
Systematic Idea Refinement for
Machine Learning Research Agents

Zijun Liu, Cheng Gao, Hanxi Zhu
Department of Computer Science & Technology

Student ID: 2024310673, 2024210899, 2024310666

Abstract

The rapid evolution of large language models (LLMs) has catalyzed new method-
ologies for automating machine learning (ML) research, particularly in the areas of
code generation and model design. While LLM-empowered agents have demon-
strated notable success in generating syntactically correct solutions, they often fall
short in addressing the complexity of real-world ML tasks, resulting in solutions
that may be technically sound but suboptimal in terms of performance and adapt-
ability. To address this gap, this project introduces a multi-agent framework named
Baby-AIGS-MLer designed to enhance ML research agents in a pluggable way
under existing Baby-AIGS framework. The proposed system integrates multiple
agents, each with a specialized role, that work together to iteratively propose,
refine, and evaluate diverse research ideas. Baby-AIGS-MLer leverages multi-level
feedback from different stages of the research process, including LLM-based judg-
ments, experimental results, and code generation, to expand the solution space
and improve performance, which allows ideas to evolve based on both theoretical
insights and empirical evidence. The effectiveness of Baby-AIGS-MLer is evalu-
ated using MLE-Bench, a comprehensive benchmark suite consisting of 75 Kaggle
competitions across various ML tasks. Our preliminary experimental results show
that the proposed multi-agent system significantly improves both the performance
and efficiency of ML research agents, enabling them to generate and refine more
optimal solutions. By incorporating systematic idea exploration and refinement,
this approach paves the way for more advanced, self-improving agents that can
contribute to the evolving landscape of machine learning research.

1 Introduction

64.6

72.1

80.9

2.0
0.5

~10

0
2
4
6
8
10
12
14
16

60

65

70

75

80

85

llama-3.1 Baby-AIGS-MLer
(llama-3.1)

human

Accuracy ↑ Time (h)

Figure 1: The preliminary experimental results
on Titanic-Spaceship Kaggle contest1 from MLE-
Bench. Baby-AIGS-MLer system is built on top
of LLaMA-3.1 model without agentic scaffolds.

The field of machine learning (ML) has wit-
nessed transformative advancements with the
advent of large language models (LLMs), which
have enabled automation in various stages of
the research process [1, 2], including research
ideation, model generation, data preprocessing,
and evaluation. LLM-empowered agents, utiliz-
ing the generative capabilities of these models,
have been applied to a range of tasks such as
code generation for ML models [3], designing
and executing data analysis pipelines [4], and
automating the process of hyperparameter tun-
ing. By leveraging the immense knowledge embedded and reasoning capabilities in LLMs, these

1https://www.kaggle.com/c/spaceship-titanic.

Preprint. Under review.

https://www.kaggle.com/c/spaceship-titanic

agents have the potential to accelerate research, democratize access to sophisticated ML techniques,
and allow even non-experts to engage in high-level research tasks.

However, despite these advancements, current applications of LLM-based agents in ML research
remain constrained in several key aspects. One of the main limitations is that most existing systems
primarily focus on focus on generating code snippets that solve specific tasks based on a narrow
set of predetermined or self-determined methodologies [5]. These agents typically use a single,
predetermined or self-determined approach to solve a given problem. For example, agents may
be determined to solve a classification problem by generating code for a logistic regression model,
without noticing it is not an appropriate choice for some dense temporal data they are facing. In
practice, agents may consistently default to commonly used techniques that are widely applicable
but may not be the most efficient or effective for the given task, resulting high validity rates but
rather low performance, as shown by Chan et al. [6]. Moreover, while techniques such as tree
search [7] and iterative refinement [8] have been incorporated into some LLM-based systems to
ensure syntactic correctness, these approaches focus primarily on improving the technical validity
of the generated code. These agents, instead, lack the ability to explore multiple solution strategies
and adapt dynamically to evolving challenges, limiting their performance in complex, real-world
tasks [9], particularly in novel or poorly defined research scenarios where the optimal solution may
not be apparent from the outset.

