HIGH PROBABILITY CONTEXTUAL BANDITS FOR OPTIMAL DOSAGE SELECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-Armed Bandit (MAB) formulations are commonly used to model the problem of Optimal Dose-Finding. However, in many practical applications, it is necessary to receive data about the patient's current state and then administer a drug dosage adapted to that state. To overcome this issue, we adopt a linear contextual bandit formulation with stage-wise constraints. At each round, the learner selects a dosage and receives both a reward signal and a cost signal. The learner's goal is to maximize the drug's efficacy—captured as the expected cumulative reward—while ensuring that the toxicity, reflected by the cost signal, remains below a known threshold. Satisfying the cost signal constraint only in expectation can be dangerous, as it may lead to over-dosage complications in certain cases. To address this issue, we introduce a novel model that controls the realization of the cost signal with high probability, in contrast to previous works where control was only applied to the expected cost signal. Our algorithm follows the UCB approach, for which we establish a regret bound over T rounds and run numerical experiments. We further generalize our results to *non-linear* functions and provide a regret bound in terms of the *eluder dimension*, a measure of function class complexity.

026 027 028

029

025

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Ensuring patient safety while maximizing therapeutic efficacy is a critical challenge in medical treatments, especially in optimal drug dosing where overdosing can have serious consequences. In these scenarios, the objective is to find an appropriate treatment regime, while ensuring patients are not exposed to dangerous drug dosages. Online learning methods, widely employed in various decision-making systems, offer promising solutions to this challenge by adapting decisions based on observed outcomes (Matsuura et al. (2022),Lee et al. (2020)).

This framework is extensively applied in Optimal Dose-Finding Huckvale et al. (2023); Shen et al. 037 (2020); Chen & Khademi (2024), where adaptive methods aim to determine the optimal drug dosage that maximizes therapeutic efficacy while safeguarding patients from overdosing. However, most existing approaches are setting a binary variable specifying the treatment's outcome, which fails 040 to capture the nuances of these signals. Moreover, in order to guarantee drug dosages do not cause 041 dangerous side effects, current studies have proposed algorithms that control the expected toxicity 042 per time step (Pacchiano et al. (2024), Amani et al. (2019), Amani et al. (2021)). Unfortunately, 043 satisfying this solution concept may not prevent the harmfulness of the drug dosages administered 044 to many individual patients. Consequently, there remains a risk of overdosing, posing serious health risks to patients. Additionally, not all approaches incorporate contextual information, despite its importance in medical treatments where dosage decisions are often based on patient-specific tests or 046 conditions. 047

In the bandit literature, constraints are typically based either on the history of previous rewards (e.g., knapsack bandits Badanidiyuru et al. (2018), fairness constraints Joseph et al. (2016)) or involve simultaneous reward and cost signals, with constraints depending on the cost, as in Amani et al. (2019); Pacchiano et al. (2021; 2024). The latter formulation is particularly useful for modeling applications advertising, and drug dosing. Problems in this domain can be cast in the reward/cost model of Pacchiano et al. (2021), the drug dosage administered generates a reward signal (efficacy) and a cost signal (toxicity). This is precisely the scenario encountered in Phase II clinical trials,

where physicians aim to adaptive adjust dosages to maximize efficacy while ensuring toxicity remains below a safe threshold τ .

Previous works on contextual bandits with stage-wise constraints Pacchiano et al. (2024) propose contextual bandits algorithms that ensure the expected cost remains below a safe threshold τ . However, this does not prevent individual instances where the cost exceeds the threshold, which can be unacceptable in critical applications like medicine. Therefore, there is a pressing need for models that guarantee, with high probability, that the realized cost stays within safe limits in each instance.

In this paper, we address this need by developing a *UCB-like* algorithm, which we call *High Probability Constrained UCB*. Our algorithm is grounded in the *Optimism in the Face of Uncertainty* (OFU) principle Auer (2002) and does not require prior knowledge of any initial safe dosage—a significant advantage over existing methods. It operates effectively under both adversarial and stochastic contexts and relies only on the standard assumption of sub-Gaussian noise distributions. By leveraging this assumption, we formulate a constraint event that ensures, with high probability, that the cost signal remains below the desired threshold in each round.

Furthermore, we note that knowing the exact noise distribution allows for even tighter constraints, ensuring the cost realization stays within safe limits with high probability. Our approach accounts for the randomness in constraint satisfaction due to noise and is validated with high probability based on past observations of contexts, rewards, and costs. Another approach to this problem is *Distributional Reinforcement Learning*, where noise distributions are characterized, and instancedependent bounds are derived Wang et al. (2023).

Through rigorous analysis, we prove that our algorithm achieves a *T*-round regret bound of order $\tilde{\mathcal{O}}(d\sqrt{T})$. We also demonstrate the practical effectiveness of our approach through numerical experiments. Additionally, we extend our results to settings with *non-linear* reward and cost functions by parameterizing our analysis in terms of the *eluder dimension*, a complexity measure for function classes.

080 **Contributions** In this work, we introduce a high-probability model for dose finding in the contex-081 tual bandit framework, which, to the best of our knowledge, has not been explored in the literature. 082 Despite the crucial importance of controlling realized adverse effects during clinical interventions, 083 existing models and algorithms primarily focus on controlling expected effects. One of the main con-084 tributions of this work is the introduction of a more realistic high-probability model that addresses 085 this gap. Additionally, we have developed algorithms with provable guarantees for this setting. Our 086 contributions are both conceptual and technical, offering a new perspective on dose-finding methodologies within contextual bandits. 087

088 089

090

2 PROBLEM FORMULATION

Notation. We adopt the following notation throughout the paper. We denote by $\langle x, y \rangle = x^{\top}y$ and $\langle x, y \rangle_{\mathbf{A}} = x^{\top} \mathbf{A} y$, for a positive definite matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$, the inner-product and weighted inner-product of vectors $x, y \in \mathbb{R}^d$. Similarly, we denote by $||x|| = \sqrt{x^{\top}x}$ and $||x||_{\mathbf{A}} = \sqrt{x^{\top}\mathbf{A}x}$, the ℓ_2 and weighted ℓ_2 norms of vector $x \in \mathbb{R}^d$. We use upper-case letters for random variables (e.g., X), and their corresponding lower-case letters for a particular instantiation of that random variable (e.g., X = x). The set $\{1, \ldots, T\}$ is denoted by [T]. Finally, we use $\tilde{\mathcal{O}}$ for the big- \mathcal{O} notation up to logarithmic factors.

098 Our goal is to design an algorithm for the adaptive dosage allocation problem. The goal of the 099 algorithm is to maximize the expected efficacy of the drug while preserving low toxicity levels with 100 high probability. We choose to study the following constrained contextual linear bandit to approach 101 this problem. In each round $t \in [T]$ the agent is observing a d-dimensional vector $X_t \in \mathbb{R}^d$ that 102 represents medical tests or results about the patient that are applied each day before the drug intake. 103 The nature of the context can be adversarial or stochastic, our algorithm works for both. Then, 104 the agent selects a dosage $\alpha_t \in [0,1]$. We assume that a dosage cannot take an infinite value so 105 we can normalize it in [0, 1]. After the dosage selection, the learner observes a pair (R_t, C_t) that denotes a reward and a cost signal. Their mathematical expressions are $R_t = \alpha_t \langle X_t, \theta^* \rangle + \alpha_t \xi_t^r$ and 106 $C_t = \alpha_t \langle X_t, \mu^* \rangle + \alpha_t \xi_t^c$. The unknown vectors θ^* and μ^* may represent the importance of each 107 of the selected features to the efficacy and the toxicity that the drug provokes to them. Moreover,

the inner product is a measure of the similarity of the symptoms X_t and the sickness. For example, if $\langle X_t, \theta^* \rangle > 0$ then the patient suffers from the illness and needs a positive dosage from the drug. Otherwise, there is no reason for the patient to take the drug. Without the presence of noise, we assume that the effects of both the efficacy and the toxicity are an increasing function of the dosage α_t . This assumption is commonly adopted in the dosage allocation bibliography as cited in Chevret (2006).

