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Abstract

There is growing interest in integrating high-fidelity visual synthesis capabilities
into large language models (LLMs) without compromising their strong reasoning
capabilities. Existing methods that directly train LLMs or bridge LLMs and
diffusion models usually suffer from costly training since the backbone LLMs have
not seen image representations during pretraining. We present BIFROST-1, a unified
framework that bridges pretrained multimodal LLMs (MLLMs) and diffusion
models using patch-level CLIP image embeddings as latent variables, which are
natively aligned with the MLLM’s CLIP visual encoder. These patch-level image
embeddings are integrated into the diffusion model with a lightweight adaptation
of its ControlNet. To retain the original multimodal reasoning capabilities of
MLLMs, we equip the MLLM with a visual generation branch initialized from the
original MLLM parameters when predicting the patch-level image embeddings. By
seamlessly integrating pretrained MLLMs and diffusion models with patch-level
CLIP latents, our framework enables high-fidelity controllable image generation
with significant training efficiency. Our experiments demonstrate that BIFROST- 1
achieves comparable or better performance than previous methods in terms of visual
fidelity and multimodal understanding, with substantially lower compute during
training. We also provide comprehensive ablation studies showing the effectiveness
of our design choices. Project page: https://bifrost-1.github.io.

1 Introduction

Humans can naturally process and generate multimodal information such as language, vision, and
sound. This ability stems from our integrated cognitive system capable of reasoning, organization, and
expression. Inspired by this, building a unified Al system that supports both multimodal understanding
and generation has become an active area of research [48, 10, 80, 62, 73, 68]. On the one hand, large
language models (LLMs) have achieved impressive results across diverse tasks, including natural
language understanding [17, 40, 6, 54], mathematical reasoning [33, 58], and code generation [9, 46],
demonstrating strong planning and reasoning abilities [49, 26]. On the other hand, recent advances
in image and video generation models have enabled high-fidelity visual synthesis [50, 74, 1.
Therefore, effectively and efficiently integrating visual generation capabilities into LLMs, whlle
preserving their reasoning capabilities, has become an active research direction in the pursuit of
unified Al systems that bridges language understanding and visual synthesis.

Existing LLM-based image generation methods fall into two main paradigms. First, single-
architecture approaches (see Fig. 1 (a)) employ an LLM/MLLM that takes concatenated image
and text tokens as inputs. The model is then finetuned, either by updating all LLM parame-
ters [12, 67, 42, 41, 62, , 68] or via an auxiliary visual generatlon branch [44, 37, 59], to
generate images dlrectly Whlle this offers unified reasoning and native image synthesis, it typically
incurs very expensive computational costs to achieve high-fidelity results. Moreover, without careful
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Figure 1: Comparison of different approaches in using LLM for image generation. (a) Single
architecture handling both text and image tokens into the LLM/MLLM. (b) Bridging LLM and
Diffusion model with a 1D sequence (image tokens or text tokens). (c) BIFROST-1 (ours), which
bridges MLLM with diffusion models with 2D image tokens aligned with MLLM embeddings.

balancing of training data and objectives, such finetuning can risk degrading the LLM’s original
language reasoning capabilities [7 1], thereby undermining a primary goal of the integration.

Second, bridging-based approaches (see Fig. 1 (b)) use both pretrained diffusion models as well as
LLMs, teaching an LLLM to guide a diffusion model in generating the final image. The guidance
takes the form of detailed text descriptions (e.g., object layouts, extended prompts) generated by
the LLM [13, 20, 14], or continuous query tokens also produced by the LLM [31, 23, 63, 51, 1].
Although generally more training-efficient than single-architecture methods, these approaches have
their own limitations. Text-based representations can be too sparse to capture fine-grained details of
complex scenes, while learning to generate effective 1D continuous query tokens often requires a large
connector and end-to-end training, and may not sufficiently convey detailed 2D spatial information.

To address these limitations, we introduce BIFROST-1 (Sec. 3). As illustrated in Fig. 1(c), BIFROST-1
uniquely bridges a pretrained multimodal LLM (MLLM) [5] and a diffusion model [32]. Our core
innovation lies in using 2D patch-level CLIP [53] latents as the communicative medium. These latents
are image embeddings that are natively aligned with the MLLM’s own CLIP visual encoder, enabling
the MLLM to generate rich and precise spatial guidance for image synthesis. These patch-level
latents are integrated into the diffusion model via a lightweight adaptation of its ControlNet [78].
To retain the original multimodal reasoning capabilities of MLLMs, we equip the MLLMs with
a visual generation branch initialized from the original MLLM parameters when predicting the
patch-level image embeddings. By seamlessly integrating pretrained MLLMs and diffusion models
with patch-level CLIP latents, our framework enables high-fidelity controllable image generation
with substantial training efficiency. In addition, by fully retaining the original parameters of the
MLLM backbone, BIFROST-1 does not suffer from performance degradation of multimodal reasoning
capabilities observed in some previous works.

