
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Benchmarking Massively Parallelized Multi-Task
Reinforcement Learning for Robotics Tasks

Anonymous authors
Paper under double-blind review

Keywords: Multi-Task Learning, Reinforcement Learning, Robotics.

Summary
Multi-task Reinforcement Learning (MTRL) has emerged as a critical training paradigm

for applying reinforcement learning (RL) to a set of complex real-world robotic tasks, which
demands a generalizable and robust policy. At the same time, massively parallelized training
has gained popularity, not only for significantly accelerating data collection through GPU-
accelerated simulation but also for enabling diverse data collection across multiple tasks by
simulating heterogeneous scenes in parallel. However, existing MTRL research has largely
been limited to off-policy methods like SAC in the low-parallelization regime. MTRL could
capitalize on the higher asymptotic performance of on-policy algorithms, whose batches re-
quire data from current policy, and as a result, take advantage of massive parallelization of-
fered by GPU-accelerated simulation. To bridge this gap, we introduce a massively paral-
lelized Multi-Task Benchmark for robotics (MTBench), an open-sourced benchmark featur-
ing a broad distribution of 50 manipulation tasks and 20 locomotion tasks, implemented using
the GPU-accelerated simulator IsaacGym. MTBench also includes four base RL algorithms
combined with seven state-of-the-art MTRL algorithms and architectures, providing a unified
framework for evaluating their performance. Our extensive experiments highlight the superior
speed of evaluating MTRL approaches using MTBench, while also uncovering unique chal-
lenges that arise from combining massive parallelism with MTRL.

Contribution(s)
1. This paper introduces MTBench, a unified GPU-accelerated benchmark for massively par-

allelized multi-task reinforcement learning (MTRL) in two robotics settings, manipulation
and locomotion.
Context: Existing robotics MTRL benchmarks, such as Meta-World (Yu et al., 2021), have
impractically long experimental runtimes, hindering the development and reproducibility of
MTRL research. Other GPU-accelerated benchmarks for robotics do not support MTRL out
of the box. We address both of these concerns with our end-to-end MTRL benchmark.

2. This paper conducts comprehensive experiments to evaluate all aspects of MTRL, including
base RL algorithms, gradient manipulation methods, and neural network architectures.
Context: We confirm whether the reliance on off-policy methods in the MTRL literature
holds in the massively parallel regime, and then evaluate a suite of MTRL schemes using
on-policy methods across our evaluation settings.

3. This paper presents four key observations on applying existing MTRL schemes to massively
parallelized training in robotics. These insights guide the selection of MTRL schemes and
inform future research directions.
Context: Massively parallelized training is emerging as a popular paradigm, introducing
unique challenges for existing RL methods (Singla et al., 2024; D’Oro et al., 2022; Li et al.,
2023; Gallici et al., 2024). However, MTRL development has yet to leverage this paradigm.

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Benchmarking Massively Parallelized Multi-Task Re-
inforcement Learning for Robotics Tasks

Anonymous authors
Paper under double-blind review

Abstract

Multi-task Reinforcement Learning (MTRL) has emerged as a critical training1
paradigm for applying reinforcement learning (RL) to a set of complex real-world2
robotic tasks, which demands a generalizable and robust policy. At the same time,3
massively parallelized training has gained popularity, not only for significantly ac-4
celerating data collection through GPU-accelerated simulation but also for enabling5
diverse data collection across multiple tasks by simulating heterogeneous scenes in6
parallel. However, existing MTRL research has largely been limited to off-policy7
methods like SAC in the low-parallelization regime. MTRL could capitalize on the8
higher asymptotic performance of on-policy algorithms, whose batches require data9
from current policy, and as a result, take advantage of massive parallelization offered10
by GPU-accelerated simulation. To bridge this gap, we introduce a massively paral-11
lelized Multi-Task Benchmark for robotics (MTBench), an open-sourced benchmark12
featuring a broad distribution of 50 manipulation tasks and 20 locomotion tasks, im-13
plemented using the GPU-accelerated simulator IsaacGym. MTBench also includes14
four base RL algorithms combined with seven state-of-the-art MTRL algorithms and15
architectures, providing a unified framework for evaluating their performance. Our ex-16
tensive experiments highlight the superior speed of evaluating MTRL approaches using17
MTBench, while also uncovering unique challenges that arise from combining massive18
parallelism with MTRL.19

1 Introduction20

Deep reinforcement learning has been successfully applied to a wide range of decision-making tasks,21
including Atari games (Mnih et al., 2013), the game of Go (Silver et al., 2016), and continuous con-22
trol tasks (Hwangbo et al., 2019; Wurman et al., 2022). While these applications have achieved re-23
markable task-specific performance, recent research trends have shifted towards developing general-24
purpose agents capable of solving multiple tasks or adapting to diverse environments (Cobbe et al.,25
2020; Kirk et al., 2023; Park et al., 2024). This transition is partly motivated by the demands of real-26
world robotics applications, where versatility and robustness are essential. For example, tabletop27
manipulation often requires acquiring multiple skills to accomplish complex tasks (Pinto & Gupta,28
2016; Yu et al., 2021) and legged locomotion demands adaptability to traverse challenging terrains29
(Lee et al., 2020; Liang et al., 2024).30

To facilitate the learning of a general-purpose robotic agent, massively parallelized training (»100031
simulations) has gained popularity with the advancement of GPU-accelerated simulators (Liang32
et al., 2018b; Freeman et al., 2021; Makoviychuk et al., 2021; Mittal et al., 2023; Tao et al., 2024;33
Zakka et al., 2025). These simulators have significantly mitigated hardware and runtime constraints34
for learning single tasks, reducing experiment durations from days to minutes (Liang et al., 2018b;35
Rudin et al., 2022). However, in the multi-task setting, no out-of-the-box solution exists to allocate36
a fixed number of environments per task on a single GPU, allowing for simultaneous diverse data37
collection and end-to-end MTRL training. Additionally, massively parallelized online batched RL38

1

Under review for RLC 2025, to be published in RLJ 2025

Parkour Meta-World

MTBench
Gradient Manipulation Neural Architectures Massive Parallelism

Figure 1: MTBench has two robotics settings: Parkour and Meta-World that leverage massive par-
allelism for MTRL and offer a suite of MTRL schemes introduced over the years.

introduces new, non-trivial algorithmic challenges. For example, on-policy methods like PPO reach39
a saturation point beyond which additional parallelization no longer improves performance (Singla40
et al., 2024). Meanwhile, off-policy methods such as SAC and Q-Learning become unstable, losing41
their sample efficiency compared to on-policy methods as interaction with parallel environments42
unbalances the replay ratio (D’Oro et al., 2022; Li et al., 2023; Gallici et al., 2024).43

On the other hand, learning general-purpose robotic agents has also motivated multi-task RL44
(MTRL), which aims to learn a single policy that maximizes average performance across multi-45
ple tasks. By leveraging task similarities (Pinto & Gupta, 2016), MTRL often enhances sample46
efficiency, requiring fewer transitions to match the performance of single-task counterparts. Prior47
research has primarily focused on addressing optimization challenges introduced by multiple learn-48
ing signals, either from a gradient-based perspective (Yu et al., 2020; Liu et al., 2024; 2023) or49
through neural architecture design (Yang et al., 2020; Sodhani et al., 2021; Sun et al., 2022; Hen-50
dawy et al., 2024). However, existing MTRL approaches have focused on using off-policy methods51
in low-parallelization settings (≤ 500 workers) (Espeholt et al., 2018; Liang et al., 2018a; James52
et al., 2020). With massive parallelization applied to MTRL, we no longer need to deal with how to53
distribute experience collection and learning, instead utilizing on-policy algorithms, whose batches54
require data from current experience and as a result, take advantage of the parallelization offered by55
GPU-based simulators.56