The protocol can be summarized as follows. At each round t: (1) observe *context* $X_t \in \mathbb{R}^d$, (2) select *dosage* $\alpha_t \in [0, 1]$, (3) observe the reward $R_t \in \mathbb{R}$ and the constraint $C_t \in \mathbb{R}$.

Before proceeding with our analysis and results, we first outline the standard assumptions for the model. These assumptions are well-established in the literature on contextual bandits with constraints.

Assumption 1 (Sub-Gaussian noise). For all $t \in [T]$, the reward and cost noise random variables ξ_t^r and ξ_t^c are conditionally Sub-Gaussian, i.e., for all $\alpha \in \mathbb{R}$,

$$\mathbb{E}[\xi_t^r \mid \mathcal{H}_{t-1}] = 0, \quad \mathbb{E}[\exp(\alpha \xi_t^r) \mid \mathcal{H}_{t-1}] \le \exp(\alpha^2 \gamma_r^2/2), \\ \mathbb{E}[\xi_t^c \mid \mathcal{H}_{t-1}] = 0, \quad \mathbb{E}[\exp(\alpha \xi_t^c) \mid \mathcal{H}_{t-1}] \le \exp(\alpha^2 \gamma_c^2/2),$$

where \mathcal{H}_t is the filtration that includes all the events $(R_{1:t}, C_{1:t}, \xi_{1:t}^r, \xi_{1:t}^c)$ until the end of round t.

Assumption 2 (bounded parameters). There is a known constant S > 0, such that $\|\theta_*\| \le S$ and $\|\mu_*\| \le S$.¹

Assumption 3 (bounded actions). The ℓ_2 -norm of all contexts are bounded by L > 0, i.e.,

$$\max_{t \in [T]} \|X_t\| \le L$$

Assumption 4 (Positive toxicity threshold). The toxicity constraint in order to be meaningful must satisfy that $\tau > 0$.

We observe that our analysis does not require knowledge of an initial safe dosage, unlike in (Pacchiano et al., 2024) or any assumption about the initial decision set like in (Moradipari et al., 2019). However, we believe that in their analysis, this assumption can be relaxed because the vector μ^* is bounded, and any X_t from their decision set satisfying $||X_t|| \leq \frac{\tau}{S}$ can serve as an initial safe dosage. They mention this possibility in their related works. This follows from the inequality $\langle X_t, \mu^* \rangle \leq ||X_t|| ||\mu^*|| \leq \frac{\tau}{S}S = \tau$.

In each round t, the agent is constrained to select a dosage α_t such that 140 In each round t, the agent is constrained to select a dosage α_t such that 141 $\alpha_t \left(\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) \leq \tau$. We demonstrate in Section 4 that when this constraint 142 is satisfied, it ensures $\mathbb{P}_{\xi_t^c} (C_t \leq \tau) \geq 1 - \delta$. We define the set of feasible dosages as

$$\mathcal{A}_t^f = \left\{ \alpha \in [0,1] : \alpha \left(\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) \le \tau \right\}$$

¹⁴⁶ Due to the unknown nature of μ^* , this set is initially uncertain, and we must estimate it.

Maximizing the expected reward over T rounds is equivalent to minimizing the *expected* T-round constrained pseudo-regret, defined as

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} (\alpha_t^* - \alpha_t) \langle X_t, \theta^* \rangle, \tag{1}$$

where α_t^* is the *optimal feasible dosage* in round t, i.e., $\alpha_t^* \in \arg \max_{\alpha \in \mathcal{A}_t^f} \alpha \langle X_t, \theta^* \rangle$, and α_t is the dosage selected by the agent in round t, which belongs to the set of feasible actions in that round, i.e., $\alpha_t \in \mathcal{A}_t^f$, with high probability over $\xi_{1:t-1}^c$.

3 RELATED WORK

Multi-armed bandits for adaptive optimal dosage finding have been widely used in the literature over the past two years. In Shen et al. (2020), they consider a discrete set of K doses. For each dose

155 156 157

> 158 159

> 161

122 123

124

125

129 130

133

144 145

147

148

149 150

151 152

153

¹The choice of the same upper-bound S for both θ_* and μ_* is just for simplicity and convenience.

 d_k , where $k \in [K]$, there exist two unknown parameters q_k and p_k . These parameters characterize the probabilities of the drug being effective and toxic, respectively. More precisely, let X and Y be Bernoulli random variables with parameters q_k and p_k , respectively.

To correlate the dose and toxicity, they adopt a model from O'Quigley et al. (1990), where the relation is given by: $(1 - 1)(1 - 1)^{\alpha}$

$$p_k(\alpha) = \left(\frac{\tanh(d_k) + 1}{2}\right)^{\alpha},$$

where α is a global parameter across all dose levels that needs to be estimated.

In our opinion, there are several issues with this model. First, the reward and cost signals take
discrete values, failing to capture intermediate responses that better model real-world scenarios.
Moreover, their model for the cost signal is too specific and may not capture the toxicity profiles of
a wider variety of drugs. Finally, their guarantee concerns the empirical mean of the cost being below
the desired threshold with high probability. However, this guarantee does not exclude the possibility
that at least one patient may be overdosed, potentially leading to serious health consequences.

In (Huckvale et al., 2023), they adopt a contextual perspective to dosage allocation problems. Various models in the literature (Chen & Khademi (2024), Chevret (2006)) have followed similar assumptions to ours, namely that the increase of the dosage is proportional to the increase of the expected value of the reward and cost. Moreover, since our model is stochastic, we assume that increasing the dosage proportionally affects the noise of the signal. Analyzing in more detail, higher dosages may not contribute to the drug's efficacy as much as expected, while lower dosages tend to be less effective but produce more consistent results.

In linear bandits under stage-wise constraints, multiple works (Pacchiano et al. (2024), Amani et al. (2021), Moradipari et al. (2019)) have formulated constraints that can control the expected value of the cost signal. One possible approach to extend these works to control the realization of the signal with high probability is to lower the value of the threshold. However, it is not yet clear by how much it should be lowered and whether this strategy could potentially control the behavior of the tails of the noise distribution. Moreover, in Pacchiano et al. (2024), their algorithm requires an initial safe action, whereas ours can take advantage of standard assumptions to prove that there always exists an initial safe dosage.

Finally, in the work of (Wang et al., 2023), which belongs to the field of Distributional Reinforcement Learning, they provide *instance-dependent* bounds while assuming that the distribution of the
noise belongs to a known class.

195 196

197

210

212

168

169

4 CONSTRAINT FORMULATION

The learner's goal is to maximize the cumulative reward or efficacy of the drug administered to the patient over T rounds, i.e., $\sum_{t=1}^{T} \alpha_t \langle X_t, \theta^* \rangle$, while ensuring that the realized toxicity remains below a known threshold with high probability. In clinical trials terminology, this problem is referred to as a Phase 2 trial, as the toxicity threshold τ is considered known in advance. Our algorithm takes as input a confidence level δ to control the realization of the noise. To model the requirement of controlling the cost realization with high probability, we impose a nonlinear constraint involving δ . It should be noted that if we know the exact distribution of the noise, this problem can be solved exactly without introducing this constraint by using a similar algorithm.

We formulate the following constraint:

Lemma 4.1. When the selected dosage α_t satisfies $\alpha_t \left(\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) \leq \tau$ then it holds that $\Pr(C_t \leq \tau \mid \mathcal{H}_t) \geq 1 - \delta$.

211 *Proof.* Provided in the A.1.

213 We note that, given the distribution of the noise at round t, ξ_t^c , it holds that $\Pr(C_t \le \tau \mid \mathcal{H}_t) \ge 1 - \delta$. 214 The constraint 215 $\left((Y_t = t) + \sqrt{21 - (1)} \right) \le 1 - \delta$

$$\alpha_t\left(\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)}\right) \le \tau$$

is thus satisfied with high probability with respect to \mathcal{H}_{t-1} .

An advantage of our model compared to previous ones (Pacchiano et al., 2024) is that, under the standard assumptions of linear contextual bandits, it does not require knowledge of an *initial safe dosage*. Initially, the learner knows nothing about the unknown vectors. To gain information from the reward and cost signals, the learner needs to select a non-zero dose. We demonstrate that our initial assumptions imply the existence of an initial safe dose.