We empirically demonstrate the effectiveness of BIFROST-1 through a series of experiments. First,
in Sec. 5.1, we compare different architectures for bridging LLMs and diffusion models, showing
that patch-level CLIP latents train more efficiently than the controlled variants with alternative
methods. Next, in Sec. 5.2, we present the effective scaling of the number of CLIP latent tokens to
improve image reconstruction quality. We also qualitatively demonstrate that the image reconstruction
quality of BIFROST-1 is competitive or superior to strong baselines with a magnitude higher training
computation cost. In Sec. 5.3, we compare BIFROST-1 with state-of-the-art methods on multimodal
understanding and generation tasks, showcasing its competitive performance and the preservation
of the MLLM backbone’s reasoning capabilities. Finally, in Sec. 5.4, we experiment with varying
number of MLLM decoding steps, and observe that our method is robust as long as the number of
decoding steps is larger than 8. In a nutshell, our contribution can be summarized as follows:

* We propose a novel framework (BIFROST-1) for unified multimodal generation and understanding
by bridging pretrained MLLM and diffusion models with fine-grained patch-level CLIP latents.



* By using CLIP latents that are natively aligned with the MLLM, we achieve significantly lower
training costs compared to recent works with a single architecture or those that bridge using 1D
latents or query tokens.

* We show qualitatively and quantitatively that BIFROST-1 achieves comparable performance with
previous SoTAs on image reconstruction quality and text-to-image generation benchmarks, while
well-preserving MLLM’s original multimodal understanding ability.

2 Related Work

Unified multimodal LLM architectures for visual generation. The success of large language
models (LLMs) such as TS [54] and GPT-3 [6] has driven efforts toward extending language modeling
paradigms to multimodal settings. Early works like VL-T5 [11], SimVLM [69], and Flamingo [3]
adapt pretrained LLMs for visual understanding by framing perception tasks as text generation. More
recent models also incorporate image generation capabilities into LLMs using either autoregressive
objectives [12, 67, 42, 41, 62, 71, 10, 68, 59, 44] or denoising diffusion objective [73, 80], as
described in Fig. 1 (a). While these approaches enable flexible, end-to-end training, they often inherit
their initialization from text-only LMs and require significant resources to learn high-quality image
generation from scratch. This limitation has motivated a complementary line of research: bridging
pretrained LLMs with diffusion models, as discussed next below.

Bridging LLLM and diffusion models for visual generation. As described in Fig. 1 (b), several
methods decompose the generation process by using LLMs to produce detailed intermediate textual
representations, such as object layouts or detailed scene descriptions, which guide a pretrained
diffusion model [13, 20, 14]. However, complex visual scenes with rich object interactions are
often hard to describe purely with text. An alternative strategy is to replace intermediate text with
continuous visual representations to guide a diffusion model [31, 23, 63, 51]. For example, Tong et
al. [63] starts with an LLM and conduct large-scale training to equip it with a SigLIP [77] visual
encoder. The image tokens generated autoregressively by the LLLM are supervised using a cosine
similarity loss with ground-truth SigL.IP embeddings. These predicted image tokens are then injected
into diffusion models via cross-attention. However, teaching LLMs to generate visual representations
still requires more text-image annotations and computational resources (see Table 1), and it is also
prone to degraded text-generation quality unless the model is carefully balanced and trained on
high-quality text-text and vision-text data, along with extensive compute. Hence, we explore the use
of multimodal LLMs (MLLMs) that are already strongly aligned with CLIP embeddings encoding
spatial information, by teaching them to generate 2D CLIP embeddings to guide diffusion models
through latent ControlNet. As shown in Sec. 5.1, we find our method of bridging MLLM and
Diffusion models with 2D CLIP embeddings and latent ControlNet is significantly more data-efficient
in broad training budget scenarios compared to the above baselines.

3 BIFROST-1

We introduce BIFROST-1, a novel unified multimodal framework that effectively bridges pretrained
MLLMs and diffusion models with patch-level CLIP latents which are natively aligned with the
MLLM. This enables MLLMs to generate rich and precise spatial guidance for image synthesis while
achieving significant training efficiency. In the following, we present preliminaries about MLLMs
and ControlNet (Sec. 3.1), how BIFROST-1 bridges MLLMs and diffusion models via patch-level
CLIP latents (Sec. 3.2), and training and inference strategy (Sec. 3.3).