To overcome these limitations, this project proposes a multi-agent framework that systematically
explores and refines research ideas through multi-level feedback integration and is compatible with
inference compute scaling techniques. The framework is named Baby-AIGS-MLer, which is
inherited from Baby-AIGS system [2] but aimed at constructing optimal solutions for ML research
problems, rather than falsifying scientific discoveries. Baby-AIGS-MLer expands the solution
space by enabling agents to autonomously generate and refine diverse ideas and corresponding
methodologies to solve a given ML problem. As shown in Figure 2, the process follows an iterative
manner. This mirrors the exploratory and iterative approach employed by human researchers, where
multiple research ideas are implemented, tested, refined, and adapted based on empirical results and
theoretical insights. At the heart of this multi-agent framework are four specialized agents: PROPOSAL
AGENT, which generates initial ideas for possible solutions;CODE GENERATION AGENT, which
translates these ideas into executable code; EXPERIMENT CONDUCTOR, which runs experiments
and evaluates the performance of the generated solutions; and REVIEW AGENT, which assesses
the empirical results based on previous solutions and provides feedback to guide further refinement.
Baby-AIGS-MLer could be performed with inference compute scaling techniques [10]. For instance,
the initial ideation process could be sampled multiple times, resulting in a batch of various ideas,
enhancing the diversity of methodologies.

The proposed system is designed to be plug-and-play, meaning that it can be integrated with existing
code generation agents to enhance their ability to explore and evaluate diverse solutions. This is
especially crucial in the context of modern ML research, where code generation agents require
dedicated efforts to design and implement. To evaluate the efficacy of the proposed framework, we
conduct experiments using MLE-Bench, a benchmark suite that includes 75 Kaggle competitions
across a wide range of ML tasks. This comprehensive testing ground allows us to assess the multi-
agent system’s ability to generate high-quality solutions in a variety of contexts, demonstrating
its potential to improve the performance and versatility of ML research agents. The preliminary
experiment selects two from the 75 contests, and the experimental results show that the idea refinement
process is effective on different agentic scaffolds, and that ML research agent systems have the
potential to catch up experienced human experts (Figure 1).

By enabling agents to systematically explore diverse methodologies, integrate multi-level feedback,
and refine their approaches in real time, Baby-AIGS-MLer aims to push the boundaries of current ML
research agents. Ultimately, this project seeks to contribute to the development of more advanced,
adaptive, and efficient automated research systems that can more effectively tackle the challenges of
front-end scientific problems.

2 Related Work

Machine Learning System Development Agents LLM-based agents have become integral to
automating ML researches [11]. These agents leverage the generative capabilities of LLMs, using

2

Solution 1 Validation Result:
0.61

Solution 2 Validation Result:
0.58

···

Solution 1 Validation Result:
0.63

Solution 2 Validation Result:
0.72

···

Code Generation Agents Code Generation Agents w/ Systematic Idea Refinement

High-Level
Idea 1

Task:
Machine Learning research ProbLeM Training Set Validation Set Metrics

Solution 1

Solution 2

Solution 1

Solution 1+

Training Set Validation Set

Review 1

High-Level
Idea 1+

Review 1+

Figure 2: The overview of our proposed multi-agent idea refinement framework Baby-AIGS-MLer
for ML research. Traditionally, the code generation agents could produce multiple solutions through
sampling, but the solutions are mostly independent and follow well-used, sub-optimal methodologies
(left). Instead, idea refinement allows agents to iteratively evolve high-level ideas and optimize the
methodology based on actual experimental results (right).

methods like multi-agent workflow [12], tree search [7], or iterative refinement [8] to improve code
validity and correctness. These systems can produce syntactically correct and functionally valid
solutions. However, recent works [6] have demonstrated that such systems can be effective in
producing valid solutions across a range of problems while failing to yield higher performance. This
underscores the need for frameworks that can propose and refine ideas to guide code generation for
general ML tasks. Still, all systems above may face performance degradation when facing poorly
defined tasks, e.g., without clear metrics, which we decide to leave for future works.

Research Idea Generation The concept of research idea generation extends beyond coding, aiming
to replicate the behavior of human researchers. However, most existing approaches [3, 13] focus on
refining an initial idea with inherent knowledge in LLMs or existing literature, rather than taking
richer feedback from experimental results. In contrast, human researchers often select the most
promising approach based on both theoretical and empirical results. Emulating this idea-driven
exploratory process has the potential to enhance the effectiveness. The lessons of previous work [14]
also show that integration with the implementation of research ideas in the code is challenging.

