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Abstract

Diffusion Transformers (DiTs) have recently demonstrated remarkable perfor-
mance in visual generation tasks, surpassing traditional U-Net-based diffusion
models by significantly improving image and video generation quality and scal-
ability. However, the large model size and iterative denoising process introduce
substantial computational and memory overhead, limiting their deployment in real-
world applications. Post-training quantization (PTQ) is a promising solution that
compresses models and accelerates inference by converting weights and activations
to low-bit representations. Despite its potential, PTQ faces significant challenges
when applied to DiTs, often resulting in severe degradation of generative quality.
To address these issues, we propose VETA-DiT (Variance-Equalized and Temporal
Adaptation for Diffusion Transformers), a dedicated quantization framework for
DiTs. Our method first analyzes the sources of quantization error from the per-
spective of inter-channel variance and introduces a Karhunen–Loève Transform
enhanced alignment to equalize variance across channels, facilitating effective
quantization under low bit-widths. Furthermore, to handle the temporal variation
of activation distributions inherent in the iterative denoising steps of DiTs, we de-
sign an incoherence-aware adaptive method that identifies and properly calibrates
timesteps with high quantization difficulty. We validate VETA-DiT on extensive im-
age and video generation tasks, preserving acceptable visual quality under the more
aggressive W4A4 configuration. Specifically, VETA-DiT reduces FID by 33.65 on
the DiT-XL/2 model and by 45.76 on the PixArt-Σ model compared to the base-
line under W4A4, demonstrating its strong quantization capability and generative
performance. Code is available at: https://github.com/xululi0223/VETA-DiT.

1 Introduction

Recently, Diffusion Transformers (DiTs) [33] have emerged as the dominant backbone architecture
for diffusion models, replacing the U-Net structures [36]. They have been widely adopted in various
generation tasks due to their superior performance [8, 30, 9]. A notable example is OpenAI’s SoRA
[32], which has attracted significant attention for its remarkable generation quality. Recent studies
[11, 51] further demonstrate the impressive capability and scalability of DiTs across modalities.

Despite their success, DiTs face two major limitations: the inherently lengthy iterative denoising
process and the growing model size, both of which lead to substantial computational and memory
demands. These issues hinder the deployment of DiTs in resource-constrained environments and
limit their applicability in real-time scenarios. For instance, generating a 1024×1024 resolution
image with DiTs can take up to 10 seconds even on a NVIDIA A100 GPU.
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Figure 1: (Left) Overview of VETA-DiT. The Hadamard matrix is enhanced by a K-L transform
to adapt to data distributions and reduce quantization difficulty. Calibration data fed into the KLT
is synthesized via an incoherence-aware adaptive strategy to account for temporal variance across
different timesteps. (Right) Quantization performance under W4A8 and W4A4, where points closer
to the top-left corner indicate better performance. Please refer to Section 4.2 for detailed results.

Model quantization [31, 19] has been widely explored as an effective technique to accelerate infer-
ence by reducing memory footprint and computational overhead. It achieves this by compressing
model weights and activations from floating-point to low-bit integer representations. However, the
complex data distributions of weights and activations in DiTs pose significant challenges for existing
quantization techniques, especially when targeting ultra-low bit-width without severely degrading
performance. We identify two key challenges that hinder low-bit quantization of DiTs: (1) the pres-
ence of extreme outliers in specific channels results in significant inter-channel variance. Traditional
approaches such as applying a smoothing factor [46, 45] or using simple Hadamard transforms [2, 49]
fail to effectively align this variance, making low-bit quantization inaccurate; (2) the inherent iterative
denoising nature of DiTs causes large variations in activation distributions across different timesteps,
making it difficult to strike a balance between quantization effectiveness and computational efficiency.

To address these challenges, we propose a novel quantization method tailored for DiTs, termed
VETA-DiT. We first analyze the limitations of directly applying the Hadamard transform from the
perspective of inter-channel variance, and introduce a KLT enhanced Hadamard transform to achieve
better variance alignment, enabling acceptable performance even under low-bit scenarios. To handle
the temporal variation in activation distributions, we design an incoherence-aware adaptive strategy
to identify the challenging timesteps for quantization. We then construct a synthetical calibration set
that ensures both quantization accuracy and efficiency.

Our contributions are summarized as follows:

1. We analyze the limitations of directly applying the Hadamard transform in DiTs and propose
a K-L transform-enhanced Hadamard method to effectively align inter-channel variance.

2. We investigate the quantization difficulty caused by temporal activation variation, and pro-
pose an incoherence-aware importance scoring strategy to construct a synthetical calibration
set that captures representative distributions across different timesteps.

3. We conduct extensive experiments on both image and video generation tasks with multiple
DiT models, and push the quantization precision to W4A4, demonstrating effectiveness of
VETA-DiT in achieving high quantization performance without sacrificing visual fidelity.

