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Abstract

Adversarial examples—inputs with imperceptible perturbations that fool neural1

networks—remain one of deep learning’s most perplexing phenomena despite2

nearly a decade of research. While numerous defenses and explanations have been3

proposed, there is no consensus on the fundamental mechanism. One underexplored4

hypothesis is that superposition, a concept from mechanistic interpretability, may5

be a major contributing factor, or even the primary cause. We present four lines of6

evidence in support of this hypothesis, greatly extending prior arguments by Elhage7

et al. [2022]: (1) superposition can theoretically explain a range of adversarial8

phenomena, (2) in toy models, intervening on superposition controls robustness,9

(3) in toy models, intervening on robustness (via adversarial training) controls10

superposition, and (4) in ResNet18, intervening on robustness (via adversarial11

training) controls superposition.12

1 Introduction13

Adversarial examples represent one of the most perplexing phenomena in deep learning: neural14

networks that achieve superhuman performance on many tasks can be fooled by perturbations so15

small they are imperceptible to humans. Despite nearly a decade of intensive research and many16

different hypotheses, there is no widely accepted explanation. In this paper, we explore an alternative17

hypothesis: superposition.18

Superposition is a concept from the mechanistic interpretability literature. At a high level, superposi-19

tion exploits the geometry of high-dimensional spaces to allow neural networks to represent more20

features than they have neurons. However, this strategy comes at a cost. Features in superposition21

necessarily interfere. On distribution, this interference is small, but in worst-case scenarios, it can be22

significant. One of the foundational papers on superposition hypothesized this interference could be23

linked to adversarial examples [Elhage et al., 2022], yet this hypothesis remains unexplored.24

Our primary contribution is three experiments testing the relationship between superposition and25

robustness, in both toy models an ResNet18. These experiments are summarized in Figure 1. For26

toy models, we demonstrate both that superposition can control robustness, and that robustness27

can control superposition. For ResNet18, we show only that robustness can control superposition.28

(Unfortunately, without a method for controlling superposition in real models, we are unable to29

demonstrate the other direction in real models.)30
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Figure 1: Overview of experiments. The three primary experiments test the relationship between superposition
and robustness in different ways.

Combined, these results strongly imply that superposition is at least one causal factor in the existence31

of adversarial examples. They don’t necessarily suggest that it’s the only factor, as we can’t intervene32

on superposition in real models to isolate this.33

At the same time, we take seriously the possibility that it might be the primary explanation. Although34

it isn’t the primary focus of this paper, it seems to us that superposition is sufficient to theoretically35

explain all the adversarial phenomena we’re aware of. This is summarized in Table 1.36

Table 1: Six adversarial example phenomena and potential explanations.
Phenomenon Superposition Explanation

Existence: Adversarial examples exist across es-
sentially all neural networks [Szegedy et al., 2014,
Goodfellow et al., 2015]

Features can be attacked by perturbing all the fea-
tures in superposition with them. An attacker can do
this iteratively at each layer.

Noise-like structure: Adversarial perturbations ap-
pear as unstructured high-frequency noise rather
than semantic patterns [Goodfellow et al., 2015,
Sharma et al., 2019]

Adversarial attacks work by attacking many features,
which are totally unrelated except for the fact that
they’re in superposition with the actual targets.

Attack Transferability: Adversarial examples
transfer between independently trained models
[Goodfellow et al., 2015, Liu et al., 2017]

If the same features are in superposition with each
other, attacks based on superposition will transfer.
Features which are anti-correlated are preferentially
put in superposition with each other [Elhage et al.,
2022] and therefore attacks should transfer.

Training difficulty: Adversarial training is fun-
damentally difficult, requiring significant compu-
tational resources and degrading natural accuracy
[Madry et al., 2019]

Superposition increases the capacity of models. If
improving model robustness requires reducing super-
position, that fundamentally reduces model capacity.

Interpretability: Adversarially trained models be-
come markedly more interpretable with neurons that
correspond to human-understandable concepts [En-
gstrom et al., 2019]

In the absence of superposition, neurons can be
monosemantic, and also less noisy.