223 224

229 230

231 232 233

234 235 236

237

238

239

240 241

242

$$\left[0, \min\left(1, \frac{\tau}{\gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} + LS}\right)\right]$$

To begin with, if

$$\langle X_t, \mu^* \rangle + \gamma_c \sqrt{2 \log\left(\frac{1}{\delta}\right)} \le 0,$$

then $\mathcal{A}_0^f = [0, 1]$. Otherwise, α_0 can range from 0 up to

Since $\tau > 0$, we show that an initial safe interval for choosing α_1 is

$$\min\left(1, \frac{\tau}{\gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} + LS}\right),\,$$

since $\langle X_t, \mu^* \rangle \leq LS$ by the Cauchy–Schwarz inequality.

This is an important factor in the design of dosage allocation, as it eliminates the risk of overdosing the patient. Moreover, it reduces the number of hyper-parameters that need to be tuned before running the algorithm.

4.1 Algorithm

We aim for our algorithm to adhere to the fundamental principle of *Optimism in the Face of Uncertainty* (OFU). Additionally, we need to make robust choices to ensure that the constraint is satisfied with high probability. To achieve this, we intend to be optimistic in our estimates for the reward signal and pessimistic for the cost.

²⁴⁷ In each non-zero dose round, we construct two least squares estimators: one for θ^* and one for μ^* . For a given regularization parameter $\lambda > 0$, the regularized covariance matrix at round t is defined as: t-1

$$\Sigma_t = \lambda I + \sum_{s=1}^{t-1} X_s X_s^{\top}.$$
(2)

Using equation equation 2, we define the regularized least squares estimators $\hat{\theta}_t$ and $\hat{\mu}_t$.

254 255 256

251 252 253

$$\hat{\theta}_t = \Sigma_t^{-1} \sum_{s:\alpha_s \neq 0} \alpha_s^{-1} R_s X_s \quad \hat{\mu}_t = \Sigma_t^{-1} \sum_{s:\alpha_s \neq 0} \alpha_s^{-1} C_s X_s \tag{3}$$

We note that we use only the contexts X_t and the corresponding realizations of the reward and cost signals R_t and C_t for the rounds in which we assigned a non-zero dosage. In rounds where we assigned zero dosage, we did not receive feedback about the dosage effect; that is, $R_t = C_t = 0$, given the way our model is constructed.

To design a *UCB-like* algorithm, we need to define high-probability confidence sets centered at our estimators $\hat{\theta}_t$ and $\hat{\mu}_t$. These confidence sets will enable us to derive upper bounds on the distances between our estimators and the unknown vectors θ^* and μ^* . To construct the desired confidence intervals, we will employ the following fundamental theorem.

Theorem 4.1 (Thm. 2 in Abbasi-Yadkori et al., 2011). For a fixed $\delta \in (0, 1)$ and

267 268

$$\beta_t^r(\delta, d) = \gamma_r \sqrt{d \log\left(\frac{1 + (t - 1)L^2/\lambda}{\delta}\right)} + \sqrt{\lambda}S, \qquad \forall t \in [T],$$

$$\beta_t^c(\delta, d) = \gamma_c \sqrt{d \log\left(\frac{1 + (t - 1)L^2/\lambda}{\delta}\right)} + \sqrt{\lambda}S, \quad \forall t \in [T],$$

it holds with probability at least $1 - \delta$ *that*

$$\|\widehat{\theta}_t - \theta_*\|_{\Sigma_t} \le \beta_t^r(\delta, d), \qquad \|\widehat{\mu}_t - \mu_*\|_{\Sigma_t} \le \beta_t^c(\delta, d).$$

Using Theorem 4.1, we now define the following confidence sets (ellipsoids):

$$\begin{aligned}
\mathcal{C}_t^r &= \{ \theta \in \mathbb{R}^d : \| \theta - \widehat{\theta}_t \|_{\Sigma_t} \le \beta_t(\delta, d) \}, \\
\mathcal{C}_t^c &= \{ \mu \in \mathbb{R}^d : \| \mu - \widehat{\mu}_t \|_{\Sigma_t} \le \beta_t(\delta, d) \},
\end{aligned}$$
(4)

Theorem 4.1 suggests that $\theta^* \in C_t^r$ and $\mu^* \in C_t^c(\alpha_c)$, each with probability at least $1 - \delta$. We will use these confidence intervals to create our estimators for θ^* and μ^* .

2 We aim to be optimistic in our estimate of θ^* by selecting

$$\tilde{\theta}_t = \underset{\theta \in \mathcal{C}_t^r}{\arg\max} \langle X_t, \theta \rangle, \tag{5}$$

and pessimistic about μ^* by choosing $\tilde{\mu}_t$ that minimizes the volume of the estimated feasible set. In our case, the feasible set is a continuous sub-interval of [0, 1], so its measure is simply its length.

Before describing the algorithm, we will first define the confidence ellipsoids and the *Least Squares Estimators* for θ^* and μ^* .

Algorithm 1 High Probability Constrained UCB

1: Input: Constraint threshold $\tau \ge 0$; Confidence parameter δ ; Sub-Gaussianity constant γ_c 2: $\alpha_0 \leftarrow \min\{1, \frac{\tau}{\gamma_c \sqrt{2\log(\frac{1}{\delta}) + L_X \cdot L_{\mu^*}}}\}$ 3: for $t = 1, 2, \dots, T$ do 4: Compute $\hat{\mu}$ according to 3 5: Use $\hat{\mu}$ to compute the estimated feasible set $\hat{\mathcal{A}}_t^f$ using 7 6: Compute $\hat{\theta}_t$ using equation 5 7: Compute action $\alpha_t = \arg \max_{\alpha \in \hat{\mathcal{A}}_t^f} \alpha \langle X_t, \hat{\theta}_t \rangle$ 8: Take action α_t and if $\alpha_t \neq 0$ store the reward and the cost signals (R_t, C_t) 9: end for

The computation of the estimated feasible set $\hat{\mathcal{A}}_t^f$ is performed in two steps. First, we estimate the unknown cost vector μ^* using a least squares estimator. This procedure yields a confidence ellipsoid that contains μ^* with high probability. Among all μ within this ellipsoid, we select the one that minimizes the length of the interval of feasible values for α_t .

4.2 CHOICE OF $\hat{\mu}$

As previously discussed, we aim to choose our estimate—denoted by $\tilde{\mu}$ —pessimistically to minimize the length of \hat{A}_t^f . By definition, \hat{A}_t^f is given by

$$\hat{\mathcal{A}}_t^f = \left\{ \alpha \in [0,1] : \alpha \left(\langle X_t, \tilde{\mu} \rangle + \gamma_c \sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) \le \tau \right\}.$$

Since $\tau > 0$, we first need to check the sign of $\langle X_t, \tilde{\mu} \rangle + \gamma_c \sqrt{2 \log(\frac{1}{\delta})}$. If this expression is negative for all $\mu \in C^t_{\mu}$, then we set $\hat{\mathcal{A}}^f_t = [0, 1]$. However, if there exists a $\mu \in C^t_{\mu}$ such that this expression is positive, we select the μ that minimizes the maximum feasible α_t . This approach can be summarized in the following convex program, where $\hat{\mu}$ is the least squares estimate of μ .

$$\max_{\boldsymbol{\mu}} \quad \langle X_t, \boldsymbol{\mu} \rangle$$

$$\mu \qquad (-t) \gamma \gamma$$
subject to
$$\|\mu - \hat{\mu}\|_{V_t} \leq b_t^2,$$

$$\langle X_t, \mu \rangle + \gamma_c \sqrt{2 \log\left(\frac{1}{\delta}\right)} \geq 0$$
(6)

Let $\mathcal{K}(x)$ the set that contains the solutions of the convex program 6.

$$\hat{\mathcal{A}}_{t}^{f} = \begin{cases} [0,1] & , \text{ if } \mathcal{K}(\hat{\mu}_{t}) = \emptyset \\ [0,\frac{\tau}{\mathcal{K}(\hat{\mu}_{t}) + \gamma_{c}\sqrt{2\log\left(\frac{1}{\delta}\right)}}] & , \text{ if } \mathcal{K}(\hat{\mu}_{t}) \neq \emptyset \end{cases}$$
(7)

Before beginning the analysis of our algorithm, we observe that its computational cost is primarily due to solving one convex program for $\tilde{\mu}$ and another for $\tilde{\theta}$. These convex programs have linear objectives; one involves a combination of quadratic and linear constraints, while the other involves only quadratic constraints. We can employ standard optimization algorithms, such as interior-point methods, to solve these sub-problems. In our numerical experiments, we found that they are solved in a short amount of time.

