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ABSTRACT

Model hallucination has been a crucial interest of research in Natural Language
Generation (NLG). In this work, we propose sequence-level certainty as a com-
mon theme over hallucination in NLG, and explore the correlation between
sequence-level certainty and the level of hallucination in model responses. We
categorize sequence-level certainty into two aspects: probabilistic certainty and
semantic certainty, and reveal through experiments on Knowledge-Grounded Di-
alogue Generation (KGDG) task that both a higher level of probabilistic certainty
and a higher level of semantic certainty in model responses are significantly cor-
related with a lower level of hallucination. What’s more, we provide theoretical
proof and analysis to show that semantic certainty is a good estimator of proba-
bilistic certainty, and therefore has the potential as an alternative to probability-
based certainty estimation in black-box scenarios. Based on the observation on the
relationship between certainty and hallucination, we further propose Certainty-
based Response Ranking (CRR), a decoding-time method for mitigating halluci-
nation in NLG. Based on our categorization of sequence-level certainty, we pro-
pose 2 types of CRR approach: Probabilistic CRR (P-CRR) and Semantic CRR
(S-CRR). P-CRR ranks individually sampled model responses using their arith-
metic mean log-probability of the entire sequence. S-CRR approaches certainty
estimation from meaning-space, and ranks a number of model response candidates
based on their semantic certainty level, which is estimated by the entailment-based
Agreement Score (AS). Through extensive experiments across 3 KGDG datasets,
3 decoding methods, and on 4 different models, we validate the effectiveness of
our 2 proposed CRR methods to reduce model hallucination.

1 INTRODUCTION

Previous works have researched the problem of hallucination in Natural Language Generation
(NLG) (Ji et al., 2023; Lee et al., 2018; Filippova, 2020; Zhou et al., 2021; Maynez et al., 2020;
Huang et al., 2021; Santhanam et al., 2021; Honovich et al., 2022; Pagnoni et al., 2021). Specifically,
a number of prior studies have explored hallucination issues in the Knowledge-Grounded Dialogue
Generation (KGDG) task (Li et al., 2019; Shuster et al., 2021; Santhanam et al., 2021; Honovich
et al., 2021; Dziri et al., 2022b; Rashkin et al., 2021), in which a dialogue model is provided with
textual knowledge and a series of conversation histories, and is expected to generate informative and
meaningful responses to the previous conversation with the provided knowledge (Li et al., 2022).
Under KGDG’s task definition, a model response is said to be “hallucinated” if it is inconsistent or
unsupported by the provided knowledge in the model input (Filippova, 2020; Dziri et al., 2022a).

Dialogue models still struggle to generate faithful responses on the KGDG task (Honovich et al.,
2021). Understanding and mitigating hallucination in KGDG models therefore remains an important
research question in the domain of NLG. Among previous works, Xiao & Wang investigated model
hallucination on Image Captioning (IC) task. They proposed to use token-level probabilistic entropy
to measure predictive uncertainty, and were the first to show that higher predictive uncertainty is
associated with higher chance of hallucination. However, the proposed probability-based estima-
tion of model uncertainty in their study remains on token-level, and therefore neglects sequence-
level semantic information that might also indicate uncertainty in model generations. Token-level
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probability-based predictive uncertainty is therefore not a satisfactory and generalizable common
theme across model hallucinations in NLG.

Our work proposes and investigates sequence-level certainty as a better and more general common
theme over hallucination phenomenon in language generation. Specifically, we dissect sequence-
level model certainty into two categories: probabilistic certainty and semantic certainty. Through
comprehensive experiments across 4 models on KGDG task, we empirically show that both a higher
level of probabilistic certainty and a higher level of semantic certainty are positively and significantly
correlated with a lower level of hallucination. In addition, we demonstrate through statistical proof
that semantic certainty is a good estimator to probabilistic certainty. This proves semantic certainty
as a promising alternative to probabilistic certainty in black-box scenarios, where model output
probabilities are not always available.

Furthermore, based on our observation of the correlation between both probabilistic and seman-
tic certainty and level of hallucination in model generations, we propose Certainty-based Response
Ranking (CRR) to mitigate hallucination of KGDG models during decoding time. Specifically,
aligning with our categorization of sequence-level certainty, we establish 2 types of CRR ap-
proaches: Probabilistic CRR (P-CRR), and Semantic CRR (S-CRR). P-CRR simply ranks a number
of independently sampled model responses by their probabilistic certainty, which we follow pre-
vious work to establish as the arithmetic mean log-probability over entire sequences Kuhn et al.
(2023); Murray & Chiang (2018). Since we observed that higher probabilistic certainty corresponds
to lower hallucination level, P-CRR can effectively mitigate model hallucination during decoding
time. S-CRR approaches certainty estimation from a semantic perspective, and ranks various in-
dependently sampled model response candidates by their semantic certainty. To measure semantic
certainty, our study proposes to utilizes Agreement Score (AS), which is defined as the overall level
of semantic entailment of each candidate with all other candidates. Since the calculation of AS takes
into account the level of semantic alignment between candidate responses, AS is a good proxy to
measure semantic certainty level in model generation, further allowing the ranking mechanism of
S-CRR to finally select the output candidate with highest level of semantic certainty. Since higher
semantic certainty is correlated with lower level of hallucination, S-CRR can also effectively reduce
hallucination in model responses.

