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SegTalker: Segmentation-based Talking Face Generation with
Mask-guided Local Editing

Figure 1: Given a talking video and another speech, SegTalker can produce high-fidelity and synchronized video with rich
textures (row 2), enabling swapping background (row 3) and local editing such as blinking (row 4).

ABSTRACT
Audio-driven talking face generation aims to synthesize video with
lip movements synchronized to input audio. However, current gen-
erative techniques face challenges in preserving intricate regional
textures (skin, teeth). To address the aforementioned challenges,
we propose a novel framework called SegTalker to decouple lip
movements and image textures by introducing segmentation as
intermediate representation. Specifically, given the mask of image
employed by a parsing network, we first leverage the speech to drive
the mask and generate talking segmentation. Then we disentangle
semantic regions of image into style codes using a mask-guided
encoder. Ultimately, we inject the previously generated talking
segmentation and style codes into a mask-guided StyleGAN to syn-
thesize video frame. In this way, most of textures are fully preserved.
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Moreover, our approach can inherently achieve background sepa-
ration and facilitate mask-guided facial local editing. In particular,
by editing the mask and swapping the region textures from a given
reference image (e.g. hair, lip, eyebrows), our approach enables
facial editing seamlessly when generating talking face video. Ex-
periments demonstrate that our proposed approach can effectively
preserve texture details and generate temporally consistent video
while remaining competitive in lip synchronization. Quantitative
results on the HDTF dataset illustrate the superior performance of
our method over existing methods on most metrics.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks; • In-
formation systems→Multimedia content creation.

KEYWORDS
Video Generation, Talking Face Generation, Attribute Editing

1 INTRODUCTION
Talking face generation, which aims to synthesize facial imagery
precisely synchronized with input speech, has garnered substantial
research attention for its numerous applications in the fields of
digital human, virtual conference and video dubbing [20, 42, 44, 52].
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There are many attempts to realize high-fidelity talking face.
Early approaches first predict mouth shapes from speech using
recurrent neural networks, then generate the face conditioned on
the shapes [37]. Recent end-to-end methods directly map speech
spectrograms to video frames leveraging different intermediate rep-
resentations [20, 36, 53, 55]. Zhang et al. [53] takes advantage of 3D
Morphable Models (3DMMs), a parametric model that decomposes
expression, pose, and identity, to transfer facial motions. Zhou et
al. [55] employs the landmark as the representation. Meshry et
al. [20] factorizes the talking-head synthesis process into spatial
and style components through the use of coarse-grained masks, but
they do not facilitate texture disentanglement and facial editing.
More recently, Kicanaoglu et al. [14] performs unsupervised vector
quantization on intermediate feature maps of StyleGAN to generate
abundant semantic regions for local editing. Despite improvements
in photo-realism, current talking face methods still face challenges
in preserving identity-specific details such as hair, skin textures and
teeth. Furthermore, within the current landscape of talking face gen-
eration methods, there is no single technique that can concurrently
accomplish facial editing and background replacement. Our method
elegantly incorporates facial editing into talking face generation in
an end-to-end manner through the intermediate representation of
segmentation.

In this paper, we aim to design a unified approach that realizes
the controllable talking face synthesis and editing. We propose a
novel framework termed SegTalker that explicitly disentangles
textural details with lip movements by utilizing segmentation. Our
framework consists of an audio-driven talking segmentation gen-
eration (TSG) module, followed by a segmentation-guided GAN
injection (SGI) network to synthesize animation video. We utilize a
pre-trained network [49] to extract segmentation as prior informa-
tion to decompose semantic regions and enhance textural details,
while also seamlessly enabling fine-grained facial local editing and
background replacement. Specifically, given the input image and
speech, we first conduct face parsing to obtain the segmentation.
Subsequently, TSG module extracts image and speech embedding,
then combines these embeddings to synthesize new segmentation
with lips synchronized to the input speech. After that, SGI module
employs a multi-scale encoder to project the input face into the
latent space of StyleGAN [13]. Each facial region has a set of style
codes for different layers of the StyleGAN generator. Then We in-
ject the synthesized mask and style codes into the mask-guided
generator to obtain the talking face. In this way, the structural in-
formation and textures of facial components are fully disentangled.
Furthermore, facial local editing can be accomplished by simply
modifying the synthesized mask or swapping the region textures
from a given reference image, achieving seamless integration with
talking face synthesis. Experiments demonstrate that our model
synthesizes high-fidelity talking faces in visual quality and texture
preservation with enhanced editing flexibility compared to existing
state-of-the-art methods. In summary, our contributions are:

• We propose a novel framework that utilizes segmenta-
tion as intermediate representation to disentangle the
lip movements with image reconstruction for talking
face generation, achieving consistent lip movements
and preserving fine-grained textures.