To support large-scale MTRL experiments and advance the development of general-purpose robotic57
agents, we introduce a massively parallelized Multi-Task Benchmark for robotics (MTBench). This58
open-source benchmark includes a diverse set of 50 manipulation tasks and 20 locomotion tasks (top59
row of Figure 1), implemented using the GPU-accelerated simulator IsaacGym. Each task allows60
for procedurally generating infinitely many variations by modifying factors such as initial states61
and terrain configurations. Additionally, MTBench integrates four base RL algorithms with seven62
state-of-the-art MTRL algorithms and architectures, providing a unified framework to evaluate their63
performances.64

Based on our experiments, we highlight the following major observations:65

(O1) On-Policy > Off-Policy: Choosing between on-policy RL methods or off-policy methods66
affects performance more than the MTRL scheme applied in massively parallel training. Off-policy67
RL’s asymptotic performance struggles to match on-policy RL in this regime.68

2

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

(O2) Prioritize Wall-Clock Time over Sample Efficiency: In the massively parallel regime,69
wall-clock efficiency is more critical than sample efficiency, as experience collection scales easily70
with more GPUs.71

(O3) Value Learning is the Key Bottleneck in MTRL: Multi-task RL struggles primarily with72
value estimation rather than policy learning, as gradient conflicts mostly impact the critic function.73

(O4) Curriculum Learning is Crucial for Sparse-Reward Tasks: MTRL alone does not help74
exploration in sparse-reward tasks; curriculum learning is essential for overcoming early stagnation.75

2 Background76

2.1 GPU Accelerated Simulation77

Traditionally, simulators used for online RL rely on the coordination between CPU and GPU where78
the CPU handles physics simulation and observation/reward calculations while the GPU handles79
neural network training and inference, leading to frequent slow memory transfers between the two80
many times during the RL training process. Now, GPU-accelerated simulators provide access to the81
results of physics simulation on the GPU, and as a result, we have all relevant data - observations,82
actions, and rewards - remaining on the GPU throughout the learning process. This development83
allows for massive parallelization and as a result, dramatically reduces MTRL training time from84
days or weeks on thousands of CPU cores to just hours on a single GPU.85

Specifically, NVIDIA IsaacGym offers a Tensor API that directly exposes the physics state of the86
world in Python, so we can directly populate and manage massively parallelized heterogeneous87
scenes for all tasks, avoiding the communication overhead of synchronizing experience collection88
and neural network training across distributed systems (Espeholt et al., 2018; Nair et al., 2015).89

2.2 Multi-task reinforcement learning90

A finite horizon, discrete-time MDP is a tupleM = (S,A,P, r, µ, γ), where S ∈ Rn denotes the91
continuous state space, A ∈ Rm denotes the continuous action space, P : S × A → ∆(S) denotes92
the stochastic transition dynamics, r : S × A → R denotes the reward function, µ : S → ∆(S)93
denotes the initial state distribution, and γ ∈ (0, 1] is the discount factor. A policy parameterized94
by θ, πθ(at|st) : S → ∆(A), is a probability distribution over actions conditioned on the current95
state. RL learns a policy πθ such that it maximizes the expected cumulative discounted return96
J(θ) = Eπ[

∑∞
t=0 γ

tr(st, at)] where at ∼ πθ.97

Problem statement Each task τ is sampled the task distribution p(T) is a different MDPMτ =98
(Sτ ,Aτ ,Pτ , rτ , µτ , γτ). MTRL learns a single policy πθ that maximizes the expected cumulative99
discounted return averaged across all tasks J(θ) =

∑
τ∈T Jτ (θ). The only restriction we place100

uponMτ is that their union shares a universal state space S and by appending a task embedding to101
the state, we give the policy the ability to distinguish what task each observation belongs to.102

A change in any part of aMτ constitutes what it means to define a new task. In locomotion, each103
task from p(T) would be associated with a different goal to reach in the same control setting, so104
only rτ would differ across tasks. In tabletop manipulation like Meta-World, the tasks range from105
basic skills like pushing and grasping to more advanced skills combining these basic skills, so the106
goals (rτ) and state spaces (Sτ) vary across tasks.107

3 Benchmark108

The proposed massively parallelized multitask RL benchmark provides a unified framework for109
simulating two key robotics task categories: manipulation and locomotion, within the IsaacGym110

3

Under review for RLC 2025, to be published in RLJ 2025

simulator. For manipulation, we incorporate 50 tasks from Meta-World (Yu et al., 2021), chosen for111
their simplicity, task diversity, and well-designed shaping rewards. The locomotion domain includes112
20 diverse quadrupedal Parkour tasks from Eurikaverse (Liang et al., 2024), the most comprehen-113
sive Parkour benchmark, encompassing a wide range of established locomotion challenges. The114
following sections provide a detailed overview of these task domains and the evaluation protocols.115

3.1 Meta-World116

Figure 2: Illustrations of non-parametric tasks variation, parametric tasks variation of Faucet Open,
and the observation and action space of the RL agents in the Meta-World benchmark.

Task Descriptions: Meta-World consists of 50 tabletop manipulation tasks that require a simu-117
lated one-armed robot (Franka Robotics, 2017) to interact with one or two objects in various ways,118
such as pushing, picking, and placing. Within each task, Meta-World also provides parametric goal119
variation over the initial object position and target position. Each task has a pre-defined success cri-120
terion (Appendix C.1). Our reimplementation of Meta-World makes necessary changes by updating121
Sawyer to Franka Emika Panda and tuning the reward function of each task to ensure that the tasks122
are individually solvable.123

Observation and Action Spaces: Despite sharing a common state space dimensionality, the se-124
mantic meaning of certain dimensions varies across tasks. The state representation comprises the125
end-effector’s 3D position in R3, the normalized gripper effort in R1, the object 3D positions from126
two objects in R6, and the quaternion representation of the two objects’ orientation in R8. For tasks127
involving a single object, the state dimensions corresponding to a second object are set to zero.128
To account for temporal dependencies, the observation space concatenates the state representations129
from two consecutive time steps and appends the 3D position of the target goal. This results in a130
final observation vector of 39 dimensions. The action space is also consistent across the tasks, com-131
prising of the displacement of the end-effector in R3 and the normalized gripper effort in R1. An132
overview of the observation and action can be seen in Figure 2.133

Evaluation Settings: Following Yu et al. (2021), we provide two evaluation settings: multi-task134
10 (MT10) and multi-task 50 (MT50), where MT10 consists of 10 selected tasks and MT50 consists135
of all 50 tasks. During the evaluation, the overall success rates (SR) and the cumulative reward (R)136
are reported across tasks, with each task featuring 10 independent runs with randomly sampled goal137
parameters. We note that our code supports defining any custom subset of tasks and their associated138
number of environments in 2 lines of a config file.139

3.2 Parkour Benchmark140

Task Descriptions: The twenty Parkour tasks are imported from Eurekaverse Liang et al. (2024).141
In each task, the agent controls a quadrupedal Unitree Go1 robot (Unitree Robotics, 2021) to track142
predefined waypoints while traversing one of 20 different terrain categories (Liang et al., 2024).143

4

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Figure 3: Illustrations of non-parametric tasks variation, parametric tasks variation of Jump On and
Off Box, and the observation and action space of the RL agents in the Parkour benchmark.

