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Disentangled Knowledge Tracing for Alleviating Cognitive Bias
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Abstract
In the realm of Intelligent Tutoring System (ITS), the accurate as-
sessment of students’ knowledge states through Knowledge Tracing
(KT) is crucial for personalized learning. However, due to data bias,
i.e., the unbalanced distribution of question groups (e.g., concepts),
conventional KT models are plagued by cognitive bias, which tends
to result in cognitive underload for overperformers and cognitive
overload for underperformers. More seriously, this bias is amplified
with the exercise recommendations by ITS. After delving into the
causal relations in the KT models, we identify the main cause as the
confounder effect of students’ historical correct rate distribution
over question groups on the student representation and prediction
score. Towards this end, we propose a Disentangled Knowledge
Tracing (DisKT) model, which separately models students’ famil-
iar and unfamiliar abilities based on causal effects and eliminates
the impact of the confounder in student representation within the
model. Additionally, to shield the contradictory psychology (e.g.,
guessing and mistaking) in the students’ biased data, DisKT intro-
duces a contradiction attention mechanism. Furthermore, DisKT
enhances the interpretability of the model predictions by integrat-
ing a variant of Item Response Theory. Experimental results on 11
benchmarks and 3 synthesized datasets with different bias strengths
demonstrate that DisKT significantly alleviates cognitive bias and
outperforms 14 baselines in evaluation accuracy.

Keywords
Knowledge Tracing, Educational Data Mining

1 Introduction
In recent years, especially with the explosion of large language
models (e.g., GPT-4o), AI for Education has received widespread
attention [3, 14, 61, 71]. Intelligent Tutoring System (ITS), as a
component of this field, has also seen rapid development [29, 69].
The success of ITS lies in its ability to recognize each student’s
knowledge state and recommend personalized learning resources
(e.g., exercises) based on the large-scale learning data obtained from
online learning environments [32]. Knowledge Tracing (KT), an
essential task in ITS, aims to assess the evolution of each student’s
knowledge state over time based on previous learning interactions and
predict their future performance. Conventional KT models typically
assess students’ knowledge states based on their interaction history,
which usually exhibits data bias1, i.e., the distribution of question
groups (e.g., concepts) is unbalanced. Therefore, KT models often
face the issue of cognitive bias, which usually manifests as cog-
nitive underload on overperformers and cognitive overload
on underperformers. Figure 1(a) illustrates the issue of cognitive
overload on underperformers with the example of exercise recom-
mendation. ITS recommends exercises to an underperformer, who

1Data bias refers to the over- or under-representation of certain categories, features, or
labels relative to others in a dataset. In this work, we focus on measurement bias [17],
a common type of data bias, which is consistent with the class imbalance in pattern
recognition, e.g., significant differences in the correct rates among different concepts.

gets 80% incorrect despite a considerable portion of simple ques-
tions. However, KT model still assesses that the student is familiar
with 20% of the questions, causing the ITS to overestimate the stu-
dent’s abilities and recommend exercises that are difficult to respond
to. Meanwhile, cognitive underload will eventually prompt the ITS
to recommend low-value exercises to overperformers. Clearly, ITS
recommendations, based on the evaluation results of the KT model,
that deviate from the current knowledge state of students do not
meet the requirements of intelligent education for adaptive learn-
ing [28, 35, 42, 48]. What’s worse, due to the feedback loop [9, 10],
cognitive bias of KT model will be amplified over time (e.g., when
an underperformer responds to simple questions incorrectly, ITS
may recommend more difficult questions, making it more likely to
respond incorrectly) until it reaches a critical point between easy
and difficult questions for the student [20, 64], causing the student’s
real knowledge state to gradually deviate from the model prediction,
losing the effectiveness of recommendation, and seriously affecting
the students’ experience with the ITS.