5 REGRET ANALYSIS

The objective of the agent is to minimize the *expected* T-round (constrained) (pseudo)-regret, i.e.,

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} r^*(X_t) - r(X_t)$$

where

$$r^{*}(X_{t}) = \max_{\alpha \in \mathcal{A}_{t}^{f}} \alpha \langle X_{t}, \theta^{*} \rangle$$
$$r(X_{t}) = \max_{\alpha \in \widehat{\mathcal{A}}_{t}^{f}} \alpha \langle X_{t}, \theta^{*} \rangle$$

We see that the choice of α depends on the sign of $\langle X_t, \theta^* \rangle$. If this inner product is positive we choose the largest feasible value and otherwise the lowest feasible one.

 $\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} \max_{\alpha \in \mathcal{A}_{t}^{f}} \left(\alpha \langle X_{t}, \theta^{*} \rangle \right) - \alpha_{t} \langle X_{t}, \theta^{*} \rangle$

 We will use a decomposition of the regret similar to standard ones in the *Linear Bandits under constraints* literature, (Amani et al. (2019),Pacchiano et al. (2021),Pacchiano et al. (2024)). We define as

 $=\sum_{t=1}^{T} (\alpha_t^* - \alpha_t) \langle X_t, \theta^* \rangle$

$$\tilde{\alpha}_t = \arg\max_{\alpha \in \mathcal{A}_t^f} \{ \alpha \langle X_t, \hat{\theta}_t \rangle \}$$
(9)

Using the above definition we decompose the regret as follows.

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} (\alpha_t^* - \alpha_t) \langle X_t, \theta^* \rangle$$

$$= \sum_{t=1}^{T} (\alpha_t^* - \tilde{\alpha}_t) \langle X_t, \theta^* \rangle$$

$$+ \sum_{t=1}^{T} \operatorname{Term 2: Cost for approximating } \mu^*$$
(10)

5.1 ANALYSIS OF THE REGRET

Lemma 5.1. The first term in the regret decomposition can be bounded as follows:

$$(\alpha_t^* - \tilde{\alpha}_t) \langle X_t, \theta^* \rangle \le \tilde{\alpha}_t \langle X_t, \tilde{\theta} - \theta^* \rangle$$

Proof. The proof is in A.2.

(8)

We note that this is the standard bound in the Linear Bandits literature as first proved in the classical work of (Abbasi-Yadkori et al., 2011). It remains to bound the second term.

Lemma 5.2. The first term in the regret decomposition can be bounded as follows:

386 387

388

393

394

395

396

397 398 399

400 401 402

403

$$(\tilde{\alpha}_t - \alpha_t) \langle X_t, \theta^* \rangle \le L \cdot S \cdot \frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\tau}$$

Proof. The proof is in A.3.

By using 5.1, 5.2 combining with the regret decomposition 10 we can bound the regret as following. The bound is conditioned on the following event that holds with probability at least $1 - \delta'$.

$$\mathcal{E} := \left\{ \|\tilde{\theta}_t - \hat{\theta}_t\|_{\Sigma_t} \le \beta_t(\delta', d) \land \|\tilde{\mu}_t - \hat{\mu}_t\|_{\Sigma_t} \le \beta_t(\delta', d) \right\}$$
(11)

It is important to mention that δ' is not necessary equal to δ . The first one is the probability that the regret bounds holds and the second one the probability that the realization of the noise of the cost stays below the threshold.

Theorem 5.1. With probability at least one $1 - \delta'$ the regret 10 can be bounded by $\mathcal{O}\left(\beta_T(\delta', d)\sqrt{2Td\log\left(1 + \frac{TL^2}{\lambda}\right)}\right).$

Proof. The proof is in A.4.

6 EXPERIMENTAL RESULTS

Ideally, we had hoped to test our algorithms on real data, such as patient data or cell cultures.
However, due to limited access to real data, we decided to evaluate our algorithms using synthetic data. Before analyzing our procedure, we should note that in the linear model, the dot product can take both positive and negative values. Therefore, we expect that the expected regret plot, in addition to exhibiting sub-linear behavior, may also show decreasing behavior.

To generate θ^* and μ^* , we sampled them from a *d*-dimensional normal distribution and then normalized them. The contexts were also generated from a multivariate normal distribution and normalized accordingly. We ran our experiments with 5 and 10-dimensional vectors, using multiple values of τ and for 10⁵ iterations. In practice, it is interesting to examine the relationship between τ and max ||X||, $||\theta^*||$, and $||\mu^*||$.

We observed that for small values of τ , such as 0.2, the set of feasible dosages has a very small length, and the results are dominated by noise. However, for larger values of τ , like 0.6 and 0.8, the results showed that the sub-linear behavior was already visible after 10^4 iterations. Remarkably, after 4×10^5 iterations, we noticed decreasing behavior, which is a sign that our estimators have converged to the true θ^* and μ^* .

We also plotted the number of times the constraint was violated when we satisfied the constraint in expectation. We plotted this over 10⁴ rounds, and the behavior was linear, indicating that until our estimators are close to the true vectors, we overdose the patients multiple times. We ran our experiments 10 times and plotted the mean value and the standard deviation around the regret.

We hope that in the future we could extend our experiments in real data like cell cultures so we can check good choices for the vectors θ^* , μ^* , good features-contexts, an appropriate value for τ and non-linear models too.

427

7 NON-LINEAR REWARDS AND COSTS

428 429

430 Instead of modeling the reward and the cost signal as linear functions in term of the unknown pa-431 rameters θ and μ we can use more general functions and express our results in terms of the *Eluder dimension* as defined in Russo & Van Roy (2013).

We denote the set of feasible actions in round t as $\mathcal{A}_t(X_t) = \{\alpha \in [0,1] \mid \alpha\left(\mu_*(X_t) + \gamma_c\sqrt{2\log(\frac{1}{\delta})}\right) \leq \tau\}$. The agent selects and action $\alpha_t \in \mathcal{A}_t(X_t)$. Now the reward and the cost signal take the following form.

$$R_t = \alpha_t \theta_*(X_t) + \alpha_t \xi_t^r, \quad C_t = \alpha_t \mu_*(X_t) + \alpha_t \xi_t^c$$

where $\theta_*(\cdot) \in \mathcal{G}_r$ and $\mu_*(\cdot) \in \mathcal{G}_c$ are the mean reward and cost function respectively that belong to the known function classes $\mathcal{G}_r, \mathcal{G}_c$. We will assume that $\theta_*(\cdot), \mu_*(\cdot)$ take values in [-1, 1], relaxing the standard assumption made that the non-linear functions take values in [0, 1]. We show that the important property is that the non-linear functions remain bounded. We also assume that the reward and the cost signals are bounded, i.e. lie in [-1, 1]. For the noise signals ξ_t^r, ξ_t^c we assume that they are conditionally sub-Gaussian. Moreover, we use the definition of the width of a subset $\tilde{\mathcal{F}} \subset \mathcal{F}$ at a context $X \in \mathcal{A}$ by

$$w_{\tilde{\mathcal{F}}}(X) = \sup_{f,\overline{f}\in\tilde{\mathcal{F}}} \left(\overline{f}(X) - \underline{f}(X)\right)$$
(12)

In the new terminology, the T period regret is written as

$$\mathcal{R}(T,\pi) = \sum_{t=1}^{T} \left[\alpha_t^* \theta_*(X_t) - \alpha_t \theta_*(X_t) \right]$$

We want to apply the same regret decomposition as before. First, we define analogously $\hat{\mathcal{A}}_t(X_t) = \{\alpha \in [0,1] \mid \alpha \left(\mu_*(X_t) + \gamma_c \sqrt{2\log(\frac{1}{\delta})} \right) \leq \tau \}$. We also define

481
$$\alpha_t^* \in \arg \max \theta_*(\alpha)$$

$$\alpha \in \mathcal{A}_t$$

483
$$\alpha_t \in \arg\max \sup_{\alpha \in \hat{A}_t} \theta(\alpha)$$
484 $\alpha_t \in \hat{A}_t, \theta \in \mathcal{G}_t$

$$485 \qquad \qquad \tilde{\alpha} \in \mathcal{A}_t$$

$$\tilde{\alpha}_t \in \underset{\alpha \in \mathcal{A}_t}{\arg \max} \sup_{\theta \in \mathcal{G}_r} \theta(\alpha)$$

As in **Proposition 1** in Russo & Van Roy (2013) our goal is to bound the regret using $w_{\tilde{\mathcal{F}}}(X_t)$. First we apply the same decomposition to express the regret in terms of the cost due to the lack of knowledge of θ_* and μ_* .