We validate the effectiveness of our P-CRR and S-CRR methods through extensive empirical anal-
ysis. Specifically, we conduct comprehensive experiments on 3 KGDG datasets, 4 NLG models
with varied sizes, with 3 different decoding methods. Strong experiment results demonstrate that
both P-CRR and S-CRR significantly reduce hallucinations in model outputs across all experiment
settings. conduct ablation experiments to further investigate how the number of response candidates
sampled for ranking can influence performance of CRR methods. Interestingly, we observe that
S-CRR achieves significant improvement with increased number of response candidates, whereas
P-CRR maintains similar performance. This indicates that S-CRR better captures semantic certainty
in model generations through more pair-wise alignment analysis between additional response can-
didates, which further proves the effectiveness of the S-CRR method. Our work provides novel and
significant findings on the relationship between sequence-level certainty and hallucination, therefore
opening up a new direction for future researches to further explore and understand hallucination phe-
nomenon in NLG.

2 BACKGROUND ON UNCERTAINTY AND HALLUCINATION

Previous research has explored and proposed different methods to measure uncertainty in model pre-
dictions (Xiao & Wang, 2021; Kuhn et al., 2023; Manakul et al., 2023). Among these works, Xiao
& Wang was the first to explore the relationship between token-level predictive uncertainty and hal-
lucination on the Image Captioning (IC) task. However, their proposed uncertainty estimation did
not consider sequence-level or semantic-level information in generated text. Kuhn et al. further
extended the estimation of model uncertainty to semantic space on the QA task, but did not explore
how semantic uncertainty measurement is related to level of hallucination. Our study draws inspi-
rations from these works, and is among the first to comprehensively and systematically explore the
relationship between both sequence-level probabilistic and semantic certainty and level of halluci-
nation in generative models. In this section, we briefly introduce the methods proposed by previous
works to estimate uncertainty, as well as provide the background on the correlation between uncer-
tainty and hallucination, as observed by prior studies.
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2.1 UNCERTAINTY ESTIMATION IN GENERATIVE MODELS

We define and categorize uncertainty estimation in NLG into two aspects: probabilistic uncertainty
and semantic uncertainty. Xiao & Wang was the first to propose token-level predictive uncertainty,
which quantifies the entropy of the token probability distribution that a model predicts in language
generation. Their work adopts a probability-based approach and formulates the total predictive un-
certainty of a predicted token as its entropy. We denote this method as the probabilistic uncertainty
estimation. Kuhn et al.’s work, on the other hand, extends the exploration of uncertainty from the
probabilistic perspective to the semantic aspect. They propose semantic uncertainty to examine
uncertainty in meaning-space, and establish it as the entropy of the random variable representing the
output distribution in the semantic event-space. Specifically, their work cluster sampled sequences
of a language model given the same sequences into semantic equivalent classes, and formulate se-
mantic uncertainty as the entropy of predicting a specific semantic equivalent class.

2.2 ON UNCERTAINTY AND HALLUCINATION

Xiao & Wang’s work was the first to explore the correlation between model uncertainty and hal-
lucination. Through experiments on IC task, they observed that higher token-level predictive un-
certainty corresponds to a higher chance of hallucination. Based on this observation, they further
proposed uncertainty-aware beam search, which takes into account the predictive uncertainty during
beam search to reduce hallucination in model-predicted captions for images. Manakul et al.’s work
applied the probabilistic uncertainty measurement to QA task, and showed that probability-based
model uncertainty can be used to detect hallucinations in LLM responses; no additional insights on
the relationship between model uncertainty and hallucination were provided in this study.

2.3 LIMITATIONS AND CHALLENGES

Despite previous efforts, current explorations on the correlation between model uncertainty and
hallucination still suffer from a number of limitations and challenges. Although Xiao & Wang’s
observation on the relationship between uncertainty and hallucination is promising, their experi-
ment and analysis only explored IC task. In addition, their proposed uncertainty-aware beam search
method for hallucination mitigation cannot be extended for application on other decoding methods
in language generation, such as nucleus sampling and top-k sampling. Furthermore, their token-
level probability-based uncertainty estimation approach fails to take into account the sequence-level
or semantic component in generated texts. Kuhn et al.’s work extended the concept of uncertainty
estimation in language generation from the semantic aspect. However, their study only explored how
semantic uncertainty is more predictive of model accuracy on Question Answering (QA) datasets,
and did not explore the relationship between semantic uncertainty and level of hallucination. In
addition, since the scope of their experiments is limited to the QA task, each input question in their
experiments always has one corresponding ground truth answer. This means that their observation
cannot be extended to more general language generation tasks, such as dialogue generation, which
might not have specific “correct answer”s. The relationship of semantic uncertainty and halluci-
nation remains unexplored. Therefore, given the limitations of previous works, establishing more
generalizable uncertainty-related common themes over hallucination phenomenon in more general
NLG settings remains a significant challenge.

