Under review as a conference paper at ICLR 2025

CAD-EDITOR: TEXT-BASED CAD EDITING THROUGH
ADAPTING LARGE LANGUAGE MODELS WITH SYN-
THETIC DATA

Anonymous authors
Paper under double-blind review

. Transform the hollow Increase the wall and .
. Deepen the inward . ; . Drill four smaller holes
Remove the cylinder. - section of the cylinder overall thickness of the
curvature of the sides. 3 : through corners.
into a hexagonal one. entire shape.

F& w0 Yty XX ST

Figure 1: Text-based CAD Editing achieved by CAD-Editor. Each sub-figure shows the textual
instruction at the top, the original CAD model on the left, and the edited CAD model on the right.
The rendered image is shown for better comprehension. The actual editing occurs on sketch-and-
extrusion (SE) operations of a CAD model to provide editability and reusability.

ABSTRACT

Computer Aided Design (CAD) is indispensable across various industries. Text-
based CAD editing, which automatically modifies CAD models following textual
instructions, is important yet not extensively studied. Existing work explores de-
sign variation generation, which randomly alters specific parts of a CAD model,
offering no control over the final appearance. This work introduces CAD-Editor
for text-based editing. We leverage Large Language Models (LLMs) as the back-
bone to take the concatenation of textual instruction and original CAD sequence
as input and predict the edited CAD sequence, where the sequence representation
of a CAD model is designed for easier processing by LLMs. Moreover, we pro-
pose fine-tuning LLMs by using a synthetic dataset followed by a selective dataset.
The synthetic data is produced by leveraging powerful existing models, including
design variation generation models for producing paired CAD models and multi-
modal models for capturing textual differences between these pairs. The selective
data is created by choosing top examples from outputs of the initially fine-tuned
LLMs based on human feedback or metrics. In this way, a large-scale synthetic
dataset offers basic capability while a selective dataset that is less noisy and better
aligned with human intentions boosts performance further. Extensive experiments
demonstrate the advantage of CAD-Editor both quantitatively and qualitatively.

1 INTRODUCTION

In the modern digital era, Computer Aided Design (CAD) has become indispensable across various
industries, including automotive, aerospace, manufacturing, and architectural design. CAD is piv-
otal in creating everything from automobiles to airplanes and excavators to elevators, revolutionizing
how we design and build. Most modern CAD design tools employ the “Sketch-and-Extrude (SE)
Operations” (Shahin, 2008}, (Camba et al., 2016)), where designers first sketch loops of 2D curves
to define outer and inner boundaries of profiles, then extrude these profiles into 3D shapes, and fi-
nally combine these shapes to construct complex models. The creation of CAD models involves
an iterative process, where an initial draft undergoes multiple modifications until it meets the user’s
needs. Throughout this procedure, natural language is widely used to convey how the CAD model
should be adjusted. For those without design expertise, natural language offers the most accessible
and straightforward means of expressing their needs. For professional designers, it acts as a vital

Under review as a conference paper at ICLR 2025

medium for fast, detailed, and clear communication. Consequently, a system capable of automat-
ically editing a CAD model based on textual instructions, called text-based CAD editing, could
revolutionize the entire CAD design process. It would greatly speed up CAD model development
and enable more people, particularly those with limited design expertise, to create CAD models.

Text-based CAD editing presents several distinct challenges. First, the textual instructions are highly
varied, such as deletion (the 1st case in Figure E]), addition (the 5th case in Figure E]) local change
(the 2nd and the 3rd case in Figure [I) and global change (the 4th case in Figure [I). Besides, it
demands on an accurate understanding of the structure of CAD’s SE operations. For example,
to complete the editing task in the 2nd case of Figure [T} one must identify which part of the SE
operations represents the ‘inward curvature’. Moreover, it also requires comprehending geometric
concepts, such as specific shapes as the cylinder and hexagonal holes shown in the 1st and 3rd cases,
and positions like corners shown in the 5th case of Figure[I] Additionally, there is an absence of
naturally-existing datasets, making it even more intractable.

While text-based CAD editing is important and challenging, it receives little research attention.
Existing work (Wu et al.| 2021} Xu et al.| 2022} 2023)) primarily involves altering specific parts of a
CAD model randomly while leaving others unchanged, without any control over the final appearance
of the new CAD model, called design variation generation for brevity. For example, SkexGen (Xu
et al., 2022) supports variations in a CAD model’s topology, geometry, or extrusion level through
disentangled codebooks. Hnc-CAD (Xu et al.l 2023) enables variations at loop, profile, or solid
levels and completes an entire CAD model from a partial one using a neural code tree representation.

In this work, we aim to exploit the capabilities of large-scale models and high-quality data, rather
than exploring specialized methods, to tackle the mentioned challenges for the first time. This is
motivated by the success of large language models (LLMs), where the model size and data quality
have been shown to be key factors in their success (OpenAl, 2023} [Touvron et al.l [2023). Moreover,
developing more specialized techniques depends on having a large enough model and sufficient
training data as an initial step. Specifically, our main idea is to utilize pre-trained LLMs as the
backbone, generate a large-scale synthetic dataset for initial fine-tuning, and enhance the fine-tuning
with a small-scale selective dataset. There are three main advantages to this approach. First, LLMs
inherently possess strong text comprehension abilities, which are beneficial in handling diverse and
complex textual instructions. Second, there is evidence that LLMs have learned CAD-related codes
in the pre-training (Makatura et al.|[2023)), potentially aiding in understanding CAD’s SE operations
and geometric concepts. Third, the combination of synthetic and selective data offers a practical and
efficient way to obtain sufficient training data when naturally existing datasets are absent.