• Weemploy amulti-scale encoder andmask-guided gen-
erator to realize the local control for different seman-
tic regions. By manipulating the masks and smoothly
swapping the textures, we can seamlessly integrate the
facial local editing into the talking face pipeline and
conduct swapping background.

• Experiments on HDTF dataset demonstrate our supe-
riority over state-of-the-art methods in visual quality,
id preservation and temporal consistency.

2 RELATEDWORK
2.1 Audio-driven Talking Face Generation
Talking face generation, which aims to synthesize photo-realistic
video of a talking person giving speech as input, has garnered in-
creasing research attention in recent years. With the emergence of
generative adversarial networks (GANs) [9], many methods [20, 24,
36, 53, 55] have been proposed for synthesizing animation video. In
terms of the intermediate representations, the existing works can
be categorized into landmark-based, 3D-based and others. In the
landmark-based methods, Suwajanakorn et al. [37] use recurrent
neural network (RNN) to build themapping from the input speech to
mouth landmark, and then generate mouth texture. Zhou et al. [55]
combines LSTM and self-attention to predict the locations of land-
marks. Zhong et al. [54] utilizes transformer to predict landmarks,
then combines multi-source features (prior information, landmarks,
speech) to synthesize talking face. Recently, DiffTalk [31] takes
speech and landmarks as conditioned inputs and utilizes a latent
diffusion model [27] to generate talking faces. For 3DMM-based
method, SadTalker [52] learns realistic 3D motion coefficients for
stylized audio-driven single image talking face animation, achiev-
ing high-quality results by explicitly modeling audio-motion con-
nections. Some styleGAN-based method such as StyleHEAT [48]
leverages a pre-trained StyleGAN to achieve high-resolution ed-
itable talking face generation from a single portrait image, allowing
disentangled control via audio. More recently, the emergence of
neural radiance field (NeRF) provides a new perspective for 3D-
aware talking face generation [10, 30]. However, these intermediate
representations have difficulty in capturing fine-grained details and
preserving identity i.e., teeth and skin textures which degrade the
visual quality heavily. Wav2Lip [24] adopts the encoder-decoder
architecture to synthesize animation videos. However, there are con-
spicuous artifacts with a low resolution in the synthesized videos.
In this work, we employ a novel representation, segmentation, to
disentangle lip movement with image reconstruction, and further
extract per-region features to preserve texture details.

2.2 GAN Inversion
GAN inversion aims to invert real images into the latent space
of pre-trained generator for reconstruction and editing. Several
StyleGAN inversion methods have been proposed, they can typi-
cally be divided into three major groups of methods: 1) gradient-
based optimization of the latent code [1, 2, 12, 29], 2) encoder-
based [3, 25, 38, 46, 47] and 3) fine-tune methods [4, 21, 26, 50]. The
gradient-based optimization methods directly optimize the latent
code using gradient from the loss between the real image and the
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generated one. The encoder-based methods train an encoder net-
work over a large number of samples to directly map the RGB image
to latent code. The gradient-based optimization methods always
give better performance while the encoder-based cost less time.
The fine-tuning methods make a trade-off between the above two
and use the inverted latent code from encoder as the initialization
code to further optimization. However, existing works focus on
global editing and cannot make fine-grained control of the local
regions. Our method uses a variation of [25] to realize local editing
via manipulating a novelW𝑐+ [19] latent space.