These tasks challenge various motor skills, including climbing boxes, walking on slopes, jump-144
ing, navigating stepping stones, ascending stairs, maneuvering through narrow hallways, weaving145
through agility poles in a zig-zag pattern, and maintaining balance. Figure 8 on the right shows146
bird-eye views of these terrain categories.147

Each task also provides parametric terrain variations defined by a set of terrain parameters, whose148
definitions and valid ranges are detailed in the supplementary materials. Additionally, each task149
introduces a one-dimensional continuous variable, termed difficulty, and a predefined mapping from150
the difficulty to a set of terrain parameters. This difficulty measure aligns with human intuition; for151
instance, high boxes present a greater challenge than lower boxes for a quadrupedal robot to jump152
on and off.153

Observation and Action Spaces: The observation of the agent is slightly simplified for more ef-154
ficient benchmarking compared to Eurekaverse. The observation is compromised by proprioceptive155
observation in R48, scandots of the terrain environments in R132, base linear velocity in R3, and156
privileged information in R29. The action assigns joint position targets at a frequency of 50 Hz for157
a Proportional-Derivative (PD) controller. An overview of the observation and actions is shown in158
Figure 8. The reward function resembles Fu et al. (2023), which encourages positive linear and159
angular velocities that point to the next waypoint, while minimizing energy consumption.160

Evaluation Settings: We define two evaluation settings: Parkour-easy and Parkour-hard. Parkour-161
easy consists of 200 terrains, with each of the 20 tasks assigned 10 terrains generated at the lowest162
difficulty level. In contrast, Parkour-hard also includes 200 terrains but distributes difficulty lev-163
els uniformly across the 10 terrains per task, providing a more diverse and challenging evaluation164
setting. In addition, Parkour also supports custom evaluation settings like Meta-World. Before the165
training, all the evaluated methods are pre-trained on flat ground to acquire the basic walking gait.166
Such a pre-training phase is typical in the literature (Zhuang et al., 2023; Cheng et al., 2024).167

During evaluation, we measure progress (P) as the ratio of the current waypoint index to the total168
number of waypoints at the time of episode termination. An agent that successfully traverses the169
entire terrain achieves a progress score of 100%. The overall progress is computed as the average170
over 200 terrains, with each terrain evaluated across 10 independent runs.171

3.3 Algorithms172

We re-implement a suite of algorithms and MTRL schemes using a popular learning library RL-173
Games (Makoviichuk & Makoviychuk, 2021), providing a unified benchmark for end-to-end vec-174
torized MTRL training across many seeds and hyperparameters on a single GPU. Our benchmark175
is highly extensible towards new RL algorithms as well as schemes along the two axes of MTRL176
research, gradient manipulation, and neural architectures. There is a brief overview in Appendix A.177

5

Under review for RLC 2025, to be published in RLJ 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

M
T1

0

MT-GRPO
MT-PPO
MT-PQN
MT-SAC

0 1 2 3 4 5 6
1e9

0.0

0.2

0.4

0.6

0.8

1.0

MT-GRPO
MT-PPO
MT-PQN
MT-SAC

0 5 10 15 20 25 30
Wall Clock Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

M
T5

0

MT-GRPO
MT-PPO
MT-SAC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Frames 1e8

0.0

0.1

0.2

0.3

0.4

0.5

0.6 MT-GRPO
MT-PPO
MT-SAC

Figure 4: Vanilla MTRL performance in Meta-World. We present success rates averaged over
10 seeds for each RL algorithm on MT10 and MT50. We see that on-policy methods (MT-PPO,
MT-GRPO) continue to improve with more experience, achieving a substantially higher success rate
than off-policy methods (MT-SAC, MT-PQN) in substantially less time.

Base MTRL Algorithms We implement four RL algorithms: MT-PPO, a multi-task version of178
Proximal Policy Optimization (Schulman et al., 2017); MT-GRPO (Guo et al., 2025), a variant of179
PPO introduced for the language modeling but adapted here for control; MT-SAC, a multi-task180
version of Soft Actor-Critic (Haarnoja et al., 2018); and MT-PQN, a novel multi-task extension to181
Parallel Q-learning (Gallici et al., 2024) to handle continuous control problems. We enable multi-182
task learning by simply augmenting the observation space with one-hot task embeddings.183

MTRL Schemes We implement two categories of MTRL schemes that can be easily combined184
with any of our base algorithms. The first category consists of gradient manipulation methods:185
PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2024), and FAMO (Liu et al., 2023). The second186
category consists of multi-task architectures: CARE (Sodhani et al., 2021), MOORE (Hendawy187
et al., 2024), PaCO (Sun et al., 2022), and Soft-Modularization (Yang et al., 2020).188

Curriculum Learning Unlike Meta-World, where reward functions are carefully designed with189
dense rewards, locomotion tasks often rely on sparse reward signals (e.g., moving forward to the190
next waypoints). As a result, strategies like curriculum learning have been widely adopted to facil-191
itate learning in challenging tasks, such as running (Margolis et al., 2024) and jumping onto high192
platforms (Liang et al., 2024). Inspired by this, we incorporate a simple curriculum strategy to train193
Parkour-hard tasks. In Parkour-hard, each task consists of ten terrains with varying levels of dif-194
ficulty. Agents always begin on the easiest terrain and progress to more challenging ones if they195
achieve a progress of at least 80% in their current terrain. We refer to the Parkour-hard training with196
curriculum learning by Parkour-hard-cl.197

4 Results198

In this section, we present the results of our benchmark across our evaluation settings and empirically199
justify the aforementioned four major observations.200

6

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Methods
Tasks MT10 MT50 Parkour-easy Parkour-hard Parkour-hard-CL

SR ↑ R ↑ SR ↑ R ↑ P(%) ↑ P(%) ↑ P(%) ↑
Vanilla 82.05± 4.41 914.75± 42.72 48.12± 4.65 602.07± 57.90 80.39± 0.43 54.51± 0.82 68.12± 0.43
Multihead 82.51± 5.27 953.45± 50.51 63.28 ± 3.18 780.51± 30.03 73.17± 2.53 49.65± 1.27 62.17± 1.05

PCGrad 93.19 ± 1.79 1050.75 ± 16.72 53.28± 3.94 669.94± 50.29 80.61 ± 0.78 55.98 ± 0.24 68.37± 0.65
CAGrad 90.72± 3.75 1023.24± 29.76 53.38± 3.90 657.85± 37.52 80.25± 0.32 55.88± 0.91 67.75± 0.43
FAMO 90.33± 4.17 1010.49± 24.00 65.07 ± 2.91 814.40 ± 24.73 79.79± 0.29 55.56± 0.97 68.57 ± 0.76