After scrutinizing the causal relations in the KT model, we at-
tribute cognitive bias to a confounder [46], i.e., the student historical
correct rate distribution over question groups.The question features
(usually the joint representation of the questions and the concepts)
and the student features (e.g., the binary responses to the questions)
are usually embedded in the vector chronologically, and then en-
coded by the KT model to predict the evaluation scores for different
concepts. In other words, the KT model evaluates the conditional
probability of the student’s knowledge state given the question
features and student features. From the perspective of causality, the
question features and student features can be regarded as the cause
of the prediction score, and the KT model performs causal modeling
on them. But through the observation of causal relations, we find
that the hidden confounder, i.e., the student historical correct rate
distribution over question groups, affects both the student repre-
sentation and the prediction score. Meanwhile, through structured
probability modeling, the conventional KT models are affected by
the confounder, thereby causing a spurious correlation between the
student representation and the prediction score: for questions with
higher correct rates, underperformers will get higher prediction
scores, even if the students are obviously incorrect, similarly, for
questions with lower correct rates, overperformers will get lower
prediction scores, even if the students have responded correctly.
Figure 1(b) is the empirical evidence of the spurious correlation ver-
ified by DKT [49] applied to the assist09 dataset [15]. We calculate
the average prediction scores of the model when students respond
incorrectly (response=0) and correctly (response=1) across different
concepts (Figure 1(b) left). According to the classical test theory [8],
we calculate the correct rate of the concept (i.e., the concept diffi-
culty) with average prediction scores ≥ 0.5 for incorrect responses
and with average prediction scores < 0.5 for correct responses
(Figure 1(b) right). As shown in Figure 1(b) upper right, when the
correct rate of almost all concepts is high, although the students
respond incorrectly, the model still predicts higher scores, and vice

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

IncorrectCorrect

(a) An example of cognitive overload

on underperformers.

40%

20% 80%

KT Model

ITS

Underperformer’s exercise history

Cognitive overload Feedback loop

Knowledge state

60% KT Model

Overperformer Underperformer

Student 

 feature

Question 

  feature

Student

 feature
Question 

  feature

KT Model

Unfamiliar Familiar

Correct rate: <

0.4 0.6

AdditionDivision

Division Additionresponse=1 response=0
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Figure 1: Illustration of cognitive bias.

versa (Figure 1(b) lower right), which makes the KT model exhibit
cognitive bias, undermining the effectiveness of the knowledge
state assessment for overperformers and underperformers (see the
example in Figure 1(c)).

In order to eliminate the spurious correlation, we propose Dis-
entangled Knowledge Tracing (DisKT), a novel approximate causal
model based on causal effects. DisKT models simple and difficult
questions separately, thereby modeling the abilities that students
are familiar and unfamiliar with, and eliminating the impact of the
confounder in student representation within the model. In addition,
from Figure 1(b) right, we notice that students make mistakes in
questions with extremely high correct rates, and sometimes they
can correctly respond to questions with extremely low correct rates.
We attribute this to the contradictory psychology (e.g., guessing
and mistaking) [7, 12, 16, 33, 72, 75] which are not conducive to the
modeling of students’ actual knowledge state, which inspires us to
design a contradictory attention to shield these factors. Finally, we
design a variant of Item Response Theory (IRT) [53, 67], integrat-
ing the abilities that students are familiar and unfamiliar with, to
enhance the interpretability of the model prediction layer.

In summary, this work contributes in four aspects:
• We analyze the causal relations in the conventional KT model

through a causal graph, and reveal the cause of cognitive bias
from the perspective of causal probability.

• Based on causal effects, we propose a novel approximate causal
model, DisKT, which eliminates the impact of the confounder to
alleviate cognitive bias. We also propose a contradiction atten-
tion to shield the contradictory psychology (e.g., guessing and
mistaking). In addition, we design a variant of IRT to enhance
the interpretability of model predictions.

• We construct three datasets with different bias strengths, and
design a metric to measure the effectiveness of DisKT in allevi-
ating cognitive bias. In addition, we propose two contradictory
metrics to determine the potential of our proposed contradictory
attention in shielding guessing and mistaking.

• Extensive experiments on 11 benchmarks from 10 different sub-
jects show that DisKT not only effectively alleviates cognitive
bias, but also has superior evaluation accuracy compared to other
14 baselines.