2.3 Mask-guided Facial Editing
Deep semantic-level face editing has been studied for a few years.
Many works of StyleGAN priors have shown a semantic disentan-
glement property in spatial dimensions [14, 15, 20, 35]. Lee et al.
[16] learn a mapping between semantic masks and images. Shi et
al. [35] and Kim et al. [15] achieve more fine-grained editing via
explicit semantic style injection and masks to factorize semantic
regions. Recently, Kicanaoglu et al. [14] performs unsupervised
clustering on StyleGAN’s intermediate output features to acquire
spatial semantics. Then an image-to-image (I2I) network [22] is
employed to take the mask as conditional input and generate the
edited image. However, such an approach is time-consuming, and
the performance is heavily constrained by the efficacy of cluster-
ing. Following [35], We leverage mask labels as prior information
to extract spatially semantic region features, achieving semantic
disentanglement.

3 PROPOSED METHODS
3.1 Overview
To tackle with the lack of regional textures in talking face gener-
ation, we explicitly disentangle semantic regions by introducing
segmentation mechanism. Leveraging segmentation as an interme-
diate representation, our approach decouples audio-driven mouth
animation and image texture injection. The speech is solely re-
sponsible for driving the lip contours, while the injection module
focuses on extracting per-region textures to generate the anima-
tion video. The overall framework of our proposed model, termed
as SegTalker, is illustrated in fig. 2. The pipeline consists of two
sub-networks: (1) talking segmentation generation (TSG) and (2)
segmentation-guided GAN injection network (SGI), which are elab-
orated in section 3.2 and section 3.3, respectively.

3.2 Talking Segmentation Generation
The first proxy sub-network is the talking segmentation generation
(TSG) module. Given speech and image frame, this network first
employs parsing network [49] to extract mask, then synthesizes
talking segmentation. The original network generates 19 categories
in total. For the sake of simplicity, we merge the same semantic
class (e.g. left and right eyes), resulting in 12 final classes. During
pre-processing, video is unified to 25fps with speech sampled at
16kHz. To incorporate temporal information, Following [41], the
global and local features are extracted as speech embedding. We em-
ploy mask encoder to extract visual embedding from two masks:
a pose source and an identity reference. The two masks are concate-
nated in the channel dimension. The pose source aligns with the

target segmentation but with the lower half occluded. The identity
reference provides facial structural information of the lower half
to facilitate training and convergence. Without concerning textu-
ral information, the model only focuses on learning the structural
mapping from speech to lip movements.

We employ a CNN-based network to extract embedding of a 0.2-
second audio segment whose centre is synchronized with the pose
source. Similar to text, speech always contains sequential informa-
tion. To better capture temporally relevant features, we employ
the pre-trained AV-Hubert [33, 34] as a part of audio encoder to
extract long-range dependencies. AV-Hubert has conducted pre-
training for audio-visual alignment, so the extracted embedding
is very close to the semantic space of the video. When using AV-
Hubert to extract audio embedding, we only need to feed speech and
the visual signal is masked. Specifically, given a 3s speech chunk,
we feed it into the Transformer-based AV-Hubert to produce con-
textualized speech features. We then extract the feature embedding
corresponding to the given image segment. Given the mixed speech
embedding and visual embedding, Generator synthesizes the final
talking segmentation. We adopt U-Net [28] as the backbone archi-
tecture. In addition, skip connections and transposed convolutions
are utilized for feature fusion and up-sampling.

Given an mask synthesized by the model and the ground truth
mask, we employ two types of losses to improve generation quality
i.e., the reconstruction loss and the syncnet loss.

Reconstruction Loss Unlike previous generative tasks that of-
ten synthesize RGB image and adopt L1 loss for reconstruction,
talking segmentation involves generating segmentation where each
pixel denotes a particular class. To stay consistent with semantic
segmentation task, we employ cross entropy loss as our reconstruc-
tion loss. Given 𝑁𝑖 generated masks 𝑦𝑖 and ground truth 𝑦𝑖 with a
categories of𝑀 regions, the cross entropy loss is defined as:

Lce =
1
𝑁𝑖

𝑁𝑖∑︁
𝑖

𝑀∑︁
𝑐=1

𝑦𝑖𝑐 log ( ˆ𝑦𝑖𝑐 ) (1)

where 𝑦𝑖𝑐 denotes the one-hot encoded vector for the i-th gener-
ated segmentation belonging to the c-th category. For generated
segmentation, different classes occupy varying proportions of areas.
Semantically important regions like lips and eyes constitute small
fractions, while background dominates most areas. To mitigate the
class imbalance issue, a weighted cross entropy is formulated as:

Lw-ce =
1
𝑁𝑖

𝑁𝑖∑︁
𝑖

𝑀∑︁
𝑐=1

𝑤𝑐 𝑦𝑖𝑐 log ( ˆ𝑦𝑖𝑐 ) (2)

where𝑤𝑐 denotes the weight for the corresponding category and is
determined on the inverse proportionality of the areas of different
regions on the whole dataset.

SyncNet Loss The reconstruction loss mainly restores images
at the pixel level without effective semantic supervision. Therefore,
we train a segmentation-domain SyncNet from [24] to supervise
lip synchronization. During training, a speech chunk is randomly
sampled from speech sequences, which can be either synchronized
(positive example) or unsynchronized (negative example). The Sync-
Net consists of a speech encoder and a mask encoder. For the mask,
we use one-hot encoding as input and concatenate 𝑇𝑣 masks along
the channel dimension. Specifically, the SyncNet takes inputs of a
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𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿ce+ 𝐿sync
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿2+ 𝐿lpips+

𝐿id + 𝐿parsing+ 𝐿adv

GT

Mask injection

Figure 2: Overview of the proposed SegTalker framework for talking face generation. (a) talking segmentation generation
(TSG) module takes mel and mask as inputs, then synthesizes the talking segmentation with lip synchronized to input speech.
(b) Given reference image and mask from TSG, segmentation-guided GAN injection (SGI) network utilizes a mask-guided
multi-scale encoder to extract different semantic region codes, then injects the style codes and synthesized mask from TSG into
the mask-guided generator to obtain the final talking face image.

window 𝑇𝑣 of consecutive lower-half frames and a speech segment
𝑆 . After passing through the speech encoder and mask encoder, 512-
dim embeddings 𝑠 = 𝐸speech (𝑆) and𝑚 = 𝐸mask (𝑇𝑣) are obtained
respectively. Cosine similarity distance and binary cross entropy
loss are then calculated between the embeddings. The losses are
formally defined as:

𝑃sync =
𝑠 ·𝑚

max( | |𝑠 | |2 · | |𝑚 | |2, 𝜖)
(3)

Lsync =
1
𝑁

𝑁∑︁
𝑖

− log(𝑃𝑖sync) (4)

where 𝑃sync is a single value between [0, 1] and 𝑁 is the batch size.
𝜖 is used to prevent division by zero. We train the lip-sync expert
on the HDFT dataset [53] with a batch size of 8, 𝑇𝑣 = 5 frames, 𝑆
= 0.2s segment, using the Adam optimizer with a learning rate of
1e-4. After approximately one day of training, the model converges.
Our expert network eventually achieves 81% accuracy on the test
set.

3.3 Segmentation-guided GAN Injection
The second sub-network illustrated in fig. 2 is the segmentation-
guided GAN injection (SGI) network. Giving a portrait and its

corresponding mask, SGI first encodes the image into the latent
space to obtain the latent code, then inverts the generated latent
code back to the image domain through style injection.

There exist various latent spaces such asW,W+ and S space.
Many works [1, 25, 32, 38, 45] have investigated their representa-
tional abilities from the perspectives of distortion, perception, and
editability. Here, we chooseW𝑐+ space, a variation ofW+ space
originated from [19] as representation of latent code. To leverage
this representation, a powerful encoder is required to accurately
map each input image to a corresponding code. Although many
encoders [25, 38, 45] have been proposed, they focus on extracting
global latent code for global editing, such as age, emotion, making
them unsuitable for textures disentanglement and local editing. To
this end, we adopt a variation of [25] for latent code extraction. The
encoder utilizes a feature pyramid network (FPN) [18] for feature
fusion, ultimately generating fine-grained, medium-grained, and
coarse-grained feature maps at three different scales. The mask
is then resized to match each feature map. Subsequently, a global
average pooling (GAP) is employed to extract semantic region fea-
tures according to the segmentation, resulting in multi-scale style
vectors. These are concatenated and further passed through anMLP
to obtain the W𝑐+ style codes.
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Table 1: Quantitative comparisons on the HDTF dataset. The best performance is highlighted in red (1st best) and blue
(2nd best). Facial Editing and Swapping Background demonstrate the method’s capabilities for facial attribute editing and
swapping background. For better visualization, we scale up the FVD by a factor of 0.1. Our SegTalker obtains the best visual
quality, temporal consistency and comparable performance in lip synchronization. our method is the only approach that can
simultaneously achieve facial editing and background swapping.