2 Background and Related Works

2.1 Diffusion Transformer

Diffusion Models (DMs) [16] have attracted significant attention due to their powerful generative
capabilities in visual domains such as image [33, 4] and video [29] synthesis. DMs simulate a

2



forward process that progressively adds Gaussian noise to the original data via a Markov chain [35],
perturbing the data into a distribution close to standard Gaussian. A learned denoising network is
then employed in the reverse process to iteratively reconstruct high-quality samples. The denoising
process is typically parameterized by a deep neural networkϵθ, which predicts the noise at each
timestep. Given a sample drawn from standard Gaussian noise xT ∼ N (0, I), the model iteratively
denoises it through:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t), β̂tI), (1)

µθ(xt, t) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ,t), β̂t =
1− ᾱt−1

1− ᾱt
. (2)

The architecture of the noise prediction network plays a crucial role in determining the performance
of diffusion models. DiT is a representative method that integrates Transformer architectures into
diffusion models. Its core building block consists of multiple Transformer layers, each composed of
a Multi-Head Self-Attention (MHSA) mechanism and a Feed-Forward Network (FFN) [42, 7, 33].
Specifically, MHSA and FFN are formulated as follows, respectively:

MHSA(Q,K,V) = Softmax(
QKT

√
dk

)V, (3)

FFN(X) = LayerNorm(X+MLP (X)). (4)
To incorporate conditional information (e.g., class labels), each Transformer block employs MLPs to
project a condition vector c ∈ Rdin into scale and shift parameters, which are then injected into the
hidden state Z ∈ Rn×din via an adaptive LayerNorm (adaLN) [33]:

(γ, β) = MLPs(c), adaLN(Z) = LN(Z)⊙ (1 + γ) + β. (5)

Although DiT achieves superior generation quality and expressive power compared to traditional
architectures, its inference phase incurs high computational and memory costs due to the deeply
stacked Transformer layers and iterative denoising process.

2.2 Model Quantization

Model quantization [19], is a widely adopted technique for reducing model size and accelerating
inference. Quantization methods are typically categorized into Quantization-Aware Training (QAT)
[50, 43, 12] and Post-Training Quantization (PTQ) [10, 46, 49, 45, 5, 20]. QAT integrates the
quantization process into the training pipeline, often preserving model performance but requiring
extensive computational resources and retraining time. In contrast, PTQ statically analyzes pretrained
models using a small calibration dataset to estimate quantization parameters, offering advantages in
deployment speed and computational efficiency.

A typical example is symmetric linear quantization, which can be expressed as:

xint = clamp(⌊x
s
⌉ − z, pmin, pmax), (6)

where x and xint denote the original and quantized data, respectively; s is the scaling factor, z is
the zero point, ⌊·⌉ denotes the rounding operation, and the clamp function constrains the quantized
values within [pmin, pmax].

Although PTQ techniques have demonstrated promising results on architectures such as CNNs
[21, 22, 44] and ViTs [23, 44, 27], directly applying them to DiTs remains challenging. On one hand,
DiTs often exhibit significant inter-channel distribution imbalance, making it difficult for a unified
quantization range to accommodate all channels effectively. On the other hand, the stepwise sampling
mechanism in diffusion processes introduces strong temporal dynamics in the activation distributions,
necessitating quantization strategies that are adaptive to the timestep. To address these challenges,
several studies have explored efficient PTQ methods for diffusion models. For instance, Q-Diffusion
[21] and PTQ4DM [39] analyze activation variance across time steps to improve temporal robustness,
while Q-DiT and PTQ4DiT incorporate joint temporal-channel characteristics into the design of
adaptive quantization mechanisms. ViDiT-Q [49] proposes a unified approach that accounts for both
temporal dependency and inter-channel imbalance by leveraging Hadamard rotations and asymmetric
formats to enhance quantization effectiveness. However, they suffer from challenges under lower
bit-width quantization settings. Recently, SVDQuant [20] employs a high-precision low-rank branch
to take in the weight outliers with singular value decomposition, which is orthogonal to our method.
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Figure 2: (Left) Activation distribution in the DiT model, showing extreme outliers in certain
channels. Distributions after the Hadamard (Middle) and K-L-enhanced Hadamard transforms
(Right), respectively. While the Hadamard transform helps reduce variance imbalance, it has
limitations; the K-L-enhanced method further improves inter-channel variance alignment.

3 Method

3.1 KLT Enhanced Hadamard Transform for Variance Alignment

We begin by analyzing the intermediate activations of various layers in the DiT-XL/2 model, focusing
on selected linear layers to investigate their activation distribution characteristics. As shown in Figure
2 (Left), the activations exhibit a distribution pattern similar to those observed in LLMs and DMs
[13, 39]: certain channels contain outlier values with extremely large magnitudes. In some layers,
the magnitude of the outliers can be up to 100 times larger than the rest of the activations. These
outliers significantly increase the variance within individual channels, resulting in substantial variance
discrepancies across different channels [1, 2, 24]. Since per-token quantization methods assume
uniform variance across channels, such discrepancies introduce considerable quantization errors,
which are particularly problematic in hardware deployment.

Previous works in LLM quantization have proposed using the Hadamard transform to mitigate the
influence of outliers and reduce inter-channel variance. Formally, given an input tensor X ∈ Rn×m,
where n is the number of samples and m is the number of channels, the Hadamard transform is
defined as: Z = XH, where H ∈ Rm×m is the Hadamard matrix. The Hadamard matrix H is an
orthogonal matrix whose entries are drawn from

{
+ 1√

m
,− 1√

m

}
. Let zj denote the j-th column of

Z, i.e., the j-th transformed channel. Its variance is:

V ar(zj) =
1

n

n∑
i=1

z2ij =
1

n

n∑
i=1

(
m∑

k=1

xikhkj

)2

. (7)

Utilizing the linearity of expectation and the properties of variance and covariance, we derive:

V ar(zj) =

m∑
k=1

V ar(xk)h
2
kj +

∑
k ̸=l

Cov(xk,xl)hkjhlj . (8)

This expression shows that the variance of the transformed channel consists of two components:
a weighted sum of the original channel variances and a cross-covariance term. Since the cross-
covariance term and the corresponding Hadamard weight vector h:,j vary across channels j, the
resulting variances V ar(zj) cannot be assumed to be numerically similar in most cases. As a
result, the transformed channels have unequal variances, limiting the effectiveness of the Hadamard
transform for variance equalization in quantization. As shown in Figure 2 (Middle), the activations
after the Hadamard transform alone still exhibit nonnegligible inter-channel variance, which adversely
affects the quantization performance.

