for this rapid propagation is visible in Figure[I7(b), where plan activations extend
7-10 squares from from the target and the box within the first four steps on a 20 x 20 level.

Second, the network dedicates separate channels to represent the plan at different time horizons. We
identified distinct short-term (approximately 0-10 steps ahead) and long-term (approximately 10-50
steps ahead) channels within the box and agent-movement categories.

This allows the network to handle scenarios requiring the same location to be traversed at different
future times. For example, if a box must pass through the same square at time ¢; and later at time
to, the network can use the short-term channel to represent the first push at ¢; and the long-term
channel to represent the second push at ¢,. Figure 3] (right) illustrates this concept, showing activation
transferring from a long-term to a short-term box-down-movement channel once the earlier action at
that square is taken by the agent.

M Weight steering fixes failure on larger levels

Previous work [[63]] showed that, although the DRC(3, 3) network can solve much bigger levels than
10 x 10 grid size on which it was trained, it is easy to contruct simple and natural adversarial examples
which the network fails to solve. For example, the n x n zig-zag level in Figure[I0]that can be scaled
arbitrarily by adding more alleys and making them longer, is only solved for n < 15 and fails on all
n > 15. The big level shown in Figure[T7](a) is solved by the network on the 20 x 20 grid size but
fails on 30 x 30 or 40 x 40 grid size.

Figure 20| (a) visualizes the sum of activations of the box-movement channels on a 40 x 40 variant of
the backtrack level in which we see the reason why larger levels fail: the channel activations decay
as the plan gets extended further and further. This makes sense as the network only saw 10 x 10
levels during training and hence the kernel weights were learned to only be strong enough to solve
levels where targets and boxes are not too far apart. We find that multiplying the weights of W< |
and th2, the kernels that update and maintain the hidden state, by a factor of 1.2 helps the network
extend the plan further. This weight steering procedure is able to solve the zig-zag levels for sizes up
to n = 25 and the backtrack level for sizes up to 40 x 40. Figure[20| (b, ¢) show that upon weight
steering, the box-movement channels are able to maintain their activations for longer, enabling the
network to solve the level. However, for much larger levels, weightsteered networks also fall into the
same trap of decaying activations, failing to extend the plan. Further weight steering with a larger
factor can help but we find that it can become brittle, as the planning representation gets stuck in
wrong paths, unable to backtrack, with the activations becoming chaotic (Figure[I9). We also tried
other weight steering approaches such as multiplying all the weights of the network by a factor or

24

938
939

940

941
942
943
944
945

946
947
948
949
950

951

952

953
954
955

956
957
958
959

960

962

963

965

Figure 19: Sum of activations of box-movement channels on the 40 x 40 backtrack level with the
network weights W% | and chh2 steered by a factor of 1.4. The planning representation gets stuck in
the loop shown, unable to backtrack and explore other paths. The activations of other squares become
chaotic, changing rapidly and randomly on each step.

a subset such as the kernels of path channels, but find that they do not work as well as the weight
steering of W4 | and chhz'

N Limitations

Our paper has several limitations. First, we only reverse-engineer one DRC(3, 3) network in this
paper. We are fairly confident that our results generalize to any DRC(3, 3) network trained on
Sokoban using model-free reinforcement learning, but can’t prove it. The network having similar
performance and capabilities such as utilizing extra test-time compute across multiple papers who
trained it independently suggests that the learned algorithm is a pretty stable minima [22} |63 3]].

Second, we only reverse-engineer DRC and no other networks. It is possible that the inductive biases
of other networks such as transformer, Conv-ResNet, or 1D-LSTM may end up learning an algorithm
that is different from what we found. Our results are also only on Sokoban and it is possible that
the learned algorithm for other game-playing network looks very different from the one learned for
Sokoban.

We also do not fully reverse-engineer the network. We have observed the following behaviors that
cannot be explained yet with our current understanding of the learned algorithm:

* Agent sometimes executes some steps of the plan for box 1, then box 2, then back to box
1, to minimize distance. Our explanation doesn’t account for how and when the network
switches between boxes.

* Sometimes the heuristics inexplicably choose where to go based on seemingly irrelevant
things. Slightly changing the shape or an obstacle or moving the agent’s position by 1 can
sometimes change which plan gets chosen, in a manner that doesn’t correspond to optimal
plan.