AI-Powered Automated Research Systems The automation of ML research through LLM-
empowered agents has been the focus of recent studies. Recent work has explored techniques
such as multi-agent workflows [3, 1, 2], and reinforcement learning from scholar feedback [15] to
ensure that the generated solutions are not only valid but also robust. However, these systems often
remain constrained by the capacity of foundation models in multiple aspects, including literature
retrieval, ideation, methodology implementation, experimentation, and falsification. This field is
much under-explored. It is worth noting that Baby-AIGS-MLer is derived from Baby-AIGS system
with specialized ML development capacity and without an explicit falsification process.

3 Task & Framework Formulation

3.1 Machine Learning Research Problems

The core problem addressed in this project is to conduct ML research. Formally, let
Dtest = {(x(test)

i , y
(test)
i)}Ntest

i=1 denote the test set of a given ML problem P , where x
(test)
i rep-

resents input features, y
(test)
i represents the corresponding labels for each data point; Dtrain =

{(x(train)
i , y

(train)
i)}Ntrain

i=1 ,Dval = {(x(val)
i , y

(val)
i)}Nval

i=1 represents the training set and the validation
set, respectively. Without loss of generality, the goal could be described as to identify a model
f : X → Y that maximizes a performance metric function L(f(x), y) on the test set Dtest, since those
descending metrics could be reversed into ascending ones, and multiple metrics could be averaged as
one. L could be a loss function or performance measure relevant to the task. The formal expression

3

is:

fgoal = argmaxf∼S(P)(

Ntest∑
i=1

L(f(x(test)
i), y

(test)
i)), (x

(test)
i , y

(test)
i) ∈ Dtest (1)

where fgoal is the optimal solution and S represents the agentic system (Equation (2) or (3)).

For a given ML problem P , LLM-based agents are required to design and implement a model f ∈ F
as a potential solution, where F represents the space of potential models. Thus, a key challenge in
ML research is not just solving a problem but determining which methodology or model f is best
suited to the problem at hand, i.e., most approximate to fgoal. The space of potential models F is vast,
and identifying the optimal model requires an indicator to identify which f is better. It should be
noted that agents could use the validation set Dval for the development and validation of methods and
could access the metric L. Thus, L(f(x), y), (x, y) ∈ Dval could be used as an indicator. If multiple
candidates F ′ ⊂ F are generated, the best outcome f̃ ∈ F ′ could be selected from the candidates as
the approximate to fgoal.

3.2 Single-Agent & Multi-Agent Systems

In a traditional single-agent system, a single LLM-powered agent is tasked with generating an
appropriate solution for a given ML problem. The agent receives an input prompt π that describes the
problem P and is responsible for producing a model f ∈ F . The model is then evaluated using a
metric function L(f(x), y), which assesses the performance of the model. Formally, we can represent
a single-agent workflow as:

f ∼ S(P) = A(π,Dtrain, Dval,L), (2)

where A is an LLM-empowered agent that generates a model f ∈ F by coding based on an initial
prompt π ∈ Π and its predefined workflow, and Π represents all possible input prompts. The
generated model f has the objective to maximize the metric function L.

The multi-agent system leverages the collaboration of several agents, and the collaboration is realized
by establishing communications for information exchanges between agents. A multi-agent system

f ∼ S(P) = M(π,Dtrain, Dval,L) (3)

forms communications between a set of agents A = {A1, A2, . . . , Am}, where each agent Ai is
determined by its input prompt πi, and its workflow. Agents collectively propose and refine various
methodologies for solving P by exchanging messages between each other in a predefined order. A
single agent A is the special case of M. In this project, we focus on designing pluggable methods for
code generation agents, with the constraints that only one agent generates the final code and thus
produces the ML model f ∈ F , and the others mainly provide guidelines or feedback.

3.3 Inference Compute Scaling

In the context of this project, inference compute scaling [10] techniques can be mainly divided
into two main components: iterative refinement and parallel sampling, both of which contribute to
improving the exploration and optimization of model solutions. We formally define these concepts
below.

