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RECONVIAGEN: TOWARDS ACCURATE MULTI-VIEW
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Figure 1: In the task of 3D object reconstruction from multi-view images, existing pure reconstruc-
tion methods can only produce incomplete results, while generation-based methods can get plausible
complete results but with strong inconsistency with input images. Our ReconViaGen integrates 3D
reconstruction and diffusion-based generation priors into one framework that leads to accurate re-
constructions.

ABSTRACT

Existing multi-view 3D object reconstruction methods heavily rely on sufficient
overlap between input views, where occlusions and sparse coverage in practice
frequently yield severe reconstruction incompleteness. Recent advancements in
diffusion-based 3D generative techniques offer the potential to address these lim-
itations by leveraging learned generative priors to “hallucinate” invisible parts
of objects, thereby generating plausible 3D structures. However, the stochastic
nature of the inference process limits the accuracy and reliability of generation
results, preventing existing reconstruction frameworks from integrating such 3D
generative priors. In this work, we comprehensively analyze the reasons why
diffusion-based 3D generative methods fail to achieve high consistency, including
(a) the insufficiency in constructing and leveraging cross-view connections when
extracting multi-view image features as conditions, and (b) the poor controllability
of iterative denoising during local detail generation, which easily leads to plausi-
ble but inconsistent fine geometric and texture details with inputs. Accordingly,
we propose ReconViaGen to innovatively integrate reconstruction priors into the
generative framework and devise several strategies that effectively address these
issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct
complete and accurate 3D models consistent with input views in both global struc-
ture and local details.

1 INTRODUCTION

In the field of 3D computer vision, multiview 3D object reconstruction has long been a fundamen-
tal yet challenging task, with numerous applications in areas such as VR, AR, and 3D modeling.
Existing multiview reconstruction methods typically rely on enough visual cues and learned cor-
respondences between views to estimate the 3D structure and appearance of the object Mildenhall
et al. (2020); Kerbl et al. (2023); Leroy et al. (2024); Wang et al. (2024a; 2025a). However, these
methods often face significant limitations when dealing with weak-texture objects or incomplete
image captures due to occlusions or the presence of support surfaces. As a result, reconstructed 3D
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models tend to have holes, artifacts, and missing/blurred geometric details, which severely restrict
the reconstruction completeness He et al. (2024); Xu et al. (2024c).

Recent advances in diffusion-based 3D generative techniques have shown great promise in address-
ing these limitations. These techniques leverage 3D generative priors learned from large-scale 3D
data to generate complete 3D outputs from sparse- or even single-view images Li et al. (2024b);
Zhao et al. (2025); Li et al. (2025a); Zhang et al. (2024b); Ye et al. (2025). Such strong genera-
tive priors can effectively “hallucinate” the invisible portions of objects with plausible high-quality
geometry and appearance, thereby showing great potential in 3D reconstruction by filling in the
missing details and improving the completeness. However, the stochastic nature of the diffusion-
based inference process introduces significant uncertainty and variability in the generated results,
making it challenging to achieve high accuracy and reliability, especially the pixel-level alignment
required in accurate reconstruction. This stochasticity has largely hindered the effective integration
of diffusion-based 3D generative priors into existing multi-view reconstruction frameworks.

Pioneering explorations have been made in the field of 3D diffusion-based generation from multi-
view images Xiang et al. (2024); Zhao et al. (2025). However, their predictions still suffer from
inaccurate global structures and inconsistent local details. The inherent key reasons of the failure
include (i) the insufficiency in constructing cross-view correlations when extracting multi-view im-
age features as conditions, resulting in inaccurate estimation in both object geometry and texture, at
the global and local level, (ii) the poor controllability and stability of the denoising process during
inference, which easily results in inconsistency with input views especially in detailed geometry and
texture estimation. To address these issues, we present ReconViaGen that innovatively integrates
multi-view stereo priors into the diffusion-based generative framework for object reconstruction.
Our solution includes three stages: (i) a pre-trained strong reconstructor Wang et al. (2025a) is de-
veloped to build a multi-view stereo understanding of the object geometry and texture, aggregated
into a single global token list and a set of local token lists, for representing the global geometry and
the detailed per-view appearance, respectively; (ii) a coarse-to-fine 3D generator Xiang et al. (2024)
first estimates the coarse structure and then produces the fine textured mesh, under the conditioning
of global and local tokens from the first stage, respectively; (iii) refining the estimated poses from the
reconstructor using the generation from the second stage, and encouraging the pixel-wise alignment
with input views using a novel rendering-aware velocity compensation mechanism, where input im-
ages coupled with estimated camera poses are used to explicitly guide the denoising trajectory of
local latent representations.

Extensive experiments on the Dora-bench Chen et al. (2024) and OminiObject3D Wu et al. (2023b)
datasets validate that our ReconViaGen can achieve state-of-the-art (SOTA) reconstruction perfor-
mance in both global shape accuracy and completeness and local details in geometry and textures.
Our contributions are summarized as follows:

• We propose a novel framework called ReconViaGen, which is the first to integrate strong recon-
struction priors into a diffusion-based 3D generator for accurate and complete multi-view object
reconstruction. A key design is to aggregate image features rich in reconstruction priors as multi-
view-aware diffusion conditions.

• The generation adopts a coarse-to-fine paradigm, which leverages global and local reconstruction-
based conditions to generate accurate coarse and then fine results in both geometry and texture.
Additionally, a novel rendering-aware velocity compensation mechanism is proposed that con-
strains the denoising trajectory of local latent representations for detailed pixel-level alignment.

• Extensive experiments on the Dora-bench and OminiObject3D datasets are conducted that vali-
date the effectiveness and superiority of the proposed ReconViaGen, which achieves SOTA per-
formance.

2 RELATED WORK

Single-view 3D Generation. Great developments have been made in single-view 3D Object Gen-
eration. Recent methods can be divided into two groups: 2D prior-based and 3D native generative
methods. DreamFusion Poole et al. (2022) and its following successors Tang et al. (2024); Qiu et al.
(2024); Wang et al. (2024b); Lin et al. (2023); Tang et al. (2023a) distill the 3D knowledge from pre-
trained 2D models. Another line of work develops multi-view diffusion based on pre-trained image
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Figure 2: An overview illustration of the proposed ReconViaGen framework, which integrates strong
reconstruction priors with 3D diffusion-based generation priors for accurate reconstruction at both
the global and local level.

or video generators and conducts view fusion for 3D outputs Li et al. (2023); Xu et al. (2024b); Tang
et al. (2025); Xu et al. (2024d); Wang et al. (2025b); Wei et al. (2024); Liu et al. (2023a; 2024); Xu
et al. (2024e); Li et al. (2024a); Zuo et al. (2024); Wu et al. (2024a). Differently, 3D native gener-
ative methods employ diffusion based on different 3D representations like point clouds Luo & Hu
(2021); Zhou et al. (2021); Nichol et al. (2022), voxel grids Hui et al. (2022); Tang et al. (2023b);
Müller et al. (2023), Triplanes Chen et al. (2023); Wang et al. (2023b); Shue et al. (2023), 3D Gaus-
sians Zhang et al. (2024a). More recently, 3D latent diffusion has been explored to directly learn
the mapping between the image and 3D geometry Zhang et al. (2023); Zhao et al. (2024); Li et al.
(2024b); Zhang et al. (2024b); Wu et al. (2024b); Li et al. (2025a); Zhao et al. (2025); Ye et al.
(2025), which greatly improves the generation quality. However, multi-view 3D generation is still
under-explored, suffering from high variations in generation, easy inconsistency with input images,
or strong reliance on input viewpoints Xiang et al. (2024); Zhao et al. (2025), which hinders their
direct application in accurate 3D object reconstruction.