PaCO 84.42 ± 1.96 958.25 ± 29.89 54.07± 5.17 687.23± 59.95 78.63± 0.70 58.65 ± 0.77 64.15± 0.98
MOORE-S 80.19± 4.93 915.69± 19.47 43.73± 2.15 523.04± 21.52 64.61± 1.69 46.78± 0.65 49.53± 0.52
MOORE-M 87.09± 3.83 973.52± 15.32 62.61± 3.45 745.64± 41.93 - - -
CARE-S 78.05± 5.04 887.72± 41.32 45.63± 5.01 572.14± 54.33 - - -
CARE-M 79.47± 6.03 898.08± 38.58 55.68± 2.97 647.27± 34.16 - - -
Soft-Modularization 79.94± 4.51 908.66± 46.53 56.20± 3.40 693.57± 41.76 69.29± 3.81 47.28± 0.23 51.43± 0.35

Table 1: We present our evaluation metrics of all MTRL schemes using MT-PPO on all evaluation
settings. All results are averaged over 10 seeds and use 250M frames. Best-performing approaches
in each category are presented in bold text if they surpass both the Vanilla and Multihead (M)
baselines. The training curves for these experiments are shown in Appendix D.

4.1 Choosing the MTRL Base Algorithm (O1, O2)201

To illustrate how on-policy MTRL methods leverage massive parallelism, we first evaluate one on-202
policy method, MT-PPO, alongside two off-policy methods, MT-SAC and MTPQN, in Meta-World.203
Figure 4 presents the learning curves with respect to both wall-clock time and the number of envi-204
ronment interactions. Since this observation is concerned with answering what the best base MTRL205
algorithm is, we tune all aspects of each method to achieve its highest success rate, including us-206
ing different network architectures. We present the full hyperparameter and model details in the207
supplementary materials.208

On-policy methods outperform traditional off-policy methods. Using MT-SAC as represen-209
tative of traditional off-policy algorithms used for MTRL, Figure 4 shows there is a substantial210
performance gap in success rate (roughly 87% and 65% for MT-PPO and MT-SAC respectively)211
and more relevant to researchers, a substantial wall-clock time difference (roughly 1.5 hours and 13212
hours) after 250M frames of collected experience. Of course, it is possible to speed up MT-SAC to213
match MT-PPO’s runtime by decreasing the gradient steps per epoch to that of MTPPO, but this re-214
sults in a near-zero success rate. Furthermore, as the number of tasks increases to the MT-50 setting,215
these gaps increase.216

Traditional off-policy methods in the end-to-end single GPU setting cannot effectively leverage217
increased environment interaction in the massively parallelized regime, where their stability, perfor-218
mance, and runtime greatly rely on the ratio of gradient updates to environment steps i.e update-219
to-data (UTD) ratio (D’Oro et al., 2022) being greater than or equal to 1. Prior research like (Li220
et al., 2023) on leveraging massive parallelism for off-policy methods exists but is not adapted for221
the multi-task setting yet and requires multiple GPUs.222

Off-Policy methods can be designed for the massively parallelized regime. In Figure 4, we also223
included our adaptation of PQN (Gallici et al., 2024) to the multi-task continuous control setting.224
The details of our implementation are in Appendix B. Surprisingly, applying these simple changes225
to an originally discrete action algorithm and left to run long enough, MT-PQN can almost match226
the performance of MT-PPO (roughly an x% drop) in MT10. Considering PQN’s performance and227
stability, similar simulation throughput to PPO, and lack of a replay buffer suggest that smartly228
adapting PQN to continuous control could be a promising research direction.229

4.2 MTRL Schemes (O2, O3)230

Table 1 reports the major evaluation results of all MTRL schemes using MTPPO. Unless otherwise231
specified, all the gradient manipulation methods use the same three-layer MLP neural networks.232

7

Under review for RLC 2025, to be published in RLJ 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Av
g.

 C
os

in
e

Si
m

ila
rit

y

Actor Gradient
Critic Gradient

Figure 5: The average gradient cosine similarity
across all task pairs in MT10 for both actor and
critic networks. The shadow areas represent the
ranges between minimum and maximum cosine
similarities.

PaCO

Multihead

MOORE-M

CARE-M

Soft-Modularization

2.50.02.55.07.510.012.515.0

MT10
MT50

Figure 6: Success rate (SR) differences of
five neural network architectures relative to
the Vanilla baseline in MT10 and MT50.

Multi-task architectures show greater performance gains with larger task sets. As shown233
in Figure 6, the benefits of multi-task architectures become more pronounced as the number of234
tasks increases. In MT10, vanilla PPO performs similarly to advanced multi-task architectures.235
However, in MT50, the best-performing multi-task architecture, MOORE-M, surpasses MLP by236
17% in success rate. This improvement is likely due to enhanced knowledge sharing that only237
manifests in training diverse enough tasks, such as MT50. However, similar performance gains are238
not observed in the Parkour benchmark, likely due to the insufficient task diversity in Parkour tasks.239

Resolving gradient conflict consistently improves the performance. The three gradient ma-240
nipulation methods (rows 3-5 in Table 1) consistently outperform vanilla PPO across all evaluation241
settings. This suggests that gradient conflicts are still a common optimization challenge in multi-task242
RL problems. Among these methods, FAMO shows superior scalability in larger task sets, likely243
due to its simple strategy of adaptive task weighting, which eliminates the need for backpropagating244
through each task’s loss and scales better with the increasing number of tasks.245

Value learning is the key bottleneck in MTRL. Prior research in MTRL has shown that address-246
ing gradient conflicts improves performance in value-based RL algorithms like SAC. Our bench-247
marking results extend this observation to the actor-critic framework, demonstrating that gradient248
conflicts also arise when learning the critic network in PPO. However, we do not observe similar249
conflicts in policy optimization. This observation aligns with prior work using on-policy actor-critic250
algorithm for large-scale multi-task learning (Hessel et al., 2019). Figure 5 shows the average co-251
sine similarity across all task gradient pairs for both actor and critic networks, where critic gradients252
manifest lower minimum similarities.253

4.3 Reward Sparsity (O4)254

Although tasks in Meta-World and the Parkour Benchmark are defined independently of their reward255
functions, training performance is significantly influenced by reward design. We adopt commonly256
used reward formulations in both domains. In Meta-World, tasks utilize dense rewards, which pro-257
vide continuous feedback to guide specific interactions between the robotic arm and objects. In258
contrast, the Parkour Benchmark employs a sparse reward scheme, where the agent is rewarded259
solely for maintaining forward velocity toward waypoints, without receiving additional signals for260
intermediate behaviors.261

Dense rewards increase the complexity of multi-task critic learning. In multi-task RL, dense262
reward functions introduce challenges for critic learning, as different tasks exhibit varying reward263
distributions and gradient magnitudes. Addressing these conflicts leads to around 30% performance264

8

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Method
Tasks MT10 MT50

SR ↑ R ↑ SR ↑ R ↑

Vanilla MT-PPO 82.05 ± 4.41 914.75± 42.72 48.12± 4.65 602.07 ± 57.90
Vanilla GRPO 92.09± 5.43 904.72± 33.59 57.81± 3.54 637.07± 34.34

Table 2: Effect of removing the critic. We compare how removing the main source of gradient
confliction affects success rate in Meta-World, which uses dense reward.