Iterative Refinement Iterative refinement refers to the repeated application of a refinement process
in which an initial solution is progressively improved by incorporating feedback over time. The
iterative process increases the computational effort at each iteration and aims to make the system
converge toward an optimal solution through incremental improvements. Mathematically, the iterative
refinement process can then be described as:

ft+1 ∼ R(ft,S, P), t = 0, ..., T − 1, f0 = ϕ, (4)

where ft is the solution at iteration t, ft+1 is the updated solution after applying the refinement
function R, and T denotes the maximum iteration time. The compute resources required for the
iterative refinement scale with the number of iterations T and the complexity of the refinement
process. As the result, the generated solution candidates are F ′ = {ft}Tt=1.

4

Proposal
Agent

Code Generation
Agent

Review
Agent

Experiment
Conductor

Inference
Compute
Scaling

Idea 1:
Using Adaboost to
ensemble rule-based,
statistical, neural
classifiers…

Idea 2
Calling GPT-4…

Idea 3
Train an BERT…

Idea 4
Recruit human…

Execution Error

def job(args):
 …

def main():
 …

Code Cases

Metrics

: xxx
…

Code Generation

Interpreter

Acc: 0.9
Time: 0.1
…

Review 1:
Idea & Code consistency: …
Experimental Results: …
Further Analysis:
Insights: …
To be improved: …

Literature Database Plug-and-Play Code Gen. Agent Human Interface
(optional)

Time Limit Exceeded

Acc: 0.75
Time: 1.5
…

Idea Refinement w/ Multi-Level Feedback

Pruned: low performance

Task: ClassifiCaTion

Figure 3: The demonstration of Baby-AIGS-MLer framework with inference compute scaling. The
framework comprises PROPOSAL AGENT, CODE GENERATION AGENT, EXPERIMENT CONDUC-
TOR, and REVIEW AGENT. The inference compute scaling technique here refers to the parallel
sampling (Section 3.3). In each parallel thread, the system performs iterative idea refinement.

Parallel Sampling Parallel sampling refers to the simultaneous exploration of multiple candi-
date solutions across different parts of the solution space, each with different initial conditions or
exploration paths. This approach significantly reduces the time required to explore a diverse set
of solutions, as multiple samples are generated and evaluated concurrently. The agentic system S
explores different solutions fp ∼ Sp(P), p = 1, ..., Np in parallel, where Sp is the p-th instance of S.
So that the final solution candidates F ′ = {fp}

Np

p=1. In each thread, the system instance may perform
independently, leading to a wider exploration of the solution space. The compute cost depends on the
number of parallel threads P and the computational complexity of the system.

4 Proposed Method: Baby-AIGS-MLer

As shown in Figure 3, the proposed methodology introduces a multi-agent system named Baby-
AIGS-MLer designed to systematically explore, refine, and optimize ML research ideas. This
system aims to extend beyond the capabilities of current code generation agents by facilitating the
continuous refinement of proposed methodologies through feedback integration and inference-time
scaling. Below, we detail the components and functions of the multi-agent framework, followed by a
discussion on how the framework can be applied to a wide variety of existing code generation agents.

4.1 The Multi-Agent Idea Refinement Framework

The multi-agent framework proposed in this work is structured around four specialized agents,
each tasked with a distinct role in the idea generation and refinement process. These agents work
collaboratively, exchanging multi-level feedback to ensure that each idea is sufficiently explored and
refined. The idea refinement process mimics the exploratory nature of human research, in which
multiple hypotheses are tested, reviewed, and refined based on both theoretical and empirical insights.

The framework consists of the following key agents:

• PROPOSAL AGENT: The first agent in the framework is responsible for proposing potential
research ideas and methodologies. It generates hypotheses based on the problem description,
the multi-level feedback from previous iterations, and prior knowledge embedded in the
LLM. The multi-level feedback includes the proposed idea from PROPOSAL AGENT, exper-
imental results in metric values and recorded data points from EXPERIMENT CONDUCTOR,
and the review from REVIEW AGENT in the last iteration if available.

5

• CODE GENERATION AGENT: Once PROPOSAL AGENT generates an idea, CODE GEN-
ERATION AGENT is responsible for translating that idea and the corresponding method
into executable code for experimentation. This agent takes the proposed methodology and
implements it using appropriate machine learning frameworks, libraries, and algorithms.