3.1 Preliminaries

Visual encoding and decoding with MLLMs. For image understanding tasks, given an RGB image
x € R¥>*HXW ‘recent MLLMs commonly employ visual encoders that convert the image into a set
of d-dimensional continuous (e.g., CLIP [53]) or discrete (e.g., VQVAE [64]) visual embeddings:
z = E(x) € RH'XW' where H' < H and W' < W due to spatial downsampling [5, 81, 2, 15].
These visual embeddings are aligned with the LLMs’ embedding space via learned projection
layers. For image generation tasks, to enable the MLLM to produce images, the visual embeddings
generated by the LLM backbone are passed to a visual generation decoder D to render the final image:
x = D(z). Typically, VQVAE:s or diffusion models are employed for the decoder, whose visual
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Figure 2: Overview of BIFROST-1. BIFROST-1 equips the backbone MLLM with a visual generation
branch, which is a trainable copy of a pretrained MLLM parameters (i.e., QKV, MLP, normalization
layers) and a newly added vision head (i.e., a linear layer). The visual generation branch outputs
patch-level CLIP latents, which are then downsampled and reshaped into 2D (HxW), provided to
latent ControlNet, and finally guiding image generation of a pretrained diffusion model. During
training, a portion of the image patches is randomly replaced with learnable mask tokens <M>. During
inference, we start with fully masked image tokens and autoregressively predict them.

representation is different from CLIP embeddings; thus, learning to align MLLMs and decoders
usually requires significant computation. In this work, we extend unCLIP [55] that employs a model
to convert a single (pooled) CLIP text embedding to a single (pooled) CLIP image embedding by
teaching MLLM to generate patch-level CLIP latents which are natively aligned with the visual
encoder &€ of the pretrained MLLM. We find this significantly facilitates image generation training.

ControlNets. ControlNet [79] is designed to add spatial controls with image guidance inputs (e.g.,
depth, sketch, segmentation maps, efc.) to diffusion models. Specifically, given a pretrained diffusion
model Fg, ControlNet adopts a similar architecture JF o-, whose parameters are initialized from 6
(i.e., ‘trainable copy’). ControlNet takes the diffusion timestep ¢, text prompt Cex(, control image ¢
(e.g., depth map), and the noisy latents z; as inputs, and outputs features guide the backbone diffusion
F o for the final image generation. In this work, we propose latent ControlNet that uses patch-level
CLIP image embeddings instead of a control image to guide diffusion models.

3.2 Bridging MLLMs and Diffusion Models with Patch-Level CLIP Latents

BIFROST-1 design summary. We have two main goals: (1) to preserve the multimodal understanding
capability of the MLLM, while (2) efficiently teaching MLLM to generate latent tokens to guide
diffusion models. As illustrated in Fig. 2, BIFROST-1 achieves these goals by having a new visual
generation branch initialized from the original MLLM parameters and using patch-level CLIP image
embeddings as latent bridge tokens.

Learning to unmask image patch embeddings with a visual generation branch. To teach an
MLLM image generation, we first encode the images using the MLLM’s native visual encoder to
get patch-level image embeddings and concatenate them with text tokens. Following MAR [36], we
replace parts of the input image embeddings with a learnable mask token (<M>) and let the MLLM
to predict the masked image embeddings. The mask ratio is randomly sampled from a truncated
normal distribution with a mean of 1.0 and a standard deviation of 0.25, constrained to the range
[0.7, 1.0]. For this image embedding prediction task, we introduce a visual generation branch (Fig. 2
left), whose parameters are initialized from MLLM parameters (i.e., attention QKV projections, MLP
projection layers, and normalization layers) following LMFusion [59]. Just like text head, which is a
linear layer toward text embedding space, we use a simple linear layer as a vision generation head.
By reusing majority of parameters from the pretrained MLLM and randomly initializing only a single
linear layer as the vision head, we avoid the costly process of realigning image embeddings.



Attention across modalities. In Fig. 3, we illustrate how different image and text input tokens can
attend to each other. In summary, we apply causal masking for text, and we apply full attention for
image tokens. All the previous modalities are fully visible to future modality tokens.
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During training, we update only the newly added
input linear projection, the 2D downsampling con-
volution blocks, and the ControlNet for 4 MM-DiT
blocks and 1 Single-DiT block, compared to the full FLUX.1-dev model which contains 19 MM-DiT
blocks and 38 Single-DiT blocks in total.

Figure 3: Attention mask. X-axis is input and
Y-axis is output.

3.3 Training and Inference

Decoupled training. The MLLM visual prediction branch and latent ControlNet can be jointly
trained or separately. We adopt the second, a decoupled training strategy for the following two
reasons: (1) Since we only train small parameters of latent ControlNet, it converges much faster
than the MLLM’s vision branch. In initial experiments, we find that decoupled training allows us
to allocate more compute to the MLLM’s vision branch, improving overall performance. (2) Since
recent diffusion models have large parameters (e.g., FLUX.1-dev has 12B parameters), end-to-end
training significantly increases memory requirements. For the MLLM visual prediction branch,
we use the mean squared error (MSE) loss for image patch embedding prediction. For the latent
ControlNet, we use the original flow-matching loss used in FLUX ControlNet.

Inference of image patch embeddings tokens via masked autoregression. During inference,
the MLLM is given a text prompt along with fully masked CLIP image embeddings. Following
MAR [36], we first randomly sample a generation order of image patches, then iteratively denoise
them into clean CLIP image embeddings. Once all image patches are obtained, we give them latent
ControlNet to guide the diffusion model.