O Societal Impact
This research into interpretability can make models more transparent, which helps in making models
predictable, easier to debug and ensure they conform to specifications.

Specifically, we analyze a model organism which is planning. We hope that this will catalyze further
research on identifying, evaluating and understanding what goal a model has. We hope that directly
identifying a model’s goal lets us monitor for and correct goal misgeneralization [[14]].

25

(a) Original net at step 50 tick 0

(b) Steered net at step 50 tick 0

(c) Steered net at step 100 tick 0

Figure 20: The sum of activations of the box-movement channels on a 40 x 40 variant of the backtrack
level from Figure [I7]for (a) the original network at step 50, and the weight-steered network at (b)
step 50 and (c) step 100 when the agent reaches halfway through. The original network fails to solve
the level as the plan decays and cannot be extended beyond 10 — 15 squares. Upon weight steering,
the plan activations travel farther without decaying thus solving the level.

Forward

Backward

Down Left Right

s 5 - 1
0.5
0
-0.5
i j f o

(a) Forward and backward plan extension kernels
averaged over agent-movement channels.
movement channels also extend the agent moves for-
ward and backward similar to the box-plan extension.

Agent-

(b) The kernels that map L1H17 (box-down) to L1H18
(agent-down) by shifting the activation one square up.
L1H17 activates negatively, therefore the j and f ker-
nels are negative since they use the sigmoid activation

function. The ¢ and o kernels are positive which results
in negatively activating ¢ and o-gates, which after mul-
tiplication results in L1H18 activating positively. The
opposite signed weights on the lower-corner squares
of the kernel help in picking a single path out of mul-
tiple parallel paths.

Figure 21: Plan extension and box path to agent path kernels.

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Box up Activates on squares from where a box would LOH13, LOH24*, L2H6
be pushed up

Box down Activates on squares from where a box would LOH2, LOH14*, LOH20*, L1H14*,
be pushed down L1H17,L1H19

Box left Activates on squares from where a box would LOH23*, LOH31, L1H11, L1H27,
be pushed left L2H20

Box right Activates on squares from where a box would LOH9, LOH17, L1H13, L1HI5%,
be pushed right L2H9*, L2H15

Agent up Activates on squares from where an agent LOH18, L1HS, L1H29, L2H2S,
would move up L2H29

Agentdown Activates on squares from where an agent LOH10, L1H18, L2H4, L2HS
would move down

Agent left Activates on squares from where an agent L2H23,1L2H27, L2H31
would move left

Agentright Activates on squares from where an agent L1H21, L1H28, L2H3, L2HS,

would move right

L2H21%*, L2H26

Continued on next page

26

Table 7: Grouped channels and their descriptions. * indicates long-term channels.

Group Description Channels

Combined Channels that combine plan information from LOH15, LOH16, LOH28, LOH30,

Plan multiple directions L1HO, L1H4, L1HS8, L1H9, L1H20,

L1H25, L2HO, L2HI1, L2HI13,
L2H14, L2H17, L2H18, LOH7,
LOH1, LOH21, L1H2, L1H23,
L2H11, L2H22, L2H24, 1.2H25,
L2H12, L2H16, LOH19, L2H30

Entity Highly activate on target tiles. Some also LOH6, LOH26, L1H6, LI1HI1O0,

activate on agent or box tiles L1H22, L1H31, L2H2, L2H7

No label Uninterpreted channels. These channels do LOHO, LOH3, LOH4, LOHS, LOHS,

not have a clear meaning but they are alsonot LOH22, LOH25, LOH27, LOH29,

very useful L1H1, L1H3, L1H12, L1HI6,
L1H26, L1H30, L2H10, L2H19,
LOHI11, LOH12, L1H7, L1H24

Grid-Next- Channels that activate on squares that the L2H28 (up), L2H4 (down), L2H23

Action agent will move in the next few moves. One (left), L2H26 (right)

(GNA) separate channel for each direction

Pooled- A channel for each action that activates highly L2H29 (up), L2H8 (down), L2H27

Next- across all squares at the last tick (n = 2) to (left), L2H3 (right)

Action predict the action

(PNA)

Table 8: Informal description of all channels

Channel Long- Description

term

LOHO No some box-left-moves?

LOH1 No box-to-target-lines which light up when agent comes close to the box.