Training on Attacks Transfers Clean Perfor-
mance: Training on mislabeled data with adversarial
attack towards the erroneous label induces correct
behavior on clean data [Ilyas et al., 2019]

Training on adversarial attacks transfers to clean
data because adversarial attacks encode interfering
combinations of genuinely useful circuits.

2 Background37

The mechanistic interpretability literature often assumes that model representations are linear. That
is, the hidden activations h of some layer can be understood as

h =
∑
i<k

aif⃗i + b⃗

where k is the total number of features, ai is the activation of a feature i, and fi is a direction in38

activation space representing that feature. Roughly, activation represents the intensity or strength of a39

feature in response to a particular input.140

1Typically, features are imagined to be one-dimensional, but this can be generalized to allow more dimensions.
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One might expect that if a neural network representation has n dimensions, it can only represent41

k ≤ n linear features. However, results from an area of mathematics called compressed sensing42

suggest that neural networks could represent many more features (k >> n), so long as features are43

sparse (that is, zero on most examples). This is called the superposition hypothesis.44

Superposition necessarily entails interference. When k > n features are represented in an n-45

dimensional space, the feature vectors {f⃗i}ki=1 cannot all be mutually orthogonal. This non-46

orthogonality means that activating feature i with coefficient ai produces (apparent) spurious activa-47

tions in feature j proportional to ai⟨f⃗i, f⃗j⟩. Models can partially compensate for this interference by48

learning negative biases bj < 0 that suppress small spurious activations below a threshold. However,49

this compensation mechanism assumes the total interference
∑

i̸=j ai⟨f⃗i, f⃗j⟩ remains bounded. In50

worst-case scenarios, an adversary can coordinate activations to make this sum arbitrarily large,51

overwhelming the bias term. (This aligns with compressed sensing theory, which only guarantees52

reconstruction with high probability under random, not adversarial, conditions.)53

Elhage et al. [2022] demonstrated that this interference mechanism enables adversarial attacks in54

toy models. Specifically, consider a target feature f⃗target in superposition with features {f⃗1, . . . , f⃗m}55

where ⟨f⃗target, f⃗i⟩ = ϵi ̸= 0. An adversary can exploit this by adding input perturbations that activate56

each interfering feature by a small amount δi. While each individual contribution δiϵi to the target57

feature’s activation is negligible, the cumulative effect
∑m

i=1 δiϵi can be made arbitrarily large by58

choosing appropriate δi values (subject to the perturbation budget). This is precisely the interference59

that models attempt to suppress through learned biases under normal operating conditions.60

This vulnerability compounds across layers. At each layer, the adversary can exploit superposition to61

create unwanted feature activations, which then propagate to the next layer as inputs. These corrupted62

activations at the next layer can then be constructed to do the same kind of attack, allowing errors to63

accumulate through the network.64

3 Causal Evidence from Toy Models of Superposition65

To test whether superposition causally contributes to adversarial vulnerability, we extend the toy66

models of Elhage et al. [2022], the standard theoretical model of superposition. In the toy model67

setup, it is possible to exactly measure superposition, which is not possible in real models because it68

requires knowledge of the ground truth features learned by the model. It also allows us to control69

superposition by manipulating feature sparsity. This will allow us to show both that superposition70

controls robustness and that robustness controls superposition in the toy models setup.71

3.1 Setup72

3.1.1 Toy Models73

We consider a simplified2 version of the basic setup of Elhage et al. [2022]. Our data consists of74

n = 100 features. They are linearly projected into a m = 20 hidden units, h = Wx, and then75

reconstructed by a ReLU layer, x′ = ReLU(WTx+ b). The loss is mean squared error.76

The behavior of this toy model varies based on the feature sparsity, S. This is the probability that the77

input features are zero. When features are sparse, this setup exhibits superposition, representing more78

features than there are hidden dimensions. The amount of superposition increases with sparsity.79