Multi-view 3D Reconstruction. Traditional methods conduct multi-view stereo (MVS) to recon-
struct the visible surface of objects by triangulating correspondences across multiple calibrated im-
ages Furukawa et al. (2015); Galliani et al. (2015); Schönberger et al. (2016); Xu & Tao (2019).
Learning-based MVS methods Yao et al. (2018; 2019); Chen et al. (2019); Cheng et al. (2020);
Gu et al. (2020); Yang et al. (2020); Wang et al. (2021a) employ deep neural networks to enhance
both reconstruction quality and computational efficiency. Scene-specific NeRF methods Lin et al.
(2021); Wang et al. (2021b) adopt bundle adjustment from conventional SfM pipelines to jointly op-
timize camera parameters along with radiance field from dense views. Recently, DUSt3R Wang et al.
(2024a) and its follow-up works Smart et al. (2024); Leroy et al. (2024); Wang et al. (2025a) together
estimate point clouds and camera poses from paired or more views, which releases the reliance on
camera parameters, but suffers from incomplete reconstruction results caused by the point cloud
representation. Focusing on object reconstructions, large reconstruction models Hong et al. (2023)
are explored to produce complete reconstructions via regressing a more compact or structured 3D
representation (e.g. 3D Gaussians Kerbl et al. (2023) and Triplane) from multi-view inputs Wei et al.
(2024); Xu et al. (2024b); Tang et al. (2025); Xu et al. (2024d), but requiring view inputs from cer-
tain camera poses. Follow-up methods further support pose-free reconstructions Wu et al. (2023a);
Wang et al. (2023a); Jiang et al. (2023); He et al. (2024), while they tend to predict smooth and
blurred details, especially in invisible regions. Differently, our method introduces diffusion-based
3D generation priors to advance pose-free object reconstruction in fidelity and completeness.

Generative Priors in 3D Object Reconstruction. Generative priors are introduced into 3D re-
construction frameworks to assist in predicting plausible geometries or textures in invisible portions
of objects. Existing methods mainly introduce two kinds of priors: (i) diffusion-based 2D generative
prior and (ii) regression-based 3D generative prior. The former is often used in single-view 3D re-
construction by generating plausible multi-view images first and conducting reconstruction Li et al.
(2023; 2024a); Xu et al. (2024b); Tang et al. (2025); Xu et al. (2024d); Wang et al. (2025b); Wei
et al. (2024); Liu et al. (2023a; 2024); Wu et al. (2024a). For pose-free sparse-view reconstruction,
iFusion Wu et al. (2023a) leverages Zero123 Liu et al. (2023b) predictions within an optimization
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pipeline to align poses and generate novel views for reconstruction. However, the inconsistency
between views still limits the performance of this pipeline. Regression-based 3D generative priors
are introduced to regress a unified compact 3D representation, avoiding this issue, for example 3D
neural volume Jiang et al. (2023), Triplane Hong et al. (2023); Wei et al. (2024); Wang et al. (2023a),
and 3D Gaussians He et al. (2024); Xu et al. (2024c); Smart et al. (2024). Diffusion-based gener-
ative priors prove superior to regressive ones in generating detailed results in both geometry and
texture Li et al. (2025a); Zhao et al. (2025); Zhang et al. (2024b); Ye et al. (2025). One2345++ and
its follow-up work Liu et al. (2024); Xu et al. (2024a) develop 3D volume diffusion conditioned by
multi-view inputs. However, 3D volume suffer from poor compactness, so a trade-off between the
diffusion learning difficulty and representation capability limits their performance. Differently, our
method builds upon strong diffusion-based 3D generative priors Xiang et al. (2024), with powerful
reconstruction priors Wang et al. (2025a) constraining the denoising process for accurate 3D outputs
of high-fidelity details.

3 METHODOLOGY

3.1 PRELIMINARY

Given a set of N uncalibrated multi-view images of an object I = {Ii}Ni=1, the task of pose-free
multi-view reconstruction aims to obtain the complete 3D object O. Our framework leverages two
kinds of strong priors to achieve complete and accurate reconstruction results: the reconstruction
prior from VGGT Wang et al. (2025a) and the generation prior from TRELLIS Xiang et al. (2024).
In this section, we first introduce these two priors as preliminaries.

Reconstruction prior of VGGT VGGT Wang et al. (2025a) achieves SOTA results in pose-
free multi-view 3D reconstruction, providing a powerful reconstruction prior. It adopts a feed-
forward transformer architecture designed for efficient and unified 3D scene reconstruction from
single/multiple images. Multi-view images I are first fed into a DINO-based ViT Oquab et al.
(2024) simultaneously for tokenization and feature extraction into ϕdino. Then, 24 self-attention
layers further address ϕdino into 3D-aware features {ϕi}24i=1 with an alternating attention strategy,
switching between frame-wise and global self-attention to balance local and global information and
enhance multi-view consistency. Finally, four prediction heads decode the output of 4 layers (4-th,
11-th, 17-th, and 23-rd), i.e., ϕvggt(I) = {ϕ4, ϕ11, ϕ17, ϕ24}, into camera parameters, depth map,
point map, and tracking feature predictions. To adapt to object reconstruction, we fine-tune VGGT
on an object-reconstruction dataset (see Sec. 4.1 for details). A LoRA fine-tuning on the VGGT
aggregator is employed to preserve the pre-trained 3D geometric priors, with a multi-task objective:

LVGGT(θ) = Lcamera + Ldepth + Lnmap, (1)

where θ is the LoRA parameters, Lcamera, Ldepth and Lnmap denote the camera pose loss, the depth
loss, and the point map loss, respectively. In the following text, we simply use “VGGT” to refer to
this fine-tuned VGGT.

Generation prior of TRELLIS TRELLIS Xiang et al. (2024) is a SOTA 3D generative model
that provides a strong generation prior. It proposes a novel representation called Structured LATent
(SLAT) that combines a sparse 3D grid with dense visual features extracted from a powerful vision
foundation model, which captures both geometric (structure) and textural (appearance) information
and enables decoding into multiple 3D representations. We choose TRELLIS as the 3D generator in
our framework because it has shown great potential in 3D object generation He et al. (2025); Li et al.
(2025b) and inspired many works in downstream applications Yang et al. (2025); Cao et al. (2025);
Wu et al. (2024c). It employs a coarse-to-fine two-stage generation pipeline: generating the sparse
structure (SS), represented as sparse voxels {pi}Li , via SS Flow and then predicting structured latents
(SLAT) for active SS voxels, represented as X = {(pi, xi)}Vi , via SLAT Flow, where pi, xi, and V
denotes the voxel position, the latent vector, and the number of voxels, respectively. The generation
in both stages adopts rectified flow transformers Liu et al. (2022) with DINO-encoded image features
as conditions. The result of SLAT Flow is then decoded into 3D outputs represented by radiance
fields (RF), 3D Gaussians (3DGS), or meshes, i.e., O = Dec(x). Modeling the backward process
as a time-dependent vector field v(x, t) = ∇t(x), the transformers vθ in both stages are trained by
minimizing the conditional flow matching (CFM) objective Lipman et al. (2023):