• EXPERIMENT CONDUCTOR: EXPERIMENT CONDUCTOR is responsible for managing the
experimental workflow. After CODE GENERATION AGENT generates the code implementa-
tion of a model f , EXPERIMENT CONDUCTOR trains the model on the training set Dtrain,
evaluates the model’s performance on the validation set Dval, and collects metric values and
all inference outcomes. These results are critical for REVIEW AGENT to understand the
effectiveness of the proposed model and guide further refinement.

• REVIEW AGENT: Finally, REVIEW AGENT evaluates the code implementation and the
performance, and tries to derive constructive insights. The review process involves analyz-
ing the code implementation from CODE GENERATION AGENT and performance metrics
obtained by EXPERIMENT CONDUCTOR, and offering suggestions for improvement. RE-
VIEW AGENT may write code to analyze the experimental results in depth. Here are the
components of a review, which are generated sequentially:

Components of a Review

– Idea & Code Consistency
– Experimental Results
– In-Depth Analysis (conducted with code snippets)
– Insights
– Actionable Improvement

The feedback provided by REVIEW AGENT helps close the loop in the idea refinement
process. By incorporating this feedback, the system iteratively improves the model, evolving
the approach towards an optimal solution.

The interaction between these agents is sequential, except for CODE GENERATION AGENT which
may test its codes with EXPERIMENT CONDUCTOR. This multi-level feedback ensures that the
solution space is continuously explored, empowering the system with the potential to produce better
models over time.

According to Section 3.3, Baby-AIGS-MLer combines two inference compute scaling methods. The
system performs parallel sampling by sampling a diverse set of high-level ideas. And all system
instance in different threads as a whole perform iterative idea refinement. Specifically, when the t-th
iteration is finished, the best idea and method (f̃) will be kept for the (t+ 1)-th iteration; and at the
beginning of the (t+ 1)-th iteration, Np new ideas will be sampled according to the feedback from f̃ .
As a demonstration, idea 2 is filtered out because of the lower performance than idea 1 in Figure 3.

4.2 Applying the Framework to Arbitrary Code Generation Agents

One of the key advantages of the proposed multi-agent framework is its flexibility and plug-and-play
nature. The framework is designed to work with arbitrary existing code generation agents [8, 7],
including bare LLMs or complicated agents. Most of advanced code generation agents require to
access the experiment template and environment. Thus, we expose the interface of EXPERIMENT
CONDUCTOR for these agents, which is usually provided by the ML task benchmark, e.g., MLE-
Bench. By integrating the multi-agent framework with various code generation agents, we achieve a
system that is not only flexible but also capable of continuously adapting to the state-of-the-art agent.

5 Preliminary Experiments

In this section, we present the results of preliminary experiments designed to evaluate the effectiveness
of Baby-AIGS-MLer. We compare its performance against three baseline methods: bare models,
code generation agents, and human developers. The experiments were conducted on two Kaggle
competition datasets, selected to cover both simple and complex machine learning tasks. The

6

experimental results highlight the effectiveness of Baby-AIGS-MLer in generating high-performance
solutions to real-world, complex ML research problems through systematic idea exploration and
iterative refinement. Although not surpassing experienced human experts, the effectiveness and
efficiency of the framework underscore its potential to enhance the ML research process.

5.1 Experiment Setup

The selected Kaggle tasks are as follows:

• Titanic - Spaceship1: This dataset is a binary classification problem where the task is to
predict whether a passenger teleported or not based on attributes such as age, class, sex, and
other information.

• LMSYS - Chatbot Arena Human Preference Predictions2: This dataset involves predicting
human preferences for different LLM responses. The challenge lies in handling hidden
features that influence human perception, requiring more sophisticated model exploration.

Both datasets present distinct challenges and allow us to assess the ML research systems to handle
different types of machine learning problems.

2.731

1.204
0.955

2.0
0.5

~10

0
2
4
6
8
10
12
14
16

0.000

0.500

1.000

1.500

2.000

2.500

3.000

llama-3.1 Baby-AIGS-MLer
(llama-3.1)

human

Log Loss ↓ Time (h)

Figure 4: The preliminary experimental results on
LMSYS-Chatbot Arena Human Preference Predictions
Kaggle contest2 from MLE-Bench. Baby-AIGS-MLer
system is built on top of bare LLaMA-3.1 model with-
out agentic scaffolds.