3 SEQUENCE-LEVEL CERTAINTY

Previous work showed that a higher level of token-level probabilistic predictive uncertainty in model
generation is associated with a higher chance of hallucination (Xiao & Wang, 2021). Inspired
by prior study, we propose sequence-level model certainty as a more general common theme
across hallucination phenomena in a broader sense of language generation task. We further dis-
sect sequence-level certainty into probabilistic certainty and semantic certainty. In this section,
we first provide a definition of the 2 types of certainty in our study. Through experiments on multiple
models and datasets on KGDG task, we show that both a higher level of probabilistic certainty
and a higher level of semantic certainty are positively correlated with a lower level of halluci-
nation in model responses. What’s more, we provide a rigorous proof on how semantic certainty
is a good estimator to probabilistic certainty, and therefore is a promising alternative to probabilistic
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certainty when applied to black-box LLMs, for which probability of model outputs is not always
available.

3.1 DEFINITION

Probabilistic Certainty Following previous works (Kuhn et al., 2023; Murray & Chiang, 2018),
we define sequence-level probabilistic certainty of a generated sequence to simply be the arithmetic
mean log-probability of the entire sequence. Given a generated sequence s with length N , the
sequence-level probabilistic certainty can be calculated as: 1

N

∑N
i=1 log p(si|s<i), where p(si|s<i)

is the conditional probability of generating token si in sequence s given past tokens. This stands
in contrast with the previously proposed probabilistic uncertainty measures, which only takes into
account token-level information.

Semantic Certainty We define sequence-level semantic certainty to be the level of confidence
that a model generates semantic contents of a response. For instance, suppose that we individually
sample n model outputs given the same context, among which 80% consists of semantic contents
that aligns with each other. Give the high confidence of the model to produce these responses
with aligned semantic contents, we can say that these outputs have high semantic certainty level.
In contrast, if semantic contents of the rest of the 20% model outputs don’t align with any other
responses, then we can say that these outputs have low semantic certainty level.

3.2 USING AGREEMENT SCORE TO ESTIMATE SEMANTIC CERTAINTY

In order to quantify the estimation of semantic certainty in language generation, we propose to
use Agreement Score (AS) as a proxy of semantic certainty. We hereby provide the definition
of AS. Given a context x, we individually sample N model response candidates to constitute set
S = {s(1), s(2), ..., s(n)}. Let the relation Entailment(·, ·) denote the probability that two generated
sequences entail each other, or semantically support each other. Then, the AS of model response
s(i) can be calculated as:

AS(s(i)) =

n∑
j=1

Entailment(s(i), s(j)) (1)

, which is the summed probability of semantic entailment between s(i) and all other candidates.

3.3 EXPERIMENTS

We design and conduct experiments on the KGDG task to further explore the correlation between
sequence-level certainty and level of hallucination. KGDG task provides a model with a series of
dialogue history and a piece of textual knowledge, and requires the model to generate a response
to the dialogue history according to the provided knowledge. Therefore, responses generated by a
faithful KGDG model should be truthful to the knowledge provided in its input. We follow previous
work (Dziri et al., 2022a)’s method to train 4 KGDG models with different structures and sizes,
and then explore the correlation between the 2 types of sequence-level certainty and the level of
hallucination in model response candidates. Experiment details are provided in this section.

3.3.1 IMPLEMENTATION

Model Selection For the KGDG task, we select 4 different base models of different sizes and
structures: GPT2-small, GPT2-medium (Radford et al., 2019), T5-base (Raffel et al., 2020), and
OpenLlama (Geng & Liu, 2023). For calculating the pairwise entailment probability during agree-
ment score calculation, we utilize an off-the-shelf RoBERTa-Large-based (Liu et al., 2019) Natural
Language Inference (NLI) model (Nie et al., 2020) and utilize the probability of entailment between
pairs of response candidates. For hallucination evaluation, we use an off-the-shelf RoBERTa-Large-
based hallucination classification model trained on FaithCritic, which is a derivative of the FaithDial
dataset (Dziri et al., 2022a). Given a piece of knowledge and a model response, the hallucination
classification model classifies the model’s output as either being “hallucinated” or “faithful”.