4 Experiment Setup

Latent ControlNet implementation details. For the latent ControlNet design, we build upon the
official FLUX.1-dev ControlNet training implementation from the Hugging Face Diffusers library.'
Specifically, we train a ControlNet consisting of 4 MM-DiT [19] (DoubleStream) blocks and 1 Single-
DiT [52] (SingleStream) block (i.e., num_double_layers=4, num_single_layers=1) with a
total batch size of 48. All other training hyperparameters, including learning rate, Adam optimizer, and
weight decay, are kept identical to the original codebase without any tuning. During latent ControlNet
inference, we also retain all default hyperparameters unchanged (e.g., num_inference_steps=28,
controlnet_conditioning_scale=0.7, guidance_scale=3.5).

Baselines. For ImageNet experiments, we compare BIFROST-1 with two main variants, using the
same model initialization and computational budget: (1) the first variant replaces the MLLM-aligned

'https://github.com/huggingface/diffusers/tree/main/examples/controlnet
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Table 1: Comparison of different architectures for bridging LL.Ms and diffusion models in image
generation on ImageNet 256 x256.

Method FID| sFID| ISt

Backbone diffusion model
FLUX.1-dev [32] 51.20 224.82 157.46

2D Learnable query tokens instead of CLIP latent
MLLM + 2D Learnable Query Tokens + Latent ControlNet + FLUX.1-dev  118.69 129.14  9.15

No pre-aligned visual encoder instead of pre-aligned visual encoder

MLLM + SigLIP + Latent ControlNet + FLUX.1-dev 274.16 30494  2.69
VAE instead of CLIP latent

MLLM + FLUX VAE + Latent ControlNet + FLUX.1-dev 284.51 361.45 1.11
Cross-attention instead of Latent ControlNet

MLLM + Patch-level CLIP Latent + cross-attention + FLUX.1-dev 76.32 208.11 26.35
BIFROST-1 (Ours)

MLLM + Patch-level CLIP Latent + Latent ControlNet + FLUX.1-dev 25.77 53.67 98.57

CLIP-based embeddings with non-MLLM-aligned FLUX VAE features for visual generation, and
(2) the second variant uses 2D query tokens (extended from MetaQuery [51]) instead of masked
autoregression for visual generation. For SOTA comparison experiments, we compare our method
with baselines for unified multimodal understanding and generation including DreamLLM [18],
Chameleon [62], Show-o [73], VILA-U [72], EMU3 [68], MetaMorph [63], MetaQuery [5 1], Token-
Flow [24], Transfusion [80], LMFusion [59], Janus [71], JanusFlow [43], and JanusPro [10].

Training details. We train BIFROST-1 on ImageNet [ 6] for the experiments in Sec. 5.1 and Sec. 5.2.
Specifically, the latent ControlNet and BIFROST-1 MLLM in Sec. 5.1 are trained for 2 epochs and 16
epochs respectively, and the latent ControlNet in Sec. 5.2 is trained for only 1 epoch (~25M training
steps). For SoTA comparison experiments in Sec. 5.3, we measure the training cost by the total
number of training images passed to the model, calculated as the product of the number of training
steps and the batch size per step. Our models with Qwen2.5-VL 3B/7B are trained on 9M and 62M
images respectively from the BLIP3-o [8] training dataset.” All experiments on ImageNet (Sec. 5.1
and Sec. 5.2) are trained on a single GH200 GPU, and the SoTA comparison experiments in Sec. 5.3
are trained on 16 GB200 GPUs.

Evaluation datasets and metrics. For ImageNet, following previous works [36, 56], we evaluate
our model on Fréchet Inception Distance (FID) [27], sFID [45], and Inception Score (IS) [57]. Then
for open prompt evaluation, we follow previous works [10, 51, 63, 59] and report FID scores on
MIJHQ-30K [35] and 30k randomly sampled images from MSCOCO [38] validation set for visual
aesthetic quality, and GenEval [25] and DPG-Bench [28] for prompt alignment, respectively. We use
the original prompts from all these four evaluation datasets directly without any prompt rewriting.

5 Results and Discussion

We empirically demonstrate the effectiveness of BIFROST-1 in various experiments. Specifically, we
compare different architectures for bridging LLMs and diffusion models (Sec. 5.1), training efficiency
of different numbers of CLIP latent tokens for image reconstruction (Sec. 5.2), BIFROST-1 with
SoTAs on multimodal understanding and generation tasks (Sec. 5.3), and experiments with different
MLLM decoding steps (Sec. 5.4).

5.1 Comparison of Design Choices for Bridging LLMs and Diffusion Models

We compare different choices for bridging LL.Ms and diffusion models in terms of image generation
task on ImageNet 256x256. We generate 10K images with classes randomly sampled from 1k
categories and compute visual quality metrics. In all settings, the MLLM visual generation branch
and the Latent ControlNet are trained for 16 and 2 epochs, respectively.