For each dataset, we compared Baby-
AIGS-MLer with three baseline methods
with the same LLaMA-3.1-70B-Instruct3

backbone model:

• Bare Models: Standard models
trained without any agentic scaf-
folds, serving as a baseline for typ-
ical single-model solutions.

• AIDE [7]: An agent that gener-
ates solutions based on a search-
based workflow, used in the de-
fault setting as implemented in
MLE-Bench.

• Human Experts: Experienced
human experts who manually
design and implement machine
learning solutions based on their expertise and knowledge of the problem domain.4

Each ML task is evaluated using metrics as in MLE-Bench [6]: accuracy for the Titanic dataset, and
log loss for the LMSYS dataset. We limit the inference time for each method. If a method is stopped,
we will concatenate the previous code implementation into the prompting template and start the
method again. For Baby-AIGS-MLer, Np = 3, and T is set to an enormous value to avoid stopping.
For human expert solutions, three experienced researchers with top conference publications were
recruited to estimate the average time for development, and eventually agreed on about 10 hours.

5.2 Bare Models vs. Baby-AIGS-MLer

The results of bare models and Baby-AIGS-MLer in the Titanic-Spaceship and the LMSYS-Chatbot
Arena Human Preference Predictions tasks are shown in Figure 1 and Figure 4 respectively. In the
Titanic-Spaceship task, Baby-AIGS-MLer outperforms the bare model by 11.6%, and 126.8% in the
LMSYS-Chatbot Arena Human Preference Predictions task. The experimental results demonstrate the

1https://www.kaggle.com/c/spaceship-titanic.
2https://www.kaggle.com/competitions/lmsys-chatbot-arena.
3https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct.
4For Titanic-Spaceship, the human expert solution is from https://www.kaggle.com/code/

samuelcortinhas/spaceship-titanic-a-complete-guide. For LMSYS-Chatbot Arena Human Pref-
erence Predictions, the human expert solution is from https://www.kaggle.com/code/natu2003/
fine-tuning-gemma2.

7

https://www.kaggle.com/c/spaceship-titanic
https://www.kaggle.com/competitions/lmsys-chatbot-arena
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://www.kaggle.com/code/samuelcortinhas/spaceship-titanic-a-complete-guide
https://www.kaggle.com/code/samuelcortinhas/spaceship-titanic-a-complete-guide
https://www.kaggle.com/code/natu2003/fine-tuning-gemma2
https://www.kaggle.com/code/natu2003/fine-tuning-gemma2

73.6
77.1

80.9

2.0
0.5

~10

0
2
4
6
8
10
12
14
16

50

55

60

65

70

75

80

85

AIDE (llama-3.1) Baby-AIGS-MLer (AIDE (llama-3.1)) human

Accuracy ↑ Time (h)

Figure 5: The preliminary experimental results on Titanic-Spaceship contest. Baby-AIGS-MLer
system is built on top of LLaMA-3.1 model with AIDE.

1.102

1.025

0.955

2.0
0.5

~10

0
2
4
6
8
10
12
14
16

0.850

0.900

0.950

1.000

1.050

1.100

1.150

AIDE (llama-3.1) Baby-AIGS-MLer (AIDE (llama-3.1)) human

Log Loss ↓ Time (h)

Figure 6: The preliminary experimental results on LMSYS-Chatbot Arena Human Preference Predic-
tions contest. Baby-AIGS-MLer system is built on top of bare LLaMA-3.1 model with AIDE.

advantage of systematically refining ideas on single-model solutions. In addition, scaling inference
compute on solutions with bare models with techniques like iterative refinement seems to result in
limited positive effects.

5.3 Code Generation Agents vs. Baby-AIGS-MLer

The results of AIDE and Baby-AIGS-MLer in the Titanic-Spaceship and the LMSYS-Chatbot Arena
Human Preference Predictions tasks are shown in Figure 5 and Figure 6 respectively. On Titanic-
Spaceship task, Baby-AIGS-MLer outperforms the code generation agents by 4. 8%, and in the
LMSYS-Chatbot Arena Human Preference Predictions task Baby-AIGS-MLer reduces the log loss by
7.5% . This improvement demonstrates the multi-agent system’s ability to explore a broader set of
methodologies and to steadily refine them towards more optimal ones. However, the code generation
agent significantly outperforms single-model solutions from Figure 1 and Figure 4, leaving smaller
leading space for Baby-AIGS-MLer.