489 490 491

499

504

505

507

508

509 510

511 512

$$\mathcal{R}(T,\pi) = \sum_{t=1}^{T} \left[\alpha^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t) \right] + \sum_{t=1}^{T} \left[\tilde{\alpha}_t \theta_*(X_t) - \alpha_t \theta_*(X_t) \right]$$

The first sum can be bounded in a similar way to **proof A** in the appendix of Russo & Van Roy (2013). The second sum measures the regret the algorithm suffers from the lack of knowledge of μ . Then we can bound in terms of $w_{\tilde{\mathcal{F}}_{\mu}}$ the same way as before.

496 Lemma 7.1.
$$\alpha_t^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t) \le w_{\mathcal{G}_r}(X_t) + 2\mathbb{1}(\theta_* \notin \mathcal{G}_r)$$

497

498 *Proof.* The proof is in B.1.

For the remaining part, we need to bound $|\tilde{\alpha}_t - \alpha_t|$ in terms of μ_* . We will follow a similar proof as in the case of the inner product function.

502 Lemma 7.2. $|\tilde{\alpha}_t - \alpha_t| \leq w_{\mathcal{G}_c}(X_t)/\tau$

Proof. The proof is similar to the linear case and it is provided in B.2.

Now that we have bound the regret in terms of the width of the set that the non-linear functions belong we can translate our results to bound for the regret. First, as in the linear model case, we define the reward and the cost set confidence radii as in (Pacchiano et al., 2024).

$$\rho_r(t,\delta') = 512 \log\left(\frac{24 \mid \mathcal{G}_r \mid \log(2t)}{\delta}\right), \quad \rho_c(t,\delta') = 512 \log\left(\frac{24 \mid \mathcal{G}_c \mid \log(2t)}{\delta}\right) \tag{13}$$

513 We also use the following notation $d_{eluder}^r = d_{eluder}(\mathcal{G}_r, 1/T)$ and $d_{eluder}^c = d_{eluder}(\mathcal{G}_c, 1/T)$. 514 The algorithm is similar to that one in the linear case. Due to lack of space we write the algorithm in 515 B.3. For the regret bound, like (Pacchiano et al., 2024), we use the Lemma 3 in (Chan et al., 2021), 516 by setting P = 1.

Theorem 7.1. With probability at least $1 - \delta'$, the regret of the algorithm B.3 satisfies

$$\mathcal{R}(T) = \mathcal{O}(\sqrt{Td_{eluder}^r \rho_r(T, \delta'/2)} + 1/\tau \sqrt{Td_{eluder}^c \rho_c(T, \delta'/2)} + d_{eluder}^r + \frac{d_{eluder}^c}{\tau})$$

520 521

517

518 519

8 POSSIBLE EXTENSIONS

522 523 524

525

527

528

529

530

531

We hope that the community will recognize our conceptual contribution in modeling the optimal dose-finding problem. In the future, we anticipate that this model will be explored using real data from patients or cell cultures. Moreover, from a theoretical perspective, investigating instance-dependent bounds is an interesting direction, as is further studying the dependency of the regret on the confidence parameter δ , which may itself be a function of T. Furthermore, since this algorithm processes medical data in its computations, it is important to consider the necessity of making it differentially private. Finally, it would be intriguing to solve the same problem using a Thompson sampling-like algorithm.

532 REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
 bandits. Advances in neural information processing systems, 24, 2011.

- Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In *Artificial Intelligence and Statistics*, pp. 176–184. PMLR, 2017.
- 539 Shipra Agrawal and Nikhil R Devanur. Bandits with global convex constraints and objective. *Operations Research*, 67(5):1486–1502, 2019.

540 541 542	Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. Linear stochastic bandits under safety constraints. <i>Advances in Neural Information Processing Systems</i> , 32, 2019.
543 544 545	Sanae Amani, Christos Thrampoulidis, and Lin Yang. Safe reinforcement learning with linear func- tion approximation. In <i>International Conference on Machine Learning</i> , pp. 243–253. PMLR, 2021.
546 547	Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. <i>Journal of Machine Learning Research</i> , 3(Nov):397–422, 2002.
549 550	Maryam Aziz, Emilie Kaufmann, and Marie-Karelle Riviere. On multi-armed bandit designs for dose-finding trials. <i>Journal of Machine Learning Research</i> , 22(14):1–38, 2021.
551 552	Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks. <i>Journal of the ACM (JACM)</i> , 65(3):1–55, 2018.
553 554 555	Frank Bretz, Jason Hsu, Jose Pinheiro, and Yi Liu. Dose finding–a challenge in statistics. <i>Biometrical Journal: Journal of Mathematical Methods in Biosciences</i> , 50(4):480–504, 2008.
556 557	Jeffrey Chan, Aldo Pacchiano, Nilesh Tripuraneni, Yun S Song, Peter Bartlett, and Michael I Jordan. Parallelizing contextual bandits. <i>arXiv preprint arXiv:2105.10590</i> , 2021.
558 559 560	Ningyuan Chen and Amin Khademi. Adaptive seamless dose-finding trials. <i>Manufacturing & Service Operations Management</i> , 2024.
561	Sylvie Chevret. Statistical methods for dose-finding experiments. (No Title), 2006.
562 563 564	Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit feedback. In <i>COLT</i> , volume 2, pp. 3, 2008.
565 566 567	Aditya Gangrade, Tianrui Chen, and Venkatesh Saligrama. Safe linear bandits over unknown polytopes. In <i>The Thirty Seventh Annual Conference on Learning Theory</i> , pp. 1755–1795. PMLR, 2024.
568 569 570 571	Kit Huckvale, Leonard Hoon, Eileen Stech, Jill M Newby, Wu Yi Zheng, Jin Han, Rajesh Vasa, Sunil Gupta, Scott Barnett, Manisha Senadeera, et al. Protocol for a bandit-based response adaptive trial to evaluate the effectiveness of brief self-guided digital interventions for reducing psychological distress in university students: the vibe up study. <i>BMJ open</i> , 13(4):e066249, 2023.
572 573 574	Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning: Classic and contextual bandits. <i>Advances in neural information processing systems</i> , 29, 2016.
575	Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
576 577 578 579	Hyun-Suk Lee, Cong Shen, James Jordon, and Mihaela Schaar. Contextual constrained learning for dose-finding clinical trials. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 2645–2654. PMLR, 2020.
580 581	Fengjiao Li, Jia Liu, and Bo Ji. Combinatorial sleeping bandits with fairness constraints. <i>IEEE Transactions on Network Science and Engineering</i> , 7(3):1799–1813, 2019.
582 583 584 585	Qingsong Liu, Weihang Xu, Siwei Wang, and Zhixuan Fang. Combinatorial bandits with linear constraints: Beyond knapsacks and fairness. <i>Advances in Neural Information Processing Systems</i> , 35:2997–3010, 2022.
586 587 588	Sharon B Love, Sarah Brown, Christopher J Weir, Chris Harbron, Christina Yap, Birgit Gaschler- Markefski, James Matcham, Louise Caffrey, Christopher McKevitt, Sally Clive, et al. Embracing model-based designs for dose-finding trials. <i>British journal of cancer</i> , 117(3):332–339, 2017.
589 590 591	Kentaro Matsuura, Junya Honda, Imad El Hanafi, Takashi Sozu, and Kentaro Sakamaki. Opti- mal adaptive allocation using deep reinforcement learning in a dose-response study. <i>Statistics in</i> <i>Medicine</i> , 41(7):1157–1171, 2022.
593	Ahmadreza Moradipari, Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. Safe linear thompson sampling. <i>arXiv preprint arXiv:1911.02156</i> , 2019.