3.1.2 Measuring Superposition80

One reason for our interest in the toy model setting is that superposition can be exactly measured.81

One way to do this is by looking at the features per dimension [Elhage et al., 2022], i.e., how many82

features the model is attempting to represent per feature dimension:83

||W ||2F
n

(1)

2We consider only uniform feature importance, causing the loss to simplify into mean squared error.
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This works because features are roughly represented with unit norm when learned. When the features84

per dimension > 1, the model must be using superposition, as it represents more features than it has85

dimensions.86

3.1.3 Measuring Robustness87

We also need to know how vulnerable our models are to adversarial examples. To measure adversarial88

vulnerability, we generate L2-bounded adversarial examples. For each input x, we find the worst-case89

perturbation within an ϵ-ball that maximizes reconstruction error:90

xadv = x+ ϵ · arg max
∥δ∥2≤1

L(x+ ϵδ) (2)

We set ϵ to 10% of the average input norm.91

We reproduce the approach of Elhage et al. [2022], who exploit the toy model setup to analytically92

construct attacks that optimally attack each specific output feature, and then take the worst such attack.93

They take this approach to avoid gradient masking issues from ReLU. However, while this would94

be an optimal attack in terms of L∞ in the output space, it has the potential to be quite suboptimal95

for affecting the output as measured by L2/MSE. For this reason, we primarily consider a more96

traditional adversarial attack. We add a small amount of noise to avoid gradient issues, and then do a97

one-step gradient L2 attack. All results in the main paper are based on this attack.98

To compare the vulnerability of models, we consider how many times more vulnerable it is than a99

model without superposition (i.e., our model with the highest input feature density, with every feature100

present in all training inputs).101

3.1.4 Adversarial Training Protocol102

Since we want to test whether causality flows from adversarial robustness to superposition, we also103

need to be able to produce adversarially robust versions of our toy models. To do this, we train new104

toy models over the same range of feature densities, but using a mixture of clean and adversarial105

training examples:106

Ladv = α · L(x) + (1− α) · L(xadv) (3)
where α = 0.5 balances clean and robust accuracy. We use L2 attack with ϵ = 0.1∥x∥2. We can107

generate these attacks on-the-fly using either approach from the previous section, but unless otherwise108

specified, we use the more standard gradient attack rather than the Elhage method. We train a model109

with the same configuration as the model used in Section 3.1.1 for 150,000 steps with a learning rate110

10−3. (This follows a common practice in adversarial training where models are trained for extended111

periods compared to standard training due to the unique optimization dynamics; see e.g., Rice et al.112

[2020] for discussion of adversarial training dynamics.)113

3.2 Intervening on Superposition Controls Adversarial Vulnerability114

We use feature sparsity to manipulate the level of superposition, and observe resulting changes in115

adversarial robustness. In particular, we vary the feature density (1− sparsity) exponentially from116

1.0 to 0.1, training 30 models simultaneously with different sparsity levels, and observe the resulting117

adversarial robustness. This is the general setup of [Elhage et al., 2022], but we focus on more118

powerful noise-plus-gradient adversarial attacks. (A reproduction of the original Elhage experiment119

can be found in the appendix, see figure 7.)120

Our first goal is to confirm that intervening on feature sparsity has the expected effect on superposition,121

in order to validate it as a way to manipulate superposition in our larger experiment. Panel A of figure122

2 shows the expected results, including a temporary plateau corresponding to antipodal superposition.123

Having validated our instrumental variable, we now proceed to the core result. Panel B of figure 2124

shows that adversarial vulnerability increases with both feature sparsity and superposition (quantified125

as features per dimension). There is one striking dip corresponding to antipodal superposition.126