LOH2 No H/-C/-1/J/-O: +future box down moves [1sq left]

LOHS5 No [1sq left]

LOH6 No H/-C: +target -box -agent . F: +agent +agent future pos. I: +agent. O: -agent
future pos. J: +target -agent[same sq]

LOH7 No (0.37 corr across i,j,f,0).

LOH9 No -H/-C/-O/1/J/F: +agent +future box right moves -box. -H/J/F: +agent-near-
future-down-moves [on sq]

LOH10 No H: -agent-exclusive-down-moves [1sq left,down]. Positively activates on
agent-exclusive-up-moves.

LOH11 No H: CO. O: box-right moves C/I: -box future pos [1sq up (left-right noisy)]

LOH12 No H: very very faint horizontal moves (could be long-term?). I/O: future box
horizontal moves (left/right). [on sq]

LOH13 No H/C/1/J/O: +future box up moves [1sq up]

LOHI4 Yes H/-I/O/C/H: -future-box-down-moves. Is more future-looking than other
channels in this group. Box down moves fade away as other channels also
start representing them. Sometimes also activates on -agent-right-moves [on
sq]

LOH15 No H/1/J/-F/-O: +box-future-moves. More specifically, +box-down-moves +box-
left-moves. searchy (positive field around target). (0.42 corr across i,j,f,0).

LOH16 No H +box-right-moves (not all). High negative square when agent has to perform
DRU actions. [1sq up,left]

LOH17 No H/I/J/F/O: +box-future-right moves. O: +agent [1sq up]

LOHI8 No H: -agent-exclusive-up-moves

Continued on next page

27

Table 8: Informal description of all channels

Channel Long- Description

term

LOH20 Yes H: box down moves. Upper right corner positively activates (0.47 start -> 0.6
in a few steps -> 0.7 very later on). I: -box down moves. O: +box down moves
-box horizontal moves. [1sq up]

LOH21 No -box-left-moves. +up-box-moves

LOH23 Yes H/C/1/J/0O: box future left moves [1sq up,left]

LOH24 Yes H/C/I/J/O: -future box up moves. long-term because it doesn’t fade away after
short-term also starts firing [1sq up,left]

LOH26 No H: -agent . I/C/-O: all agent future positions. J/F: agent + target + BRwalls,
[1sq up]

LOH28 No H/C/1/J/F/-O: -future box down moves (follower?) [on sq]. Also represents
agent up,right,left directions (but not down).

LOH30 No H/T: future positions (0.47 corr across i,j,f,0).

L1HO No H: -agent -agent near-future-(d/l/r)-moves + box-future-pos [on sq]

L1H2 No -box-left-moves

L1H4 No +box-left moves -box-right moves [1sq up].

L1HS5 No H: +agent-exclusive-future-up moves [2sq up, 1sq left]

L1H6 No J: player (with fainted target)

L1H7 No H: - some left box moves or right box moves (ones that end at a target)?
Sometimes down moves? (unclear)

L1HS No box-near-future-down-moves(-0.4),agent-down-moves(+0.3),box-near-
future-up-moves(+0.25) [on sq]

LI1H9 Yes O/I/H: future pos (mostly down?) (seems to have alternate paths as well. Abla-
tion results in sligthly longer sols on some levels). Fence walls monotonically
increase in activation across steps (tracking time). [on sq]

LIH10 No J/H/C: -box + target +agent future pos. (neglible in H) O,-1: +agent +box
-agent future pos [1sq up] (very important feature — 18/20 levels changed after
ablation)

L1H11 No -box-left-moves (-0.6).

L1H13 No H: box-right-moves(+0.75),agent-future-pos(+0.02) [1sq left]

LIH14 Yes H: longer-term down moves? [1sq up]

LIHI5 Yes H/-O: box-right-moves-that-end-on-target (with high activations towards tar-
get). Activates highly when box is on the left side of target [on sq].

L1H17 No H/C/1/-J/-F/O: -box-future down moves [on sq]

L1HI8 No H/-O: +agent future down moves (stores alternate down moves as well?) [on
sq]

L1H19 No H/-F/-J: -box-down-moves (follower?) [1sq up]

L1IH20 No +near-future-all-box-moves [1sq up].

LIH21 No H: agent-right-moves(-0.5) (includes box-right-pushes as well)

L1H22 No -target

L1H23 No -box-left-moves.