594 595 596	John O'Quigley, Margaret Pepe, and Lloyd Fisher. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. <i>Biometrics</i> , pp. 33–48, 1990.
597 598 599	Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett, and Heinrich Jiang. Stochastic bandits with linear constraints. In <i>International conference on artificial intelligence and statistics</i> , pp. 2827–2835. PMLR, 2021.
600 601	Aldo Pacchiano, Mohammad Ghavamzadeh, and Peter Bartlett. Contextual bandits with stage-wise constraints. <i>arXiv preprint arXiv:2401.08016</i> , 2024.
603 604 605	Marie-Karelle Riviere, Ying Yuan, Jacques-Henri Jourdan, Frédéric Dubois, and Sarah Zohar. Phase i/ii dose-finding design for molecularly targeted agent: plateau determination using adaptive randomization. <i>Statistical methods in medical research</i> , 27(2):466–479, 2018.
606 607	Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. <i>Mathematics of Operations Research</i> , 35(2):395–411, 2010.
608 609 610	Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic exploration. <i>Advances in Neural Information Processing Systems</i> , 26, 2013.
611 612 613	Cong Shen, Zhiyang Wang, Sofia Villar, and Mihaela Van Der Schaar. Learning for dose allocation in adaptive clinical trials with safety constraints. In <i>International Conference on Machine Learning</i> , pp. 8730–8740. PMLR, 2020.
614 615 616 617	Dengwang Tang, Rahul Jain, Ashutosh Nayyar, and Pierluigi Nuzzo. Pure exploration for con- strained best mixed arm identification with a fixed budget. <i>arXiv preprint arXiv:2405.15090</i> , 2024.
618 619 620	William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. <i>Biometrika</i> , 25(3-4):285–294, 1933.
621	Naitee Ting. Dose finding in drug development. Springer Science & Business Media, 2006.
622 623 624	Ramon Van Handel. Probability in high dimension. <i>Lecture Notes (Princeton University)</i> , 2(3):2–3, 2014.
625 626	Roman Vershynin. <i>High-dimensional probability: An introduction with applications in data science</i> , volume 47. Cambridge university press, 2018.
627 628 629 630	Kaiwen Wang, Kevin Zhou, Runzhe Wu, Nathan Kallus, and Wen Sun. The benefits of being distributional: Small-loss bounds for reinforcement learning. <i>Advances in Neural Information Processing Systems</i> , 36, 2023.
631 632 633	Zhenlin Wang, Andrew J Wagenmaker, and Kevin Jamieson. Best arm identification with safety constraints. In <i>International Conference on Artificial Intelligence and Statistics</i> , pp. 9114–9146. PMLR, 2022.
634 635 636	Yifan Wu, Roshan Shariff, Tor Lattimore, and Csaba Szepesvári. Conservative bandits. In Interna- tional Conference on Machine Learning, pp. 1254–1262. PMLR, 2016.
637 638 639	Datong Zhou and Claire Tomlin. Budget-constrained multi-armed bandits with multiple plays. In <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , volume 32, 2018.
640 641	A APPENDIX
642 643	A.1 CONSTRAINT FORMULATION
644 645	We assume that the cost noise is conditionally sub-Gaussian with a known constant γ_c . Under this assumption the random variable $C_t - \alpha_t \langle X_t, \mu \rangle$ is α_c sub-Gaussian. We will define a constraint quart

assumption, the random variable $\frac{C_t - \alpha_t \langle X_t, \mu \rangle}{\alpha_t}$ is γ_c sub-Gaussian. We will define a constraint event such that, when satisfied, the cost signal remains below the threshold with high probability. Now, we can analyze the cost using the following theorem. **Theorem A.1.** [Sub Gaussian concentration bounds - Theorem 5.3 Lattimore & Szepesvári (2020)] If X is γ_c -subgaussian, then for any $\epsilon > 0$,

$$\Pr(X \ge \epsilon) \le \exp(-\frac{\epsilon^2}{2\gamma_c^2})$$

Using the above property of the cost noise and the theorem we derive that

$$\Pr(C_t \ge \tau \mid \mathcal{H}_t) = \Pr\left(\frac{C_t - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t} \ge \frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t} \mid \mathcal{H}_t\right)$$
(14)

$$\leq \exp\left(-\frac{\left(\frac{\tau - \alpha_t \langle X_t, \mu^* \rangle}{\alpha_t}\right)^2}{2\gamma_c^2}\right) \tag{15}$$

By requiring the right-hand side to be less than or equal to δ , we derive:

$$\exp\left(-\frac{\left(\frac{\tau-\alpha_t\langle X_t,\mu^*\rangle}{\alpha_t}\right)^2}{2\gamma_c^2}\right) \le \delta$$

$$\frac{\left(\frac{\tau-\alpha_t\langle X_t,\mu^*\rangle}{\alpha_t}\right)^2}{2\gamma_c^2} \ge \log\left(\frac{1}{\delta}\right)$$

$$\frac{\tau-\alpha_t\langle X_t,\mu^*\rangle}{\alpha_t} \ge \gamma_c\sqrt{2\log\left(\frac{1}{\delta}\right)}$$

$$\tau \ge \alpha_t\left(\langle X_t,\mu^*\rangle + \gamma_c\sqrt{2\log\left(\frac{1}{\delta}\right)}\right)$$
(16)

A.2 ANALYZING THE COST FOR APPROXIMATING θ

The first term need to be bounded is $\sum_{t=1}^{T} (\alpha_t^* - \tilde{\alpha}_t) \langle X_t, \theta^* \rangle$. In order to bound this term we will follow a standard procedure in Linear Bandits. Initially, we will bound the term $\alpha_t^* \langle X_t, \theta^* \rangle$. With probability at least $1 - \delta$ it holds $\theta^* \in C_t^\theta$, $\forall t \in [T]$.

$$\begin{aligned} \alpha_t^* \langle X_t, \theta^* \rangle &\leq \max_{\theta \in \mathcal{C}_t^\theta} \{ \alpha_t^* \langle X_t, \theta \rangle \} \\ &\leq \max_{\alpha \in \mathcal{A}_t^f} \max_{\theta \in \mathcal{C}_t^\theta} \{ \alpha \langle X_t, \theta \rangle \} \\ &= \max_{\alpha \in \mathcal{A}_t^f} \{ \alpha \langle X_t, \tilde{\theta} \rangle \} \\ &= \tilde{\alpha}_t \langle X_t, \tilde{\theta} \rangle \end{aligned}$$

Using the above it holds that

$$(\alpha_t^* - \tilde{\alpha}_t) \langle X_t, \theta^* \rangle \leq \tilde{\alpha}_t \langle X_t, \tilde{\theta} - \theta^* \rangle$$

A.3 ANALYZING THE COST FOR APPROXIMATING μ^*

We can bound the second term using the Cauchy-Schwarz inequality as follows:

$$(\tilde{\alpha}_t - \alpha_t) \langle X_t, \theta^* \rangle \leq |\tilde{\alpha}_t - \alpha_t| \cdot LS.$$

It remains to bound $| \tilde{\alpha}_t - \alpha_t |$. First, we remind the definitions of $\tilde{\alpha}_t$ and α_t :

$$\tilde{\alpha}_t = \arg \max_{\alpha \in \mathcal{A}_t^f} \{ \alpha \langle X_t, \hat{\theta}_t \rangle \},$$
$$\alpha_t = \arg \max_{\alpha \in \hat{\mathcal{A}}_t^f} \{ \alpha \langle X_t, \hat{\theta}_t \rangle \}.$$

We observe that both the choice of $\tilde{\alpha}_t$ and the choice of α_t depend on the sign of the inner product $\langle X_t, \hat{\theta}_t \rangle$. If $\langle X_t, \hat{\theta}_t \rangle \ge 0$, then $\tilde{\alpha}_t$ equals the maximum element of the set \mathcal{A}_t^f . Similarly, α_t equals the maximum of the set $\hat{\mathcal{A}}_t^f$ when $\langle X_t, \hat{\theta}_t \rangle \ge 0$. On the other side, when $\langle X_t, \hat{\theta}_t \rangle < 0$, both $\tilde{\alpha}_t$ and α_t are zero.