To achieve this, as an initial step, we formulate text-based CAD editing as a sequence-to-sequence
(seq2seq) problem, where the input is the concatenation of the textual instruction and the sequence
of the original CAD model and the output is the sequence of the edited CAD model. Here, the
CAD sequence is constructed by adjusting the existing design of the CAD sequence Xu et al.|(2022)
to enhance their readability and comprehensibility for LLMs. Specifically, we allow for variable
length and use textual tokens to represent both categorical and numerical variables in CAD’s SE
operations. Next, we propose synthesizing a high-quality training dataset by summarizing CAD
model variations and using it for the initial fine-tuning of LLMs. Concretely, we harness the strong
capability of existing models to efficiently synthesize this data. Existing design variation genera-
tion models are used to produce paired CAD models, and pre-trained Multi-modal LLMs (MLLMs)
with a multi-level captioning strategy are employed to derive the textual differences between images
rendered from these paired CAD models. Moreover, we construct a selective dataset with less noise
and better alignment with human intentions and use it for further fine-tuning LLLMs to improve per-
formance. Specifically, this selective dataset is built on the observation that sampling the initially
fine-tuned model several times will yield at least one good result. We use human feedback or a met-
ric—directional CLIP score—to choose a small-scale set of good examples from multiple outputs of
the initially fine-tuned LLM. We refer to the entire framework as CAD-Editor for ease of reference.
The major contributions of this work are as follows:

* We introduce a new task called text-based CAD editing, which allows for precise edits via
textual instructions, aligning more closely with real-world user needs.

* We propose CAD-Editor, which exploits the potential of large-scale models and high-
quality data to develop the first model for text-based CAD editing. We formulate text-based
editing as a seq2seq problem and employ pre-trained LLMs as our backbone. Moreover,

Under review as a conference paper at ICLR 2025

we present efficient and practical techniques to build both a synthetic dataset and a selective
dataset, which are then used to fine-tune LLMs in a stepwise manner.

* We build the first benchmark for text-based CAD editing based on DeepCAD dataset (Wu
et al 2021), and demonstrate the superiority of CAD-Editor over baselines in terms of
sequence validity, text-CAD alignment, and generation quality.

2 RELATED WORKS

CAD Generation. Parametric CAD, characterized by its sketch-and-extrude operations, dominates
mechanical design. The recent development of large-scale parametric CAD datasets has facilitated
the adoption of learning-based approaches. These methods utilize the historical sequence of CAD
modeling and sketch constraints to generate engineering sketches and solid models (Willis et al.,
2021b; (Wu et al.l [2021; Xu et al.| [2022; 2023} Seff et al., [2020). The resulting sequences can be
processed by a solid modeling kernel to produce editable parametric CAD files, which include either
2D engineering sketches (Willis et al.| 2021a; |Seff et al.||2022) or 3D CAD shapes (Xu et al.,[2022;
2023)). CAD generation models have focused on tasks such as reverse engineering from point clouds
(Khan et al.,|2024; |Ma et al.|[2024), unconditional generation (Wu et al.}|2021)), and design variations
(Xu et al., 2022; 2023). For instance, SkexGen (Xu et al.;, |2022) allows fixing topology codes
to maintain shape geometry, geometry codes to maintain dimensions and positioning, or extrusion
codes to maintain the height of extruded sketches along with their 3D combinations. Similarly, Hnc-
CAD (Xu et al.l 2023) leverages the inherent hierarchies within CAD models to facilitate editing
at the loop, profile, and solid levels, and offers auto-completion by adding or attaching additional
sketches. While previous approaches can generate diverse shapes based on high-level guidance, they
overlook the challenge of enabling CAD editing through textual instructions, which often results in
arbitrary editing rather than meaningful changes. Providing user control over the generation process,
while preserving design intent, is key for the adoption of generative models in real-world CAD
software. Different from existing works, our method leverages both the sketch-and-extrude features
and the natural language capabilities of pre-trained LLMs to enable instruction-based editing, which
allows users to directly edit through explicit textual instructions.

Text-based Editing. Text-based editing is crucial across various domains, as textual instructions
are expressive, precise, and intuitive, enabling users to easily isolate and modify specific objects
or visual attributes. This task has been extensively explored in areas such as 3D editing (Mikaeili
et al., 2023), image editing (Meng et al.| 2021} |Brooks et al., [2023)), and video editing (Chai et al.,
2023} |Ceylan et al.| |2023)). For example, InstructPix2Pix (Brooks et al., 2023)) utilizes synthetic data
generated by a language model and a text-to-image model to create a large dataset of image editing
examples, enabling instruction-based edits for images. StableVideo (Chai et al., [2023) introduces
a text-driven video editing framework that employs a novel inter-frame propagation mechanism to
achieve consistency-aware video editing. These advancements have inspired our approach to text-
based CAD editing, and we are the first to apply text-based editing within the CAD domain.

Large Language Models. In recent years, scaling pre-trained language models (PLMs) has con-
sistently enhanced their capacity for downstream tasks. This trend has led to the development of
increasingly larger PLMs, such as ChatGPT |OpenAl (2023), GPT-4 |Achiam et al.| (2023), and
Gemini-Pro [Team et al| (2023), each boasting over 100 billion parameters. These models, collec-
tively known as large language models (LLMs), have gained widespread attention. The availability
of open-source LLMs like LLaMA [Touvron et al.|(2023)) has further accelerated research in this field.
LLMs distinguish themselves from smaller models through remarkable emergent capabilities, par-
ticularly in-context learning |Brown et al.|(2020) and chain-of-thought prompting |Wei et al.| (2022);
Kojima et al.|(2022). They have revolutionized generative tasks, showing significant improvements
over traditional neural networks in areas such as code generation [Chen et al.| (2021); Nijkamp et al.
(2022); |Chen et al.| (2023) and material generation |Gruver et al.|(2024). Additionally, the strategic
use of LLMs for generating synthetic data to aid training has opened new avenues for research and
application |Xu et al.|(2024); Yu et al.|(2024). This synthetic data is often rich and diverse, providing
substantial benefits for model training and performance.