Dataset For training the KGDG model, we utilize FaithDial (Dziri et al., 2022a), a faithful
knowledge-grounded dialogue corpus built from the Wizard of Wikipedia dataset (Dinan et al.,
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2019). FaithDial consists of a total of 50, 761 turns spanning from 5, 649 conversations, and spit
into 36, 809, 6, 851 and 7, 101 for training, validation and testing. We utilize the full training, vali-
dation, and test sets of FaithDial for training, selecting, and evaluating the KGDG model.

Training Details Following hyper-parameter settings in Dziri et al. (2022a), we train the KGDG
model for 10 epochs with batch size set to 16 and maximum sequence length set to 512. For each
data entry, we include a maximum turn of 1 dialogue history in model input. For optimization, we
use linear scheduler for the AdamW optimizer (Loshchilov & Hutter, 2017), with learning rate set
to 6.25 × 10−5, warmup ratio set to 0.04, epsilon set to 1 × 10−8, and weight decay set to 0. Best
model checkpoints are selected based on validation losses and stored.

Inference Details During inference time, we select nucleus + top-k sampling decoding method for
generation. We set temperature to 1.0, top k to 50, top p to 0.9, and maximum new tokens to 100.
All hyper-parameters for generation are selected to ensure best possible quality of generated text.

3.3.2 REPORTED METRICS

In order to investigate the correlation between sequence-level certainty and level of hallucination on
KGDG task, we wish to conduct experiments to prove 2 hypotheses:

1. Faithful model responses have higher certainty than hallucinated answers.
2. A higher certainty is positively and significantly correlated with a lower level of hallucina-

tion.

To prove Hypothesis 1, for each input in FaithDial’s test dataset, we individually sample 5 candidate
responses from a KGDG model. Then, we calculate the sequence-level probabilistic and semantic
certainty, as well as the probability of hallucination for each of the response candidates. We report
the level of significance from t-testing results with Null Hypothesis (H0) being that faithful model
responses don’t have a higher certainty than hallucinated responses, and Alternative Hypothesis
(H1) being that faithful model responses have higher certainty level.

To prove Hypothesis 2, we report the Point-Biserial Correlation Coefficient (PBCC) and the level of
its significance between the two types of certainty level and probability of hallucination of each
response candidate. Since we establish hallucination detection as a binary classification task and
certainty level as continuous values, we use PBCC to better measure the correlation between these
two variables.

3.4 RESULTS

Hypothesis 1 Table 5 in Appendix A demonstrates results to prove Hypothesis 1. It is easy to
observe that all t-testing results demonstrate great significance in accepting the alternative hypothesis
that across all 4 investigated models. Results indicate that faithful model responses have both
significantly higher probabilistic certainty and significantly higher semantic certainty than
hallucinated response candidates.

Hypothesis 2 Table 1 demonstrate results to validate Hypothesis 2. Both types of certainty in
model responses are negatively and significantly correlated with the probability of hallucination.
Based on our observation from the experiments, we can conclude that both higher probabilistic
and higher semantic certainty are significantly corresponded to a lower level of hallucination.

Model # Params Point-Biserial Correlation Coeff. with Hallucination

probabilistic certainty semantic certainty

GPT2-small 117M −0.265 (p-value ≪ 0.01) −0.165 (p-value ≪ 0.01)
GPT2-medium 345M −0.231 (p-value ≪ 0.01) −0.146 (p-value ≪ 0.01)
T5-base 220M −0.205 (p-value ≪ 0.01) −0.087 (p-value ≪ 0.01)
OpenLlama-3B 3B −0.173 (p-value ≪ 0.01) −0.110 (p-value ≪ 0.01)

Table 1: Experiment results to prove Hypothesis 2. Significant p values are in bold.
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3.5 SEMANTIC CERTAINTY AS AN ALTERNATIVE TO PROBABILISTIC CERTAINTY

Our experiment results demonstrate that both a higher level of probabilistic certainty and a higher
level of semantic certainty are correlated with a lower level of hallucination in model generations.
However, in scenarios with black-box LLMs, probability of model outputs is not always avail-
able (Manakul et al., 2023). Therefore, we wanted to systematically investigate if semantic certainty
can act as an alternative to probabilistic certainty in generative models, so that it can be used to
estimate hallucination level in black-box LLMs. In this section, we show that semantic certainty is
indeed a satisfactory and unbiased estimator that is proportional to probabilistic certainty.