The mechanism is intuitive: when features are in superposition, they share directions in activation127

space. An adversary can exploit this by perturbing all interfering features simultaneously. Since128

features in superposition are not orthogonal, small perturbations to many features accumulate into129

large changes in the target feature’s reconstruction.130
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It is worth noting that there is some subtlety to comparing adversarial robustness across different131

feature densities, since the distribution we are evaluating on changes. However, this should, if132

anything, bias in the opposite direction of the trend we’re observing. Having fewer features active133

should tend to make models more robust, since fewer ReLUs would be open, allowing gradients134

through. Thus, we believe this concern would cause us to underestimate the relationship between135

superposition and adversarial vulnerability. However, we do get some cross-validation from the robust136

models in the next section, since these shift superposition independently of the data distribution, and137

we still see the same trend.138

3.3 Intervening on Adversarial Robustness Controls Superposition139

To establish bidirectional causality, we next ask: does improving adversarial robustness reduce140

superposition? We perform adversarial training on our toy models and measure the resulting changes141

in superposition.142

Figure 2: Adversarial training reduces superposition. Comparison of models before (blue) and after (orange)
adversarial training. A: Features per dimension decreases for a given sparsity level. B: (Left) Models become
more vulnerable to adversarial examples as superposition increases. (Right) Models become more vulnerable to
adversarial examples as feature sparsity increases (with a drop for antipodal superposition).

Figure 2 demonstrates that adversarial training reduces superposition. Models that underwent143

adversarial training decreased their adversarial vulnerability and decreased features per dimension144

for some original input sparsity. However, we note two surprising phenomena. Firstly, as discussed145

earlier, we note a drop in vulnerability to adversarial examples when models switch to antipodal146

superposition. Secondly, we note that robust models are often more robust than expected for their147

superposition level. Our interpretation is that the overall level of superposition doesn’t tell the full148

story; we conjecture that some superposition structures (that is, the matrix of interference between149

features) are more or less vulnerable to superposition. See Discussion (section 5).150

In contrast to the previous section, where we reproduced and extended the results of Elhage et al.151

[2022], to the best of our knowledge, these results are the first to demonstrate causality from robustness152

to superposition.153

3.3.1 Theoretical Intuition154

While not a formal derivation, we find it useful to conceptualize the difference between standard and155

adversarial training through the lens of interference minimization.3156

Given dataset D, neural network parameters θ, and a measure of interference I , we might conceptual-157

ize neural network training as:158

min
θ

E(x,y)∼D[I(x, y; θ)]

That is, the goal is to minimize the average expected interference. Whereas during adversarial159

training, it might be better instead to conceptualize the objective with respect to interference as:160

min
θ

max
D∈DOOD

E(x,y)∼D[I(x, y; θ)]

3This is a conceptual framework for building intuition rather than a formal theoretical result. The actual
optimization dynamics are considerably more complex.
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That is, the goal is to minimize the maximum expected interference over out-of-distribution data.161

This conceptualization suggests that adversarial training forces the model to consider worst-case162

interference patterns rather than average-case, potentially explaining why it reduces superposition in163

our experiments.164

3.3.2 Adversarial Examples Exploit Feature Interference165

We constructed superposition geometry graphs similarly to Elhage et al. [2022], where each feature166

has a node, and edge (i, j) represents (Wi ·Wj)
2.167

These graphs can then be used to understand how this geometry is being exploited in adversarial168

attacks, and subsequently why a model is adversarially robust.169

Figure 3: Adversarial attacks activate interfering features in superposition. (A) We consider two models,
one robust and one non-robust, as well as clean and adversarial data. We visualize the superstructure of each toy
model as a graph. Edge thickness is dependent on (Wi ·Wj)

2. We then highlight the superposition affecting
that input in orange. (B) We plot heatmaps of the interference (W⊤W ) for the robust and non-robust models
used in (A). Non-robust models have a mean off-diagonal interference 2× that of robust models.