Method Local Swapping Synchronization Visual Quality
Editing Background Sync↑ F-LMD↓ M-LMD↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ FVD↓ × 0.1

Real Video N/A N/A 7.305 0 0 2.623 0.0109 - 1.000 1.048

Wav2Lip [24] N/A N/A 8.413 3.727 4.528 16.299 0.1031 31.821 0.921 17.423
SadTalker [52] Blink Only N/A 6.725 34.970 36.172 59.059 0.7567 15.967 0.496 85.638
DiffTalk [31] N/A N/A 4.615 2.004 1.614 23.498 0.111 31.654 0.913 16.606
StyleHEAT [48] Blink Only N/A 6.296 29.672 31.390 111.229 0.7969 14.968 0.465 91.2356
AD-NeRF [10] N/A Yes 5.216 3.574 3.825 18.614 0.1013 30.640 0.923 18.438

Ours Yes Yes 6.872 3.405 3.173 10.348 0.0494 33.590 0.934 9.205

Specifically, given a source image 𝐼 and its corresponding mask
𝑀 , we first utilize a multi-scale encoder 𝐸𝜙 to obtain the feature
maps 𝐹 = [𝐹𝑖 ]𝑁𝑖=1 at different resolutions:

𝐹 = 𝐸𝜙 (𝐼 ) (5)

Here 𝑁 is equal to three. We then aggregate per-region features
based on the mask𝑀 and features 𝐹 . Specifically, for each feature
map 𝐹𝑖 , we first downsample themask tomatch the featuremap size,
then perform global average pooling (GAP) to aggregate features
for different regions:

𝑢𝑖 𝑗 = GAP(𝐹𝑖 ◦ (Down(𝑀)𝑖 = 𝑗)), { 𝑗 = 1, 2, ...,𝐶} (6)

Where 𝑢𝑖 𝑗 denotes the averaged feature of region 𝑗 in feature
map 𝑖 , 𝐶 is the number of semantic regions, Down(. . .) is the down-
sampling operation to align with 𝐹𝑖 , and ⟨◦⟩ is the element-wise
product. Subsequently, the multi-scale feature vectors {𝑢𝑖 𝑗 }𝑁𝑖=1 of
region 𝑗 are concatenated and passed through a multi-layer percep-
tron (MLP) to obtain the style codes:

𝑠 𝑗 = MLP( [𝑢𝑖 𝑗 ]𝑁𝑖=1) (7)

where 𝑠 𝑗 denotes the style code of 𝑗-th categories. Then, the mask
and style codes 𝑠 ∈ R𝐶×18×512 are fed into the mask-guided Style-
GAN generator to synthesize the talking face. For the detailed
architecture of the Mask-guided StyleGAN, please refer to the sup-
plement.

Prior Learning In order to seamlessly integrate SGI into the
overall framework, we randomly select a mask from the images
within a 15-frame range of the input image. Through such a training
strategy, the model can learn the priors of semantic regions like
teeth and eyes. Specifically, when given an image with closedmouth
but a randomly selected mask corresponds to a visible-teeth state,
it learns to model the teeth prior information and can naturally
connect with the TSG module.

Loss Functions SGI is trained with a series of weighted objec-
tives. Firstly, for the input image 𝐼 and generation image 𝐼 ,we utilize
the pixel-wise L2 and LPIPS [51] loss to have a better perceptual
quality:

L2 = ∥ 𝐼 − 𝐼 ∥22 (8)

Llpips =
∑︁
𝑠

∥ 𝑉 (𝐼𝑠 ) −𝑉 (𝐼𝑠 ) ∥
2
2 (9)

where 𝑉 (. . .) denotes the perceptual feature extractor.
To prevent identity drift, we extract features from a pre-trained

face recognition network [8] and maximize the cosine similarity
between the input and generated images:

Lid = 1 − ⟨𝑅(𝐼 ), 𝑅(𝐼 )⟩ (10)

where 𝑅(. . .) is the ArcFace model [8] and ⟨. . .⟩ denotes the cosine
similarity distance.