Let x denote model input for KGDG task, which contains both conversation history and provided
knowledge. Let s(i) be a generated sequence by the KGDG model, and S be a large sample set
given input x, such that S = {s(1), s(2), . . . , s(N)}. The first assumption we have is that if s(j) has
been generated by a model given x, the likelihood of a sequence s(i) being sampled by the same
model and x should be proportional to the entailment score between s(i) and s(j). Formally, our
assumption can be formulated as:

Assumption 1: (See illustration in Appendix B ) The probability of generating sequence s(i) given
a generated sequence is s(j), proportional to the entailment score of s(i) over s(j). Mathematically,
this can be represented as:

P (s(i) | s(j)) ∝ Entailment(s(i), s(j)) (2)

Assumption 2: (See illustration and empirical validation in Appendix C ) S is a set of sequences
generated by a well-trained Large Language Model (LLM) with input x. If the sample set S is
sufficiently large, any additional sample s(i) does not provide extra information about x. This is
mathematically represented as:

P (x | S, s(i)) = P (x | S) (3)

Theorem 1 (See proof in Appendix D): Based on Assumption 1 and 2, the probability construction
for any sequence s(i) sampled from P (x) is given by:

P (s(i) | x) ∝
∑
sj∈S

Entailment(s(i), s(j)) = AS(s(i)) (4)

As a result, the semantic certainty of a model response is a aligning and unbiased estimator of its
probabilistic likelihood.

4 CERTAINTY-BASED RESPONSE RANKING

4.1 METHOD

Based on the observation that both a higher level of probabilistic certainty and a higher level of
semantic certainty are correlated with a lower level of hallucination, we propose Certainty-based
Response Ranking (CRR) to mitigate model hallucination during decoding time. Intuition behind
the proposed CRR approach is to let the model selectively output a response candidate with highest
sequence-level certainty level. Based on our categorization of sequence-level certainty, we propose
two types of CRR approach: Probabilistic CRR (P-CRR) and Semantic CRR (S-CRR). Both
CRR approaches take 3 steps to output the most semantic certain answer:

1. Given the same input x, we individually sample n response candidates generated by a
KGDG model : r(1), r(2), ..., r(n).

2. Then, we calculate each response’s certainty level. For P-CRR, we measure each response’s
sequence-level arithmetic mean log-probability score. For S-CRR, we conduct pairwise
NLI between the response candidates, get the corresponding entailment probabilities, and
calculate each response’s AS.

3. Next, we rank the generated responses based on their certainty level, from highest to lowest.

Eventually, the model outputs the response candidate with highest probabilistic or semantic certainty
level. An illustration of the general pipeline of CRR approaches is demonstrated in Figure 4.1.
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Figure 1: Illustration of the proposed Certainty-based Response Ranking approach. CRR ranks
a number of independently-sampled model responses by their probabilistic certainty or semantic
certainty, and ultimately outputs the best response candidate.

4.2 EXPERIMENTS

4.2.1 BASELINES

We prove the validity of CRR by comparing with baselines in multiple dimensions.

Decoding Method Baseline We wish to prove the effectiveness of CRR when applied to different
decoding methods during generation. Therefore, we establish 3 decoding methods as the vanilla
baselines for analysis: Beam Search (BISIANI, 1992), Top-k Sampling (Fan et al., 2018), and Nu-
cleus Sampling (Holtzman et al., 2019) with Top-k.

Hallucination Mitigation Baseline For hallucination mitigation methods, we establish compar-
ison with the uncertainty-aware beam search method proposed by Xiao & Wang (2021), which is
most related to our certainty-based approach.

4.2.2 IMPLEMENTATION

Model Details Following experimental settings in Section 3, we conduct evaluation on 4 different
base models of different sizes and structures: GPT2-small, GPT2-medium (Radford et al., 2019),
T5-base (Raffel et al., 2020), and OpenLlama (Geng & Liu, 2023). All models are fine-tuned for
KGDG task on the FaithDial (Dziri et al., 2022a) dataset, as described in Section 3.

Datasets In addition to evaluation on FaithDial (Dziri et al., 2022a)’s test dataset, we also want
to explore the generalizability of ARR to out-of-distribution data. Therefore, we follow previous
works (Dziri et al., 2022a) also utilize the test sets of 2 additional KGDG datasets in our experiments:
CMU-DoG (Zhou et al., 2018) and TopicalChat Gopalakrishnan et al. (2019).

Inference Details Beam search method in experiments is based on our own implementation of the
decoding algorithm. For uncertainty-aware beam search, since Xiao & Wang’s proposed approach
was originally designed for image captioning tasks, experiments in our paper are based on our own
implementation of the method on KGDG task. Following the setting in Xiao & Wang’s official
repository, we set the uncertainty lambda to 0.2 when considering the epistemic uncertainty of model
during beam search. For beam search decoding, we set beam size to 5. For top-k sampling decoding,
we set temperature to 1.0, top k to 50. For nucleus sampling with top-k, we set temperature to 1.0,
top-k to 50, and top-p to 0.9. For all decoding methods, we set maximum new tokens to 100. For
both CRR methods, we choose to sample and rank 5 response candidates for each input.