Under review as a conference paper at ICLR 2025

INPUT

Original CAD Sequence: CAD Sequence Rendered CAD Model
Original CAD sequence] . N N ;
Instruction: line,10,19 <EoC> line,31,7 <EoC> line,52,19 <EoC> [N
Increase the cylinder's height and reduce its diameter centrally. line,52,43 <EoC> line,31,55 <EoC> line,10,43 <EoC> <Eol> ~‘ h
Edited CAD Sequence: <EOF> <EoS> add,31,63,31,31,31,1,0,0,0,1,0,0,0,1,57,31,31 ~
,, <EOE> circle,31,53,31,9,53,31,9,31 <EoC> <EOL> <EoF>

OUTPUT <EoS> add,31,44,31,31,63,1,0,0,0,1,0,0,0,1,37,31,31 <EoE>
[Edited CAD sequence] S

Figure 2: Left: Example input and output for CAD-Editor. The input combines the original CAD
sequence with the textual instruction, and the output is the modified CAD sequence. The specific
CAD sequence is shortened to ‘[Original (or Edited) CAD Sequence]’ to save space. Right: An
illustration for a specific CAD sequence and its rendered CAD model.

3 METHODS

In this section, we present CAD-Editor, the first generative model for text-based CAD editing. We
frame the task as a seq2seq generation problem, where the sequence representation of a CAD model
is adapted for easier process and comprehension by LLMs (Section[3.T). Then, we introduce a initial
fine-tuning stage of LLMs on a synthetic dataset, which is produced by summarizing CAD model
variations (Section @]) Moreover, we enhance this with further fine-tuning on a selective dataset,
which is built by choosing top examples from outputs of the initially fine-tuned LLMs (Section [3.3).

3.1 TEXT-BASED CAD EDITING AS SEQ2SEQ GENERATION

In previous work, a CAD model has been formulated as a sequence for other CAD generation
tasks (Wu et al., 2021; |Xu et al., [2022; 2023). Building upon these efforts, we formulate the
text-based CAD generation as a seq2seq generation task and adjust the sequence representation of
a CAD model (Xu et al.,|[2022) to be more comprehensible for LLMs. As shown in the left side of
Figure[2] we combine the textual instruction with the original CAD sequence as input, and represent
the output as the edited CAD sequence. Moreover, as illustrated in the right side of Figure [2] SE
operations of a CAD model are expressed as a series of text tokens. These include 1) topology
tokens indicating a curve type (e.g., line, arc, or circle), 2) geometric tokens for point coordinates
which are discretized into integers and then represented as text, 3) extrusion tokens where both
Boolean operations (e.g., add, cut, or intersect) and numerical parameters are converted to text, and
4) end-primitive tokens (e.g., EoC, EoL, EoF, EoS or EoE for the end of a curve, loop, face, sketch
or extrusion). Unlike previous work, we use text tokens (i.e., natural language descriptions) instead
of binary representations for categorical operations such as curve types and extrusion operations
as well as numerical attributes such as point coordinates and extrusion parameters. Besides, we
support variable token lengths instead of using placeholders to standardize the command length.
This approach simplifies processing and interpretation for LLMs and reduces the sequence length.

3.2 INITIAL FINE-TUNING WITH SYNTHETIC DATASET

With the seq2seq formulation introduced above, it is feasible to fine-tune pre-trained LLMs for text-
based CAD editing, provided there is a training dataset comprising triplets of (textual instruction,
original CAD sequence, edited CAD sequence). However, such data is neither naturally available
nor cost-effective to manually label. Existing models, fortunately, offer potential solutions for con-
structing these triplets in an economical and efficient manner. Design variation generation models
can generate paired CAD models but lack the ability to produce corresponding text instructions (Xu
et al.,[2022;|2023). On the other hand, multi-modal LLMs (MLLMs) cannot generate CAD models
but excel in understanding rendered CAD images (Achiam et al.|[2023)). Therefore, we propose har-
nessing the complementary strengths of these existing models to systematically generate the needed
training set. For ease of reference, we call this training set synthetic dataset, denoted by Dgynthetic-
Below, we detail the two critical steps for generating this synthetic dataset Dgypehesic (see Figure EI)

Paired CAD Generation by Design Variation. In this step, we get CAD pairs by feeding an
existing CAD model into design variation generation models to obtain its variants, with certain parts
of the CAD model being randomly altered. The process of CAD model editing naturally involves
modifying, adding, and removing operations. To comprehensively capture these aspects, we select

Under review as a conference paper at ICLR 2025

Initial Fine-Tuning with Synthetic Data Enhanced Fine-Tuning with Selective Data

(a) Paired CAD Generation () Assembly Initially Fine- | - (a) Inference
“ " Tuned LLM ; . o
LL_:_A =) Design Variation [HREE h S DR e tnec gentered cylinder Initially Fine
‘ Generation ’ ¢

ctangular prism v ~ | Tuned LLM

> ce ol rd. "
elective
b) Select 4
B

“Extrude a zigzag shape fror "
the cylinder's top face.” 1 D-CLIP /

’ - * . “ LELUE]
Enhanced Fine- g Vg s
4 4 _ Selzcifion
Tuned LLM ©

Synthetic
Dataset (b) Textual Instruction Generation

) . j
Initially Fine- / J 'ﬁ glultt_l-le_vel R
Tuned LLM | aptioning JRSREAR

Figure 3: Left: Initial fine-tuning on the synthetic dataset, which is produced by summarizing CAD
model variations. Right: Enhanced fine-tuning on the selective dataset, which is built by choosing
top examples from outputs of the initially fine-tuned LLMs.