LCFM(θ) = Et,x0,ϵ∥vθ(x, t)− (ϵ− x0)∥22. (2)
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Overview Our ReconViaGen framework conducts reconstruction and generation simultaneously
and utilizes the two priors in a complementary fashion. It builds upon TRELLIS to generate com-
plete 3D outputs with strong generation priors to plausibly hallucinate invisible portions to com-
pensate for the limitation of reconstruction. The proposed ReconViaGen adopts a coarse-to-fine
reconstruction pipeline. As shown in Fig. 2, in the first stage, we use a pre-trained VGGT to provide
reconstruction-based multi-view conditions at both the global and local levels. In the next stage,
we respectively feed the global geometry and local per-view conditions into the SS and SLAT Flow
transformers, for multi-view-aware generation. Finally, we further refine the estimated camera poses
from VGGT using the generation and introduce pixel-level alignment constraints only in the infer-
ence stage for reconstructions highly consistent with input views in detailed geometry and textures.

3.2 RECONSTRUCTION-BASED CONDITIONING

We first introduce reconstruction priors in VGGT to provide strong multi-view-aware conditions for
the coarse and detailed shape and texture generation of TRELLIS.
Global Geometry Condition VGGT learns a strong reconstruction prior to encode explicit 3D
lifting information into multi-view image features. Therefore, we first aggregate VGGT features
ϕvggt into a global geometry representation, serving as SS Flow conditions to generate more accurate
coarse structures. Note that we did not use explicit reconstruction results like point clouds because
VGGT features convey richer information including camera poses, depth, point maps, and tracking.
A fixed-length token list Tg is aggregated from ϕvggt via a proposed Condition Net design shown
in Fig. 2. Starting from a randomly initialized learnable token list Tinit, four transformer cross-
attention blocks progressively fuse layer-wise features of ϕvggt with the initial token list and produce
Tg . Formulated as:

T i+1 = CrossAttn
(
Q(T i),K(ϕvggt), V (ϕvggt)

)
, i ∈ {0, 1, 2, 3}, (3)

where T 0 is initilized with Tinit, T 3 is the final output Tg , Q(·), K(·), and V (·) are linear layers
respectively for query, key, and value projection, and ϕvggt is the VGGT features that concatenate
all views on the token dimension. At the training stage of SS Flow, we freeze the VGGT layers and
train the Condition Net together with DiT.
Local Per-View Condition A single token list condition can provide limited fine-grained infor-
mation for geometry and texture generation in detail. We further adopt the Condition Net design to
provide local per-view tokens as SLAT Flow conditions for fine-grained generation in both geomet-
ric and texture details. A random token list is initialized for each view and fed into the Condition
Net to produce a view-specific token list P k, k ∈ [1, N ]:

P i+1
k = CrossAttn

(
Q(P i

k),K(ϕvggt
k ), V (ϕvggt

k )
)
, i ∈ {0, 1, 2, 3} and k ∈ {n}Nn=1, (4)

where ϕvggt
k is VGGT features of the k-th view. The set of {P k}Nk=1 is sent into SLAT diffusion

transformers offering per-view object appearance guidance for fine-grained generation.

3.3 COARSE-TO-FINE GENERATION

The overall generation process consists of three stages: (i) coarse structure generation via SS Flow
with global geometry condition; (ii) fine detail generation via SLAT Flow with local per-view con-
dition; (iii) rendering-aware pixel-aligned refinement at the inference stage only.
Reconstruction-conditioned Flow To integrate the reconstruction prior into generation, the two
stages of SS and SLAT Flow in TRELLIS take the global geometry condition Tg and local per-
view conditions {P k}Nk=1 for coarse and fine diffusion guidance, respectively. In the first stage, we
simply compute the cross-attention between the condition Tg and the noisy SS latent in each SS DiT
block. In the second stage, as illustrated in Fig. 2, we encourage the cross-attention between the
noisy SLAT and each view’s condition P k and conduct a weighted fusion in each SLAT DiT block,
which can be formulated as:

yj+1 =

N∑
k=1

CrossAttn
(
Q(y′j),K(P k), V (P k)

)
· wk, j ∈ {m}Mm=1, (5)

where M is the number of SLAT DiT blocks, y′j is the self-attention layer output of the noisy SLAT
input yj , and wk ∈ (0, 1) is the fusion weight computed via an MLP taking the cross-attention result
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as input. After the first two stages, the 3D generator can generate multi-view-aware geometry and
texture at both the global and local level.
Rendering-aware Velocity Compensation To further encourage pixel-aligned consistency be-
tween generation results and input views, we develop a rendering-aware velocity compensation to
constrain the diffusion trajectory according to inputs. In doing so, we first estimate camera pose
with VGGT using the generation results from the second stage, with detailed implementation de-
tails included in the appendix. Inspired by the explicit normal regularization used in Hi3DGen Ye
et al. (2025) to improve the input-output consistency, when t < 0.5, we decode the SLAT into Ot

(e.g. a textured mesh) and conduct rendering for alignment. The SLAT Flow process initializes and
updates a large number of noisy latents for all voxels simultaneously, which results in a challenging
collaborative optimization problem. To solve this issue, we novelly propose a mechanism called
Rendering-aware Velocity Compensation (RVC) to correct the predicted v for a more accurate gen-
eration consistent with input views. Specifically, we render images for Ot from the refined camera
pose estimations C and calculate the difference between the rendered images and input images as:

LRVC(vt) = LSSIM + LLPIPS + LDreamSim, (6)

where LSSIM, LLPIPS, and LDreamSim are SSIM Wang et al. (2004), LPIPS Zhang et al. (2018), and
DreamSim losses Fu et al. (2023) (inspired by the practice in V2M4 Chen et al. (2025)), respon-
sible for measuring the structural, perceptual, and semantic similarity, respectively. To exclude the
influence of inaccurate pose estimation, we discard the losses corresponding to some images if their
corresponding losses are higher than 0.8. By minimizing LRVC, we iteratively correct the predicted
velocity in each SLAT denoising step with a compensation term ∆v, derived as:

∆vt =
∂L
∂x̂0

∂x̂0

∂vt
= −t

∂L
∂x̂0

, (7)

where L represents LRVC for simplicity and x̂0 is the predicted target SLAT at current timestep t,
computed as x̂0 = xt − t · vt. The noisy SLAT of next step xtprev can be updated as:

xtprev = xt − (t− tprev)(v + α ·∆v), (8)

where α is a pre-defined hyperparameter that controls the extent of the compensation. In this way,
the input images serve as a strong explicit guidance to find a denoising trajectory for each local
SLAT vector, which leads to more accurate 3D results consistent with all input images in detail.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets For LoRA fine-tuning of the VGGT aggregator and Trellis sparse structure transformer,
we employ 390k 3D data from the Objaverse dataset Deitke et al. (2024), a large-scale 3D object
dataset that provides a rich variety of shapes and textures, with 60 views rendered per object for
fine-tuning. For each object mesh, we render 150 view images in a resolution of 512×512 under
uniform lighting conditions following TRELLIS Xiang et al. (2024). For evaluation, we selected
two benchmark datasets to thoroughly assess the performance of our model: (i) Dora-Bench Chen
et al. (2024), a benchmark organized based on 4 levels of complexity, combining 3D data selected
from the Obajverse Deitke et al. (2023), ABO Collins et al. (2022), and GSO Downs et al. (2022)
dataset; and (ii) OmniObject3D, a large-vocabulary 3D object dataset containing 6,000 high-quality
textured meshes scanned from real-world objects, covering 190 daily categories. We randomly
sample 300 objects from Dora-Bench and 200 objects covering 20 categories from OmniObject3D.
We follow He et al. (2024) to render 24 views at different elevations, and randomly chose 4 of
them as multi-view input for evaluation on OmniObject3D. On Dora-Bench, we follow the camera
trajectory of TRELLIS Xiang et al. (2024) to render 40 views and choose 4 views (No.0, 9, 19, and
29) with a uniform interval to adapt to the setting of some baseline methods (LGM Tang et al. (2025)
and InstantMesh Xu et al. (2024b)).
Evaluation Metrics We employ PSNR, SSIM, and LPIPS to evaluate the accuracy of synthesized
novel views from 3D outputs, Chamfer Distance (CD) and F-score to evaluate the generated geom-
etry accuracy and completeness. PSNR, SSIM, and LPIPS are evaluated on novel views of images
rendered at the resolution of 512×512. CD and F-score are evaluated by sampling 100k points
from the 3D outputs (using the center positions for 3D Gaussian outputs), with all object points
normalized to the range of [−1, 1]3. When calculating the F-score, the radius r is set to 0.1.
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Table 1: Evaluation on the Dora-bench and OminiObject3D dataset. Best results are in bold.
Dora-bench OminiObject3D

Method PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑ PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑
VGGT Wang et al. (2025a) - - - 0.112 0.921 - - - 0.091 0.900
TRELLIS-S Xiang et al. (2024) 16.562 0.876 0.103 0.176 0.807 16.021 0.771 0.264 0.102 0.906
TRELLIS-M Xiang et al. (2024) 16.706 0.882 0.111 0.144 0.843 16.861 0.790 0.242 0.072 0.932
Hunyuan3D-2.0-mv Zhao et al. (2025) 20.221 0.896 0.093 0.094 0.937 16.665 0.813 0.165 0.124 0.871
LGM Tang et al. (2025) 17.877 0.869 0.186 0.121 0.839 16.361 0.791 0.193 0.136 0.842
InstantMesh Xu et al. (2024b) 18.922 0.870 0.120 0.110 0.865 17.499 0.818 0.145 0.094 0.907
LucidFusion He et al. (2024) 16.509 0.835 0.144 0.131 0.831 16.254 0.771 0.144 0.114 0.868

ReconViaGen (Ours) 22.632 0.911 0.090 0.090 0.953 19.767 0.847 0.141 0.059 0.959

Baseline Methods Baseline methods for comparisons include (i) TRELLIS-S Xiang et al. (2024):
generates 3D meshes from multi-view images using TRELLIS in the stochastic mode, which ran-
domly chooses one input view to condition each step of denoising; (ii) TRELLIS-M Xiang et al.
(2024): TRELLIS in the multidiffusion mode, which computes the average denoised results con-
ditioned on all input views; (iii) Hunyuan3D-2.0-mv Zhao et al. (2025): concatenate DINO fea-
tures of input images from fixed viewpoints as conditions to generate meshes1; (iv) InstantMesh Xu
et al. (2024b): predicts Triplane for mesh outputs from multiple images with fixed viewpoints; (v)
LGM Tang et al. (2025): predicts pixel-aligned 3D Gaussians from multiple images with fixed
viewpoints; (vi) LucidFusion He et al. (2024): predicts relative coordinate maps for 3D Gaussian
outputs; (vii) VGGT Wang et al. (2025a): reconstructs the point cloud from multi-view inputs in
a feed-forward manner. We compare our methods with a wide range of existing SOTA baseline
methods: (a) 3D generation models {i, ii, iii}; (b) large reconstruction models with known camera
poses {iv, v}; (c) pose-free large reconstruction models with 3DGS or point cloud outputs {vi, vii}.
For 3D generation models {i, ii, iii}, we use the same approach as Camera Pose Estimation in fine
detail reconstruction to align the generated 3D models to the ground-truth models. Besides, we also
compare with closed-source commercial 3D generation models like Hunyuan3D-2.5 and Meshy-5
on in-the-wild testing.

Implementation Details For LoRA fine-tuning of VGGT aggregator and TRELLIS transformer,
we set the rank as 64, the alpha parameter for LoRA scaling as 128, and the dropout probability
for LoRA layers as 0. We only apply the adapter to qkv mapping layer and the projectors of each
attention layer. During fine-tuning VGGT aggregator, we randomly sample 1 ∼ 4 views from 150
images and use the AdamW optimizer with a fixed learning rate of 1 × 10−4. For the fine-tuning
of SS Flow and Slat-Flow transformer, we build upon TRELLIS Xiang et al. (2024), incorporating
classifier-free guidance (CFG) with a drop rate of 0.3 and an AdamW optimizer with a fixed learning
rate of 1 × 10−4. We fine-tune the SS-Flow transformer using 8 NVIDIA A800 GPUs (80GB
memory) for 40k steps with a batch size of 192. Differently, we finetune the SLat-Flow transformer
with a batch size of 128. During inference, we set the CFG strengths in SS generation and SLAT
generation to 7.5 and 3.0, and use 30 and 12 sampling steps to achieve optimal results. The α in
rendering-aware velocity compensation is set to 0.1 in our practice.

4.2 EXPERIMENT RESULTS

Quantitative Results We present the quantitative comparisons between our ReconViaGen and
other baseline methods in Tab. 1 for evaluation on the Dora-bench and OminiObject3D dataset.
The proposed method achieves consistently superior performance to other methods on both image-
reconstruction consistency (PSNR, SSIM, and LPIPS), geometry accuracy (CD), and shape com-
pleteness (F-score). Impressively, our ReconViaGen seamlessly integrate the generation and recon-
struction priors from TRELLIS Xiang et al. (2024) and VGGT Wang et al. (2025a), whose perfor-
mance surpasses both of them. Note that VGGT performs better on Dora-bench than on OminiO-
ject3D because uniformly-distributed views can capture richer visual cues than random views. Be-
sides, our method also gets better results than previous SOTA pose-free multi-view reconstruction
methods that integrate regression-based generation priors by a large margin, especially on PSNR,
CD, and F-score, which validates the superiority of ReconViaGen. On the settings of more input
views, we separately evaluate VGGT that can accept an arbitrary number of inputs for comparison,
which is included in the appendix. We also present the camera pose estimation accuracy in the
appendix.

1The fresh version, Hunyuan3D-2.5, has not been open-sourced, which is unsuitable for large-scale evalua-
tion on benchmarks, so we use the open-sourced version, Hunyuan3D-2.0.

7

https://3d.hunyuan.tencent.com/
https://www.meshy.ai/


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Reconstruction result comparisons between our ReconViaGen and other baseline methods
on samples from the Dora-bench and OminiObject3D datasets. Zoom in for better visualization.