L1H24 No H: -box -agent-future-pos -agent, [1sq left]

LIH25 No all-possible-paths-leading-to-targets(-0.4),agent-near-future-pos(-
0.07),walls-and-out-of-plan-sqs(+0.1),boxes(+0.6). H: +box -agent
-empty -agent-future-pos | O/-C: -agent +future sqs (probably doing search in
init steps) | I: box + agent + walls | F: -agent future pos | J: +box +wall -agent
near-future pos [1sq up,left]

L1H27 No H: box future left moves [1sq left]

L1H28 No some-agent-exclusive-right-moves(+0.3),box-up-moves-sometimes-
unclear(-0.1)

LIH29 No agent-near-future-up-moves(+0.5) (~5-10steps, includes box-up-pushes as
well). I: future up moves (~almost all moves) + agent sq [1sq up]

LIH31 No H: squares above and below target (mainly above) [1sq left & maybe up]

L2HO0 No -box-all-moves.

Continued on next page

28

Table 8: Informal description of all channels

Channel Long- Description

term

L2H1 No H/O: future-down/right-sqs [1sq up]

L2H2 No H: high activation when agent is below a box on target and similar positions.
walls at the bottom also activate negatively in those positions.

L2H3 No H: +right action (PNA) + future box -down -right moves + future box +left
moves

L2H4 No O: +near-future agent down moves (GNA). I: +agent/box future pos [1sq left]

L2H5 No H/C/1/]: +agent-future-right-incoming-sqs, O: agent-future-sqs [1sq up, left]

L2H6 No H: +box-up-moves (~5-10 steps). -agent-up-moves. next-target (not always)
[1q left]

L2H7 No +unsolved box/target

L2HS No down action (PNA).

L2H9 Yes H/C/1/J/O: +future box right moves [1sq up]

L2H11 No -box-left-moves(-0.15),-box-right-moves(-0.05)

L2H13 No H: +box-future-left -box-long-term-future-right(fades 5-10moves before tak-
ing right moves) moves. Sometimes blurry future box up/down moves [1sq
up]

L2H14 No H: all-other-sqs(-0.4) agent-future-pos(+0.01) O: -agent-future-pos. I: +box-
future-pos

L2H15 No -box-right-moves [1sq up,left]

L2H17 No H/C: target(+0.75) box-future-pos(-0.3). O: target. J: +target -agent +agent
future pos. I/F: target. [1sq up]

L2HI8 No box-down/left-moves(-0.2). Very noisy/unclear at the start and converges later
than other box-down channels.

L2H19 No H: future agent down/right/left sqs (unclear) [1sq up]

L2H20 No H: -box future left moves [1sq left]

L2H21 Yes H: -far-future-agent-right-moves. Negatively contributes to L2H26 to remove
far-future-sgs. Also represents -agent/box-down-moves. [1sq up]

L2H22 No H: box-right-moves(+0.3),box-down-moves(0.15). O future sqs???

L2H23 No H: future left moves (does O store alternate left moves?) (GNA). [1sq left]

L2H24 No box-right/up-moves (long-term)

L2H25 No unclear but (8, 9) square tracks value or timesteps (it is a constant negative in
the 1st half episode and steadily increases in the 2nd half)?

L2H26 No H/O: near-future right moves (GNA). [on sq]

L2H27 No left action (PNA). TO: negative agent sq with positive sqs up/left.

L2H28 No near-future up moves (GNA). O: future up moves (not perfectly though) [1sq
up]

L2H29 No Max-pooled Up action channel (PNA).

L2H31 No some +agent-left-moves (includes box-left-pushes).

29

+L000

+L005 -L0O5 +L006 +L007 -L007

+L009 +L0010

+L0012 -L0012 +L0013 - +L00 14

+L0018

+L0020 -L0020 + -L0021 - -L0023

+L0024 -L0024 - +L0026 -L0026

+L0028 - - +L0030 - +L0031

Figure 22: 9 x 9 combined convolutional filters W2, that map the RGB observation image to the O
gate in layer 0. The positive and negative components of each channel filters are separated visualized
by computing maz (0, W2,) and maz (0, —WJ,) respectively. The green, red, and brown colors in
the filters detect the agent, target, and box squares respectively. The blue component is high only in
empty tiles, so the blue color can detect empty tiles. We find that many filters are responsible for
detecting the agent and the target like LOOS5 and LOO6. A use case of such agent and box detecting
filters in the encoder is shown in Figure[6] Many filters detect whether the agent or the target are
some squares away in a particular direction like L0020 and L0O23. Filters for other layers and gates
can be visualized using our codebase.