We will write down again the sets \mathcal{A}_t^f and $\hat{\mathcal{A}}_t^f$ to see the possible values for $(\tilde{\alpha}_t, \alpha_t)$:

$$\mathcal{A}_t^f = \left\{ \alpha \in [0,1] : \left(\langle X_t, \mu^* \rangle + \gamma_c \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) \right) \alpha \le \tau \right\},$$

 $\hat{\mathcal{A}}_t^f = \left\{ \alpha \in [0,1] : \left(\langle X_t, \tilde{\mu} \rangle + \gamma_c \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) \right) \alpha \le \tau \right\}.$

⁷¹⁹ Our estimator $\tilde{\mu}$ for μ^* is a pessimistic one. Among all possible choices for $\tilde{\mu}$, in order to be robust, we will choose $\tilde{\mu}$ such that $\hat{\mathcal{A}}_t^f$ has the smallest possible length.

Having that in mind, we have the four following scenarios for $(\tilde{\alpha}_t, \alpha_t)$:

1.
$$(1, 1)$$

2.
$$\left(1, \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right)\right)$$

3.
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}\right), 1\right)$$

4.
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}\right), \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right)\right)$$

For all the above cases we can show that

$$\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f \le \frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\tau}$$

Let's prove this one by one.

744 A.3.1 1ST CASE

746 In this case, it is true that $\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f = 1 - 1 = 0.$

A.3.2 2ND CASE

The non-trivial pair in this case is $\left(1, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right).$

When the above relation for $\max A_t^f$ and $\max \hat{A}_t^f$ holds, then it is true that:

$$\begin{array}{ll} \textbf{756} & 2. \ \frac{\tau}{\gamma_c \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle} \leq 1. \\ \textbf{757} \\ \textbf{758} \\ \textbf{759} \\ \textbf{759} \\ \textbf{759} \\ \textbf{759} \\ \textbf{760} \\ \textbf{761} \\ \textbf{761} \\ \textbf{762} \\ \textbf{763} \\ \textbf{764} \\ \textbf{765} \\ \textbf{764} \\ \textbf{766} \\ \textbf{766} \\ \textbf{766} \\ \textbf{766} \\ \textbf{766} \\ \textbf{766} \\ \textbf{767} \\ \textbf{768} \\ \textbf{768} \\ \textbf{769} \\ \textbf{767} \\ \textbf{768} \\ \textbf{769} \\ \textbf{771} \\ \textbf{A.3.3} \ \textbf{3RD CASE} \end{array}$$

A.3.3 3RD CASE

We choose $\tilde{\mu}$ pessimistically, so in this case the only valid pair is (1, 1) and $|\tilde{\alpha}_t - \alpha_t| = 0$.

A.3.4 4TH CASE

This case can be divided into four different subcases:

1. (1, 1) then
$$|\tilde{\alpha}_t - \alpha_t| = 0.$$

2. $\left(1, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right)$. We saw that the above case can be bounded by $\frac{\langle X_t, \tilde{\mu} - \mu^* \rangle}{\tau}.$
3. $\left(\frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}, 1\right)$; this case cannot exist due to the way we choose $\tilde{\mu}.$
4. $\left(\frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \mu^* \rangle}, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \langle X_t, \tilde{\mu} \rangle}\right).$

In this case, it holds that $0 < \tau < \gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta} \right)} \right) + \langle X_t, \mu^* \rangle$ and $0 < \tau < \gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta} \right)} \right) + \langle X_t, \mu^* \rangle$ $\langle X_t, \tilde{\mu} \rangle.$

We are going to bound $| \max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f |$ as follows:

$$|\max \mathcal{A}_{t}^{f} - \max \hat{\mathcal{A}}_{t}^{f}| = \left| \frac{\tau}{\gamma_{c} \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) + \langle X_{t}, \mu^{*} \rangle} - \frac{\tau}{\gamma_{c} \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) + \langle X_{t}, \tilde{\mu} \rangle} \right|$$
$$= \left| \frac{\tau \left\langle X_{t}, \tilde{\mu} - \mu^{*} \right\rangle}{\left(\gamma_{c} \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) + \langle X_{t}, \mu^{*} \rangle \right) \left(\gamma_{c} \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) + \langle X_{t}, \tilde{\mu} \rangle \right)} \right|$$
$$\leq \frac{\tau \left\langle X_{t}, \tilde{\mu} - \mu^{*} \right\rangle}{\tau^{2}}$$
$$= \frac{\langle X_{t}, \tilde{\mu} - \mu^{*} \rangle}{\tau}.$$

A.4 PROOF OF THEOREM 5.1

812 Proof.

$$\mathcal{R}_{\mathcal{C}}(T) = \sum_{t=1}^{T} (\alpha_t^* - \tilde{\alpha}_t) \langle X_t, \theta^* \rangle + \sum_{t=1}^{T} (\tilde{\alpha}_t - \alpha_t) \langle X_t, \theta^* \rangle$$
(17)

$$\leq \sum_{t=1}^{T} |\tilde{\alpha_t}| \|x_t\|_{\Sigma_t^{-1}} \left\| \tilde{\theta} - \theta^* \right\|_{\Sigma_t} + \frac{LS}{\tau} \sum_{t=1}^{T} |\tilde{\alpha_t}| \|x_t\|_{\Sigma_t^{-1}} \|\tilde{\mu} - \mu^*\|_{\Sigma_t}$$
(18)

$$\leq \sum_{t=1}^{T} \beta_t(\delta', d) \, \|x_t\|_{\Sigma_t^{-1}} + \frac{LS}{\tau} \sum_{t=1}^{T} \beta_t(\delta', d) \, \|x_t\|_{\Sigma_t^{-1}} \tag{19}$$

$$\leq \beta_T(\delta', d)(1 + \frac{LS}{\tau}) \left(\sum_{t=1}^T \|x_t\|_{\Sigma_t^{-1}} \right)$$
(20)

$$\leq \beta_T(\delta', d)(1 + \frac{LS}{\tau})\sqrt{2Td\log\left(1 + \frac{TL^2}{\lambda}\right)}$$
(21)

B NON-LINEAR CASE

B.1 BOUND OF $\alpha_t^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t)$

Proof. The proof of 7.1 is similar to Russo & Van Roy (2013) as the decision set is the same for both α_t^* and $\tilde{\alpha}_t$. We define $U_t(\alpha) = \sup\{\alpha \theta_*(X_t) : \theta_* \in \mathcal{G}_r\}$ and $L_t(\alpha) = \inf\{\alpha \theta_*(X_t) : \theta_* \in \mathcal{G}_r\}$. When θ_* lies in \mathcal{G}_r it holds that $L_t(\alpha) \leq \theta_*(\alpha) \leq U_t(\alpha)$. Using this we derive

$$\alpha_t^* \theta_*(X_t) - \tilde{\alpha}_t \theta_*(X_t) \le (U_t(\alpha_t^*) - L_t(\tilde{\alpha}_t)) \mathbb{1}(\theta_* \in \mathcal{G}_r) + 2\mathbb{1}(\theta_* \notin \mathcal{G}_r) \le (U_t(\alpha_t^*) - L_t(\tilde{\alpha}_t)) + 2\mathbb{1}(\theta_* \notin \mathcal{G}_r) \le w_{\mathcal{G}_r}(X_t) + 2\mathbb{1}(\theta_* \notin \mathcal{G}_r) + [U_t(\alpha_t^*) - U_t(\tilde{\alpha}_t)] \le 0 \text{ due to selection rule}$$

$$(22)$$

Where in the last line we also used the fact that $\tilde{\alpha} \in [0, 1]$.