 MV Input Meshy-5-mvTRELLIS-M OursHunyuan3D-2.5-mvTRELLIS-S

Figure 4: Reconstruction results on in-the-wild samples. Note that commercial 3D generators re-
quire input images from orthogonal viewpoints, while ours can accept views from arbitrary camera
poses for robust outputs. Zoom in for better visualization in detail.

Qualitative Results We further present extensive qualitative comparisons to demonstrate the su-
periority of our ReconViaGen. We first select some examples from the OminiObject3D and Dora-
bench dataset for visualization, as shown in Fig. 3. The reconstruction results of ReconViaGen have
the most accurate geometry and textures compared to other methods. We further evaluate several
baseline methods on in-the-wild multi-view images. As shown in Fig. 4, our ReconViaGen exhibits
strong robustness even in comparison with the multi-view version of closed-source commercial 3D

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MV Input (a) (b) (d) Full(c) MV Input (a) (b) (d) Full(c)

Figure 5: Qualitative comparisons for different variants of ReconViaGen for ablative study. Zoom
in for better visualization in detail.

generation models like Hunyuan3D-2.5 and Meshy-5. More qualitative results are included in the
appendix.

4.3 ABLATION STUDY

The proposed ReconViaGen framework comprises three novel designs to integrate reconstruction
priors into the diffusion-based 3D generation: (i) the global geometry condition (GGC); (ii) the
per-view condition (PVC); and (iii) the rendering-aware velocity compensation (RVC). We conduct
ablation studies to validate the individual effectiveness of each component. On the Dora-bench
dataset, we start from a basic TRELLIS-M baseline (ReconViaGen without all designs, Tab. 2a) and
progressively add one component, leading to 3 variants (b,c,d). As shown in Tab. 2, integrating GGC,
which strongly improves the prediction accuracy of coarse structure, brings a large performance
gain on almost all metrics. Further integrating PVC can lead to extra improvement, especially on
PSNR, which proves the effectiveness in improving local per-view alignment. Finally, adopting
RVC, though in the inference stage only, brings additional increments in both shape completeness
and fine-grained accuracy in geometry and texture. Qualitative comparisons in Fig. 5 visualize the
positive effect of each component: global geometry conditioning greatly corrects the global shape,
per-view conditioning produces local details in geometry and texture of high consistency with each
view, and rendering-aware velocity compensating impressively refines the fine-grained appearance,
leading to high-quality results. More ablation results on the detailed designs, including the number
of image inputs and the choice of condition form for SS and SLAT Flow, can be seen in the appendix.

Table 2: Quantitative ablation results on the Dora-bench dataset.
GGC PVC RVC PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

(a) ✗ ✗ ✗ 16.706 0.882 0.111 0.144 0.843
(b) ✓ ✗ ✗ 20.462 0.894 0.102 0.093 0.941
(c) ✓ ✓ ✗ 21.045 0.905 0.093 0.093 0.937
(d) ✓ ✓ ✓ 22.632 0.911 0.090 0.090 0.953

5 CONCLUSION

In this paper, we have presented ReconViaGen, a novel coarse-to-fine framework that effectively
integrates strong reconstruction priors with diffusion-based 3D generative priors for accurate and
complete multi-view 3D object reconstruction. We first analyze the inherent reasons leading to
the challenge of leveraging diffusion-based 3D generative priors into reconstruction: insufficient
cross-view correlation modeling and stochastic denoising process with weak constraint from input
images. Therefore, we effectively use powerful reconstruction priors with three novelly designed
mechanisms to enhance the multi-view correlation awareness in 3D diffusion learning and establish
strong constraints for a reliable denoising process. Extensive experiments have demonstrated that
ReconViaGen achieves SOTA performance in both global shape accuracy and completeness as well
as local details in geometry and textures. As future work, with the development of 3D reconstruction
and 3D generation, stronger reconstruction or generation priors can be integrated into our framework
to further improve reconstruction quality via generation.
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A APPENDIX

A.1 DETAILS ON CAMERA POSE ESTIMATION

For better alignment with the input images, we register them into the TRELLIS generation space.
Specifically, we first render 30 images from randomly sampled camera views on a sphere, concate-
nate them with the input images, and feed them into VGGT for pose estimation. Since the camera
poses of the rendered views are known, we can recover coarse camera poses for the input images
in the TRELLIS space. While VGGT provides robust pose predictions, they remain insufficiently
accurate for constructing pixel-level rendering constraints.

To refine the results, we render images and depth maps using the coarse poses, then apply an image
matching method to establish 2D-2D correspondences between rendered and input images. Lever-
aging the depth maps and camera parameters of rendered views, we further obtain 2D-3D corre-
spondences between each input image and the generated object. By aggregating multi-view cor-
respondences, we solve for refined camera poses C using a PnP Lepetit et al. (2009) solver with
RANSAC Fischler & Bolles (1981). This image-matching-based refinement effectively corrects the
initial pose predictions from TRELLIS’s generative priors, yielding higher accuracy. The refined
poses enable pixel-wise constraints from the input views, thereby supporting finer detail alignment
in generation.

A.2 EVALUATION WITH MORE INPUT IMAGES

Table 3: Evaluation with more input images on the Dora-bench dataset. Best results are in bold.
Uniform (PSNR↑ / LPIPS↓) Limited View (PSNR↑ / LPIPS↓)

Method 6 views 8 views 10 views 6 views 8 views 10 views

Object VGGT + 3DGS 18.476/0.123 19.890/0.109 21.363/0.102 16.498/0.139 16.774/0.135 17.121/0.133
ReconViaGen (Ours) 22.823/0.089 23.067/0.090 23.193/0.087 21.427/0.098 21.782/0.099 21.866/0.103

To thoroughly evaluate and validate the effectiveness of ReconViaGen, we compare it against 3DGS
reconstruction initialized with point clouds and camera poses from object VGGT (denoted as object
VGGT + 3DGS) on the Dora-Bench dataset. We conduct experiments under two input scenar-
ios: uniformly and limited-view sampled views. As shown in Tab. 3, ReconViaGen consistently
outperforms object VGGT+3DGS at 6/8/10 input views, regardless of the sampling strategy. This
advantage arises because the generative prior in ReconViaGen plays a crucial role in completing
invisible regions of the object.

A.3 EVALUATION OF CAMERA POSE ESTIMATION

Table 4: Evaluation of camera pose estimation on the Dora-bench dataset. Best results are in bold.
Method RRE↓ Acc.@15◦ ↑ Acc.@30◦ ↑ TE↓

VGGT Wang et al. (2025a) 8.575 90.67 92.00 0.066
Object VGGT 7.257 93.44 94.11 0.055

Ours 7.925 93.89 96.11 0.046

To assess the performance of our finetuned object VGGT and the effectiveness of our proposed
camera pose estimation strategy, we evaluate pose prediction quality on the Dora-Bench dataset. We
adopt both rotation and translation metrics: relative rotation error (RRE, in degrees), the proportion
of RRE values below 15◦ and 30◦, and translation error (TE), measured as the distance between pre-
dicted and ground-truth camera centers. For evaluation, we use four input images and transform both
predicted and ground-truth poses into the coordinate system of the first image, which is excluded
from the metric computation. To address translation scale ambiguity, we compute relative transla-
tions between views for both predictions and ground truth and normalize them by their respective
mean L2-norm. As reported in Tab. 4, the finetuned object VGGT achieves clear improvements over
the original VGGT. Our method further delivers the best overall performance, as the generative prior
effectively ‘densifies’ sparse views. However, our RRE is slightly higher than that of object VGGT,
likely due to minor discrepancies between the generated 3D model and the ground-truth geometry.
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Figure 6: Qualitative comparisons for different numbers of input images with ReconViaGen. Zoom
in for better visualization in detail.