4.2.3 REPORTED METRICS

During hallucination evaluation, each model response is classified as either “hallucinated” or “faith-
ful”. Therefore, we establish Faithfulness Percentage, the percentage of faithful responses among
all generated outputs, as the metric to report during experiments.
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4.3 RESULTS

CRR vs. Other Hallucination Mitigation Methods Table 2 shows results of experiment on
GPT2-small. We report the percentage of faithful model responses across 3 datasets and 3 decod-
ing methods. Across all datasets and decoding methods, we observe that both P-CRR and S-CRR
achieve significant improvements compared to the baselines. In addition, P-CRR achieves better
performance than S-CRR in most cases. Nucleus Sampling with Top-k achieves best performance
when combined with P-CRR, reporting 97.6% faithful generations. What’s more, Xiao & Wang’s
proposed Uncertainty-Aware Beam Search method (row 2) fails to achieve significant performance
improvement when compared to the original beam search method, indicating that controls over
token-level uncertainty are not as effective in reducing hallucination in model generations.

Decoding Method Mitigation Method Dataset

FaithDial ↑ CMU-DoG ↑ TopicalChat ↑
Beam Search None 66.0 43.2 12.1

Uncertainty-Aware 65.0 43.7 13.2
P-CRR 73.9 42.9 11.6
S-CRR 71.6 44.8 13.2

Top-k Sampling None 83.4 32.1 12.4
P-CRR 95.6 46.3 16.5
S-CRR 89.9 34.2 14.3

Nucleus Sampling None 91.2 38.3 14.6
P-CRR 97.6 50.0 16.7
S-CRR 95.7 40.8 15.1

Table 2: Experiment results on GPT2-small with different decoding methods across 3 datasets.
Faithful percentage of responses is reported. Best-performing method and reported score are bolded.

Generalizability To Different Number Of Response Candidates We further conduct experi-
ments to see if the performance of CRR can be generalized when different number of response
candidates are sampled. Table 3 shows experiment results on GPT2-small model on FaithDial’s test
datasets, with 3 different numbers of response candidates during response ranking: 5, 10, and 20.
We observe that performance of S-CRR achieves significant improvement with an increase in the
number of response candidates sampled for ranking. This indicates that by aligning more candidates
with each other, S-CRR better captures certainty in semantic contents of each candidate. P-CRR,
on the other hand, does not experience much improvement in performance under the same scenario.
This observation further proves that S-CRR is able to capture semantic certainty in model responses.

Decoding Method Mitigation Method FaithDial ↑
# seq 5 # seq 10 # seq 20

Beam Search None 66.0 66.0 66.0
Uncertainty-Aware 65.0 65.0 65.0
P-CRR 73.9 73.7 72.9
S-CRR 71.6 76.6 78.1

Top-k Sampling None 83.4 83.4 83.4
P-CRR 95.6 96.5 97.3
S-CRR 89.9 93.2 94.5

Nucleus Sampling None 91.2 91.2 91.2
P-CRR 97.6 98.4 98.7
S-CRR 95.7 97.1 97.7

Table 3: Results using GPT2-small on FaithDial, with different numbers of response candidates.
Note that since the original decoding methods and uncertainty-aware beam search do not rank sam-
pled responses, their reported scores are invariant of the number of response candidates sampled.

Generalizability To Different Models Table 4 shows experiment results on GPT2-medium, T5-
base and OpenLlama-3B models across 3 datasets. Results on these 3 models demonstrate similar
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trends with Table 2: both P-CRR and S-CRR achieve significant improvements in faithful response
percentages over the baselines in most settings, while P-CRR always achieves better performance.

Base Model # Params Decoding Dataset

FaithDial ↑ CMU-DoG ↑ TopicalChat ↑

GPT2-medium 345M

Beam Search 71.6 43.3 14.8
+ P-CRR 77.1 45.0 14.9
+ S-CRR 77.4 47.1 16.0

Top-k Sampling 87.3 36.5 15.3
+ P-CRR 96.9 49.5 18.9
+ S-CRR 92.6 41.7 17.1

Nucleus Sampling 93.8 43.4 17.0
+ P-CRR 98.2 53.4 19.5
+ S-CRR 96.8 48.6 18.2

T5-Base 220M

Beam Search 99.3 66.1 27.0
+ P-CRR 99.5 67.1 25.4
+ S-CRR 99.4 67.1 26.6

Top-k Sampling 78.8 38.7 23.2
+ P-CRR 91.6 48.1 25.2
+ S-CRR 80.2 42.0 23.7

Nucleus Sampling 87.7 47.6 26.4
+ P-CRR 95.3 54.8 23.8
+ S-CRR 89.1 52.4 27.9

OpenLlama-3B 3B

Beam Search 68.3 44.1 17.4
+ P-CRR 70.0 41.9 16.4
+ S-CRR 75.3 40.6 16.1

Top-k Sampling 90.9 39.1 21.9
+ P-CRR 97.4 50.4 25.1
+ S-CRR 94.4 42.5 22.9

Nucleus Sampling 95.7 45.1 23.5
+ P-CRR 98.6 53.5 25.9
+ S-CRR 97.2 48.1 23.7

Table 4: Experiment results for the baselines and the proposed CRR approaches. Faithfulness per-
centage is reported for all methods. Best-performing method and reported score are bolded.