5.4 Human Developers vs. Baby-AIGS-MLer

As an upperbound, we compared Baby-AIGS-MLer with expert human developers, who manually
designed models for the Titanic and LMSYS datasets. In both datasets, human experts significantly
outperform all other methods, including Baby-AIGS-MLer (Figure 1, Figure 4, Figure 5, and
Figure 6), indicating that experienced human experts could achieve much better results as long as
they have enough inference compute, or development time in this case. This finding is aligned with
Wijk et al. [9] who showed that human researchers have better inference compute scaling capacity
compared to the state-of-the-art foundation models.

8

6 Conclusion and Prospects

This paper presents Baby-AIGS-MLer, a multi-agent framework designed to systematically explore,
refine, and evolve ideation for machine learning research problems. By integrating systematic idea
refinement, the framework transcends the limitations of existing code generation agents, enabling
the exploration of diverse and adaptive solutions. Preliminary experiments on Kaggle competitions
that Baby-AIGS-MLer achieves significant performance gains over baseline agents and shows better
inference compute scaling capacity, though still falling short of experienced human experts. These
findings highlight the importance for ML research agents to identify and optimize promising ideas
during research automation while emphasizing the persistent gap between agents and human ingenuity.
Looking ahead, the prospects of Baby-AIGS-MLer lie in its potential scalability with larger inference
compute and its adaptability with arbitrary code generation agents. Future research can address
current limitations by testing with more compute budgets. Moreover, transforming existing creativity
from human into LLM-driven ideation may narrow the gap with human experts.

7 Limitations

While Baby-AIGS-MLer demonstrates empirical improvements with systematic idea refinement
for ML research, it is not without limitations. First, the framework inherits the main design of the
Baby-AIGS system, limiting the novelty of the work. Second, the scale of experiments is small and
currently confined to Kaggle competitions due to time and resource constraints, which may not fully
represent the complexity and variability of real-world ML problems. Third, the lack of extensive
ablation studies on the impact of individual agents and inference compute scaling techniques limits
insights into the relative contributions of each component, which is also due to limited time. Finally,
the use of a single LLM backbone (LLaMA-3.1-70B-Instruct) may constrain the generalizability of
findings, as performance could vary significantly with alternative base models or larger foundation
models. Addressing these limitations is essential for broadening the applicability of the framework
and improving its robustness in diverse research contexts.

8 Ethics Statement

The development of Baby-AIGS-MLer could raise important ethical considerations, particularly in
the context of research automation and AI-driven ideation. While the framework aims to enhance
the efficiency of machine learning research, its reliance on automated systems to generate and refine
ideas may inadvertently perpetuate biases inherent in the training data or algorithms, thus affecting
the fairness and diversity of the solutions it proposes. Additionally, the potential for over-reliance on
automated agents could reduce human oversight, leading to the marginalization of domain-specific
expertise and creativity. It is crucial that future iterations of Baby-AIGS-MLer include mechanisms
for transparency, accountability, and interpretability to ensure that the generated solutions are not only
effective but also ethically sound, e.g., to include an explicit falsification process [2]. Furthermore,
the framework’s capacity for large-scale ideation must be balanced with responsible usage to prevent
misuse in creating harmful or unethical machine learning applications. Ethical guidelines must be
continuously revisited to align the framework’s evolution with societal values and human welfare.

References
[1] Alireza Ghafarollahi and Markus J. Buehler. Sciagents: Automating scientific discovery through multi-

agent intelligent graph reasoning. Computing Research Repository, arXiv:2409.05556, 2024. URL
https://arxiv.org/abs/2409.05556.

[2] Zijun Liu, Kaiming Liu, Yiqi Zhu, Xuanyu Lei, Zonghan Yang, Zhenhe Zhang, Peng Li, and Yang Liu.
Aigs: Generating science from ai-powered automated falsification. Computing Research Repository,
arXiv:2411.11910, 2024. URL https://arxiv.org/abs/2411.11910.