*https://huggingface.co/datasets/BLIP30o/BLIP30o-Pretrain-Long-Caption
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BIFROST-1 vs. Backbone diffusion model. In the first and last rows of Table 1, we compare
BIFROST-1 and its backbone diffusion model (FLUX.1-dev [32]). We find that BIFROST-1 improves
FID and sFID, while it hurts IS from the original backbone. The improvement over the baseline
mainly comes from adding a few trainable ControlNet blocks to the backbone diffusion model, which
enables better adaptation to the data distribution.

Patch-level CLIP latent vs. 2D learnable query tokens. MetaQuery [51] is a recent method that
bridges LLMs and diffusion models by learning a connector (24-layer transformer encoder) that
projects a frozen LLM’s hidden representations on a finite number of learnable query tokens, where
the connector outputs guide a diffusion model via cross attentions. Inspired by this, we implement
a 2D version of MetaQuery and compare it with BIFROST-1. To fairly compare methods with
similar additional parameters, instead of learning a heavy connector module, we directly reshape
the LLM representations of learned query tokens as inputs to the latent ControlNet. As shown in
Table 1, 2D learnable query tokens hurt performance in all 4 metrics, indicating that learning to align
representations between MLLM and diffusion from scratch requires much more computation than
our patch-level CLIP latent.

Patch-level CLIP latents vs. VAE latents. Here, we compare BIFROST-1 with a variant that replaces
CLIP latents (that are natively aligned with MLLM) with VAE latents (that are not originally aligned
with MLLMs). Specifically, we substitute the CLIP visual encoder with the FLUX VAE encoder, and
replace our visual decoder (i.e., Latent ControlNet + FLUX diffusion model) with the FLUX VAE
decoder. Linear projection layers are applied to align the dimensions of the VAE-encoded features
with the feature dimension of the MLLM backbone. All other components of our framework and the
training strategy are kept the same to ensure a fair comparison. As shown in the 3rd row of Table 1,
using VAE features significantly slows down learning. Additionally, this highlights that by leveraging
a pretrained diffusion model as the image renderer, BIFROST-1 effectively reduces the burden on the
MLLM side to directly generate high-quality images.

MLLM'’s native visual encoder vs. non-aligned external visual encoder. In addition, we also
compare using the latents from MLLM’s native visual encoder (i.e., CLIP) with an external visual
encoder (i.e., SigLIP, as used in MetaMorph [63]). As we can see in the 4th row of Table 1, although
using SigLIP achieves better image generation quality than using VAE, it is still significantly worse
than using the MLLM’s native visual encoder. This indicates the training efficiency of adopting
MLLM’s native visual encoder compared with non-aligned external visual encoders.

Diffusion model guidance strategy: Latent ControlNet vs. Cross-attention Our method directly
injects 2D image tokens generated by the MLLM into the DiT via latent ControlNet. By adding
2D ControlNet latents on top of the noisy DiT latents, our method can enforce spatial structures
more explicitly and effectively. In contrast, several previous works [63, 51, 8] use cross-attention to
condition on image tokens. We conducted an additional experiment comparing these two conditioning
strategies. For a fair comparison, we unfreeze all parameters in DiT when conditioning it via cross-
attention and use 64 MLLM-generated image tokens for both methods. As shown in the Sth row of
Table 1, our latent ControlNet achieves better image generation quality (FID, sFID, IS), demonstrating
its superior efficiency and effectiveness.

5.2 Image Reconstruction with Patch-level CLIP Latent

In the following, we demonstrate the effectiveness of CLIP Latent-based image representation in
image reconstruction experiments. Concretely, we experiment with scaling the number of latent
tokens and compare BIFROST-1 with SoTA models.



16 Tokens 64 Tokens 144 Tokens 256 Tokens Real Image

Figure 5: Visual samples for image reconstruction with different numbers of patch-level CLIP tokens
generated from MLLM. The Latent ControlNet models with varying numbers of tokens are trained
for only 1 epoch on the ImageNet training split.

Real Image SEED Emu Emu2 GPT-40 MetaQuery Bifrost-1

Figure 6: Image reconstruction results.

Scaling the number of CLIP latent tokens. In Fig. 4 we show that image reconstruction quality
scales well with the number of patch-level CLIP latent tokens input to the Latent ControlNet. With
only 1 epoch of training (~26K steps) on the ImageNet dataset, images represented by 256 (=14 x14)
CLIP latent tokens not only achieve higher reconstruction accuracy, measured by rFID, SSIM, PSNR,
and LPIPS, but also converge faster compared to those using fewer CLIP latent tokens. In Fig. 5, we
show qualitative examples of images generated with different numbers of CLIP latent tokens.