A.4 ABLATION STUDY ON THE NUMBER OF INPUT IMAGES

Table 5: Quantitative ablation results of the number of input images on the Dora-bench dataset.
Number of Images PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

1 18.438 0.887 0.106 0.135 0.838
2 19.568 0.894 0.099 0.131 0.867
4 22.632 0.911 0.090 0.090 0.953
6 22.823 0.912 0.089 0.084 0.958
8 23.067 0.914 0.090 0.081 0.961

Since ReconViaGen can take an arbitrary number of input images, a natural question is how recon-
struction quality scales with the number of images. To investigate this, we conducted an ablation
study varying the number of input views on Dora-Bench, with results summarized in Tab. 5. We ob-
serve that reconstruction performance consistently improves as more images are provided. However,
the marginal gains gradually diminish, indicating a saturation effect when the number of views be-
comes large. The visualization results are shown in Fig. 6, which also shows that our ReconViaGen
can process any number of input images from any viewpoint.

A.5 ABLATION STUDY ON THE FORM OF CONDITION

Table 6: Quantitative ablation results of condition at SS Flow on the Dora-bench dataset.
Form of Condition PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

(i) Feature Volume 16.229 0.858 0.126 0.172 0.814
(ii) Concatenation 19.749 0.871 0.137 0.121 0.873
(iii) PVC 19.878 0.882 0.135 0.120 0.870
(iv) GGC 20.462 0.894 0.102 0.093 0.941

For SS Flow, as described in the method section, we explored several strategies to leverage VGGT
features for sparse structure generation on Dora-Bench: (i) Downsampling the point cloud from
VGGT to a 643 resolution occupancy volume, projecting DINO features from each view into the
volume, and averaging them to form a feature-volume condition; (ii) Fusing VGGT features with
DINO features for each view through several linear layers, then concatenating all input-view tokens
as condition; (iii) adopting the same local per-view condition (PVC) used in our SLAT Flow; (iv)
employing the proposed global geometry condition (GGC). For fair comparison, we use the original
SLat Flow in TRELLIS and train all models for 40k steps. As shown in Tab. 6, our GGC achieves the
best performance among all strategies. We attribute this to the limitations of the alternative designs:
for (i), inaccurate predicted poses or point clouds lead to erroneous projections, introducing noise
into the condition and harming generation; for (ii) and (iii), view-level features are not effectively
aggregated, resulting in redundancy and making the model overly dependent on the accuracy of
VGGT outputs.
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Table 7: Quantitative ablation results of condition at SLAT Flow on the Dora-bench dataset.
Form of Condition PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

(i) GGC 17.784 0.858 0.120 0.097 0.939
(ii) PVC 22.632 0.911 0.090 0.090 0.953

Figure 7: Reconstruction result comparisons between TRELLIS-M, TRELLIS-S, and our ReconVi-
aGen on samples produced by the multi-view image generator.

For SLat Flow, we conduct an ablation study on Dora-Bench with two conditioning strategies: (i)
the same global geometry condition (GGC) used in SS Flow, and (ii) the local per-view condition
(PVC). For fairness, we pair both variants with SS Flow conditioned on GGC and train all models
for 40k steps. As shown in Tab. 7, PVC substantially outperforms GGC in SLat Flow. We attribute
this to the information compression in GGC, which leads to a loss of fine-grained details in the
condition and degrades performance. This observation also explains why we adopt PVC instead of
GGC for SLat Flow.

The following description provides an interpretability of GGC and PVC. GGC performs global
multi-view aggregation, which strengthens overall structural consistency—this is exactly what SS
needs, since SS focuses on coarse geometry where global cues dominate and multi-view compres-
sion is acceptable. In contrast, SLAT requires fine-grained appearance and local geometry refine-
ment on a fixed coarse shape. PVC’s per-view feature interaction preserves high-frequency cues
that GGC would smooth out. Therefore, GGC naturally aligns with global structure formation,
while PVC is better suited for detail-aware refinement.

A.6 RECONSTRUCTION ON GENERATED MULTI-VIEW IMAGES OR VIDEOS

Table 8: Quantitative comparison of generated multi-view images on the Dora-bench dataset.
Method PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

ours (generated 6-view) 14.379 0.808 0.226 0.190 0.723
ours (single-view) 18.438 0.887 0.106 0.135 0.838
ours (real 6-view) 22.823 0.912 0.089 0.084 0.958

Given the growing interest in multi-view image generation using large image and video generative
models, we further evaluate the robustness of our approach on such generated data. These multi-
view images are hallucinated from a single view and often suffer from cross-view inconsistencies in
fine details. Specifically, we generate 6-view samples using the open-sourced multi-view generator
Hunyuan3D-1.0 Yang et al. (2024). The quantitative comparisons on Dora-Bench are summarized
in Tab. 8. In our observations, the results of generated 6 views as input are much worse than those
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Figure 8: Qualitative result of our ReconViaGen and other baseline methods with single-view input
on samples from the Dora-bench and in-the-wild scenarios. Since in-the-wild cases lack corre-
sponding ground truth meshes, these ground truth meshes are not displayed in the figure. Zoom in
for better visualization.

of single-view and real 6 view input due to much severe inconsistency in multi-view generation.
However, when the inconsistency in generated multi-view images is not severe, visualizations in
Fig. 7 show that ReconViaGen exhibits strong robustness to moderate cross-view inconsistency.
Please refer to the supplementary video for additional results on generated videos.

A.7 MORE RECONSTRUCTION RESULTS

We further showcase our method on in-the-wild data, including not only multiple objects but also
scenes, even from generated dynamic object videos. For scene reconstruction, we segment individ-
ual objects, reconstruct them separately, and then register the reconstructed 3D objects back into
the scene using our predicted camera poses. Please refer to the supplementary video for qualitative
results.

A.8 COMPARISON EXPERIMENT OF SINGLE-VIEW INPUT

Table 9: Quantitative results of single view input on the Dora-bench dataset.
Method PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

TRELLIS Xiang et al. (2024) 15.264 0.858 0.182 0.162 0.781
Direct3D-S2 Wu et al. (2025) - - - 0.165 0.805

Ours 18.438 0.887 0.106 0.135 0.838
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Figure 9: More qualitative comparisons for (c) vs (d) ablation study. Each case is labeled with a
corresponding PSNR value. Zoom in for better visualization in detail.

To further demonstrate the superiority of our ReconViaGen, we conduct comparison experiments
with single-view input. We select TRELLIS Xiang et al. (2024) and Direct3D-S2 Wu et al. (2025) as
representative single-view generation baselines for comparison. For evaluation on the Dora-Bench
dataset, we use a single randomly selected view as input. Quantitative comparisons between our
ReconViaGen and the baseline methods are summarized in Tab. 9. Note that since Direct3D-S2 Wu
et al. (2025) outputs geometry without color, we do not report its visual metrics. The quantitative
data demonstrate that ReconViaGen consistently achieves superior performance across both visual
and geometric evaluation criteria. We further provide extensive qualitative comparisons on both
Dora-Bench and in-the-wild scenarios, as shown in Fig. 8. The visual evidence confirms that our
proposed method consistently outperforms the baseline approaches, yielding reconstructed geometry
and textures that exhibit the strongest fidelity and alignment with the input view.