suitable design variation models for constructing CAD pairs. Specifically, we generate CAD pairs
related to modifying operations by using SkexGen (Xu et al., |2022), where a certain code in the
codebook is fixed to achieve this. Besides, we generate CAD pairs related to adding operations by
using Hnc-CAD (Xu et al.| [2023), where auto-completion is utilized to achieve this. Additionally,
we use the generated CAD model from Hnc-CAD’s auto-completion as the source and the original
CAD model as the target to construct the CAD pairs related to removing operations.

The design variation generation model can sometimes introduce noise by altering a CAD model too
drastically or not at all. To ensure data quality, we implement a data filtering strategy. Specifically,
we render each generated CAD pair into images, calculate the cosine similarity between them, and
exclude pairs with similarity below a certain threshold. In our experiments, thresholds are set at 0.95
for the CAD pairs generated by SkexGen and 0.9 for Hnc-CAD. Additionally, we filter out CAD
pairs showing no significant changes in the CAD sequence level.

Textual Instruction Generation by Multi-level Captioning. In this step, we render the CAD pairs
from the last step as images and input the images into MLLMs to get the textual difference. Note that
we opt to identify differences at the rendered image level instead of the CAD sequence level because
changes are more easily perceived visually. In the preliminary study, we observe that even advanced
MLLMs, e.g., GPT-40, often make mistakes when directly describing how to edit one CAD model
into another, such as incorrect positional relationships, numbers of shapes, or types of shapes. To
mitigate this issue, we introduce a multi-level captioning strategy, which breaks down this complex
task into several simpler sub-tasks, thereby improving the overall accuracy. Specifically, this method
involves the following three sub-tasks, with full prompts available in Appendix[A] 1) Describe CAD
images. Initially, we generate detailed descriptions for each CAD image in the pair with MLLMs
(e.g., GPT-40). This step involves a meticulous examination of each image’s geometric proper-
ties, including the type and number of elements, the proportions of sizes, positional relationships
between elements, and any additional noteworthy details. 2) Identify differences. Next, we feed
both the detailed descriptions and the CAD images into the MLLM to generate editing instructions,
summarizing necessary modifications in a clear and direct manner. The detailed description helps
in mitigating the complexity of identifying changes solely from the images. 3) Compress instruc-
tions. Lastly, we compress the editing instruction into a single sentence, limited to a maximum of 10
words. This ensures that the instructions are precise yet concise, making them easier to understand.

Similarly, we also implement data filtering to ensure data quality. We filter out CAD pairs with too
many changes by excluding instructions with more than three edits. We also filter out pairs with no
significant changes by excluding instructions containing phrases like “no transformation is needed”.

Finally, by assembling the CAD pairs from the first step and the textual instruction from the sec-
ond step, we derive a synthetic dataset Dgyngeric With triplets of (textual instruction, original CAD
sequence, edited CAD sequence). We then fine-tune pre-trained LLMs using Low-Rank Adapters
(LoRA) (Hu et al.l 2022) on this synthetic data, resulting in a basic model for text-based editing
referred to as an initially fine-tuned LLM.

3.3 ENHANCED FINE-TUNING WITH SELECTIVE DATA

While Section [3.2] makes every effort to ensure the high quality of the synthetic data, achieving ab-
solute accuracy is impossible. We seek to construct a selective dataset, denoted as Dgejective, Which

Under review as a conference paper at ICLR 2025

Table 1: Quantitative evaluations on the text-based CAD editing task. SkexGen and Hnc-CAD are
unable to handle text-based editing, so only their generation quality is compared. MMD, JSD, and
D-CLIP values are multiplied by 102. 1: the higher the better, |: the lower the better.

Method Covt MMD,| JSD| D-CLIPt Valid Ratiot Human Eval
SkexGen 80.2 1.38 1.72 - 69.6 -
Hnc-CAD 81.9 1.27 1.68 - 78.6 -
GPT-4o (basic) 78.4 1.26 2.06 -0.65 455 7.09
GPT-40 (3-shot) 80.9 1.22 1.70 -0.01 77.0 19.8
CAD-Editor 81.0 1.16 1.55 0.21 91.4 31.1

contains less noise and aligns better with human intentions. Then, we further fine-tune the initially
fine-tuned LLMs on this dataset to enhance the performance. Our method for constructing such a
dataset hinges on a key observation: while the initially fine-tuned LLMs may not consistently gener-
ate satisfactory results, sampling multiple times often yields at least one exceptional outcome. The
primary challenge is determining whether the model outcome is sufficiently high-quality. We pro-
pose two feasible methods: automatic selection using metrics and manual selection. Both methods
have been shown to enhance performance, with the former being more efficient. We anticipate that
better metrics will be developed in the future to achieve even better results witin our framework.