Comparison with SoTA methods. In Fig. 6, we qualitatively compare the image reconstruction
quality of our latent ControlNet with various unified models, including SEED [22], EMU [61],
EMU?2 [60], GPT-40 [29], and MetaQuery [51]. Specifically, we first encode the images using
the visual encoder in Qwen2.5-VL, then use the latent ControlNet to reconstruct the images based
solely on this visual information, without providing any text prompt as additional guidance. Trained
exclusively on the ImageNet dataset for 3 epochs without exposure to any other open-world images,
the reconstructions from the BIFROST-1 latent ControlNet achieve quality that is competitive with
or superior to strong baselines such as GPT-40 and MetaQuery, demonstrating the efficiency and
robustness of our Latent ControlNet design.

5.3 Comparison with SoTA Models

BIFROST-1 fully inherits strong visual understanding capabilities of backbone MLLM. As
BIFROST-1 keeps the original parameters in the MLLM completely frozen, the trainable vision branch
is agnostic to the choice of MLLM. This allows BIFROST-1 to fully inherit the visual understanding



Table 2: Comparison with state-of-the-art methods on multimodal understanding benchmarks.

Method Base (M)LLM MME-Pt MMB?T SEED1T MMMUT MM-Vett
DreamLLM [18] Vicuna 7B - - - - 36.6
Chameleon [62] From Scratch 7B - - - 22.4 8.3
Show-0-512 [73] Phi-1.5 1.3B 1097.2 - - 26.7 -
VILA-U [72] LLaMA-2 7B 1401.8 - 59.0 - 33.5
EMUS3 [68] From Scratch 7B - 58.5 68.2 31.6 37.2
MetaMorph [63] LLaMA-3 8B - 75.2 71.8 - -
MetaQuery-L [51] Qwen2.5-VL 3B 1574.3 78.6 73.8 53.1 63.2
MetaQuery-XL [51] Qwen2.5-VL 7B 1685.2 83.5 76.9 58.6 66.6
TokenFlow-XL [24] Qwen-2.5 14B 1551.1 76.8 72.6 43.2 48.2
Transfusion [80] From Scratch 7B - - - - -
LMFusion [59] LLaVA-Next 8B 1603.7 72.1 72.5 41.7 -
Janus [71] DeepSeek-LLM 1.5B 1338.0 69.4 63.7 30.5 34.3
JanusFlow [43] DeepSeek-LLM 1.5B 1333.1 74.9 70.5 29.3 30.9
JanusPro-1B [10] DeepSeek-LLM 1.5B 1444.0 75.5 68.3 36.3 39.8
JanusPro-7B [10] DeepSeek-LLM 7B 1567.1 79.2 72.1 41.0 50.0
BLIP3-0 4B [8] Qwen2.5-VL 3B 1527.7 78.6 73.8 46.6 60.1
BILP3-0 8B [8] Qwen2.5-VL 7B 1682.6 83.5 71.5 50.6 66.6
BIFROST-1 (Ours) Qwen2.5-VL 7B 1685.2 83.5 76.9 58.6 66.6

Table 3: Comparison with state-of-the-art methods on multimodal generation benchmarks.

Method Base (M)LLM Train StepsxB.S. COCO FID| MIJHQFID| GenEvalt DPG-Bench?
EMU [68] LLaMA 13B - 11.66 - - -
DreamLLM [18] Vicuna 7B - 8.46 - - -
Chameleon [62] From Scratch 7B - 26.74 - 0.39 -
Show-0-512 [73] Phi-1.5 1.3B - 9.24 15.18 0.68 -
VILA-U [72] LLaMA-2 7B - - 7.69 - -
EMUS3 [68] From Scratch 7B - 12.80 - 0.66 80.60
MetaMorph [63] LLaMA-3 8B - 11.8 - - -
MetaQuery-L [51] Qwen2.5-VL 3B - 8.87 6.35 0.78 81.10
MetaQuery-XL [51] Qwen2.5-VL 7B 200M 8.69 6.02 0.80 82.05
TokenFlow-XL [24] Qwen-2.5 14B - - - 0.63 73.38
Transfusion [80] From Scratch 7B - 8.70 - 0.63 -
LMFusion [59] LLaVA-Next 8B - 8.20 - - -
Janus [71] DeepSeek-LLM 1.5B 100M 8.53 10.10 0.61 -
JanusFlow [43] DeepSeek-LLM 1.5B 211M - 9.51 0.63 80.09
JanusPro-1B [10] DeepSeek-LLM 1.5B 200M - 14.33 0.73 82.63
JanusPro-7B [10] DeepSeek-LLM 7B 194M - 13.48 0.80 84.19
BLIP3-0 4B [8] Qwen2.5-VL 3B - - - 0.81 79.36
BLIP3-0 8B [8] Qwen2.5-VL 7B - - - 0.84 81.60
BIFROST-1 (Ours) Qwen2.5-VL 3B M 23.02 15.24 0.61 76.41
BIFROST-1 (Ours) Qwen2.5-VL 7B 62M 34.35 16.21 0.81 77.67

capabilities of the MLLM and easily scale to backbone MLLMs with larger sizes and stronger
performance. Table 2 compares the Qwen2.5-VL 7B [5] model with other unified models on image
understanding benchmarks, including MME-P [21], MMB [39], SEED [34], MMMU [76], and
MM-Vet [75]. Baseline models such as JanusPro [10] and MetaMorph [63] fully fine-tune the LLM
backbone and therefore tend to lose the original planning and reasoning abilities that these LLMs
acquired through large-scale text pretraining.