To achieve better variance alignment, we seek a transformation that ensures uniform average energy
across all transformed channels. Let vk = V ar(xk) be the variance of the k-th channel, and define
the energy vector v = [v1, v2, . . . , vm]T . Our goal is to find a linear transformation T ∈ Rm×m such
that the transformed tensor Y = XT satisfies:

V ar(yj) =
1

m

m∑
k=1

vk, ∀j. (9)
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Figure 3: Boxplot of the maximum absolute activation values across channels at different timesteps
in DiT, illustrating significant temporal variance that affects the effectiveness and efficiency of
quantization methods.

That is, all output channels have the same average variance, maximizing the quantization range and
minimizing quantization error.

This can be achieved using Karhunen–Loève Transform (KLT), which constructs an orthogonal
basis from the eigenvectors of the input covariance matrix [6]. The KLT distributes total variance
across orthogonal directions, minimizing redundancy and maximizing statistical independence. It has
also been applied to improve quantization performance in state space models [48]. By combining
KLT with the structured and computationally efficient Hadamard transform, we choose a composite
transformation called the KLT enhanced Hadamard transform (KLT-H): TKLT-H = KH, where K
is the KLT matrix composed of eigenvectors of the input covariance matrix. Since both K and
H are orthogonal, the composite transformation TKLT-H remains orthogonal. Its inverse is simply
T⊤

KLT-H, which enables computational consistency by ensuring that the quantized model produces
mathematically equivalent outputs to the original model, as illustrated by (XTKLT-H)(T

⊤
KLT-HW) =

XW. After transformation, the variance of each channel becomes:

V ar(yj) =

m∑
k=1

λkh
2
kj , (10)

where λk are the eigenvalues of the input covariance matrix. For normalized Hadamard matrices,
h2
kj =

1
m , leading to:

V ar(yj) =
1

m

m∑
k=1

λk, (11)

which indicates that the variance becomes equalized across different channels. After the KLT
enhanced Hadamard transform, the inter-channel variance is further reduced, as illustrated in Figure
2 (Right). Thus, the transformed tensor achieves variance alignment across channels, significantly
reducing quantization error and enhancing the robustness of diffusion model inference under low-bit
quantization.

3.2 Incoherence-Aware Adaptation for Temporally Varying Data Distributions

DiT models generate images through an iterative denoising process. As shown in Figure 3, we
observe that the activation distributions at different timesteps during the denoising process vary
significantly. Previous quantization methods [26, 49] typically apply the same transformation matrix
H to all timesteps within a layer. While this approach ensures computational efficiency, it often leads
to severe performance degradation under low-bit quantization. Unfortunately, the K-L transformation
matrix is highly sensitive to the distribution characteristics of the calibration dataset, and temporal
variance in activation distributions undermine its effectiveness.

A straightforward solution is to compute a dedicated K-L transformation matrix for each timestep.
However, this would incur substantial storage and computation overhead, counteracting the efficiency
benefits of quantization.

To address this challenge, we propose an incoherence-aware, time-adaptive strategy that improves
the performance of quantized models while preserving computational efficiency. The concept of
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incoherence, adapted from [3, 41], is used to measure the degree of anomaly in activation data.
Specifically, a matrix X ∈ Rm×n is said to be µ-incoherent if for any i and j:

|Xij | = |eTi Xej | ≤ µ · ||X||F√
mn

, (12)

where || · ||F denotes the Frobenius norm. A higher incoherence value indicates that certain channel
activations deviate significantly from the global mean, suggesting skewed distributions and outliers
that complicate the quantization process.

During quantization, we assign each timestep t an importance score st, which guides the KLT to pay
more attention to activation data with highly skewed distributions. The score is defined as:

st = Incoherence(X(t)) =
max |X(t)|

||X(t)||F /
√
mn

, (13)

where X(t) denote the activation data sampled at timestep t. However, since incoherence values
can differ drastically across timesteps, directly using st may cause certain timesteps to dominate the
calibration statistics. To mitigate this, we normalize the scores such that the sum of weights across all
timesteps equals 1, ensuring a balanced contribution. The normalized form is given by:

αt =
sκt∑T
k=1 s

κ
k

, (14)

where κ > 0 is a control parameter. When κ = 1, the weighting is linear; higher values of κ
emphasize timesteps with extreme incoherence more strongly.