Automatic Selection with Directional CLIP (D-CLIP) Score. Directional CLIP (D-CLIP) is ini-
tially proposed to measure whether the changes between two images align with the changes between
two texts in the CLIP space for image domain adaption problem (Gal et al., |2022). In this work,
we adapt it to select top examples from model outputs. Specifically, after sampling multiple edited
CAD sequences from the initially fine-tuned LLMs, we render them into CAD images. Then, we
leverage D-CLIP to calculate how much the change between the image for the edited CAD model
and the image for the original CAD model agrees with the textual instruction:

Al - AT

AT =F Ledite - K tsourcea Al =FE -eie - K 'source7 ‘Cirecion = TA T A"
1 (fedtes) — B (e ¢ () = B (o). Lansion = 13 7757

E; and Ep are CLIP’s image and text encoders, tsource 1S @ neutral text (e.g.,“This is a 3D shape.”),
tedited 18 the concatenation of ¢syce and the textual instruction. iegieq and Zsource are the images for
the edited and original CAD model. We select the edited CAD model with the highest D-CLIP and
pair it with the original CAD model and textual instruction to form a triplet, which is then added to
in the selective dataset. We refer to this method as D-CLIP feedback (DCF) for brevity.

Manual Selection. Similarly, we render the edited CAD sequence generated by the initially fine-
tuned LLMs into images. Then, we let humans select which one is the best. The chosen one, together
with the corresponding original CAD model and the textual instruction is added into the selective
dataset. We refer to this method as human feedback (HF) for brevity. Compared to DCF, HF is a
more direct way for injecting human intention into the model training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use the DeepCAD dataset (Wu et al., [2021)), which contains 178,238 CAD models
split into 90% training, 5% validation, and 5% testing segments. We utilize the same strategy in
existing work (Xu et al., |2022; 2023) to remove duplication, and exclude the long-tail data with
more than 3 sketch-extrusion pairs and 20 curves. For the synthetic dataset used for training, we get
92,070 examples by following the method in Section[3.2]. For the test set, we randomly sample 2000
examples from the original test segment, get the initial version following Section [3.2] and manually
examine them to ensure the correctness. To compare the performance of different methods, we
generate 5 outputs for each example in the test set, yielding 10,000 CAD models for evaluation.

Metrics. For quantitative comparison with 3D generative models, we utilize metrics from previous
works (Wu et al., 2021} Xu et al.l 2022; 2023). “Coverage” (COV) represents the percentage of

Under review as a conference paper at ICLR 2025

“Attach an annular “Remove the central “Add a horizontal cylinder “Extend length, remove “Attach a hexagonal

. . . “Enlarge the central
groove around the vertical rectangular centrally beneath the arch extension, add two cuboid ole "g prism to one cylinder
central hole.” prism.” structure” extensions on end.” . end, add recess.”

Input

GPT-40
(basic)

GPT-40
(3-shot)

CAD-
Editor

Figure 4: Results for text-based CAD editing by GPT-40 (basic), GPT-40 (3-shot) and CAD-Editor.

real data that matches generated data based on the closest Chamfer distance of uniformly sampled
points on the surface. ”Minimum Matching Distance” (MMD) is the average minimum matching
distance between a generated sample and its nearest neighbor in the real set. “Jensen-Shannon
Divergence” (JSD) measures the similarity between real and generated distributions based on the
marginal point distribution. Additionally, we use D-CLIP, as described in Section@ to assess how
well the changes in CAD models align with the editing instructions at the image level. It is important
to note that the output CAD command sequence does not always produce a valid 3D shape. In some
cases, the output commands may result in an invalid curve or other issues, making it impossible to
extract a point cloud from that CAD model. Therefore, we also report the Valid Ratio, which is the
percentage of output CAD models successfully rendered to an image.

Implementation Details. We use Llama-3-8b-Instruct as our base LLM, fine-tuning it for 70 epochs
using PyTorch’s Distributed Data Parallel (DDP) on 4 NVIDIA A6000-46GB SMX GPUs. The
initial learning rate is set to le-4 with a maximum token length of 1024. We employ Low-Rank
Adapters (LoRA) with a rank of 32. When employing the LLM for inference, we set the temperature
as 0.9 and top-p as 0.9 to generate varied results in each trial.

Baselines. In our experiment, we compare our results with baseline methods, including: 1) previous
CAD design variation generation models such as SkexGen and Hnc-CAD, and 2) foundation models
not specifically tailored for CAD generation tasks, including closed-source commercial LLMs like
GPT-40. We design two prompting methods: the first is a basic method that explains the design
rules of CAD operation sequences; the second is a dynamic 3-shot method, which, in addition to the
basic explanation, includes the three most similar instructions based on text cosine similarity and
their corresponding CAD pairs from the training set as in-context learning examples. The detailed
prompt can be found in Appendix [B]

4.2 MAIN RESULTS

Quantitative Evaluation. Table || reports the average scores across 3 runs. Notably, CAD-Editor
achieves a high Valid Ratio of 91.4%, significantly surpassing other methods and indicating a greater
proportion of valid and high-quality CAD generations. In terms of D-CLIP, which measures align-
ment with editing instructions, CAD-Editor scores 0.21, a substantial improvement over GPT-40
(basic) at -0.65 and GPT-40 (3-shot) at -0.01. This underscores CAD-Editor’s effectiveness in ad-
hering to user instructions. Additionally, CAD-Editor outperforms GPT-40 on all three point cloud
evaluation metrics (COV, MMD, and JSD) and performs comparably to SkexGen and Hnc-CAD,
demonstrating exceptional quality and diversity in its CAD edits. Overall, the results indicate that

Under review as a conference paper at ICLR 2025

y I J)
’ p " [: < -
1 1 J
| il f 4
‘ ‘ | I (g o
“Slant side faces of the rectangular “Draw and extrude a centered “Move the hole from edge to
prism to form trapezoids.” smaller star inside original prism.” center and enlarge it.”
l
I
’ | | Sy &
| -] !
“Attach four cuboids perpendicularly to “Add hollow cylinders aligned over end “Remove the shorter intersecting prism,
the vertical edge.” holes of the rectangular bar” keeping the longer one intact.”
Figure 5: More results with various textual instructions from CAD-Editor.
v 4 o
Input “Add an ellipsoidal “Add a hollow cylinder “Add a hexagonal “Add a rectangular "Add a L-shaped prism

prism on top." on top.” prism on top.” prism on top.” on top.”