increase in dense-reward multi-task settings such as MT10 and MT50. However, the performance265
gains are relatively marginal in a sparse-reward multi-task setting like the Parkour benchmark.266

Curriculum learning is crucial for sparse-reward tasks. In environments with sparse rewards,267
standard MTRL methods do not inherently enhance exploration, as agents receive limited feed-268
back in each task. This challenge is particularly evident in the Parkour Benchmark, where agents269
tend to adopt overly conservative behaviors in more difficult tasks. Curriculum learning addresses270
this issue by structuring task progression, enabling agents to first master simpler behaviors before271
tackling more complex ones. By gradually increasing task difficulty, curriculum learning improves272
exploration efficiency and yields a 10% performance gain in progress, as observed when comparing273
Parkour-hard and Parkour-hard-cl (columns 7 and 8 in Table 1).274

4.4 Learning without a Critic (O3)275

To further investigate the impact of gradient confliction in the critic on MTRL, we can eliminate the276
critic by increasing the horizon length in MT-PPO to be equal to the length of the episode.277

MTRL can benefit from eliminating gradient confliction in the critic. In fact, this setting is278
equivalent to implementing GRPO (Guo et al., 2025) without the KL term. We use the Monte Carlo279
estimate of the episodic return as the reward in the advantage calculation. In the dense reward280
setting, Table 2 indicates that MT-GRPO is a simple baseline that outperforms most MTRL schemes281
and deserves attention in future work.282

Massive Parallelism is well suited for reducing bias from an imperfect critic. By directly us-283
ing Monte Carlo returns instead of bootstrapping, we effectively eliminate the bias introduced by284
imperfect critic estimation. This approach represents a clear bias-variance tradeoff: while removing285
the critic increases the variance of our gradient estimates, this increased variance can be effectively286
mitigated through large batches (of size episode length times the number of parallel environments)287
made possible by massive parallelization (Sutton et al., 1999).288

5 Related289

5.1 Parallelizing RL290

As Deep RL relies on training neural networks (learners) and collecting experience (actors), many291
methods have explored how to parallelize both of these aspects to speed up training over the years.292
Early works leveraged low levels of parallelization without hardware accelerators mainly for Atari293
either in a distributed compute cluster of hundreds (in some cases thousands) of CPU cores (Nair294
et al., 2015) or a single machine using a multi-threaded approach (Mnih et al., 2016). Hybrid CPU-295
GPU distributed frameworks introduce accelerating learners with GPUs (Babaeizadeh et al., 2016;296
Espeholt et al., 2018; Horgan et al., 2018) along with actors collecting experience across CPUs.297

Unlike Atari, robotic control tasks rely on physics simulators (Todorov et al., 2012), where dis-298
tributed RL methods using CPU-based simulators would demand even more intense hardware re-299
quirements (Liang et al., 2018a; Andrychowicz et al., 2020) due to running multiple simulator in-300

9

Under review for RLC 2025, to be published in RLJ 2025

stances in parallel. A wave of recent GPU-accelerated simulators (Liang et al., 2018b; Freeman301
et al., 2021; Makoviychuk et al., 2021; Mittal et al., 2023; Tao et al., 2024; Zakka et al., 2025)302
has essentially alleviated the experience collection constraint and shown success in rapidly learning303
single-task robotic control tasks (Allshire et al., 2021; Rudin et al., 2022) with the modest hardware304
requirement of 1 GPU.305

5.2 GPU-Accelerated Benchmarks306

Several RL benchmarks have arisen as a result of GPU-based simulation mainly in JAX-based game307
environments (Cobbe et al., 2020; Lange, 2022; Morad et al., 2023; Bonnet et al., 2023; Rutherford308
et al., 2024; Matthews et al., 2024). In addition, classic continuous control tasks and simple robotic309
tasks are often bundled with GPU-accelerated simulators. However, our GPU-accelerated bench-310
mark is explicitly designed for multi-task reinforcement learning in robotics on 1 GPU. The most311
similar effort to our work would be RLBench (James et al., 2020), Meta-World (Yu et al., 2021), or312
MTRL (Sodhani & Zhang, 2021), but all suffer from the hardware and runtime constraints induced313
by experience collection on CPU-based simulators (Todorov et al., 2012; James et al., 2019).314

6 Conclusions315

We present MTBench, an MTRL benchmark including a GPU-accelerated implementation of Meta-316
World and locomotion tasks, extensive gradient manipulation/neural architecture baselines, and an317
initial study on the current state as well as future directions of MTRL in the massively parallel318
regime. However, a key limitation is our limitation to state-based MTRL to retain high simulation319
throughput, which we hope to resolve with pixel-based MTRL using NVIDIA IsaacLab in a future320
release of MTBench.321

Future work can use MTBench beyond learning tabula rasa MTRL methods. One can explore offline322
RL, imitation learning, or distillation methods by writing additional code to rapidly collect transi-323
tions from expert single-task agents. Another application of our benchmark could be as part of the324
‘finetune’ step in the ‘pretrain, then finetune’ paradigm where one pre-trains on a diverse set of tasks325
using offline RL and rapidly finetune agents online using our environments.326

A MTRL Schemes327

Here, we present an overview of each state-of-the-art MTRL baseline in MTBench.328

A.1 Gradient manipulation methods329

Gradient manipulation methods compute a new gradient of the multi-task objective, incurring the330
overhead of solving an optimization problem per iteration as well as storing and computing K task331
gradients.332

PCGrad: Projecting Conflicting Gradients (Yu et al., 2020) observe when the gradients of any two333
task objectives li conflict (defined as having negative cosine similarity) and when their magnitudes334
are sufficiently different, optimization using the average gradient will cause negative transfer. It335
attempts to resolve gradient confliction by a simple procedure manipulating each task gradient ∇li336
to be the result of iteratively removing the conflict with each task gradient∇lj , ∀j ∈ [K], j ̸= i.337

∇l′i ← ∇li −
∇lTi ∇lj
∥∇lj∥2

∇lj if ∇lTi ∇lj < 0 (1)

CAGrad: Conflict-Averse Gradient descent (Liu et al., 2024) resolves the gradient conflict by338
finding an update vector d ∈ Rm that minimizes the worst-case gradient conflict across all the tasks.339

10

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

More specifically, let gi be the gradient of task i ∈ [K], and g0 be the gradient computed from the340
average loss, CAGrad seeks to solve such an optimization problem:341

max
d∈Rm

min
i∈[K]
⟨gi, d⟩ s.t. ∥d− g0∥ ≤ c∥g0∥ (2)

Here, c ∈ [0, 1) is a pre-specified hyper-parameter that controls the convergence rate. The optimiza-342
tion problem looks for the best update vector within a local ball centered at the averaged gradient343
g0, which also minimizes the conflict in losses ⟨gi, d⟩.344

FAMO: Fast Adaptive Multitask Optimization (Liu et al., 2023) addresses the under-optimization345
of certain tasks when using standard gradient descent on averaged losses without incurring the O(K)346
cost to compute and store all task gradients, which can be significant, especially as the number of347
tasks increases. FAMO leverages loss history to adaptively adjust task weights, ensuring balanced348
optimization across tasks while maintaining O(1) space and time complexity per iteration.349

A.2 Neural Architectures350

Neural Architecture methods seek to avoid task interference by learning shared representations,351
which are fed to the prediction head. Such representations accelerate MTRL.352