Moreover, a face parsing loss is also utilized following the work:

Lparsing = 1 − ⟨𝑃 (𝐼 ), 𝑃 (𝐼 )⟩ (11)

where 𝑃 is the pre-trained face parser used in [17].
Using the losses mentioned above solely can not produce photo-

realistic results. Hence, we additionally employ an adversarial loss
to enhance image quality, which is defined as:

Ladv = E[1 − log𝐷 (𝐼 )] + E[log𝐷 (𝐼 )] (12)

where 𝐷 is initialized with the pre-trained StyleGAN discriminator.
Finally, the overall objective function is summarized as:

Ltotal = L2+𝜆lpipsLlpips+𝜆idLid+𝜆parsingLparsing+𝜆advLadv (13)

where 𝜆lpips, 𝜆id, 𝜆parsing and 𝜆adv are the trade-off hyperparameters
and set to 0.8, 0.1, 0.1, and 0.01, respectively.

4 EXPERIMENTS
4.1 Experimental settings
Dataset Since StyleGAN [13] typically generates high resolution
images, e.g. 512 or 1024, while most existing talking face datasets
have a lower resolution of 256 or below, we opt to train on the
HDTF dataset [53] for high-quality talking face synthesis. The
HDTF dataset is collected from YouTube website published in the
last two years, comprising around 16 hours of videos ranging from
720P to 1080P resolution. It contains over 300 subjects and 10k
distinct sentences. We collected a total of 392 videos, with 347 used
for training and the remaining 45 for testing. The test set com-
prises videos with complex backgrounds and rich textures, thereby
offering a comprehensive evaluation of the model performance.
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Figure 3: Qualitative comparisons of our results with several state-of-the-art methods for talking face synthesis. our method
produces high-fidelity video frames with rich textural details, while other methods struggle to preserve identity and contain
artifacts. It is worth noting that AD-NeRF needs to train on these two identities respectively to produce the results.

Metrics We conduct quantitative evaluations on several widely
used metrics. To evaluate the lip synchronization, we adopt the
confidence score of SyncNet [7] (Sync) and Landmark Distance
aroundmouths (M-LMD) [5]. To evaluate the accuracy of generated
facial expressions, we adopt the Landmark Distance on the whole
face (F-LMD). To evaluate the quality of generated talking face
videos, we adopt PSNR [41], SSIM [43], FID [11] and LPIPS [51].
Tomeasure the Temporal coherence of generated videos, we employ
FVD [39]. Higher scores indicate better performance for Sync,
PSNR, and SSIM, while lower scores are better for F-LMD, M-LMD,
FID, LPIPS and FVD.

Implementation DetailsWe use PyTorch [23] to implement
our framework. We train TSG module on a single NVIDIA A100
GPU with 40GB, while SGI module is trained on 4 NVIDIA A100
GPUs. In stage 1, We crop and resize face to 512×512. Speech wave-
forms are pre-processed to mel-spectrogram with hop and window
lengths, and mel bins are 12.5ms, 50ms, and 80. The batch size is
set to 20 and the Adam solver with an initial learning rate of 1e-4
(𝛽1 = 0.5, 𝛽2 = 0.999) is utilized for optimization. In stage 2, we set
the batch size to 4 for each GPU and initialize the learning rate as
1e-4 with the Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.999). The generator

is initialized with StyleGAN weights [13]. In the first stage, we train
the model with only the cross entropy loss for approximately 50K
iterations, then incorporate the expert SyncNet to supervise lip
movements for an extra 50k iterations. In the second stage, we train
the model for 400K iterations.