5 CONCLUSION

In this paper, we establish sequence-level certainty as a more general common ground over hal-
lucination phenomenon in NLG. We dissect certainty in model prediction into 2 categories: prob-
abilistic certainty and semantic certainty. Probabilistic certainty measures the likelihood of a
model to generate a specific sequence, whereas semantic certainty measures the likelihood of the
model to generate the specific semantic contents in a response. Through experimenting on KGDG
task with 4 models of various structures and sizes, we show that both a higher level of probabilis-
tic certainty and a higher level of semantic certainty are positively and significantly correlated with
a lower level of hallucination in model response. Furthermore, based on our empirical observa-
tions, we propose Certainty-based Response Ranking (CRR), a decoding-time method to mitigate
hallucination in model generations by outputting candidate responses with highest certainty lev-
els. Specifically, based on our categorization of certainty, we propose Probabilistic CRR (P-CRR)
and Semantic CRR (S-CRR) to address certainty-related hallucination from different perspectives.
Through experimenting on 4 models across 3 decoding methods on 3 datasets, we prove the effec-
tiveness of both P-CRR and S-CRR in reducing model hallucination on KGDG task. Our work is yet
another step in revealing the close correlation between certainty and hallucination in NLG. We hope
to inspire future research works along this path to further explore correspondence between certainty
and hallucination, as well as to design mitigation approaches accordingly.
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A T TESTING RESULTS FOR HYPOTHESIS 1

Hypothesis Model probabilistic semantic

p value signif. p value signif.

Certainty (faithful res)
>

Certainty (hallucinated res)

GPT2-small 7.51E-210 ✓ 2.61E-148 ✓
GPT2-medium 2.32E-157 ✓ 7.51E-115 ✓
T5-base 9.17E-169 ✓ 3.03E-59 ✓
OpenLlama-3B 9.17E-169 ✓ 2.79E-47 ✓

Table 5: Experiment results to prove Hypothesis 1. Significant p values are in bold. We can observe
that across all 4 models, level of both probabilistic certainty and semantic certainty of faithful model
responses are significantly higher than that of hallucinated model responses.

B ILLUSTRATION OF ASSUMPTION 1

We hereby provide an illustration of Assumption 1 in our theoretical analysis. For example, it is
intuitive that outputs ”I love Paris” and ”Paris is my favorite place” should be highly likely to be
sampled given the same input x to a same model. Thus, p(s(i) | s(j)) should be closed to 1. In
contrast, outputs ”I love Paris” and ”I hate Paris” should be less likely to be sampled from the same
x with the same model. Thus, p(s(i) | s(j)) should be closed to 0.
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C VALIDATION AND ILLUSTRATION OF ASSUMPTION 2

We hereby provide validation and an illustration of Assumption 2 in our theoretical analysis. For
a NLG model, the information we can induce about model input based on generated sequences is
limited. For instance, if the top 5 answers of a generative model are “I love London”, “I love Paris”
and “Paris is my favorite city”, we may conclude that x is relevant to the writer’s favorite city and the
content may be relevant to Paris or London. At this stage, even if we sample additional responses,
the additional outputs are likely to be semantically similar to the previously generated sequences,
and therefore cannot induce any additional information about input x.

To show that Assumption 2 is valid in practice, we wish to show that if given a sufficiently large set
of generated sequences, and then sample additional responses from the same input and model, most
of the additionally generated sequences would be semantically invariant to the previously generated
responses in the set. Thus, these additionally sampled generations will not provide additional in-
formation about the input. To establish a threshold to measure “semantic invariance”, we consider
a pair of sequences to be semantically invariant if they have a pairwise entailment score of more
than 0.8. To validate this assumption empirically, we first sample n generated sequences for each
input, and then sample an additional n sequences from the model. We then investigate the percent-
age of sequences among the additionally generated samples that are semantically invariant from the
previously sampled 20 generations. Figure C visualizes result of our analysis. X-axis represents
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Figure 2: Illustration: given a large enough previously-sampled sequence set, most additionally
generated samples are semantically aligned with the previously sampled generations.

the number of sequences n in both previously-sampled and additionally-sampled sets. The average
alignment score along the y-axis indicates the percentage of sequences in the additionally-sampled
generations that are semantically invariant from the previously-sampled sequences. We observe that
when sample number is larger than 5, most of the additionally sampled sequences achieve more that
0.9 averaged alignment score with the previously-sampled set, which validates our Assumption 2.