[3] Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scien-
tist: Towards Fully Automated Open-Ended Scientific Discovery. Computing Research Repository,
arXiv:2408.06292, 2024. URL https://arxiv.org/abs/2408.06292.

[4] Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang
Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge,

9

https://arxiv.org/abs/2409.05556
https://arxiv.org/abs/2411.11910
https://arxiv.org/abs/2408.06292

Taicheng Guo, Tuo Zhou, Wei Tao, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei,
Yuheng Cheng, Zhibin Gou, Zongze Xu, and Chenglin Wu. Data Interpreter: An LLM Agent For Data
Science. Computing Research Repository, arXiv:2402.18679, 2024. URL https://arxiv.org/abs/
2402.18679.

[5] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=VTF8yNQM66.

[6] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mądry. MLE-bench: Eval-
uating Machine Learning Agents on Machine Learning Engineering. Computing Research Repository,
arXiv:2410.07095, 2024. URL https://arxiv.org/abs/2410.07095.

[7] Dominik Schmidt, Zhengyao Jiang, and Yuxiang Wu. Technical Report. https://www.weco.ai/blog/
technical-report, 2024.

[8] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian,
Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng,
Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software Developers as Generalist
Agents. Computing Research Repository, arXiv:2407.16741, 2024. URL https://arxiv.org/abs/
2407.16741.

[9] Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan,
Michael Chen, Josh Clymer, Jai Dhyani, Elena Ericheva, Katharyn Garcia, Brian Goodrich, Nikola
Jurkovic, Megan Kinniment, Aron Lajko, Seraphina Nix, Lucas Sato, William Saunders, Maksym Taran,
Ben West, and Elizabeth Barnes. Re-bench: Evaluating frontier ai r&d capabilities of language model
agents against human experts. Computing Research Repository, arXiv:2411.15114, 2024. URL https:
//arxiv.org/abs/2411.15114.

[10] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and Azalia
Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling. Computing
Research Repository, arXiv:2407.21787, 2024. URL https://arxiv.org/abs/2407.21787.

[11] Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating language agents on
machine learning experimentation. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages 20271–
20309. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/huang24y.html.

[12] Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. AutoML-Agent: A Multi-Agent LLM Framework
for Full-Pipeline AutoML. Computing Research Repository, arXiv:2410.02958, 2024. URL https:
//arxiv.org/abs/2410.02958.

[13] Haoyang Su, Renqi Chen, Shixiang Tang, Xinzhe Zheng, Jingzhe Li, Zhenfei Yin, Wanli Ouyang, and
Nanqing Dong. Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve
Scientific Idea Generation. Computing Research Repository, arXiv:2410.09403, 2024. URL https:
//arxiv.org/abs/2410.09403.

[14] Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can LLMs Generate Novel Research Ideas? A Large-
Scale Human Study with 100+ NLP Researchers. Computing Research Repository, arXiv:2409.04109,
2024. URL https://arxiv.org/abs/2409.04109.

[15] Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, and Linyi Yang.
Cycleresearcher: Improving automated research via automated review. Computing Research Repository,
arXiv:2411.00816, 2024. URL https://arxiv.org/abs/2411.00816.

10

https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2402.18679
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2410.07095
https://www.weco.ai/blog/technical-report
https://www.weco.ai/blog/technical-report
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2411.15114
https://arxiv.org/abs/2411.15114
https://arxiv.org/abs/2407.21787
https://proceedings.mlr.press/v235/huang24y.html
https://arxiv.org/abs/2410.02958
https://arxiv.org/abs/2410.02958
https://arxiv.org/abs/2410.09403
https://arxiv.org/abs/2410.09403
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2411.00816

	Introduction
	Related Work
	Task & Framework Formulation
	Machine Learning Research Problems
	Single-Agent & Multi-Agent Systems
	Inference Compute Scaling

	Proposed Method: Baby-AIGS-MLer
	The Multi-Agent Idea Refinement Framework
	Applying the Framework to Arbitrary Code Generation Agents

	Preliminary Experiments
	Experiment Setup
	Bare Models vs. Baby-AIGS-MLer
	Code Generation Agents vs. Baby-AIGS-MLer
	Human Developers vs. Baby-AIGS-MLer

	Conclusion and Prospects
	Limitations
	Ethics Statement