Figure 3 illustrates how adversarial attacks exploit feature interference patterns. In non-robust models170

(left column), clean inputs activate relatively few features with minimal interference between them,171

as shown by the sparse orange highlighting in the superposition graph. Adversarial inputs, however,172

activate many interfering features simultaneously, precisely the pattern expected if attacks exploit173

superposition geometry. In contrast, robust models (right column) show similar sparse activation174

patterns for both clean and adversarial inputs, suggesting that adversarial training has reorganized175

the feature geometry to prevent interference-based attacks. The heatmaps in panel (B) confirm this:176

non-robust models exhibit mean off-diagonal interference approximately 2× that of robust models,177

indicating denser superposition structure.178

3.4 Superposition Geometry179

We can also use the graph visualization technique to compare a larger set of models. In figure 4, we180

look at pairs of non-robust and robust models trained at the same sparsity level. The robust models181

have less superposition (corresponding to a further left position) but strikingly similar superposition182

geometries.183

4 Evidence From Real Models184

We now turn our attention to real models. Unfortunately, since we have no way to intervene on185

superposition in real models, we can’t test the causal effect of superposition on robustness. However,186
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Figure 4: Adversarial training reduces superposition while preserving geometric structure. We plot all our
robust and non-robust models as "points on a superposition number line". A line connects models trained on
the same level of sparsity. We can see that robust models have lower superposition. For selected models, we
visualize the superposition structure as a graph.

we can still adversarially train models to control robustness and observe the effect on superposition187

via the proxy of sparse autoencoder loss (discussed further in Section 4.2)188

4.1 Methods189

4.1.1 Adversarially Robust Models190

To study adversarial robustness in real models, we used robust ResNet18s trained on ImageNet191

[Russakovsky et al., 2015] from Salman et al. [2020].4 These robust models are trained against192

different attack sizes, varying their robustness.193

4.1.2 Sparse Autoencoders194

We train sparse autoencoders (SAEs) on the outputs of ResNet18’s four residual stages (conv2_x195

through conv5_x), which produce 256-, 512-, 1024-, and 2048-dimensional feature maps at progres-196

sively lower spatial resolutions. We trained both L1 ReLU SAEs [Conerly et al., 2024] and TopK197

SAEs [Gao et al., 2024] on standardized activations to mitigate the effect on training of activation198

statistics. Additional training details can be found in appendix B.199

4.2 Robust Models Achieve Better SAE Reconstruction200

There is no direct way to measure the amount of superposition in real models, and so instead we must201

consider proxies of superposition.202

SAEs are designed to model superposition and will naturally have a higher loss when there is more203

superposition. There are several reasons for this: (1) if a model of a fixed size has more superposition,204

it has more total features that an SAE has to model, (2) with more total features, there will also be205

more active features on any example, (3) in denser superposition, the SAE will be forced to either206

sometimes model a strongly activating feature as activating other features, or sometimes not represent207

small activations.208

Figure 5 shows that for a given sparsity level, more robust models consistently achieve better209

reconstruction loss. Does this imply robustness effects superposition? The only way we see to avoid210

this is if some other change to the model could lower SAE loss independent of superposition, and we211

don’t have any hypotheses for what that could be.5212

4https://huggingface.co/madrylab/robust-imagenet-models
5From a Popperian perspective, the hypothesis that robustness influences superposition should gain credit for

predicting a surprising phenomenon, even if some alternative explanation can retrospectively be proposed.
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Figure 5: Robust models achieve better reconstruction at a given sparsity level. TopK SAEs with different
sparsity levels (k = {8, 16, 32}) were trained on ResNet18 models with varying L2 robustness (ϵ ∈ {0, 1, 3, 5}).
Lower MSE at fixed sparsity likely indicates less interference and therefore less superposition.

4.3 Adversarial Examples Increase L0213

Our sparse autoencoders provide the opportunity for an additional experiment. If adversarial attacks214

do exploit interference, we’d expect them to activate more features. Each feature can both be attacked215

via interference and used to attack later features.216

Figure 6: Adversarial examples activate more features than clean inputs. Ratio of L0 (active features) for
FGSM [Goodfellow et al., 2015] and PGD [Madry et al., 2019] attacks versus clean data across ResNet18 blocks.
The increase at block 3 (up to 4×) suggests adversarial attacks increasingly exploit feature interference as they
propagate through the network.