CARE: Contextual Attention-based Representation learning (Sodhani & Zhang, 2021) utilizes353
metadata associated with the set of tasks to weight the representations learned by a mixture of354
encoders through the attention mechanism.355

MOORE: Mixture Of Orthogonal Experts (Hendawy et al., 2024) uses a mixture of experts to356
encode the state and orthogonalizes those representations to encourage diversity, weighting these357
representations from a task encoder.358

PaCO: Parameter Compositional (Sun et al., 2022) learns a base parameter set ϕ = [ϕ1 · · ·ϕk] and359
task-specific compositional vector wk such that multiplying ϕ and wk represents the task parameters360
θk.361

Soft-Modularization: Yang et al. (2020) also uses a mixture of experts to encode the state but362
also uses a routing network to softly combine the outputs at each layer based on the task.363

B PQN364

Parallel Q-learning (Gallici et al., 2024) is a recent off-policy TD method designed for discrete action365
spaces and massively parallelized GPU-based simulators that casts aside the tricks introduced over366
the years to stabilize deep Q learning such as replay buffers (Mnih et al., 2013), target networks367
(Mnih et al., 2015) and double Q-networks (Wang et al., 2016) by simply introducing regularization368
in the function approximator like LayerNorm (Ba et al., 2016) or BatchNorm (Ioffe & Szegedy,369
2015). Coupled with this architectural change, PQN exploits vectorized environments by collecting370
experience in parallel for T steps.371

As our action space is continuous, we follow Seyde et al. (2023) to present a modified version372
of PQN through bang-off-bang control and treating continuous control as a M agent multi-agent373
problem where each actuator is an agent in a cooperative game. Then, the state-action function374
Qθ(st,at) is factorized as the average of M different state-action functions Qi

θ(st, a
i
t), where the375

ith state-action function predicts the value of the bang-off-bang actions in ith action dimension376
following Sunehag et al. (2017).377

Qθ(st,at)) =
1

M

M∑
i=1

Qi
θ(st, a

i
t) (3)

11

Under review for RLC 2025, to be published in RLJ 2025

In code, the output of the state-action function is of size (B,M, nb) where B is the batch size, m is378
the action dimension/number of actuators (4) and nb is the number of bins per dimension (3). The379
action value is recovered by first taking the max over the bin dimension and then the mean over the380
action dimension. By taking the max over the bin dimension, Seyde et al. (2023) sidestepped taking381
a max over the continuous action space. Now, we can compute the Bellman target and in the case of382
PQN, n-step returns.383

yt = r(st,at) + γ
1

M

M∑
i=1

max
ai
t+1

Qi
θ(st+1, a

i
t+1) (4)

C Meta-World384

C.1 Success385

We report two evaluation metrics, the overall success rate averaged across tasks and the cumulative386
reward achieved by the multi-task policy. Following the original Meta-World, success is a boolean387
indicating whether the robot brings the object within an ϵ distance of the goal position at any point388
during the episode, which is less restrictive than works qualifying a success only if it occurs at the389
end of an episode. Mathematically, success occurs if ∥o − g∥2 < ϵ is satisfied at least once, where390
o is the object position and g is the goal position.391

Rather than defining the success rate as the maximum success rate over some evaluation rollouts as392
some previous work did, the success rate is defined as the proportion of success in the large number393
of environments that terminate every step. The reported success rate is this success rate averaged394
over the last 5 epochs of training. Due to massive parallelization, there is no need to separately roll395
out the learned policy in a separate process.396

D Additional Results397

D.1 Gradient Manipulation398

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frames 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

CAGrad
FAMO
Multihead
PCGrad
Vanilla

0 1 2 3 4
Frames 1e8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

CAGrad
FAMO
Multihead
PCGrad
Vanilla

Figure 7: The training curves for the three gradient manipulation methods and two baselines in both
MT10 (left) and MT50 (right).

References399

Arthur Allshire, Mayank Mittal, Varun Lodaya, Viktor Makoviychuk, Denys Makoviichuk, Felix400
Widmaier, Manuel Wüthrich, Stefan Bauer, Ankur Handa, and Animesh Garg. Transferring401
dexterous manipulation from gpu simulation to a remote real-world trifinger. arXiv preprint402
arXiv:2108.09779, 2021.403

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,404
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning405

12

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,406
2020.407

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL408
https://arxiv.org/abs/1607.06450.409

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Reinforcement410
learning through asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256,411
2016.412

Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duck-413
worth, Vincent Coyette, Laurence I Midgley, Elshadai Tegegn, Tristan Kalloniatis, et al. Ju-414
manji: a diverse suite of scalable reinforcement learning environments in jax. arXiv preprint415
arXiv:2306.09884, 2023.416

Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak. Extreme parkour with legged417
robots. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 11443–418
11450. IEEE, 2024.419

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to420
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–421
2056. PMLR, 2020.422

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and423
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.424
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.425

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam426
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-427
portance weighted actor-learner architectures. In International conference on machine learning,428
pp. 1407–1416. PMLR, 2018.429

Franka Robotics. Franka emika panda robot, 2017. URL https://www.franka.de. Accessed:430
2025-02-17.431

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.432
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint433
arXiv:2106.13281, 2021.434

Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-body control: learning a unified policy435
for manipulation and locomotion. In Conference on Robot Learning, pp. 138–149. PMLR, 2023.436

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus437
Foerster, and Mario Martin. Simplifying deep temporal difference learning, 2024. URL https:438
//arxiv.org/abs/2407.04811.439

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,440
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms441
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.442

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy443
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:444
//arxiv.org/abs/1801.01290.445

Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture446
of orthogonal experts, 2024. URL https://arxiv.org/abs/2311.11385.447

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado448
Van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI449
Conference on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.450

13

https://arxiv.org/abs/1607.06450
https://www.franka.de
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/2407.04811
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2311.11385

Under review for RLC 2025, to be published in RLJ 2025

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,451
and David Silver. Distributed prioritized experience replay, 2018. URL https://arxiv.452
org/abs/1803.00933.453

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen454
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science455
Robotics, 4(26):eaau5872, 2019.456

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by457
reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.458

Stephen James, Marc Freese, and Andrew J. Davison. Pyrep: Bringing v-rep to deep robot learning.459
arXiv preprint arXiv:1906.11176, 2019.460

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot461
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020.462

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot gener-463
alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,464
2023.465

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.466
URL http://github.com/RobertTLange/gymnax.467

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning468
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.469

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel q-learning:470
Scaling off-policy reinforcement learning under massively parallel simulation. In International471
Conference on Machine Learning. PMLR, 2023.472

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-473
zalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.474
In International conference on machine learning, pp. 3053–3062. PMLR, 2018a.475

Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, and Dieter476
Fox. Gpu-accelerated robotic simulation for distributed reinforcement learning. In Conference on477
Robot Learning, pp. 270–282. PMLR, 2018b.478

William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman, and Yecheng Jason479
Ma. Eurekaverse: Environment curriculum generation via large language models, 2024. URL480
https://arxiv.org/abs/2411.01775.481

Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization, 2023.482
URL https://arxiv.org/abs/2306.03792.483

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for484
multi-task learning, 2024. URL https://arxiv.org/abs/2110.14048.485

Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance framework for rein-486
forcement learning. https://github.com/Denys88/rl_games, May 2021.487

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,488
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High489
performance gpu-based physics simulation for robot learning, 2021. URL https://arxiv.490
org/abs/2108.10470.491

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion via492
reinforcement learning. The International Journal of Robotics Research, 43(4):572–587, 2024.493

14

https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1502.03167
http://github.com/RobertTLange/gymnax
https://arxiv.org/abs/2411.01775
https://arxiv.org/abs/2306.03792
https://arxiv.org/abs/2110.14048
https://github.com/Denys88/rl_games
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,494
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-495
inforcement learning, 2024. URL https://arxiv.org/abs/2402.16801.496

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,497
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,498
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot499
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. DOI:500
10.1109/LRA.2023.3270034.501

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan502
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL503
https://arxiv.org/abs/1312.5602.504

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-505
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig506
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,507
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-508
ment learning. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/509
CorpusID:205242740.510

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim511
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement512
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.513

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. Popgym:514
Benchmarking partially observable reinforcement learning. arXiv preprint arXiv:2303.01859,515
2023.516

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,517
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively518
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.519

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking520
offline goal-conditioned rl. arXiv preprint arXiv:2410.20092, 2024.521

Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for effective522
learning, 2016. URL https://arxiv.org/abs/1609.09025.523

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using524
massively parallel deep reinforcement learning. In Conference on Robot Learning, pp. 91–100.525
PMLR, 2022.526

Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Gardar In-527
gvarsson, Timon Willi, Ravi Hammond, Akbir Khan, Christian Schroeder de Witt, Alexandra528
Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange,529
Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktaschel, Chris Lu, and Jakob Nico-530
laus Foerster. Jaxmarl: Multi-agent rl environments and algorithms in jax, 2024. URL https:531
//arxiv.org/abs/2311.10090.532

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy533
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.534

Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela Rus,535
and Markus Wulfmeier. Solving continuous control via q-learning, 2023. URL https://536
arxiv.org/abs/2210.12566.537

15

https://arxiv.org/abs/2402.16801
https://arxiv.org/abs/1312.5602
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://arxiv.org/abs/1609.09025
https://arxiv.org/abs/2311.10090
https://arxiv.org/abs/2311.10090
https://arxiv.org/abs/2311.10090
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2210.12566
https://arxiv.org/abs/2210.12566
https://arxiv.org/abs/2210.12566

Under review for RLC 2025, to be published in RLJ 2025

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,538
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering539
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.540

Jayesh Singla, Ananye Agarwal, and Deepak Pathak. Sapg: Split and aggregate policy gradients. In541
Proceedings of the 41st International Conference on Machine Learning (ICML 2024), Proceed-542
ings of Machine Learning Research, Vienna, Austria, July 2024. PMLR.543

Shagun Sodhani and Amy Zhang. Mtrl - multi task rl algorithms. Github, 2021. URL https:544
//github.com/facebookresearch/mtrl.545

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-546
based representations. In International Conference on Machine Learning, 2021. URL https:547
//api.semanticscholar.org/CorpusID:231879645.548

Lingfeng Sun, Haichao Zhang, Wei Xu, and Masayoshi Tomizuka. Paco: Parameter-compositional549
multi-task reinforcement learning. ArXiv, abs/2210.11653, 2022. URL https://api.550
semanticscholar.org/CorpusID:253080666.551

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max552
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-553
decomposition networks for cooperative multi-agent learning, 2017. URL https://arxiv.554
org/abs/1706.05296.555

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-556
ods for reinforcement learning with function approximation. Advances in neural information557
processing systems, 12, 1999.558

Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,559
Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Ar-560
nav Gurha, Zhiao Huang, Roberto Calandra, Rui Chen, Shan Luo, and Hao Su. Maniskill3:561
Gpu parallelized robotics simulation and rendering for generalizable embodied ai. arXiv preprint562
arXiv:2410.00425, 2024.563

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.564
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,565
2012. DOI: 10.1109/IROS.2012.6386109.566

Unitree Robotics. Go1 User Manual. Unitree Robotics, 2021. Available at567
https://www.unitree.com/go1.568

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.569
Dueling network architectures for deep reinforcement learning, 2016. URL https://arxiv.570
org/abs/1511.06581.571

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,572
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-573
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–574
228, 2022.575

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft576
modularization, 2020. URL https://arxiv.org/abs/2003.13661.577

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.578
Gradient surgery for multi-task learning, 2020. URL https://arxiv.org/abs/2001.579
06782.580

16

https://github.com/facebookresearch/mtrl
https://github.com/facebookresearch/mtrl
https://github.com/facebookresearch/mtrl
https://api.semanticscholar.org/CorpusID:231879645
https://api.semanticscholar.org/CorpusID:231879645
https://api.semanticscholar.org/CorpusID:231879645
https://api.semanticscholar.org/CorpusID:253080666
https://api.semanticscholar.org/CorpusID:253080666
https://api.semanticscholar.org/CorpusID:253080666
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1706.05296
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/2003.13661
https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/2001.06782
https://arxiv.org/abs/2001.06782

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya581
Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and582
evaluation for multi-task and meta reinforcement learning, 2021. URL https://arxiv.org/583
abs/1910.10897.584

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,585
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sferrazza, Yuval Tassa, and586
Pieter Abbeel. Mujoco playground: An open-source framework for gpu-accelerated robot learn-587
ing and sim-to-real transfer., 2025. URL https://github.com/google-deepmind/588
mujoco_playground.589

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atkeson, Soeren Schwertfeger, Chelsea Finn,590
and Hang Zhao. Robot parkour learning. arXiv preprint arXiv:2309.05665, 2023.591

17

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials592

The following content was not necessarily subject to peer review.593
594

E Hyperparameter Details595

In this section, we provide hyperparameter values for each MTRL scheme.596

E.1 Meta-World MT-PPO597

E.2 Meta-World MT-GRPO598

E.3 Meta-World MT-PQN599

E.4 Meta-World MT-SAC600

E.5 Parkour MT-PPO601

F Comparison to the original Meta-World602

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Su
cc

es
s R

at
e

M
T1

0

MT-PPO
MT-SAC
MT-PPO_o
MT-SAC_o

0 1 2 3 4 5
1e6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

MT-PPO
MT-SAC
MT-PPO_o
MT-SAC_o

0.0 0.5 1.0 1.5 2.0
Wall Clock Time (hours)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Su
cc

es
s R

at
e

M
T5

0

MT-PPO
MT-SAC
MT-PPO_o
MT-SAC_o

0 1 2 3 4 5
Frames 1e6

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175 MT-PPO
MT-SAC
MT-PPO_o
MT-SAC_o

Figure 8: Comparison of our Meta-World to the original (_o) Meta-World using the hyperparameters
listed from (Yu et al., 2021)

18

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Description value variable_name

Number of environments 5120 / 6400 num_envs
Minibatch size 16384 / 25600 minibatch_size
Horizon length 32 horizon
Mini-epochs 5 mini_epochs
Number of epochs 1526 / 1221 max_epochs
Episode length 150 episodeLength
Discount factor 0.99 gamma
Clip ratio 0.2 e_clip
Policy entropy coefficient .005 entropy_coef
Optimizer learning rate 5e-4 learning_rate
Optimizer learning schedule fixed lr_schedule
Advantage estimation tau 0.95 tau
Value Normalization by task True normalize_value
Input Normalization by task True normalize_input
Separate critic and policy networks True network.separate