A.9 MORE QUALITATIVE EXAMPLES FOR THE (C) VS (D) ABLATION STUDY

We present more qualitative examples and label the PSNR of each case for the (c) vs (d) ablation
study in Fig. 9. The qualitative analysis confirms that the 1.587 dB improvement is primarily due to
RVC’s ability to correct color and texture drift and enforcing high-frequency aligned with the input
views.

A.10 ABLATION STUDY ON RVC HYPERPARAMETERS

The RVC stage in ReconViaGen involves three main hyperparameters: the extent of RVC α, timestep
t, and outlier rejection threshold to. Then we conduct extensive ablation experiments on these three
hyperparameters on the Dora-Bench dataset. As shown in Tab. 10, for α, varying α from 1 to
0.01, we observe stable performance across a wide range, with the best results around α = 0.1.
Extremely small values slightly reduce accuracy, but no instability was observed. Importantly, α
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Table 10: Ablation study on the extent of RVC α on the Dora-bench dataset.
α PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑
1 22.475 0.911 0.091 0.091 0.941

0.5 22.151 0.913 0.093 0.089 0.949
0.1 22.632 0.911 0.090 0.090 0.953

0.05 21.321 0.910 0.089 0.091 0.953
0.01 21.079 0.906 0.095 0.092 0.941

Table 11: Ablation study on timestep t in RVC on the Dora-bench dataset.
t PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑ Runtime↓

0.7 22.149 0.907 0.090 0.094 0.938 9.2767
0.6 22.477 0.912 0.091 0.094 0.940 8.2999
0.5 22.632 0.911 0.090 0.090 0.953 6.8652
0.4 22.270 0.909 0.089 0.089 0.944 5.7155
0.3 22.057 0.915 0.088 0.091 0.937 4.7825

introduces no runtime overhead, as it only changes the update weight of a vector. As shown in
Tab. 11, applying RVC at different timesteps shows that t = 0.5 offers the best trade-off between
fidelity and cost. As expected, runtime scales linearly with the fraction of steps with RVC (due to
decoding/rendering), ranging from 4.8s (t = 0.3) to 9.3s (t = 0.7). As shown in Tab. 12, for outlier
rejection threshold to, results are insensitive across a broad range. We choose to = 0.8 as it yields
strong PSNR/F-score. Therefore, α = 0.1, t = 0.5, and to = 0.8 is the optimal combination of
hyperparameters. Importantly, the best-performing configuration (α = 0.1, t = 0.5, to = 0.8) is
shared across all assets and datasets, and no per-asset tuning is required. This confirms that the final
RVC step generalizes well and does not rely on instance-specific adjustments.

A.11 THE DETAILED LATENCY OF EACH COMPONENT IN RECONVIAGEN

To demonstrate the efficiency of our method in detail, we report the inference time for each compo-
nent on an NVIDIA L20 GPU (46GB memory) with different numbers of input images in Tab. 13.
As shown in the table, the dominant runtime contributors are pose estimation and RVC. Neverthe-
less, the total inference time remains reasonable. The RVC is a justified trade-off for accuracy and
efficiency. RVC provides a significant quality boost of approximately 1.587 dB PSNR compared
to the pipeline without it. This gain is crucial for achieving high-fidelity 3D reconstruction and
eliminating visual inconsistencies to input images. Importantly, even without pose estimation and
RVC, the results still surpass current SOTA reconstruction methods, while RVC further improves
fine geometry and texture alignment.

A.12 THEORETICAL EXPLANATION ON HOW RVC INTERACTS WITH RECTIFIED FLOW
OBJECTIVES

RVC does not modify the underlying rectified-flow training objective or the learned vector field vθ.
Instead, it is an inference-time correction mechanism that adjusts the denoising trajectory according
to rendering errors from the input views. Concretely, the rectified flow predicts the direction of the
straightened transport path as:

xt−∆t = xt −∆t vθ(xt, t). (9)

RVC introduces a small correction:

xt−∆t = xt −∆t(vθ + α∆v), (10)

where ∆v = −t ∂LRVC

∂x0
. This adjustment is orthogonal to the rectified-flow objective. The flow

model is fully trained under the standard CFM loss. And RVC only guides the denoising trajectory
toward a solution that is better aligned with input images. The correction does not alter the learned
velocity field or its theoretical properties. In summary, RVC provides input-conditioned guidance
during inference, but does not change the theoretical formulation or training of rectified flow.
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Table 12: Ablation study on the outlier rejection threshold to in RVC on the Dora-bench dataset.
to PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑
1 21.618 0.912 0.094 0.091 0.938

0.9 22.075 0.906 0.090 0.091 0.946
0.8 22.632 0.911 0.090 0.090 0.953
0.7 22.450 0.909 0.094 0.089 0.941
0.6 22.312 0.906 0.093 0.094 0.944

Table 13: Inference time (in seconds) of each component under varying numbers of input views.
Component \Number of images 1 3 5 7 9

DINO feature + VGGT feature 0.2157s 0.4393s 0.8789s 1.3788s 2.0745s
GGC 0.0169s 0.0175s 0.0184s 0.0199s 0.0224s

SS Flow + SS Decoder 4.4193s 4.4039s 4.4105s 4.4141s 4.4267s
PVC 0.0017s 0.0019s 0.0022s 0.0023s 0.0025s

SLat Flow + SLat Decoder 2.7178s 3.0591s 3.7154s 3.9062s 4.4952s
Pose estimation 20.6085s 24.0013s 27.4166s 30.8672s 35.3407s

RVC 5.9726s 6.4080s 7.5483s 10.3359s 12.2985s
Overall 33.9525s 38.3310s 43.9903s 50.9244s 58.6605s

A.13 ABLATION STUDY ON DECODING TO DIFFERENT 3D REPRESENTATIONS IN RVC

Table 14: Ablation study on decoding to different 3D representations in RVC on the Dora-bench
dataset.

3d representation PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑
Radiance Field (RF) 21.899 0.908 0.0910 0.0917 0.937

Mesh 21.561 0.906 0.0924 0.0879 0.954
3DGS 22.632 0.911 0.0901 0.0895 0.953

To investigate the influence of 3D representation in RVC, we decode the output SLAT to different
3D representations and report their metrics on the Dora-Bench dataset. In Tab. 14, mesh shows
slightly better geometric accuracy due to its structured nature. 3DGS provides superior rendering
quality, leading to the best overall visual fidelity. Based on its superior rendering quality and overall
balanced performance, choosing 3DGS as the representation is more appropriate.

A.14 ATTENTION VISUALIZATIONS IN GGC AND CROSS-VIEW TOKEN SIMILARITY IN PVC

To fully understand the proposed GGC and PVC, we provide attention visualization in GGC and
cross-view token similarity in PVC. Specifically, for attention visualization in GGC, we first average
attention maps along the dimension of multi-head in each attention layer, and then max pool the
attention maps along the dimension of learnable tokens. Finally, we resize the attention map as
the same size as input images. For cross-view token similarity in PVC, we calculate the similarity
between tokens of two different input images and select a token from one image to visualize its
similarity to tokens of another image. As shown in Fig. 10, for GGC’s global aggregation in SS,
attention visualizations of the first three layers all show a strong correlation between the global
learnable tokens and object features in images. In Fig. 11, for PVC’s local correspondence in SLAT,
we find there is high similarity between corresponding points across different viewpoints.