In figure 6, we observe that the number of active features on adversarial attacks significantly exceeds217

the baseline, increasing throughout the model. Immediately after the first layer, we observe an218

increase of 1.1x, increasing to 2x after block 1, 1.5x after block 2, and peaking at 2-4x (depending on219

attack type) after block 3.220

5 Discussion221

We have argued that adversarial examples are caused, at least in part, by superposition. Beyond the222

theoretical arguments, three lines of empirical evidence support this hypothesis: (1) in toy models,223
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superposition controls robustness, (2) in toy models, robustness controls superposition, and (3) in real224

models, robustness controls superposition.225

While these arguments appear compelling, several limitations warrant consideration. First, our226

analysis relies substantially on proxy variables to control and measure effects, particularly in real227

models. These proxies may fail to capture the full complexity of the phenomena. Second, our228

experimental results could be consistent with adversarial examples having multiple causal factors229

beyond superposition, especially in real models. Without methods to directly manipulate superposition230

in real models and observe resulting changes in robustness, we cannot quantify the relative magnitude231

of superposition’s contribution, only establish the potentiality of a causal relationship. Despite these232

limitations, the evidence strongly suggests that superposition constitutes a major factor in adversarial233

robustness. Further confidence in this hypothesis will require developing more sophisticated tools for234

measuring and manipulating superposition in real models.235

Several unexpected findings merit further investigation: (1) the temporary improvement in robustness236

observed near antipodal superposition configurations, and (2) the observation that models with237

equivalent overall superposition levels but different superposition structures exhibit varying robustness238

to L2 adversarial attacks. These phenomena warrant deeper theoretical and empirical examination.239

If superposition represents a primary cause of adversarial examples, this implies a fundamental and240

unavoidable trade-off. Superposition enables models to effectively simulate substantially larger sparse241

models; achieving robustness would necessitate sacrificing this computational advantage. Conversely,242

this relationship would indicate a profound alignment between the objectives of interpretability and243

robustness research.244

6 Related Work245

Adversarial Examples. Since their discovery [Szegedy et al., 2014, Goodfellow et al., 2015],246

numerous attacks emerged [Moosavi-Dezfooli et al., 2015, Carlini and Wagner, 2016, Madry et al.,247

2019, Croce and Hein, 2020], extending to physical [Kurakin et al., 2016] and universal perturbations248

[Moosavi-Dezfooli et al., 2017].249

Theoretical Explanations. Beyond the linear hypothesis [Goodfellow et al., 2015], explanations250

include geometric perspectives [Gilmer et al., 2018, Khoury and Hadfield-Menell, 2019, Shafahi251

et al., 2020, Shamir et al., 2022], concentration of measure [Mahloujifar et al., 2018, 2019], high-252

dimensional inevitability [Tanner et al., 2024], and manifold analyses [Xiao et al., 2022]. The "robust253

features" hypothesis [Ilyas et al., 2019] suggests models exploit non-robust but predictive patterns.254

Defenses. Adversarial training remains dominant [Madry et al., 2019, Zhang et al., 2019, Shafahi255

et al., 2019], while certified approaches use verification [Zhang et al., 2018, Gowal et al., 2019, Wang256

et al., 2021] or randomized smoothing [Cohen et al., 2019, Lecuyer et al., 2019].257

Robustness-Accuracy Tradeoff. Fundamental tension exists between standard and robust accuracy258

[Tsipras et al., 2019, Zhang et al., 2019, Javanmard et al., 2020, Rice et al., 2020, Schmidt et al.,259

2018], with mitigations via unlabeled data [Carmon et al., 2022, Raghunathan et al., 2020].260

Interpretability. Robust models exhibit aligned gradients and interpretable features [Engstrom et al.,261

2019, Tsipras et al., 2019, Ganz et al., 2023, Srinivas et al., 2024]; disentangled representations262

improve robustness [Yang et al., 2021, Guesmi et al., 2024].263

Transferability and Compression. Examples transfer due to shared representations [Demontis et al.,264