Table 4: Activation offset along (row, column) in the grid for each layer and channel

Layer0 Layer1 Layer2

Channel 0 (1,0) 0, 0) (-1,0)
Channel 1 0,00 (-1,-1) (-1,-1)
Channel 2 0, -1) (-1,0) 0, 0)
Channel 3 0, 0) (-1,0) 0, 0)
Channel 4 (-1,-1) (-1,-1) O, -1
Channel 5 ©,-1) (-2,-1) (-1,0)
Channel 6 0,00 (-1,-1) (-1,-1)
Channel 7 (-1,0) (-1,0) (0, 0)
Channel 8 0, -1) 0, 0) (-1,0)
Channel 9 0, 0) 0, 0) (-1,0)
Channel 10 (-1, -1) (-1,0) (-1,0)
Channel 11 (-1,0) ©, -1) O, -1
Channel 12 , -1) 0, -1) 0, -1
Channel 13 (-1,0) (-1,0) (-1,0)
Channel 14 0, 0) ©,-1) (-1,-1)
Channel 15 0, 0) 0,00 (-1,-1D
Channel 16 (-1, -1) 0,00 (-1,-1D
Channel 17 (-1,0) 0, 0) (-1,0)
Channel 18 (-1,0) 0, 0) (-1,0)
Channel 19 (-1, -1) (-1,0) (-1,-1)
Channel 20 (-1,0) O, -1) O, -1
Channel 21 (-1, 0) (-1,0) 0, 0)
Channel 22 0, 0) 0, 0) (-1,0)
Channel 23 (-1, -1) (-1,0) 0, -1
Channel 24 (-1, -1) O, -1) (-1,0)
Channel 25 -1,0) (-1,-1) (-1,-1)
Channel 26 (-1,0) O, -1) (0, 0)
Channel 27 (-1,-1) (-1,-1) ©, 0)
Channel 28 (0, 0) (0, 0) (-1,0)
Channel 29 0, 0) (-1,0) O, -1
Channel 30 (-1,0) 0,00 (-1,-1
Channel 31 (-1, -1) O, -1) O, -1

31

Table 5: Correlation of linear regression model’s predictions with the original activations for each
channel.

Layer0 Layer1 Layer2

Channel O 33.15 79.48 70.03
Channel 1 50.76 48.77 38.37
Channel 2 73.15 28.90 39.17
Channel 3 31.73 68.30 55.72
Channel 4 45.06 50.10 45.64
Channel 5 63.91 42.95 55.27
Channel 6 96.57 87.47 53.90
Channel 7 51.98 36.88 95.63
Channel 8 46.64 41.58 55.04
Channel 9 70.52 37.44 71.47
Channel 10 37.68 99.01 53.91
Channel 11 52.09 61.55 42.26
Channel 12 41.54 43.86 27.19
Channel 13 79.54 73.35 54.40
Channel 14 72.17 48.12 56.54
Channel 15 44.09 65.72 36.37
Channel 16 63.49 26.56 38.24
Channel 17 76.70 73.94 94.78
Channel 18 61.51 66.11 34.18
Channel 19 46.05 44.01 33.48
Channel 20 65.00 58.94 64.92
Channel 21 22.05 57.36 60.21
Channel 22 26.51 63.73 24.32
Channel 23 74.39 31.32 44.64
Channel 24 83.64 58.56 59.94
Channel 25 17.10 82.43 28.29
Channel 26 75.48 44.26 45.17
Channel 27 9.24 85.84 49.92
Channel 28 46.87 42.65 15.38
Channel 29 28.60 64.77 54.68
Channel 30 47.70 35.00 40.15
Channel 31 53.12 56.81 59.63

Table 6: Correlation of linear regression model’s predictions with the original activations averaged
over channels for each group. Includes correlation using only base features for comparison. The (all
dir) group is the average of the four directions. NGA and PNA are included in the Agent groups.