A.15 ABLATION STUDY ON THE LENGTH OF LEARNABLE TOKENS IN GGC

We conduct the ablation study on the length of learnable tokens in GGC. Since the length of SS latent
is 163 = 4096, we believe 4096 is enough for the length of learnable tokens in GGC to represent the
visible structure. As shown in Tab. 15, the significant performance drop shows that 2048 tokens are
insufficient to represent information of input. Although 8192 tokens offer a slight improvement in
PSNR and CD, they introduce additional computational overhead. Therefore, 4096 learnable tokens
provide the balance between performance and efficiency.
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Figure 10: Attention visualization in GGC.

Table 15: Ablation study on the length of learnable tokens in GGC on the Dora-bench dataset.
Length of tokens PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

2048 18.366 0.890 0.107 0.114 0.884
4096 20.462 0.894 0.102 0.093 0.941
8192 20.527 0.887 0.105 0.092 0.938

A.16 EVALUATION ON THE DTU DATASET

Table 16: Evaluation on the DTU dataset.
Method PSNR↑ SSIM↑ LPIPS↓

TRELLIS-M Xiang et al. (2024) 15.8675 0.6010 0.3237
Hunyuan3D-2.0-mv Team (2025) 19.0951 0.6763 0.2654

Instantmesh Xu et al. (2024b) 18.8966 0.6712 0.2527
Ours 21.7639 0.7576 0.2175

DTU Jensen et al. (2014) is a real-world multi-view dataset. To further verify the generalizability
of our method on real multi-view captures, we evaluate three SOTA multi-view reconstruction base-
lines (TRELLIS-M, InstantMesh, and Hunyuan3D-2.0-mv) and our method on the DTU dataset,
and the results are summarized in Tab. 16. Our approach substantially improves reconstruction fi-
delity on real-world multi-view data (+2.7 PSNR over the strongest baseline). These results confirm
that ReconViaGen generalizes well to real multi-view captures, without any dataset-specific tuning.
Qualitative comparisons in Fig. 12 further demonstrate the superiority of our ReconViaGen in real
multi-view captures.

A.17 ABLATION STUDY ON RVC ONLY BASELINE WITH OUR FULL-VERSION MODEL

We conduct experiments of TRELLIS-M with RVC on Dora-Bench. As shown in the Tab. 17, RVC
alone consistently improves the baseline, demonstrating that RVC is indeed effective. However, its
performance remains far below our full model, since RVC mainly provides local refinement and
cannot replace the global structure aggregation (GGC) and per-view detail modeling (PVC). This
confirms that RVC is beneficial but complements rather than substitutes the other components.
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Figure 11: Cross-view token similarity in PVC.

Table 17: Ablation on RVC only baseline with our full-version model.
Method PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑

TRELLIS-M Xiang et al. (2024) 16.706 0.882 0.111 0.144 0.843
TRELLIS-M Xiang et al. (2024) w. RVC 17.728 0.857 0.101 0.139 0.851

Ours 22.632 0.911 0.090 0.090 0.953

A.18 ABLATION STUDY ON ALTERNATIVE DESIGN FOR WEIGHTED FUSION IN SLAT-FLOW

The weighted fusion design aims to trade off multi-view specificity and computational efficiency.
The SLAT latent already encodes global geometry and acts as a “volume memory”. Therefore, the
result of cross attention between SLAT latent and each individual view already reflects how much
that view contributes to the current latent state. The MLP is then used to map this interaction to a
scalar weight, enabling view-dependent importance estimation without requiring joint attention over
all views. Another alternative design is to add all the cross attention results from all views together
and then apply a MLP. We ablation on this alternative design with ours in Tab. 18. The alternative
yields worse performance. We think direct summation reduces view-specific differences, confirming
the need for a view-aware weighting scheme. A direct way is applying a cross-attention with the
KV cache coming from all the views. We experimented with this design, but the KV cache grows
linearly with the number of views and quickly exceeds GPU memory. Thus, per-view cross-attention
with a learned weight provides the balance of accuracy, interpretability, and memory efficiency.
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Figure 12: Qualitative comparisons on the DTU datset.

Table 18: Ablation on alternative design for weighted fusion in SLat-Flow on the Dora-bench
dataset.

Method PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑
Add up + MLP 20.809 0.894 0.091 0.098 0.924

Our weighted fusion (c) 21.045 0.905 0.093 0.093 0.937

A.19 CLARIFICATION FOR OMITTING THE VISUAL METRICS OF VGGT IN THE
DORA-BENCH EVALUATION

Using point clouds from VGGT directly for image rendering does indeed produce poor results. For
example, due to the discrete representation of point clouds, when rendering an object from the front,
rays may pass through the front point clouds and hit the back point clouds instead. This is due
to deficiencies in point cloud representation, therefore we believe that reporting visual metrics in
this way is unfair to VGGT. To use the output of VGGT for image rendering, a direct way is to
combine the VGGT with 3DGS optimization. We specifically compared ours with VGGT+3DGS
in Sec.A.2. However, 3DGS optimization introduces many artifacts and floaters, which negatively
impacts geometric metrics like CD and F-score, which is unfair to VGGT. 3D reconstruction often
focuses more on geometry, so we choose to report only VGGT’s geometric metrics and omit its
visual metrics.

A.20 SENSITIVITY ANALYSIS OF THE QUALITY TO CAMERA POSE ACCURACY

Table 19: Ablation study on camera poses under different extent of rotational perturbation on Dora
Bench.

Method PSNR↑ SSIM↑ LPIPS↓ CD↓ F-score↑
Ours w/o RVC 21.045 0.905 0.093 0.093 0.937

Ours w. GT pose 23.957 0.917 0.092 0.086 0.955
Ours w. 3° perturbation 23.606 0.914 0.089 0.088 0.957
Ours w. 5° perturbation 22.788 0.916 0.093 0.092 0.951

Ours w. 10° perturbation 21.221 0.909 0.094 0.095 0.950
Ours w. 30° perturbation 20.939 0.903 0.094 0.093 0.941
Ours w. 50° perturbation 20.906 0.903 0.097 0.093 0.938

Ours 22.632 0.911 0.090 0.090 0.953
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To investigate the robustness and sensitivity of RVC to camera pose accuracy, we intentionally in-
troduce severe rotational perturbation to the ground-truth camera pose in RVC. As shown in Tab. 19,
RVC improves reconstruction significantly when accurate poses are available. With moderate errors
(≤ 10), the degradation is minimal, showing high tolerance. Even with extreme perturbations 30°
and 50° (far beyond practical estimation errors), the performance remains comparable to the baseline
”Ours w/o RVC”, demonstrating that RVC does not destabilize or corrupt the denoising trajectory.
The key to this robustness lies in our outlier mechanism within the rendering-based loss.

A.21 THE USE OF LARGE LANGUAGE MODELS

We only utilize LLMs to refine the writing style and enhance the clarity of exposition. The LLMs
are not involved in research ideation, experimental design or data analysis.
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