‘¥

»

“Subtract a centered hexagon “Cut semi-cylinder and rectangular "Add a U-shaped “Drill one large central hole

Input Subtract a cylinder shell and four smaller holes."

from a solid cylinder” through the cylinder” slot into top of the cylinder” cutout on top.”

Figure 6: Given one CAD model and various instructions, CAD-Editor produces different outcomes.

CAD-Editor not only enhances the quality and diversity of CAD edits but also ensures better align-
ment with user instructions and higher validity of the generated designs.

Qualitative Evaluation. In Figure |4, we qualitatively compare our method with GPT-40 (basic)
and GPT-40 (3-shot). We observe that GPT-40 (basic) often generates irrelevant edits (case 4),
unrealistic shapes (case 5), or fails to make any changes (cases 1 and 6). Additionally, it struggles
with distinguishing shape types (case 3) and locating specific positions (case 2). It performs better
with dynamic few-shot prompting, highlighting the quality of our synthetic data. GPT-40 (3-shot)
can detect specific shapes reasonably well but still struggles with precise localization (case 3). In
contrast, our model successfully executes many challenging edits, including modifying sizes, shapes,
and positions, as well as replacing, adding, and removing objects. Figures 5] [6] [7] and [§] show more
selected results.

Human Evaluation. We randomly sampled 2,500 CAD models from the entire set of generated
results. Each image pair was independently rated by five crowd workers. For each pair, a score of
1 was assigned if the generated data was deemed successful, and 0 otherwise. Success was defined
by two criteria: alignment with the text and sufficiently high quality. The results are in Table
The Human Evaluation score (Human Eval) of 31.1% underscores the enhanced user satisfaction
and editing quality of CAD-Editor. Our method achieved higher scores compared to GPT-40 (both
basic and 3-shot prompt settings). This indicates that crowd workers frequently identified models
generated by GPT-4o as failing to follow the editing instructions, whereas our method demonstrated
superior performance.

4.3 ABLATION STUDIES

Multi-level Captioning. A straightforward way to generate the textual difference between CAD
model pairs in Section is to directly query MLLMs (e.g., GPT-40). We denote this method

Under review as a conference paper at ICLR 2025

Input "Add smaller prisms on the top."
\ L < I r / o
. - X = [P [
Ny R « 3 N g N
ot oo \ \ e P - o
2 \ 4 \N=V] g ,;;/ N ' J
Input “Deepen the inward curvature of the sides.”

Figure 7: Given the same CAD model and instruction, CAD-Editor produces diverse outcomes.

€D p ; (
< i P € P N N {

O // U’ S) j
P b
“Remove the top cylinder, “Transform the base into a hexagonal "Replace the central circular “Add a larger
keeping the central hole intact." one, and extrude cylinder from the hole." hole with an elongated slot." rectangular base.”

r E
- . > - - JJ -
7 =
,,//
“Fill the two smaller holes.” “Transform the circular hole “Fill the cutout.” “Round the corners.” “Add four cylindrical legs."

into a hexagonal cutout.”

Figure 8: Apply CAD-Editor iteratively to edit a CAD model until it meets user requirements.

as basic captioning. In Figure O] we present qualitative ablations comparing the basic captioning
with our multi-level captioning. The basic captioning often fails to accurately capture detailed po-
sitional relationships, numbers, and shape types, resulting in imprecise and sometimes erroneous
captions. This can bring too much noise to the training data. In contrast, our multi-level caption-
ing decomposes the captioning task into smaller, more manageable sub-tasks. This hierarchical
approach allows for a more precise capture of intricate details and relationships within the CAD
models. Moreover, we make a quantitative comparison. Given the restricted computing resources,
we sample 10,000 examples from the entire synthetic training set, and obtain basic captions as well
as multi-level captions for these samples. We fine-tune LLaMA-3-8B on these datasets using the
same settings as described in Section The results, detailed in Table [2 indicate that multi-level
captioning (CAD-Editor-mini w/MLC) leads to better performance compared to basic captioning
(CAD-Editor-mini w/BC). Specifically, the quality of the output improves significantly, with higher
COV, lower MMD and JSD, better adherence to user instructions as measured by D-CLIP, and a
higher Valid Ratio.

Selective Data. We compare three settings: no enhanced fine-tuning with selective data, using
DCEF to collect selective data and using HF to collect selective data, denoted as CAD-Editor w/o
DCF&HF, CAD-Editor w/DCF, and CAD-Editor w/ HF in Table@ Compared to not using selective
data, using DCF and HF significantly improves alignment between textual instruction and edited
CAD model (measured by D-CLIP). More qualitative comparisons are included in the Appendix.

5 CONCLUSION

We introduced CAD-Editor, a novel generative model marking a significant advancement in the field
of CAD, particularly in the under-explored area of text-based CAD editing. By designing a sequence
representation of CAD models suitable for LLM processing and employing a two-stage fine-tuning
process with synthetic and selective datasets, CAD-Editor achieved compelling performance. This is
a step towards an intelligent system capable of generating diverse CAD models that align with user
intentions. However, CAD-Editor is limited by the quality of the generated dataset, and therefore

Under review as a conference paper at ICLR 2025

. N < oy 1
Basic Caption: Basic Caption: Basic Caption:
Fill the rectangular cutout and left circular hole. Add a cylinder and a rectangular prism to surface. Drill three holes into the rectangular prism.
Multi-level Caption: Multi-level Caption: Multi-level Caption:
Fill cutout, remove one hole, center remaining Attach a cylinder and semi-cylindrical prism to Drill two vertical holes on top, horizontal
hole on top. opposite sides. hole through side.