In practice, we apply an entropy-based regularization and a softmax-based weighting formulation,
which together enhance stability and differentiability:

αt =
exp(Incoherence(X(t))κ)∑T

k=1 exp(Incoherence(X(k))κ)
. (15)

We construct a synthetical calibration dataset X̃ by combining activations across all timesteps with
their respective weights:

X̃ =

T∑
t=1

αt ·X(t). (16)

In this way, the synthetical calibration dataset reflects activation distribution characteristics across
multiple timesteps. This enables more accurate variance alignment, reduces quantization error, and
improves the robustness of the quantized model. We apply the proposed method to the linear layer
analyzed in Figure 3, where the incoherence-based importance scores across timesteps are computed.
As shown in Figure 4 (Left), these scores exhibit a strong positive correlation with the inter-channel
variance at each timestep, indicating that the method effectively prioritizes timesteps with higher
quantization difficulty. We then perform KLT enhanced Hadamard transforms using calibration
datasets constructed from either randomly sampled timestep activations or the incoherence-aware ag-
gregation. The resulting channel-wise variance distributions, shown in Figure 4 (Right), demonstrate
that the incoherence-aware approach effectively adapts to temporal variance and significantly reduces
inter-channel variance.

4 Experiments

4.1 Experimental Settings

Image Generation. We first evaluate our proposed VETA-DiT framework on the image generation
task. Following the original evaluation settings of DiT [33], we use the pretrained DiT-XL/2 model
[33] to generate images with resolutions of 256×256 on the ImageNet dataset [37]. The DDIM-solver
[40] is employed during generation, with sampling steps set to 50 and 100. To further demonstrate
the generality of VETA-DiT on diverse generation tasks, we also integrate it into the PixArt-Σ model
[4] for prompt-based image generation on the COCO dataset [25]. A DPM-solver [28] with 20 steps
is used, the classifier-free guidance (CFG) scale is set to 4.5. We use FID [15], spatial FID(sFID),
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Figure 4: (Left) Incoherence-aware importance scores across timesteps, showing a positive cor-
relation with inter-channel variance at each timestep. (Right) Channel-wise variance distributions
obtained by applying the K-L enhanced Hadamard transform using calibration datasets constructed
from either randomly sampled timestep activations or incoherence-weighted aggregated activations.
The incoherence-aware adaptation effectively accommodates temporal variation.

Inception Score [38], and Precision to evaluate generation fidelity. Additionally, for the COCO task,
we include ClipScore [14] to assess text-image alignment, and ImageReward [47] to estimate human
preference under complex prompt conditions.

Video Generation. We further evaluate the effectiveness of VETA-DiT in the video generation
task by integrating it into the STDiT3 model from the Open-Sora [17]. Videos are generated using
a 50-step DDIM-solver with a CFG scale of 4.0. We conduct comprehensive evaluations on the
VBench benchmark to obtain detailed quantitative results. Following [49, 34], we select 8 major
evaluation dimensions from VBench [18].

4.2 Quantization Performance

We conduct a comprehensive evaluation of our proposed VETA-DiT and compare it against several
state-of-the-art post-training quantization (PTQ) approaches specifically designed for DiTs under
various experimental settings. In particular, we consider three representative baselines: PTQ4DiT
[45], Q-DiT [5], and ViDiT-Q [49]. To ensure fair and consistent comparisons, we re-implement and
adapt these methods based on their official open-source repositories to support different network
architectures and task scenarios. For ViDiT-Q, we intentionally exclude the use of its original
mixed-precision quantization strategy in our experiments, as it tends to quantize the majority of linear
layers to INT8, which could obscure the performance differences among these methods. Further
experimental details can be found in Appendix Section A.

Image Generation Results. Table 1 presents the quantitative results of DiT-XL/2 on the ImageNet
256×256 resolution task. Specifically, PTQ4DiT and Q-DiT achieve acceptable performance under
the W4A8 setting, benefiting from their inter-channel importance balancing and dynamic group-
wise quantization strategies. Our proposed VETA-DiT method further narrows the performance
gap with the full-precision (FP) model under the same setting, achieving a best FID of 5.22 and
an Inception Score of 152.52, indicating higher-quality image generation. When the quantization
setting is further reduced to W4A4, PTQ4DiT and Q-DiT fail to produce meaningful images due
to the limitations of their methodologies. Remarkably, VETA-DiT remains effective in generating
visually acceptable images even under this low-precision setting, reducing FID and sFID by 33.65
and 16.68, respectively, compared to the second-best method. This demonstrates the effectiveness
of our proposed variance-balancing strategy and temporal difference-aware adaptation. ViDiT-Q,
without the use of mixed-precision quantization, which is incompatible with many existing hardware
platforms, suffers from severe performance degradation. We further evaluate VETA-DiT on the
COCO dataset using the PixArt-Σ model for text-to-image generation. As shown in Figure 5, the
results are consistent with those observed on ImageNet: ViDiT-Q fails to generate acceptable outputs
under W4A8 due to the lack of mixed-precision support. Although Q-DiT performs reasonably well
at W4A8, it struggles with handling inter-channel imbalances, leading to poor-quality generated
images. In contrast, VETA-DiT consistently delivers superior performance across both bit-width
settings. Additional randomly generated images are provided in Appendix Figure 10, 11, 12, 13 for
visual comparison.
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Table 1: Performance comparison of DiT-XL/2 on the ImageNet 256×256.