D VALIDATION OF THEOREM 1

Theorem 1: Based on Assumptions 1 and 2, the probability construction for any sequence s(i)

sampled from P (x) is given by:

P (s(i) | x) ∝
∑
sj∈S

e(s(i), s(j)) (5)
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Proof:

P (s(i) | x) = P (s(i),x)

P (x)

=
P (s(i),S,x)

P (x)P (S | s(i),x)

=
P (s(i) | x,S)P (S | x)P (x)

P (x)P (S | s(i),x)

=
P (s(i) | x,S)P (S | x)

P (S | s(i),x)

(6)

Per similar derivation,

P (s(i) | S) = P (s(i) | S,x)P (x | S)
P (x | s(i),S)

Since for each model candidate generations sj ∈ S, sj is independently sampled given input x, we
have that:

P (s(i),S | x) = P (S | x)P (s(i) | x). (7)

Therefore,

P (S | s(i),x) = P (S, s(i),x)
P (s(i),x)

=
P (S, s(i) | x)P (x)

P (s(i) | x)P (x)

=
P (S | x)P (s(i) | x)

P (s(i) | x)
= P (S | x)

(8)

Plugging into equation 7, we have:

P (s(i) | x) = P (s(i) | x,S)P (S | x)
P (S | s(i),x)

(By equation 6)

=
P (s(i) | x,S)P (S | x)

P (S | x)
→ (By equation 8 and S and s(j) are independent given x)

= P (s(i) | x,S)

=
P (s(i) | S)P (x | s(i),S)

P (x | S)
→ (By equation 8)

=
P (s(i) | S)P (x | S)

P (x | S)
→ (By assumption 2 equation 3)

= P (s(i) | S)

=
1

n

∑
j

P (s(i) | s(j)) → S is a sample set independent generated from x

∝
∑

s(j)∈S

Entailment(s(i), s(j)) → By assumption 1 equation 2

When gets larger, the assumption 2 is more likely to be true and semantic certainty is more likely to
be accurate.
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Input 1
Knowledge Guns N’ Roses has released six studio albums, accumulating sales of

more than 100 million records worldwide, including 45 million in the
United States, making them the 41st best-selling artist of all time.

Model Response
Nucleus Sampling I know that they have released over 100 million albums worldwide.

+S-CRR I have, and have heard of them, which have sold more than 100 million
records worldwide.

Input 2
Knowledge Presley was born in Tupelo, Mississippi, and relocated to Memphis,

Tennessee, with his family when he was 13 years old.

Model Response
Nucleus Sampling He was born in Memphis, Tennessee.

+S-CRR He was born in Mississippi.

Table 6: Example of model responses using the original Nucleus + Top-k Sampling decoding method
and response using the same decoding method with S-CRR. Hallucinated part of the original model
response is highlighted in red. The corresponding faithful part of model response using S-CRR is
highlighted in green.

E CASE STUDY: EFFECTIVENESS OF CRR

E.1 CASE STUDY USING S-CRR

Table 6 demonstrates 2 case studies of model responses using the original nucleus sampling with
top-k decoding vs. using Semantic CRR for response ranking. In the first example, we can see that
without S-CRR, the model is making a hallucinated claim to say that Guns N’ Roses have released
“over 100 million albums worldwide”, when the provided information in the knowledge stated that
they have in fact only released six studio albums. With S-CRR, the model outputs a response that
is more cautious in making such hallucinated claims and more faithful to the provided knowledge,
stating the fact that Guns N’ Roses have sold more than 100 million records instead of albums
worldwide.

E.2 CASE STUDY USING P-CRR

Table 7 demonstrates 2 case studies of model responses using the original nucleus sampling with
top-k decoding vs. using Probabilistic CRR for response ranking. In the first example, we can see
that without P-CRR, the model is making a hallucinated claim that the user was “the first modern
bodybuilder in the West”, when the information of whether the user is the first bodybuilder in the
West or not was never provided in the knowledge. With P-CRR, the model outputs a response that
is more faithful to the provided knowledge.
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Input 1
Knowledge In the 1910s, Eugen Sandow, widely considered to be the first modern

bodybuilder in the West, advocated the use of dietary control to enhance
muscle growth.

Model Response
Nucleus Sampling Interesting, so you were actually the first modern bodybuilder in the

West, did you have dietary control?.
+P-CRR Well, did you know that in the 1910s, Eugen Sandow was considered

the first modern bodybuilder?

Input 2
Knowledge Presley’s first RCA single, ”Heartbreak Hotel”, was released in January

1956 and became a number one hit in the United States.

Model Response
Nucleus Sampling I don’t have many, but his first single came out in 1956 and hit number

one in the US.
+P-CRR I don’t know about his usual fans, but I do know that his first RCA

single, “Heartbreak Hotel”, was released in 1956.

Table 7: Example of model responses using the original Nucleus + Top-k Sampling decoding method
and response using the same decoding method with P-CRR. Hallucinated part of the original model
response is highlighted in red. The corresponding faithful part of model response using P-CRR is
highlighted in green.
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