2019, Wu et al., 2018]; compression-robustness connections reveal capacity constraints [Ye et al.,265

2021, Gui et al., 2019, Xie et al., 2019, Yi et al., 2020].266

Superposition and Mechanistic Interpretability. Superposition allows exponentially many features267

in high-dimensional spaces [Elhage et al., 2022]. SAEs decompose superposed features [Cunningham268

et al., 2023, Bricken et al., 2023, Templeton et al., 2024, Gao et al., 2024], though computational269

bounds exist [Adler and Shavit, 2025].270

References271

Micah Adler and Nir Shavit. On the complexity of neural computation in superposition, 2025. URL272

https://arxiv.org/abs/2409.15318.273

9

https://arxiv.org/abs/2409.15318


Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick274

Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,275

Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina276

Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and277

Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary278

learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-279

features/index.html.280

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. CoRR,281

abs/1608.04644, 2016. URL http://arxiv.org/abs/1608.04644.282

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled data283

improves adversarial robustness, 2022. URL https://arxiv.org/abs/1905.13736.284

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized285

smoothing, 2019. URL https://arxiv.org/abs/1902.02918.286

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathon Marcus, and Tom Henighan. Update on287

how we train saes, 2024. https://transformer-circuits.pub/2024/april-update/index.html.288

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble289

of diverse parameter-free attacks. CoRR, abs/2003.01690, 2020. URL https://arxiv.org/290

abs/2003.01690.291

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-292

coders find highly interpretable features in language models, 2023. URL https://arxiv.org/293

abs/2309.08600.294

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,295

Cristina Nita-Rotaru, and Fabio Roli. Why do adversarial attacks transfer? explaining transferability296

of evasion and poisoning attacks. In 28th USENIX Security Symposium (USENIX Security 19),297

pages 321–338, Santa Clara, CA, August 2019. USENIX Association. ISBN 978-1-939133-298

06-9. URL https://www.usenix.org/conference/usenixsecurity19/presentation/299

demontis.300

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,301

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,302

Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-303

tion. Transformer Circuits Thread, 2022. URL https://transformer-circuits.pub/2022/304

toy_model/index.html.305

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander306

Madry. Adversarial robustness as a prior for learned representations, 2019. URL https://arxiv.307

org/abs/1906.00945.308

Roy Ganz, Bahjat Kawar, and Michael Elad. Do perceptually aligned gradients imply adversarial309

robustness?, 2023. URL https://arxiv.org/abs/2207.11378.310

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,311

Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:312

//arxiv.org/abs/2406.04093.313

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg,314

and Ian Goodfellow. Adversarial spheres, 2018. URL https://arxiv.org/abs/1801.02774.315

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial316

examples, 2015. URL https://arxiv.org/abs/1412.6572.317

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan318

Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval319

bound propagation for training verifiably robust models, 2019. URL https://arxiv.org/abs/320

1810.12715.321

10

http://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1905.13736
https://arxiv.org/abs/1902.02918
https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2003.01690
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
https://arxiv.org/abs/1906.00945
https://arxiv.org/abs/1906.00945
https://arxiv.org/abs/1906.00945
https://arxiv.org/abs/2207.11378
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/1801.02774
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1810.12715
https://arxiv.org/abs/1810.12715
https://arxiv.org/abs/1810.12715


Amira Guesmi, Nishant Suresh Aswani, and Muhammad Shafique. Exploring the interplay of322

interpretability and robustness in deep neural networks: A saliency-guided approach, 2024. URL323

https://arxiv.org/abs/2405.06278.324

Shupeng Gui, Haotao Wang, Chen Yu, Haichuan Yang, Zhangyang Wang, and Ji Liu. Model325

compression with adversarial robustness: A unified optimization framework, 2019. URL https:326