Model Bit-width Method IS(↑) FID(↓) sFID(↓) Precision(↑)

DiT-XL/2
steps=100
cfg=1.0

W16A16 FP 90.32 12.25 19.28 0.65

W4A8

PTQ4DiT 66.85 17.34 20.81 0.58
Q-DiT 77.07 16.16 19.24 0.61

ViDiT-Q 37.46 49.65 31.87 0.41
Ours 75.90 15.22 18.66 0.62

W4A4

PTQ4DiT 2.08 304.62 129.68 0.07
Q-DiT 1.93 256.13 429.47 0.01

ViDiT-Q 25.11 72.23 44.57 0.32
Ours 64.91 22.85 20.50 0.57

DiT-XL/2
steps=100
cfg=1.5

W16A16 FP 168.08 4.56 17.72 0.79

W4A8

PTQ4DiT 138.54 7.33 22.40 0.74
Q-DiT 154.13 5.34 17.62 0.76

ViDiT-Q 86.81 20.87 25.40 0.56
Ours 152.53 5.29 17.50 0.77

W4A4

PTQ4DiT 2.42 274.59 117.25 0.08
Q-DiT 2.14 243.05 410.74 0.02

ViDiT-Q 51.96 40.87 35.58 0.45
Ours 137.98 7.22 18.90 0.74

DiT-XL/2
steps=50
cfg=1.0

W16A16 FP 88.07 13.38 19.07 0.65

W4A8

PTQ4DiT 61.08 23.41 22.29 0.54
Q-DiT 76.12 17.42 18.92 0.61

ViDiT-Q 30.79 58.48 39.57 0.36
Ours 75.05 17.30 18.36 0.63

W4A4

PTQ4DiT 2.05 298.57 126.64 0.08
Q-DiT 1.81 262.58 421.08 0.01

ViDiT-Q 18.13 84.40 57.46 0.28
Ours 64.15 24.24 21.98 0.56

DiT-XL/2
steps=50
cfg=1.5

W16A16 FP 164.61 4.86 17.65 0.80

W4A8

PTQ4DiT 129.06 8.89 22.73 0.71
Q-DiT 148.83 5.77 17.57 0.76

ViDiT-Q 81.65 22.65 26.45 0.56
Ours 147.12 5.53 17.65 0.77

W4A4

PTQ4DiT 2.33 281.43 119.45 0.08
Q-DiT 2.02 249.98 404.09 0.01

ViDiT-Q 48.34 44.15 37.90 0.43
Ours 135.66 7.90 19.11 0.73

’(WxYb)’ indicates that the weights and activations are quantized to x-bit and y-bit, respectively.

Figure 5: (Left) Text-to-image generation performance of the PixArt-Σ model on the COCO dataset.
(Right) Generated images comparison of W4A4 quantization.
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Video Generation Results.. As shown in Table 2, similar to the image generation task, existing
quantization methods achieve satisfactory performance under the W4A8 setting. However, due to
their limited ability to balance inter-channel variance, they struggle under the more challenging W4A4
setting. In contrast, our method consistently outperforms these baselines across various metrics,
demonstrating its effectiveness in preserving both the visual quality and temporal consistency of
generated videos. Appendix Figure 14, 15 presents a visual comparison of a randomly generated
video for visual evaluation. We also conduct additional experiments to further evaluate the video
generation performance of the quantized models; see Appendix D.3 for details.

Table 2: Performance comparison of Open-Sora on the VBench evaluation benchmark.

Bit-width Method Subject
Consist.

BG.
Consist.

Motion
Smooth.

Dynamic
Degree

Aesthetic
Quality

Imaging
Quality

Scene
Consist.

Overall
Consist.

W16A16 FP 0.947 0.965 0.983 0.680 0.575 0.519 0.454 0.274

W4A8
Q-DiT 0.951 0.962 0.985 0.600 0.569 0.497 0.451 0.273

ViDiT-Q 0.920 0.963 0.982 0.520 0.536 0.495 0.316 0.269
Ours 0.950 0.961 0.985 0.600 0.571 0.509 0.506 0.273

W4A4
Q-DiT 0.934 0.955 0.983 0.440 0.508 0.452 0.311 0.252

ViDiT-Q 0.897 0.962 0.978 0.600 0.499 0.468 0.333 0.254
Ours 0.939 0.959 0.984 0.480 0.546 0.499 0.431 0.269

4.3 Ablation Studies

To assess the effectiveness of each component in our proposed framework, we conduct ablation
experiments under the challenging W4A4 setting. These experiments are carried out using the
DiT-XL/2 model on the ImageNet 256×256 dataset, with 50 sampling steps using the DDIM-solver.
Detailed quantitative results are provided in Table 3. We begin our evaluation with a baseline that
employs a simple group-wise linear quantization strategy. Under the W4A4 configuration, the baseline
performs poorly across all metrics. Next, we incorporate a K-L enhanced Hadamard transform for
variance alignment, which significantly improves the quality of generated images, achieving a FID of
48.32, and an IS of 43.68. Building upon this, we further introduce the incoherence-aware temporal
adaptation method, which enhances the ability of the Hadamard transform to adapt across different
timesteps. This results in a further reduction of the FID to 7.90. These findings demonstrate the
individual effectiveness of each proposed component and highlight how their integration contributes
to pushing our VETA-DiT method toward state-of-the-art performance under W4A4 settings, enabling
the generation of visually plausible and semantically coherent images.

Table 3: Ablation study on ImageNet 256×256 with W4A4.