BIFROST-1 achieves competitive visual generation quality. In Fig. 7, we compare BIFROST-1 with
the recent SOTA methods (e.g., JanusPro and MetaQuery) on MJHQ30k prompts. Table 3 compares
BIFROST-1 with other unified models on image generation benchmarks, including COCO and MJHQ
for visual quality and GenEval and DPG-Bench for prompt following ability. Trained only with 25M
image-text pairs for less than two epochs, BIFROST-1 matches the performance with models trained
with much higher compute, including Janus on GenEval benchmark, and outperforms TokenFlow-XL
on DPG-Bench. In addition, we would like to highlight that FID scores heavily depend on the choice
of diffusion backbones. As also observed in MetaQuery[5 1], diffusion models fine-tuned on aesthetic
datasets (e.g., FLUX.1-dev) typically achieve worse FID scores compared to models that have not
undergone extensive aesthetic fine-tuning (e.g., SD1.5, SANA).



JanusPro

MetaQuery

Beautiful pale pink baby fawn  Jackolantern with an angry cat  Fresh squeezed strawberry A cloudy sky over a body of An image of a world war 2

set among pastel pink flowers face lemonade photo, in the style of water,a photorealistic painting, warship on ocean floor
and soft wisteria, romantic selective focus, light red, high by Mark Keathley, Shutterstock
specimen, pinkish white resolution contest winner, iPhone video,
background, by Thomas whirlwind, Armageddon, photo
Kinkade Nadja Baxter Anne taken of an epic intricate,
Stokes Nancy Noel strange clouds, Thom

Wasselmann, spinning whirlwind

Figure 7: Qualitative comparision with SOTA methods for image generation on MJHQ30k [35].

Table 4: Inference clock time and image generation quality with different VLM decoding steps.

# Decoding Steps 64 (default) 32 16 8 4 2 1
Clock Time (seconds) 5.21s 2.63s 1.37s 0.66s 0.35s 0.19s 0.09s
FID | 18.64 1849 1879 18.89 1997 2490  60.35
sFID | 43.64 4358 4452 4589 50.86 67.23 217.50
ISt 156.01 15893 156.96 158.87 150.56 124.78 83.22

5.4 MLLM Inference Time with Varying Decoding Steps

To further assess the effect of decoding steps, we conducted experiments with varying numbers of
decoding passes on ImageNet. The results are summarized in Tab. 4. We show the inference clock
time in seconds, as well as image quality metrics including FID, sFID, and IS. As shown, our method
remains robust as long as the number of decoding steps is greater than 8. And we can observe that
there is a clear trade-off between inference speed and image quality when using fewer decoding steps.
Importantly, we also highlight that the MLLM decoding time is significantly smaller than the runtime
of the diffusion-based image generation model. For instance, FLUX.1-dev with 12B parameters
together with latent ControlNets takes 14.79 seconds to generate a single image with the default 28
denoising steps. Therefore, the MLLM decoding time is not a major bottleneck. From a practical
standpoint, users can flexibly select the number of decoding steps based on whether they favor faster
inference or higher image quality for their particular application.

6 Conclusion

We present BIFROST- 1, a unified and efficient framework for both multimodal understanding and
generation. BIFROST-1 bridges pretrained MLLMs with diffusion models by introducing patch-level
CLIP image embeddings as latent variables, which are naturally aligned with the CLIP visual encoder
of the MLLM. This design enables high-fidelity, controllable image generation while maintaining
strong training efficiency. A key advantage of BIFROST-1 is that it fully preserves the original
parameters of the MLLM backbone, ensuring that its multimodal planning and reasoning capabilities
remain intact. Although our current model is trained with significantly fewer computational resources
than SoTA methods and does not yet surpass them in performance, future work focuing on scaling to
larger datasets and more powerful MLLM backbones can further realize its potential.
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Appendix

A Formal Description of the BIFROST-1 MLLM Architecture

As illustrated in Fig. 2, we initialize the visual generation branch from the pretrained MLLM by
creating a trainable copy of the MLP and attention QKV projection layers [65]. The only component
randomly initialized is the vision head, which is a simple linear projection layer. By reusing the
majority of parameters from the pretrained MLLM, we avoid the costly process of realigning image
embeddings.

Specifically, we use blue color to denote the original frozen MLLM-specific modules, which handle
language modeling (LM) and image understanding (Img-U) tasks. These modules remain unchanged
during training. In addition, we use yellow color to represent the newly introduced trainable
modules for the image generation task (Img-G), which are initialized as trainable copies of the
corresponding blue modules.