Figure 9: Comparisons between basic captioning method and our multi-level captioning method.

Table 2: Ablation study on multi-level captioning and selective data. The CAD-Editor-mini is
trained on a subset with 10k examples.

Method COvtT MMD| JSD| D-CLIPT Valid Ratio 1
CAD-Editor-mini w/ BC 75.7 1.40 1.64 0.02 78.4
CAD-Editor-mini w/ MLC 78.2 1.37 1.56 0.09 88.2
CAD-Editor w/o DCF&HF 78.5 1.19 1.50 0.11 91.8
CAD-Editor w/ DCF 79.4 1.22 1.31 0.14 89.5
CAD-Editor w/ HF 81.0 1.16 1.55 0.21 914

by the CAD design variation models used to generate the CAD pairs. Furthermore, our method’s
ability to generalize to new edits and make correct associations between visual changes and text
instructions is limited by the ability of GPT-40 to generate instructions.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392-18402, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Jorge D Camba, Manuel Contero, and Pedro Company. Parametric cad modeling: An analysis of
strategies for design reusability. Computer-Aided Design, 74:18-31, 2016.

Qi Cao, Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Unnatural error correction: Gpt-4
can almost perfectly handle unnatural scrambled text. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8898-8913, 2023.

Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
23206-23217, 2023.

Wenhao Chai, Xun Guo, Gaoang Wang, and Yan Lu. Stablevideo: Text-driven consistency-aware
diffusion video editing. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 23040-23050, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

10

Under review as a conference paper at ICLR 2025

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and Denny Zhou. Teaching large language models
to self-debug. In The 61st Annual Meeting Of The Association For Computational Linguistics,
2023.

Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. Stylegan-nada: Clip-guided domain adaptation of image generators. ACM Transactions on
Graphics (TOG), 41(4):1-13, 2022.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick, and
Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as text. In
The Twelfth International Conference on Learning Representations, 2024.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4713-4722, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. Draw step by step:
Reconstructing cad construction sequences from point clouds via multimodal diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 27154—
27163, 2024.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HihnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Im-
age synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073,
2021.

Aryan Mikaeili, Or Perel, Mehdi Safaee, Daniel Cohen-Or, and Ali Mahdavi-Amiri. Sked: Sketch-
guided text-based 3d editing. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 14607-14619, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

OpenAl Introducing chatgpt. OpenAl Blog, 2023. Available: https://openai.com/blog/
chatgpt.

Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P Adams. Sketchgraphs: A large-scale dataset
for modeling relational geometry in computer-aided design. In ICML 2020 Workshop on Object-
Oriented Learning, 2020.

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams. Vitruvion: A generative model of
parametric cad sketches. In 10th International Conference on Learning Representations, ICLR
2022, 2022.

Tamer MM Shahin. Feature-based design—an overview. Computer-Aided Design and Applications,
5(5):639-653, 2008.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

11

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824-24837, 2022.

Karl DD Willis, Pradeep Kumar Jayaraman, Joseph G Lambourne, Hang Chu, and Yewen Pu. Engi-
neering sketch generation for computer-aided design. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 2105-2114, 2021a.

Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando Solar-
Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic
cad construction from human design sequences. ACM Transactions on Graphics (TOG), 40(4):
1-24, 2021b.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6772-6782, 2021.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
plex instructions. In The Twelfth International Conference on Learning Representations, 2024.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. Skexgen: Autoregressive generation of cad construction sequences with
disentangled codebooks. In International Conference on Machine Learning, pp. 24698-24724.
PMLR, 2022.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph George Lambourne, Karl DD Willis, and Yasutaka
Furukawa. Hierarchical neural coding for controllable cad model generation. In International
Conference on Machine Learning, pp. 38443-38461. PMLR, 2023.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

12

Under review as a conference paper at ICLR 2025

A APPENDIX: MULTI-LEVEL CAPTIONING

For multi-level captioning, we utilize GPT-40 four times for each CAD pair to generate the final
editing instruction. The detailed prompt is illustrated in Fig [0}

4 Multi-level Captioning N

Step 1:

Please take a look at the first of two 3D shapes we'll be examining. Please provide a detailed description, focusing on its geometric
properties, including the type and number of elements it features, the proportions of its size, its positional relationships between elements,
and any additional details that stand out.

Step 2:

Now, let's turn our attention to the second 3D shape. Please provide a detailed description, focusing on its geometric properties, including
the type and number of elements it features, the proportions of its size, its positional relationships between elements, and any additional
details that stand out.

Step 3:

Please provide detailed instructions for transforming the first 3D shape into the second.
Step 4:

KCondense your instructions to one sentence, 10 words maximum.

Figure 10: The detailed prompt for multi-level captioning.

B APPENDIX: BASELINES

Here, we provide the detailed prompt for the baseline method in Figure [T 1}

GPT-40 (3-shot) \

Modify the original Computer-Aided Design(CAD) operation sequence according to the instruction:

Instructions for sketch-and-extrude model

A sketch-and-extrude model consists of multiple extruded-sketches.

Sketch

- Asketch consists of multiple faces

- Aface consists of multiple loops.

A loop consists of multiple curves.

- Acurve is either a line, an arc, or a circle.

A circle is defined by four points with four geometry tokens.

An arc is defined by three points but with two tokens, where the third point is specified by the next curve (or the first curve when a loop is closed).
- Aline is defined by start point.