Method IS FID sFID Precision
FP 164.61 4.86 17.64 0.80

Baseline 1.84 260.47 409.15 0.01
+ K-L enhanced Hadamard Transform 43.68 48.32 40.19 0.36

+ Incoherence-aware adaption 135.66 7.90 19.10 0.72

5 Conclusion

This paper presents VETA-DiT, a post-training quantization framework designed for Diffusion
Transformers (DiTs) to reduce inference cost while preserving generation quality. We address two
major challenges: large inter-channel variance due to outliers and significant activation distribution
shifts across denoising timesteps. To this end, we introduce a KLT-enhanced Hadamard transform
for variance alignment and an incoherence-aware adaptive calibration method to handle temporal
dynamics. Experiments on image and video generation tasks show that VETA-DiT achieves perfor-
mance close to the full-precision model under W4A8, while still delivering acceptable visual quality
under the W4A4 setting. Our approach advances the deployment of DiTs in resource-constrained
scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state the contributions in the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the main limitations in Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer to Appendix C for related assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are provided in Appendix A. We have released our
code at anonymous repository: https://anonymous.4open.science/r/VETA-DiT.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released our code at anonymous repository:
https://anonymous.4open.science/r/VETA-DiT.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4.1 and Appendix A for experimental settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our study used a fixed seed for all quantization operatipons, following stan-
dards in post-training quantization, and thus did not report statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in Appendix A, all experiments are done on Nvidia A800 GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm the research conducted in thje paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of our work in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all datasets and models utilized in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods of our research do not involve the use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experimental Details

In our implementation, we randomly selected 16 classes from the ImageNet dataset to perform image
generation and calibrate the DiT-XL/2 model. For the PixArt-Σ model, we used the sample prompts
provided in the official PixArt-Σ codebase for calibration. In video generation tasks, we calibrated
the model using text-to-video prompts from the Open-Sora implementation.

For weight quantization, we adopted static quantization with a group size of 128. Additionally, we
applied second-order information from the Hessian matrix, as used in GPTQ, to adjust the weights.
This process is performed offline and introduces no additional overhead during inference. For
activation quantization, we followed the same dynamic quantization strategy as Q-DiT, using a group
size of 128 to balance quantization accuracy and inference cost. All experiments were conducted on
Nvidia A800 GPUs.

For all baseline methods, we used the same calibration set, random noise, and classifier-free guidance,
and quantized all Transformer layers in the DiT architecture.

In the ViDiT-Q implementation, we collected the maximum activation values of the layers to be
quantized in order to determine the smooth factor. We set the hyperparameter α = 0.5 to control
the smooth factor. The original ViDiT-Q applies mixed-precision quantization to both weights and
activations, which we found leads to use higher precision in the linear layers of the FFN module. To
ensure a fair comparison, we removed mixed-precision support in our implementation of ViDiT-Q
and used the same precision settings as all other methods.

B Detailed Algorithm for VETA-DiT

Algorithm 1: KLT-H Based Quantization with Incoherence-Aware Temporal Sampling

Input: Activation tensor X ∈ Rt×n×m, weight matrix W ∈ Rm×d

Output: Quantized activation tensor Xq , quantized weight matrix Wq

1 Step 1: Incoherence-aware sampling of activations
2 Initialize an importance vector α of length t;
3 for each time step ti do
4 Extract the activation matrix X(ti) at time ti;
5 Compute the incoherence score sti of X(ti);
6 Compute important score αti based on sti ;
7 Store αti in α;

8 Step 2: Generate sampling distribution
9 Apply softmax to α to obtain probability vector p;

10 Sample multiple time steps based on p;
11 Concatenate the sampled activation matrices to form Xsampled;

12 Step 3: Construct KLT-H transformation matrix
13 Compute the covariance matrix of Xsampled and derive its eigenvectors to form the KLT matrix K;
14 Construct the Hadamard matrix H;
15 Form the composite orthogonal transform: TKLT-H = K ·H;

16 Step 4: Transform activation and weight using shared transform
17 Transform activation: X′ = X ·TKLT-H;
18 Transform weight: W′ = T⊤

KLT-H ·W;
19 This ensures that the computation (X ·W) is equivalent to (X′ ·W′), preserving functional

correctness;

20 Step 5: Quantize the transformed activation and weight
21 Quantize X′ using an dynamic activation quantization method, producing Xq;
22 Quantize W′ using a static weight quantization method, producing Wq;

23 return Quantized activation Xq and quantized weight Wq
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The VETA-DiT pipeline is detailed in Algorithm 1. The algorithm consists of five key steps.
Step 1, we compute the importance scores for each diffusion time step using incoherence-aware
sampling. Time steps with higher quantization difficulty are assigned larger weights according to
Equation (13, 14), allowing the transformation matrix to adapt to the temporally varying activation
distributions. Step 2, after obtaining the importance scores, we enhance the numerical stability of
the sampling process by applying Equation (15, 16) to generate a composite calibration set, which
includes activations sampled in proportion to their importance. Step 3, we calculate the eigenvectors
and eigenvalues of the covariance matrix of the incoherence-aware calibration set to construct the
Karhunen–Loève Transform (KLT) matrix, which is then combined with a randomly generated
Hadamard matrix, to form the KLT-enhanced Hadamard transformation matrix. Step 4, we apply
the transformation matrix TKLT-H to the activation tensor and its inverse (the transpose of the matrix
due to orthogonality) to the weight tensor, aligning the inter-channel variance of both activations and
weights while ensuring the correctness of the computation. Step 5, we apply dynamic quantization to
the transformed activations and static quantization to the transformed weights, resulting in low-bit
quantized activations and weights for efficient inference.