During the image generation training process, we first obtain input hidden states for each task.
Text inputs ™ are projected through a linear embedding layer to produce hI*. Images used for
image understanding (2™¢Y) and image generation (x'™2%) are both passed through the frozen
MLLM-embedded visual encoder £"™, producing hidden states h."*" and h\* respectively:

h;l;lext — Linearmey (mText) hgrllng‘U — gUnd (mlmg—U) hiI;Hg-G — gUnd (mlmg—G)

During the image generation inference process, hf;n G i initialized from 2D learnable mask tokens.

By using patch-level CLIP image embeddings that are natively aligned with the MLLM’s visual
encoder to represent visual signals in vision generation tasks, we eliminate the need for any additional
alignment between the visual generation representation and the MLLM.

For attention processing, we use the frozen MLLM attention layers to compute Q, K, and V matrices

for the text and image understanding tokens hT* and A"V, and use the newly added visual
Img-G,
in :

Img-U 4 Img-U 4 Img-U Img-U
haexl7 h£6X17 h$exl _ QKVMLLM (h'ilr‘lext) héﬂg ,hlgl& 7h\I/ng — QKVMLLM (hirllng )

generation branch to process the image generation tokens h

Img-G 1 Img-G 7 Img-G Img-G
ho* " hi® T AT = QKVimgg (hyy* ™)

For language modeling and image understanding tasks, we replicate the standard MLLM attention
structure by attending over their respective modalities only. For image generation task, we enable
cross-module attention, allowing image generation queries to attend jointly over all token types.
Specifically:
A& = Omiom (Attn(hG™, (A o A V], [R3 o hy™ )
hE= = O (Aun(hg®Y, [ o ), (WY 0 1Y)

BE*© = Omgo (Aun(hG*C, (B o bV o i), (W% 0 BY*Y o h{F)))

where o denotes concatenation, and O(.) denotes linear output projection layer. We apply a causal
mask to text and image understanding tokens, and a bidirectional mask to image generation tokens.

For the MLP layers, we follow the same branching: text and image-understanding tokens h** and

R Y are passed through the frozen MLLM MLP, while image generation tokens h,"¢ use the
trainable MLP from the generation branch:
hyith = MLPyiiw (h6™)  hygs’ = MLPyiiw (hg®")  hagfp’ = MLPing (hg™©)

Finally, task-specific heads convert the hidden states to output predictions. For language modeling
and image understanding, we apply a linear projection to k5%, and for image generation, we project
hi}“fg,c using the vision generation head:

R — TextHead (hyst,) heS — VisionHead (Ryp&C)
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B Broader Impacts

BIFROST-1 is motivated by the fact that training a unified multimodal generation and understanding
model that can perform native generation with high visual quality usually requires huge computational
cost. By bridging pretrained MLLM with pretrained diffusion models, training BIFROST-1 can be
significantly faster. Therefore, we believe that our work can be a strong contribution to efficient
unified model training. While our framework can benefit numerous applications in image generation,
similar to other image generation frameworks, it can also be used for potentially harmful purposes
(e.g., creating false information or misleading images). Therefore, it should be used with caution in
real-world applications.

C Safeguards

BIFROST-1 is built upon pretrained MLLM (i.e., Qwen2.5-VL) and diffusion models (i.e., FLUX.1-
dev) with strong safeguards, and trained on publically available image datasets (i.e., MSCOCO and
SA1B) that removes unsafe concepts. Therefore, our model avoids the high risk for misuse.

D Limitations

Note that BIFROST-1 is designed as a bridging method that connects existing MLLMs with diffusion-
based image generation models. As such, its performance, output quality, and potential visual artifacts
are inherently influenced by the capabilities and limitations of the underlying backbone models it
relies on. For instance, if the diffusion model used as the visual backbone struggles with generating
complex, rare, or previously unseen scenes and objects, then BIFROST-1, which builds upon this
foundation, may also exhibit suboptimal image generation results. This dependency highlights the
importance of selecting strong and well-generalized base models when applying BIFROST-1 to
real-world or open-domain generation tasks.

E License

We use standard licenses from the community and provide the following links to the licenses for the
datasets, codes, and models that we used in this paper. For further information, please refer to the
specific link.

PyTorch [4]: BSD-style

HuggingFace Transformers [70]: Apache License 2.0
HuggingFace Diffusers [66]: Apache License 2.0
FLUX.1-dev [32]: Non-Commercial License

Qwen2.5-VL [5]: Non-Commercial License

MSCOCO dataset [38]: CCBY 4.0

CC12M dataset [7]: Permissive Custom License

SA1B dataset [30]: SA-1B Dataset Research License
MIJHQ30k dataset [35]: Playground v2 Community License
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Figure 8: Visualization examples from MJHQ30k dataset.
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