CARE-Specific Hyperparameters

Network hidden sizes [400,400,400] care.units
Mixture of Encoders experts 6 encoder.num_experts
Mixture of Encoders layers 2 encoder.num_layers
Mixture of Encoders hidden dim 50 encoder.D
Attention temperature 1.0 encoder.temperature
Post-Attention MLP hidden sizes [50,50] attention.units
Context encoder hidden sizes [50,50] context_encoder.units
Context encoder bias True context_encoder.bias

MOORE-Specific Hyperparameters

MoE experts 4 / 6 moore.num_experts
MoE layers 3 moore.num_layers
MoE hidden dim 400 moore.D
Activation before/after task encoding weighting [Linear, Tanh] moore.agg_activation
Task encoder hidden sizes [256] task_encoder.units
Task encoder bias False task_encoder.bias

PaCO-Specific Hyperparameters

Number of Compositional Vectors 5 / 20 paco.K
Network hidden dim 400 paco.D
Network layers 3 paco.num_layers
Task encoder bias False task_encoder.bias
Task encoder init orthogonal task_encoder.compositional_initializer
Task encoder activation softmax task_encoder.activation

Soft-Modularization-Specific Hyperparameters

MoE experts 2 soft_network.num_experts
MoE layers 4 soft_network.num_layer
State encoder hidden sizes [256,256] state_encoder.units
Task encoder hidden sizes [256] task_encoder.units

PCGrad Hyperparameters

Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient

CAGrad Hyperparameters

Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient
Local ball radius for searching update vector 0.4 c

FAMO Hyperparameters

Regularization coefficient 1e-3 gamma
Learning rate of the task logits 1e-3 w_lr
Small value for the clipping of the task logits 1e-2 epsilon
Normalize the task logits gradients True norm_w_grad

Table 3: Hyperparameters used for MTPPO. A ’/’ indicates the value used for MT10/MT50 respec-
tively and otherwise is identical for each setting.

19

Under review for RLC 2025, to be published in RLJ 2025

Description value variable_name

Number of environments 4096 / 6400 num_envs
Minibatch size 16384 / 25600 minibatch_size
Episode length 150 episodeLength
Horizon length 32 horizon
Mini-epochs 5 mini_epochs
Number of epochs 1908 / 1221 max_epochs
Episode length 150
Discount factor 0.99 gamma
Clip ratio 0.2 e_clip
Policy entropy coefficient .005 entropy_coef
Optimizer learning rate 5e-4 learning_rate
Optimizer learning schedule fixed lr_schedule
Advantage estimation tau 0.95 tau
Value Normalization by task True normalize_value
Input Normalization by task True normalize_input
Separate critic and policy networks True network.separate

Table 4: Hyperparameters used for MT-GRPO in MT10 / MT50. A ’/’ indicates the value used for
MT10/MT50 respectively and otherwise is identical for each setting.

Description value variable_name

Number of environments 8192 num_envs
Gamma .99 gamma
Peng’s Q(lambda) .5 q_lambda
Number of minibatches 4 num_minibatches
Episode length 500 episodeLength
Bang-off-Bang 3 binsPerDim
Action Scale .005 actionScale
Mini epochs 8 mini_epochs Max grad norm
10.0 max_grad_norm
Horizon 16 horizon
Start epsilon 1.0 start
End epsilon 0.005 end
Decay epsilon True decay_epsilon
Fraction of exploration steps .005 exploration_fraction
Critic learning rate 3e-4 critic_lr
Anneal learning rate True anneal_lr
Value Normalization by task False normalize_value
Input Normalization by task False normalize_input
Use residual connections True q.residual_network
Number of LayerNormAndResidualMLPs 2 q.num_blocks
Network hidden dim 256 q.D
Batch norm input False q.norm_first_layer

Table 5: Hyperparameters used for MT-PQN in MT10.

20

Benchmarking Massively Parallelized Multi-Task Reinforcement Learning for Robotics Tasks

Description value variable_name

Number of environments 4096 num_envs
Gamma .99 gamma
Separate critic and policy networks True network.separate
Number of Gradient steps per epoch 32 gradient_steps_per_itr
Learnable temperature True learnable_ temperature
Use distangeled alpha True use_disentangled_alpha
Initial alpha 1 init_alpha
Alpha learning rate 5e-3 alpha_lr
Critic learning rate 5e-4 critic_lr
Critic tau .01 critic_tau
Batch size 8192 batch_size
N-step reward 16 nstep
Grad norm .5 grad_norm
Horizon 1 horizon
Value Normalization by task True normalize_value
Input Normalization by task True normalize_input
Replay Buffer Size 5000000 replay_buffer_size
Target entropy coef 1.0 target_entropy_coef

Table 6: Hyperparameters used for MT-SAC in MT10/MT50. A ’/’ indicates the value used for
MT10/MT50 respectively and otherwise is identical for each setting. MT-SAC is very sensitive to
the number of environments and replay ratio in the massively parallel regime.

21

Under review for RLC 2025, to be published in RLJ 2025

Description value variable_name

Minibatch size 16384 minibatch_size
Horizon length 32 horizon
Mini-epochs 5 mini_epochs
Number of epochs 2000 / 4000 max_epochs
Episode length 800
Discount factor 0.99 gamma
Clip ratio 0.2 e_clip
Policy entropy coefficient .005 entropy_coef
Optimizer learning rate 5e-4 learning_rate
Optimizer learning schedule adaptive lr_schedule
Advantage estimation tau 0.95 tau
Value Normalization by task False normalize_value
Input Normalization by task False normalize_input
Separate critic and policy networks True network.separate

MOORE-Specific Hyperparameters

MoE experts 2 moore.num_experts
MoE layers 2 moore.num_layers
MoE hidden dim 256 moore.D
Activation before/after task encoding weighting [Linear, Linear] moore.agg_activation
Task encoder hidden sizes [128]
Task encoder bias False task_encoder.bias
Multihead False multihead

PaCO-Specific Hyperparameters

Number of Compositional Vectors 5 paco.K
Network hidden dim 400 paco.D
Network layers 3 paco.num_layers
Task encoder bias False task_encoder.bias
Task encoder init orthogonal task_encoder.compositional_initializer
Task encoder activation softmax task_encoder.activation

Soft-Modularization-Specific Hyperparameters

MoE experts 2 soft_network.num_experts
MoE layers 2 soft_network.num_layer
State encoder hidden sizes [256,256] state_encoder.units
Task encoder hidden sizes [128] task_encoder.units

PCGrad Hyperparameters

Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient

CAGrad Hyperparameters

Project actor gradient False project_actor_gradient
Project critic gradient True project_critic_gradient
Local ball radius for searching update vector 0.4 c

FAMO Hyperparameters

Regularization coefficient 1e-4 gamma
Learning rate of the task logits 5e-3 w_lr
Small value for the clipping of the task logits 1e-3 epsilon
Normalize the task logits gradients True norm_w_grad

Table 7: Hyperparameters used for MTPPO in Parkour Benchmark. A ’/’ indicates the value used
for Parkour-easy/Parkour-hard respectively and otherwise is identical for each setting.

22