C Proofs

This section provides a detailed derivation demonstrating that the Hadamard transform enhanced by
the K-L transform can achieve variance equalization across channels. Recall that the variance of the
j-th transformed channel can be expressed as Equation 7. Expanding the squared summation, we
obtain:

V ar(zj) =
1

n

n∑
i=1

m∑
k=1

m∑
l=1

xikxilhkjhlj . (17)

Interchanging the summation order and grouping terms:

V ar(zj) =

m∑
k=1

m∑
l=1

hkjhlj

(
1

n

n∑
i=1

xikxil

)
. (18)

We define the sample covariance matrix C ∈ Rm×m as:

Ckl =
1

n

n∑
i=1

xikxil. (19)

Then the variance of the j-th transformed channel becomes:

V ar(zj) =

m∑
k=1

m∑
l=1

Cklhkjhlj = h⊤
j Chj , (20)

where hj ∈ Rm is the j-th column of the orthogonal matrix H.

To further interpret this expression, recall that:

• The diagonal elements of C are Ckk = V ar(xk).

• The off-diagonal elements are Ckl = Cov(xk,xl) for k ̸= l.

Thus, we can split the summation in Equation 20 into diagonal and off-diagonal parts to derive
Equation 8, which shows even after applying an orthogonal transformation like the Hadamard
transform, the resulting channel variances may still differ substantially due to the interaction between
original variances and covariances. Hence, Hadamard transform alone does not guarantee uniform
variance across channels.

Karhunen–Loève Transform (KLT), which uses the eigenvectors of the covariance matrix C to form
an orthogonal basis. Let C = UΛU⊤, where U contains the orthonormal eigenvectors and Λ is
a diagonal matrix of eigenvalues λ1, λ2, ..., λm. Define K = U⊤ as the KLT matrix. The KLT
transform is then XK, with covariance:

CKLT =
1

n
(XK)⊤(XK) = K⊤CK = Λ. (21)
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Thus, the transformed features are decorrelated and their variances are exactly the eigenvalues
λ1, . . . , λm.

To combine the statistical decorrelation of KLT with the computational efficiency of Hadamard, we
obtain the transformed tensor Y = XKH = XTKLT-H.

This combines the fast computation of the Hadamard transform with the statistical decorrelation
property of the KLT. The covariance matrix of the transformed output Y is:

CY =
1

n
Y⊤Y = H⊤K⊤CKH = H⊤ΛH. (22)

Then, the variance of the j-th channel in Y is:

V ar(yj) = h⊤
j Λhj =

m∑
k=1

λkh
2
kj . (23)

For a normalized Hadamard matrix, h2
kj =

1
m for all k, j, so we can obtain the Equation 11.

D Additional Empirical Results

D.1 Validation of KLT-H Transformation Effectiveness

We further analyze the effectiveness of the proposed KLT-H transformation in terms of incoherence
reduction for both activations and weights. Specifically, we compute the normalized incoherence
values across all layers of the DiT-XL/2 Transformer backbone under three settings: without transfor-
mation (original), with Hadamard transformation, and with our proposed KLT-H transformation. As
shown in Figure 6 and Figure 7, the KLT-H consistently achieves lower incoherence than the other
two settings, indicating its superior ability to decorrelate channels and better align with the intrinsic
data structure. These improvements hold consistently for both weights (Figure 6) and activations
(Figure 7), further validating the generality of our approach across different components of the model.

Figure 6: Normalized incoherence values of weights across all layers in the DiT-XL/2 Transformer
backbone under different transformations. The KLT-H transformation consistently achieves lower
incoherence, indicating its effectiveness in improving weight channel alignment.

In addition to the layer-wise results, we also compute the average incoherence and standard deviation
across all layers. As summarized in Table 4, the KLT-H transformation yields the lowest average
incoherence and the smallest standard deviation, further demonstrating its effectiveness and robustness
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Figure 7: Normalized incoherence values of activations across all layers in the DiT-XL/2 Trans-
former backbone under different transformations. The KLT-H transformation significantly reduces
incoherence compared to both the original and Hadamard-transformed activations, demonstrating
improved inter-channel decorrelation.

in suppressing inter-channel redundancy. These results provide strong empirical evidence supporting
the use of KLT-H as a principled and practical enhancement for quantization under temporally varying
data distributions.

Table 4: Average and standard deviation of incoherence values across all layers of the DiT-XL/2
Transformer under different transformations.

Method Weight-Incoherence Activation-Incoherence
Original 19.91 ± 13.26 49.29 ± 44.05

Hadamard 8.56 ± 5.56 19.22 ± 11.80
KLT enhanced Hadamard 7.42 ± 4.40 17.13 ± 10.74

D.2 Evaluation of Incoherence-Aware Adaptation Strategy

To further validate the effectiveness of our proposed incoherence-aware adaptation strategy, we
conduct additional experiments comparing three methods: (1) the standard RTN baseline without any
transformation, (2) the KLT-H transform constructed using randomly selected samples, and (3) our
incoherence-aware KLT-H transform. For each method, we compute the reconstruction error (mean
squared error, MSE) between the output of each linear layer and the corresponding full-precision
output.