Group Correlation Base correlation
Box up 72.36 21.01
Box down 62.73 13.93
Box left 67.96 21.10
Box right 65.69 27.40
Box (all dir) 66.37 20.83
Agent up 47.86 12.69
Agent down 51.12 15.85
Agent left 51.40 7.85
Agent right 52.73 14.92
Agent (all dir) 50.80 13.33
Combined path 48.00 23.35
Entity 76.73 70.66
No label 40.25 15.53

32

Table 9: Solve rate (%) of different models without and with 6 thinking steps on held out sets of
varying difficulty.
Model No Thinking Thinking
Hard Med Unfil Hard Med Unfil

DRC@3,3) 428 76.6 993 497 813 99.7
DRC(1, 1) 7.8 28.1 894 9.8 339 926
ResNet 262 594 979 - - -

33

966

967
968
969
970
971

972

974

975
976

977

978
979
980
981

982
983
984
985
986
987
988
989
990

991

992

993

994

995

996

998

999
1000

1001
1002
1003

1004
1005
1006

1007
1008

1009
1010

1011

1012

1013

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We justify all the claims made in the paper with proper empirical evidence
through experiments.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

34

1014
1015

1016
1017
1018
1019

1020
1021
1022
1023
1024
1025
1026
1027

1028
1029
1030
1031
1032

1033
1034

1035
1036

1037
1038
1039
1040
1041
1042

1043

1044
1045

1046

1047

1048

1049

1050
1051

1052

1053
1054
1055

1056
1057

1058

1059

1060
1061
1062

1063

1064

1065

Justification: We discuss some limitations in the discussion section and in the limitation
section in Section [Nl

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have open-sourced the code, model, and data to reproduce our experiments.

Guidelines:

35

1066

1067
1068
1069

1070
1071

1072
1073
1074
1075
1076
1077
1078
1079
1080

1081
1082
1083

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

1097

1098
1099
1100

1101

1102
1103

1104

1105

1106
1107

1108
1109
1110
1111

1112
1113
1114

1115
1116
1117
1118
1119

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the code, model, data is open-sourced and also provided in the supple-
mentary material.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

1120
1121

1122
1123

1124

1125
1126
1127

1128

1129

1130

1131

1132
1133

1134
1135

1136

1137
1138

1139

1140
1141
1142

1143

1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

1164

1165
1166
1167

1168

1169
1170

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Sections[Bland
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars in all our tables and plots. We compute the 95%
confidence interval using the bootstrap method from the sklearn library on a 1000 resamples
from the dataset.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The DRC(3, 3)network is small enough that all our experiments can run on
CPU.

37

171

1172

1173
1174
1175
1176
1177
1178
1179

1180

1181
1182

1183

1184

1185

1186
1187
1188
1189
1190

1191

1192
1193

1194

1195

1196

1197

1198
1199

1200
1201
1202
1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

1219

1220
1221
1222

9.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines)?

Answer: [Yes]
Justification: We have read and followed the Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss some impact of our work in Section[O]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

38

https://neurips.cc/public/EthicsGuidelines

1223

1224

1225

1226

1227
1228
1229
1230

1231
1232

1233
1234
1235

1236

1237
1238
1239

1240

1241

1242

1243
1244

1245
1246

1247

1248
1249

1250
1251
1252
1253

1254
1255

1256
1257
1258

1259
1260

1261

1262
1263

1264

1265
1266
1267
1268
1269
1270
1271
1272

1273

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite the works from where we get the model and the dataset.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We open-source our code and also provide it in the supplementary material
and document the scripts to reproduce the experiments in the README file.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

39

paperswithcode.com/datasets

1274
1275
1276

1277

1278

1279

1280

1281
1282
1283
1284
1285
1286
1287

1288
1289

1290
1291
1292
1293

1294

1295

1296

1297

1298
1299
1300
1301
1302
1303
1304
1305
1306

1307

1308
1309
1310
1311

1312

1313

1314

1315
1316
1317
1318

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were used for writing and editing the paper, and visualizing the plots.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Methodology
	Network architecture
	Interpretability Techniques

	The Plan Representation
	The Planning Algorithm
	Initializing the plan
	The Transition Model
	The Valuation Mechanism

	Related work and discussion
	Conclusion
	Common components of search algorithmns
	Network architecture
	Network training details
	Gate importance
	Label verification and offset computation
	Plan Representation to Action Policy
	State Transition Update
	Activation transfer mechanism between long and short term channels
	Case study: Backtracking mechanism
	Case study: making the network take the longer path
	Unsuccessful methods
	Channel Redundancy
	Weight steering fixes failure on larger levels
	Limitations
	Societal Impact