4.2 Experimental Results
Qualitative Talking Segmentation Results In the first sub-
network, we visualize the talking segmentation results illustrated
in fig. 4. It can be observed that the generated segmentations effec-
tively delineate distinct facial regions, even elaborating details such
as earrings. Additionally, the synthesized lips exhibit strong syn-
chronization with the ground truth. Subsequently, the high-quality
segmentations produced by TSG are utilized as guidance of the SGI
to deliver the final output.

Quantitative ResultsWe compare several state of the art meth-
ods: Wav2Lip [24], SadTalker [52] (3DMM-based), DiffTalk [31]
(diffusion-based), StyleHEAT [48] (styleGAN-based) and AD-NeRF
[10] (NeRF-based). We conduct the experiments in the self-driven
setting on the test set, where the videos are not seen during train-
ing. In these methods, the head poses of Wav2Lip, DiffTalk, and

2024-04-13 09:15. Page 6 of 1–10.
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Figure 4: Visualization of synthesized segmentation(row 1,
row 2) and real images(row 2, row 4).

(a) Different Regions (b) Different IDs

Figure 5: (a) Visualization of the regional style codes of a
speaker. (b) Visualization of the style codes of 8 speakers in
a particular region (here hair for example).

SegTalker are fixed in their samples. For other methods, head poses
are randomly generated. The results of the quantitative evaluation
are reported in table 1.

Our method achieves better visual quality, temporal consistency,
and also shows comparable performance in terms of lip synchro-
nization metrics. Since DiffTalk takes ground truth landmark as
conditional input, it is reasonable for DiffTalk to achieve the low-
est LMD in self-driven sets. However, DiffTalk performs poorly
in frame-to-frame coherence, especially with significant jitter in
the mouth region (see supplementary video). In synchronization,
despite scoring slightly lower on metrics relative to Wav2lip, our
method achieves a similar score with ground truth videos. Further-
more, Our method outperforms existing state-of-the-art approaches
on both pixel-level metrics such as PSNR, as well as high-level
perceptual metrics including FID and LPIPS, thereby achieving en-
hanced visual quality. We additionally measure the FVD metric
and Our FVD score is the best. This means that our method is able
to generate temporal consistency and visual-satisfied videos. This
is largely attributed to the implementation of SGI module. By ex-
plicitly disentangling different semantic regions via segmentation,
SGI can better preserve texture details during image reconstruction.

SourceRef. Local Editing Results

Hair 

Editing

Lip 

Editing

Eyebrow 

Editing

Figure 6: Qualitative results of local editing. Our method
produces more high-fidelity results in editing regions while
maintaining the details and identity information of other
regions.

Moreover, our method is the only approach that can simultaneously
achieve facial editing and background replacement which will be
discussed in the following section.

Qualitative ResultsTo qualitatively evaluate the different meth-
ods, we perform uniformly sampled images from two synthesized
talking face videoswhich are shown in fig. 3. Specifically, the ground
truth videos are provided in the first row where synthesized images
of different methods follow the next and ours are illustrated in
the bottom row. In comparison to Wav2lip [24], our results exhibit
enhanced detail in the lip and teeth regions. For SadTalker [52],
It employs single-frame animation, which inevitably causes back-
ground movement and generates artifacts when wrapping motion
sequences. Additionally, it also cannot handle the scenarios with
changing background. The incorporation of segmentation in our
approach allows high-quality background replacement. DiffTalk [6]
can generate visually satisfying results; however, diffusion-based
methods still face significant challenges in terms of temporal con-
sistency. The mouth area of DiffTalk is prone to shaking and leads
to poor lip synchronization performance. StyleHEAT [48] is also
a StyleGAN-based approach, but it cannot directly drive speech
to generate talking face video. Instead, it requires the assistance
of SadTalker to extract features from the first stage, then warps
the features to generate video. Therefore, the quality of the video
generated by StyleHEAT is limited by the quality of the output
generated by SadTalker. AD-NeRF [10] is a NeRF-based method
capable of generating high-quality head part but consistently exists
artifact in the connection between the head and neck. Moreover,
its inference is time-consuming (10s per image) and requires fine-
tuning for each speaker (about 20 hours). In contrast, our method
can produce more realistic and high-fidelity results while achieving
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Table 2: Quantitative comparisons of our methods under
different ablation configurations. P.L. and C.S. denote prior
learning and cross entropy, respectively.