As shown in Figure 8, under the W4A8 setting, the incoherence-aware KLT-H transform consistently
achieves lower reconstruction errors across the majority of layers compared to the other two baselines.
Similarly, Figure 9 presents the results under the W4A4 setting, where the advantage of our method
becomes even more pronounced due to the more aggressive quantization constraints. These results
highlight the robustness of the incoherence-aware adaptation in handling temporally varying data
distributions under low-bit quantization.

D.3 Evaluation of Temporal and Textual Consistency in Video Generation

To comprehensively evaluate the generative capability of the quantized models, we additionally adopt
three metrics from different perspectives. Specifically, CLIPSIM and CLIP-Temp are used to measure
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Figure 8: Normalized layer-wise MSE reconstruction error comparison under W4A8 quantization.

Figure 9: Normalized layer-wise MSE reconstruction error comparison under W4A4 quantization.

text-video alignment and temporal semantic consistency, respectively, while Temporal Flickering is
employed to assess temporal smoothness. As shown in Table 5, our method demonstrates consistently
strong performance under both W4A8 and W4A4 quantization settings, outperforming other PTQ
methods in terms of both textual alignment and temporal consistency.

E Limitations and Broader Impacts

In this work, we present an effective post-training quantization framework that promotes the broader
deployment and applicability of Diffusion Transformers (DiTs). By leveraging variance equalization
and low-bit data representation, our method significantly reduces the computational and memory
overhead, thereby improving the usability of DiTs in resource-constrained settings. VETA-DiT
relies on a carefully designed incoherence-aware sampling strategy that assigns higher importance
to timesteps with higher quantization difficulty. However, its applicability to other domains or
modalities—such as audio and 3D data—requires further investigation. In future work, we plan
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Table 5: Comparison of video generation quality under W4A8 and W4A4 settings using CLIPSIM,
CLIP-Temp, and Temporal Flickering.

Bit-Width Method CLIPSIM CLIP-Temp Temporal Flick
W16A16 FP 0.2217 0.9980 0.9782

W4A8
Q-DiT 0.2198 0.9973 0.9798

ViDiT-Q 0.2200 0.9975 0.9820
Ours 0.2204 0.9982 0.9804

W4A4
Q-DiT 0.2161 0.9952 0.9702

ViDiT-Q 0.2156 0.9953 0.9762
Ours 0.2176 0.9974 0.9770

to explore hardware acceleration of VETA-DiT to enable real-time inference. In terms of broader
impacts, this work advances efficient generative modeling by improving quantization techniques for
diffusion models. Nonetheless, as with many optimization techniques that facilitate model deployment
in low-resource scenarios, there is a risk of misuse in surveillance, deepfakes, or other sensitive
content generation without proper regulation. We encourage the community to adopt responsible
practices that align with ethical AI development principles.

F Additional Visualization Results

In this section, we present additional qualitative results to further demonstrate the effectiveness of our
proposed VETA-DiT. Figure 10, 11 shows randomly generated ImageNet images using the DiT-XL/2
model under W4A8 and W4A4 quantization settings. Figure 12, 13 also provides examples of images
generated by the PixArt-Sigma model. In addition, a frame sample from a randomly generated video
is shown in Figure 14, 15. These results qualitatively highlight the strong generation capability of
VETA-DiT under both moderate and aggressive quantization.

G Inference overhead

The KLT-enhanced Hadamard matrix is defined as TKLT-H = KH, where K is a data-driven KLT
matrix, precomputed offline using the calibration set, and H is a random Hadamard matrix.

During inference, this transformation can be fused into model weights, incurring no additional cost
for most layers. For layers like out-proj and down-proj, online transformation is necessary to preserve
computational invariance. We evaluated the associated overhead on DiT-XL/2 via implementing a
custom CUDA kernel on NVIDIA A100 GPU, targeting matrix multiplication operations within these
layers.

Table 6: Comparison of latency, speedup, and memory reduction.

Bit-Width Method Latency (ms) Speedup Memory (MB) / Reduction
W16A16 FP 6.167± 0.045 - 38.53 / -
W4A8 ViDiT-Q 3.879± 0.012 1.59× 18.68 / 2.06×
W4A4 Ours 2.960± 0.006 2.08× 9.68 / 3.98×
W4A4 + Online Transform Ours 3.163± 0.007 1.95× 10.31 / 3.74×

As shown in Table 6, due to the availability of efficient Hadamard transform implementations, the
online transform introduces only 6.8% overhead, while still achieving 1.95× acceleration and 3.74×
memory savings over FP16.
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Figure 10: Random images generated under W4A8 quantization using different PTQ methods with
the DiT-XL/2 model on ImageNet 256×256.
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Figure 11: Random images generated under W4A4 quantization using different PTQ methods with
the DiT-XL/2 model on ImageNet 256×256.
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Figure 12: Random images generated under W4A8 quantization using different PTQ methods with
the Pixart-Σ model on COCO. * indicates that ViDiT-Q uses mixed-precision quantization, where
most linear layers are quantized with higher bit-widths.
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Figure 13: Random images generated under W4A4 quantization using different PTQ methods with
the Pixart-Σ model on COCO.
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Figure 14: Random video generated under W4A8 quantization using different PTQ methods with
the Open-Sora 1.2 model on VBench.
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Figure 15: Random video generated under W4A4 quantization using different PTQ methods with
the Open-Sora 1.2 model on VBench.
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