//arxiv.org/abs/1902.03538.327

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander328

Madry. Adversarial examples are not bugs, they are features, 2019. URL https://arxiv.org/329

abs/1905.02175.330

Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. Precise tradeoffs in adversarial training331

for linear regression, 2020. URL https://arxiv.org/abs/2002.10477.332

Marc Khoury and Dylan Hadfield-Menell. On the geometry of adversarial examples, 2019. URL333

https://openreview.net/forum?id=H1lug3R5FX.334

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in the physical world.335

CoRR, abs/1607.02533, 2016. URL http://arxiv.org/abs/1607.02533.336

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified337

robustness to adversarial examples with differential privacy, 2019. URL https://arxiv.org/338

abs/1802.03471.339

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples340

and black-box attacks, 2017. URL https://arxiv.org/abs/1611.02770.341

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.342

Towards deep learning models resistant to adversarial attacks, 2019. URL https://arxiv.org/343

abs/1706.06083.344

Saeed Mahloujifar, Dimitrios I. Diochnos, and Mohammad Mahmoody. The curse of concentration345

in robust learning: Evasion and poisoning attacks from concentration of measure, 2018. URL346

https://arxiv.org/abs/1809.03063.347

Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, and David Evans. Empirically measuring348

concentration: Fundamental limits on intrinsic robustness, 2019. URL https://arxiv.org/349

abs/1905.12202.350

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple351

and accurate method to fool deep neural networks. CoRR, abs/1511.04599, 2015. URL http:352

//arxiv.org/abs/1511.04599.353

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal354

adversarial perturbations, 2017. URL https://arxiv.org/abs/1610.08401.355

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, and Percy Liang. Understanding356

and mitigating the tradeoff between robustness and accuracy, 2020. URL https://arxiv.org/357

abs/2002.10716.358

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in adversarially robust deep learning, 2020.359

URL https://arxiv.org/abs/2002.11569.360

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,361

Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet362

Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115363

(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.364

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-365

sarially robust imagenet models transfer better?, 2020. URL https://arxiv.org/abs/2007.366

08489.367

11

https://arxiv.org/abs/2405.06278
https://arxiv.org/abs/1902.03538
https://arxiv.org/abs/1902.03538
https://arxiv.org/abs/1902.03538
https://arxiv.org/abs/1905.02175
https://arxiv.org/abs/1905.02175
https://arxiv.org/abs/1905.02175
https://arxiv.org/abs/2002.10477
https://openreview.net/forum?id=H1lug3R5FX
http://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1611.02770
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1809.03063
https://arxiv.org/abs/1905.12202
https://arxiv.org/abs/1905.12202
https://arxiv.org/abs/1905.12202
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1511.04599
http://arxiv.org/abs/1511.04599
https://arxiv.org/abs/1610.08401
https://arxiv.org/abs/2002.10716
https://arxiv.org/abs/2002.10716
https://arxiv.org/abs/2002.10716
https://arxiv.org/abs/2002.11569
https://arxiv.org/abs/2007.08489
https://arxiv.org/abs/2007.08489
https://arxiv.org/abs/2007.08489


Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Mądry. Adver-368
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A Toy Models of Superposition Replication424

Figure 7: Sparsity controls superposition, which drives adversarial vulnerability. (A) Features per dimension
increases with sparsity level 1/(1-S), with phase transitions at ∼ 1.7 and ∼ 4 corresponding to the onset of
superposition and beyond-antipodal arrangements Elhage et al. [2022]. (B) Left: Adversarial vulnerability
increases with feature sparsity. Right: Direct correlation between superposition (features per dimension) and
adversarial vulnerability (r ≈ 0.99, p < 0.0001). Each point represents a model trained at different sparsity.
Results shown for Elhage-style attacks; see Figure 2 for gradient-based attacks.

B Sparse Autoencoder Training Details425

All SAEs were trained with a batch size of 4096, a learning rate of 5× 10−4, and an expansion factor426

of 8×. Activations from models trained with different epsilons had slightly different distributions.427

Thus, for SAE training, activations were standardized using the mean and standard deviation for that428

specific model computed over a subset of the training data.429

When training TopK SAEs, top-kaux was 512 and the auxiliary loss weight was 1.430
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