B.2 ANALYZING THE COST FOR APPROXIMATING $\mu_*(X_t)$

We need to bound $| \tilde{\alpha}_t - \alpha_t |$. First, we remind the definitions of $\tilde{\alpha}_t$ and α_t :

$$\tilde{\alpha}_t = \arg \max_{\alpha \in \mathcal{A}_t^f} \{ \alpha \hat{\theta}_*(X_t) \},$$
$$\alpha_t = \arg \max_{\alpha \in \hat{\mathcal{A}}_t^f} \{ \alpha \hat{\theta}_*(X_t) \}.$$

 $\alpha \in \hat{\mathcal{A}}_t^f$ 854 We observe that both the choice of $\tilde{\alpha}_t$ and the choice of α_t depend on the sign of the value of 855 $\hat{\theta}_*(X_t)$. If $\hat{\theta}_*(X_t) \ge 0$, then $\tilde{\alpha}_t$ equals the maximum element of the set \mathcal{A}_t^f . Similarly, α_t equals the 856 maximum of the set $\hat{\mathcal{A}}_t^f$ when $\hat{\theta}_*(X_t) \ge 0$. On the other side, when $\hat{\theta}_*(X_t) < 0$, both $\tilde{\alpha}_t$ and α_t are 857 zero.

We will write down again the sets \mathcal{A}_t^f and $\hat{\mathcal{A}}_t^f$ to see the possible values for $(\tilde{\alpha}_t, \alpha_t)$:

860
861
862

$$\mathcal{A}_t^f = \left\{ \alpha \in [0,1] : \left(\mu_*(X_t) + \gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) \right) \alpha \le \tau \right\},$$
862

$$\hat{\mathcal{A}}_t^f = \left\{ \alpha \in [0,1] : \left(\tilde{\mu}(X_t) + \gamma_c \left(\sqrt{2 \log\left(\frac{1}{\delta}\right)} \right) \right) \alpha \le \tau \right\}.$$

Our estimator $\tilde{\mu}$ for μ^* is a pessimistic one. Among all possible choices for $\tilde{\mu}$, in order to be robust, we will choose $\tilde{\mu}$ such that $\hat{\mathcal{A}}_t^f$ has the smallest possible length.

Having that in mind, we have the four following scenarios for $(\tilde{\alpha}_t, \alpha_t)$:

2. $\left(1, \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right)\right)$

1.
$$(1,1)$$

3.
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}\right), 1\right)$$

4.
$$\left(\min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}\right), \min\left(1, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right)\right)$$

For all the above cases we can show that

(

$$\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f \le \frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{\tau}$$

Let's prove this one by one.

B.2.1 1ST CASE

In this case, it is true that $\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f = 1 - 1 = 0.$

B.2.2 2ND CASE

895
896
897 The non-trivial pair in this case is
$$\left(1, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right)$$

898

When the above relation for max \mathcal{A}_t^f and max $\hat{\mathcal{A}}_t^f$ holds, then it is true that:

1.
$$\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t) \le 0,$$

2. $\frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)} \le 1.$

 Using the above, we can bound $1 - \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}$ as follows:

$$1 - \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)} = \frac{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) - \tau + \tilde{\mu}(X_t)}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}$$

915
916
$$\leq \frac{-\mu_*(X_t) + \tilde{\mu}(X_t)}{\tau}$$

917
$$= \frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{\tau}.$$

B.2.3 3RD CASE

We choose $\tilde{\mu}$ pessimistically, so in this case the only valid pair is (1, 1) and $|\tilde{\alpha}_t - \alpha_t| = 0$.

B.2.4 4TH CASE

This case can be divided into four different subcases:

1. (1, 1) then $|\tilde{\alpha}_t - \alpha_t| = 0$. 2. $\begin{pmatrix} 1, \frac{\tau}{\gamma_c \left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)} \end{pmatrix}$. We saw that the above case can be bounded by $\frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{\tau}.$ 3. $\left(\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}, 1\right)$; this case cannot exist due to the way we choose $\tilde{\mu}$. 4. $\left(\frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \mu_*(X_t)}, \frac{\tau}{\gamma_c\left(\sqrt{2\log\left(\frac{1}{\delta}\right)}\right) + \tilde{\mu}(X_t)}\right).$

> In this case, it holds that $0 < \tau < \gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) + \mu_*(X_t)$ and $0 < \tau < \gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) + \mu_*(X_t)$ $\tilde{\mu}(X_t).$

We are going to bound $| \max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f |$ as follows:

$$|\max \mathcal{A}_t^f - \max \hat{\mathcal{A}}_t^f| = \left| \frac{\tau}{\gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) + \mu_*(X_t)} - \frac{\tau}{\gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) + \tilde{\mu}(X_t)} \right|$$
$$= \left| \frac{\tau \left(\langle X_t, \tilde{\mu} \rangle - \mu_*(X_t) \right)}{\left(\gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) + \mu_*(X_t) \right) \left(\gamma_c \left(\sqrt{2 \log \left(\frac{1}{\delta}\right)} \right) + \tilde{\mu}(X_t) \right)} \right|$$
$$\leq \frac{\tau \left| \tilde{\mu}(X_t) - \mu_*(X_t) \right|}{\tau^2}$$
$$= \frac{\tilde{\mu}(X_t) - \mu_*(X_t)}{\tau}.$$

Now by following exactly the same procedure as in 7.1 we derive that $|\tilde{\alpha}_t - \alpha_t| \leq w_{\mathcal{G}_c}(A)/\tau$.

ALGORITHM FOR THE NON-LINEAR CASE B.3

Due to limited space we analyze our algorithm for the Non-Linear case in the appendix. The algo-rithm is identical with the Linear case.

First we define the dataset $\mathcal{D}_t = \{(X_s, R_s, C_s)\}_{s=1}^{t-1}$ for s such that $A_s \neq 0$, that is the dataset of observed information up to the beginning of round t, and $||f||_{\mathcal{D}_t} = \sqrt{\sum_{x \in \mathcal{D}_t} f^2(x)}$ the norm induced by the dataset for any function $f : \mathcal{A}_t \to \mathbb{R}$.

972 In every round we define the confidence ellipsoids as follows

$$\mathcal{C}_t^r(\delta) = \left\{ \theta \in \mathcal{G}_r : \left\| \theta - \hat{\theta} \right\|_{\mathcal{D}_t} \le \rho_r(t, \delta/2) \right\}$$
$$\mathcal{C}_t^c(\delta) = \left\{ \theta \in \mathcal{G}_c : \left\| \theta - \hat{\theta} \right\|_{\mathcal{D}_t} \le \rho_c(t, \delta/2) \right\}$$

Using these confidence intervals we compute the actions of the algorithm as follows. To compute the feasible dosages, first we solve the following Non-Linear program.

$$\max_{\mu} \qquad \mu(X_t)$$
subject to
$$\|\mu(X_t) - \hat{\mu}(X_t)\|_{\mathcal{D}_t} \leq b_t^2,$$

$$\mu(X_t) + \gamma_c \sqrt{2\log\left(\frac{1}{\delta}\right)} \geq 0$$
(23)

Then if there is no feasible solution in the above optimization problem we select $\hat{A}_t = [0, 1]$ otherwise, let say $\mathcal{K}(\hat{\mu}_t)$ its solution, then $\hat{\mathcal{A}}_t^f = [0, \frac{\tau}{\mathcal{K}(\hat{\mu}_t) + \gamma_c \sqrt{2\log(\frac{1}{\delta})}}]$ as before.

Our estimate for θ is $\tilde{\theta}(X_t) = max_{\theta \in \mathcal{C}_t^r}(\delta')\theta(X_t)$.

Algorithm 2 Non-Linear High Probability Constrained UCB

Input: Constraint threshold τ ≥ 0; Confidence parameter δ; Sub-Gaussianity constant γ_c
 α₀ ← min{1, τ/(γ_c √2 log(1/8)) + max_X μ_{*}(X))}
 for t = 1, 2, · · · , T do
 Compute μ̂, θ̂ by using Least Squares Estimators
 Construct the Â_t^f, θ̃(X_t)
 Compute action α_t = arg max_{α∈Ât} αθ̃(X_t)
 Take action α_t and if α_t ≠ 0 store the reward and the cost signals (R_t, C_t)
 end for