Conf. Sync↑ FID↓ PSNR↑ SSIM↑
w/o P.L. 5.314 28.254 28.685 0.847
w/o C.S. 3.126 63.264 14.257 0.479

w/o SyncNet 4.174 10.647 32.036 0.913

All pipeline 6.872 10.348 33.590 0.934

accurate lip sync, satisfactory identity preservation and rich facial
textures. For more comparison results, please refer to our demo
videos in the supplement materials.

Disentangled Semantics Visualization To demonstrate the
Disentanglement of the model across different semantic regions, we
employ t-distributed stochastic neighbor embedding(t-SNE) [40]
visualization to illustrate the per-region features, as depicted in
fig. 5(a). For Clarity, We select eight sufficiently representative
regions (appear in all videos) and utilize the mask-guided encoder
to extract style codes from these semantic regions. In fig. 5(a), each
region is marked with a distinct color. As shown, the style codes
of same region cluster in the style space and different semantic
regions are explicitly separated substantially. This demonstrates
that our mask-guided encoder can accurately disentangle different
region features. Furthermore, in fig. 5(b), we visualize the features of
different IDswithin a particular region to demonstrate the capability
of the encoder. It can be seen that the style codes of different IDs
are fully disentangled and our model can learn meaningful features.

Facial Editing and Swapping Results Our method also sup-
ports facial editing and background swaps while generating video.
Given a reference image and a sequence of source images, our
method can transfer the candidate region texture to the source
images. As depicted in fig. 6, we illustrate three local editing tasks,
including fine-grained hair editing, lip makeup, and eyebrow modi-
fications. Besides, we also can manipulate blinking in a controllable
manner by simply editing the eye regions of mask, illustrated in
fig. 1. Compared with existing blink methods, our method does
not design a specialized module for blinking editing, as well as
enables other types of local editing, substantially enhancing model
applicability and scalability. Additionally, our model intrinsically
disentangles the foreground and background, allowing for seam-
less background swapping and widening the application scenarios
of talking faces. As shown in fig. 7, with a provided reference
background image and a video segment, we can not only generate
synchronized talking face video, but also achieve video background
swapping, resulting in high-fidelity and photo-realistic video.

4.3 Ablation Study
In this section, we perform an ablation study to evaluate the 2 sub-
agent networks, which are shown in table 2. We develop 3 variants
with the modification of the framework corresponding to the 2
sub-network: 1) w/o prior learning, 2) w/o cross entropy and 3) w/o
SyncNet.

The first component is the implementation of priors learning.
Without priors learning, the method produces poor visual quality.

SourceRef. Swapping Results

Figure 7: Example of Swapping background. Given a video
and a background image, our method can produce natural
and photo-realistic swapping videos.

This mechanism offers structural prior information for the mouth
and teeth regions, which facilitates the model learning personalized
details of these areas. The second component is the cross entropy.
Without cross entropy, the method exhibits very poor performance
whenever on both lip synchronization and visual quality. By em-
ploying cross-entropy loss instead of L1 loss, we overcome the issue
of erroneous segmentation predictions around region boundaries,
improving the model’s control over different semantic areas. Fur-
thermore, cross entropy also facilitates learning lip movements from
speech, exhibiting a certain extent of lip synchronization. The last
component is the SyncNet, which is performed to reinforce the
model learning the mapping from speech to lip. The performance
of visual quality is comparable to the baseline when we do not
apply SyncNet. However, without SyncNet would lead to poor lip
synchronization performance, which are demonstrated in table 2.

5 CONCLUSION
In this paper, we present a new framework SegTalker for talking
face generation, which disentangles the lip movements and textures
of different facial components by employing a new intermediate
representation of segmentation. The overall framework consists
of two sub-networks: TSG and SGI network. TSG is responsible
for the mapping from speech to lip movement in the segmentation
domain and SGI employs a multi-scale encoder to project source
image into per-region style codes. Then, a mask-guided generator
integrates the style codes and synthesized segmentation to obtain
the final frame. Moreover, By simply manipulating different seman-
tic regions of segmentation or swapping the different textures from
reference image, Our method can seamlessly integrate local editing
and support coherent swapping background.
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