A point is represented by two integers which stands for the x and y coordinate, respectively.

- Aloop with a circle can not contain additional curves since it is already a closed path.

- When a face consists of multiple loops, the first loop defines the external boundary, and the remaining loops define internal loops (i.e., holes).
- An end-primitive token appears at the end of each primitive (curve, line, face, loop or sketch).

Extrude

Each sketch will be followed by an extrude, which is represented by 18 parameters: BWVTTTRRRRRRRRRSOO
- B represents one of the three Boolean operations: add, cut or intersect. It occupies 1 parameter

- Vindicates the displacements of the top and the bottom planes from the reference plane in which a sketch is extruded to form a solid. It occupies 2 parameters.
- Trepresents 3D translation applied to the extruded solid. It occupies 3parameters.

- Rrepresents 3D rotation of the extrusion direction. It occupies 6 parameters.

- Srepresents the uniform scaling factor. It occupies 1 parameter.

- Orepresents the center of scaling as a 2D coordinate. It occupies 2 parameters.

Note

- Note that every number is an integer.

Examples for editing sketch-and-extrude model

[The 3 most similar editing instructions and their corresponding CAD pairs]

Your task

Original CAD Command Sequence:

[original sequence]

Instruction:

[editing instruction]

Your output should be of the following json format:

{
K’edited sequence": your Modified CAD Command Sequence here. J

Figure 11: The detailed prompt for GPT-40 (3-shot).

13

Under review as a conference paper at ICLR 2025

C APPENDIX: ADDITIONAL RESULTS

Here, we present a qualitative comparison between the initially fine-tuned LLM and the LLM further
fine-tuned with selective data in Figure [[2} Enhancing fine-tuning with selective data improves
generation quality, text-CAD alignment, and output stability.

)|
“Add a central hollow cylinder on
the large rectangular surface.”

ﬂ,,

|

“Add a horizontal cylinder centrally
beneath the arch structure.”

e

A

“Elongate prism, expand cutout
horizontally, adjust slot depth.”

@
4
(857
“Increase the height of each

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cylinder.” }

Input Initial Fine-Tuned Model Enhanced Fine-Tuned Model (HF)

Figure 12: The qualitative comparison between the initial fine-tuned LLM and the enhanced LLM
using selective data from human feedback.

More qualitative comparison between CAD-Editor and baselines are shown in Figure[I3]

o f -
GPT-40 ¢ i L N O oA] M ‘
(basic) / e =) = , ~ { ' N _ N 4
“Drill four smaller holes through corners, “Add a raised hexagon with a “Cut two top squares, one bottom “Stack and horizontally shift
maintaining symmetry and alignment.” central circular hole.” rectangle from front face.”

duplicate cube by one edge length.”

e YN

3 4 4 ” g
Al‘fgz anfd extend Zsman”e" “Attach a vertical block perpendicularly to “Add a smaller centered cylinder “Align and evenly space three
cylinder from one base. the horizontal base.” protruding from one disk base.” holes in a straight line.”
CAD- o :,:J e i b { .
Editor O . g ’ L /I] ¢ O «
S ~pF ; s\ J <
“Cut the central connecting prism to “ . “ : A
separate the end prisms.” ‘Attach a small cube mid- “Subtract concentric cylinder to ‘Add two symmetrical cylindrical
height on a vertical face.” form annular ring.” protrusions to one long rectangular face.”

Figure 13: Additional qualitative comparison results between CAD-Editor and baselines.

In addition, CAD-Editor has the ability to identify and correct erroneous editing instructions as
shown in Figure [[4] For example, it successfully interprets misspellings like “cilynder,” incorrect
syntax such as ”the at bottom,” and incomplete words like “remve” and “creat.” This capability
may stem from its fine-tuning on LLMs, which have strong text comprehension abilities and can
effectively handle erroneous text (Cao et al., 2023)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

/6\
"Remove the cilynder." "Add a circular flange the at “Remve the inclined channel and
bottom of the cylinder.” creat recess.”

Figure 14: CAD-Editor has the ability to identify and correct erroneous editing instructions.

D APPENDIX: EXAMPLES OF D-CLIP

In this section, we present examples of D-CLIP scores along with their corresponding text and image
pairs. As illustrated in Figure [I5] D-CLIP quantifies the alignment between the textual editing
instructions and the changes observed between the original and edited CAD images.

D-CLIP: 0.11 D-CLIP: 0.09 D-CLIP: -0.07 D-CLIP: -0.12
X e N ﬁ o
“Connect the tori with curved “Attach a hexagonal prism centrally “Add a central cylinder, “Align and extend a smaller
bridges to form a cohesive structure.” atop the cylinder's top base.” filling the hole in the base.” cylinder from one base.”
D-CLIP: 0.06 D-CLIP: -0.06 D-CLIP: 0.01 D-CLIP: -0.05 D-CLIP: 0.17 D-CLIP: 0.12
source “Remove the cylinder and add source “Intersect a second identical prism source “Add a centered semicircular cutout
a centered cylindrical hole.” perpendicularly through the first's midpoint.” above the two circular holes.”

Figure 15: Examples of D-CLIP scores and their corresponding text and image pairs, demonstrating
its ability to evaluate the performance of text-based CAD editing.

15

	Introduction
	Related Works
	Methods
	Text-based CAD Editing as Seq2Seq Generation
	Initial Fine-Tuning with Synthetic Dataset
	Enhanced Fine-Tuning with Selective Data

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusion
	Appendix: Multi-level Captioning
	Appendix: Baselines
	Appendix: Additional Results
	Appendix: Examples of D-CLIP