2 Related Work
Knowledge Tracing (KT) has been a cornerstone in the develop-
ment of intelligent tutoring system, enabling personalized educa-
tion by assessing and predicting students’ knowledge states over

time [2, 22, 39, 51]. Early attempts at KT, such as the Bayesian
Knowledge Tracing (BKT) [12], are based on the Hidden Markov
Model, using a binary variable to represent knowledge states. Item
Response Theory (IRT) [52] is a factor analysis method designed
to model the relationship between students’ abilities and their re-
sponses by measuring the gap between student ability and ques-
tion difficulty. With the rise of deep learning, recent studies have
utilized deep learning models to address KT issues [2, 49, 57].
DKT [49] first applies LSTM [24] to KT, followed by the intro-
duction of Memory-Augmented Neural Networks (MANN) [55],
and DKVMN [73] based on MANN, which uses the key matrix and
the value matrix to dynamically store students’ mastery of concepts.
SKVMN [1] combines the recurrent modeling capability of DKT
with the memory network structure of DKVMN. Deep-IRT [68]
integrates IRT and DKVMN to make deep learning based KT ex-
plainable. Later, GKT [40] uses a graph to model the relationships
between knowledge concepts. With the success of attention [5],
especially the Transformer [63] in the NLP field, SAKT [41] first in-
troduces self-attention networks to capture the relevance between
knowledge concepts and student interactions, followed by state-
of-the-art models or frameworks with variant attention structures:
AKT [19], DTransformer [70], FoLiBi [27], sparseKT [26]. Mean-
while, some popular training techniques are also applied in KT, such
as ATKT [21] and CL4KT [32], which respectively use adversarial
training and contrastive learning to enhance student interaction
representation. However, despite these studies attempting to ad-
dress issues in KT and achieving impressive results in evaluation
accuracy, there is a lack of comprehensive and reasonable expla-
nation, even Deep-IRT is limited in prediction. In contrast, DisKT
is based on causal effect modeling, where the calculation of each
interpretable parameter is transparent.

Surprisingly, previous KT research has lacked attention to such
an important topic as data bias, and the closest to our DisKT is the
Core framework [13]. The Core framework considers that existing
models tend to remember answer bias, i.e., the unbalanced distri-
bution of correct and incorrect answers for each question, thus
providing a shortcut for achieving good predictive performance in
KT and mitigating the answer bias by subtracting the direct causal
effect from the total causal effect captured during training in test-
ing [6, 44, 62]. Compared to DisKT, the Core framework has two
obvious disadvantages. The Core framework does not recognize the
impact of learned bias on different populations, i.e., different cogni-
tive bias exists for overperformers and underperformers, and does
not realize that such bias will be amplified. Meanwhile, the Core
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framework does not delve into the contradictory psychology [7] in
biased data, e.g., guessing and mistaking, and their adverse impact
on the real knowledge state. In contrast, DisKT provides a more
detailed causal graph, alleviates bias within the model, and designs
a contradictory attention to shield contradictory psychology, alle-
viating bias while also improving evaluation accuracy.

3 Methodology
3.1 KT Formulation
Formally, we define a set of students S, a set of questions Q, and
a set of concepts C. Historical interactions of a student B ∈ ( are
represented as -C = {(@1,�>=24?C@1 , A1), (@2,�>=24?C@2 , A2), ..., (@C ,
�>=24?C@C , AC )}, where @C ∈ Q refers to the question responded to
by the student at time C ,�>=24?C@C ⊂ C denotes the set of concepts
related to @C , and AC ∈ {0, 1} indicates the student’s response to the
question (0 for incorrect, 1 for correct). The aim of KT is to predict
the probability ? (AC+1 | -C , @C+1,�>=24?C@C+1 ) of a student correctly
responding to the next question @C+1.

3.2 Causality Perspective on Cognitive Bias
In this section, we construct a causal graph for the conventional
KT model. Based on the causal graph, we probabilistically model
the conventional KT model and find that the confounder in student
representation is the main culprit leading to cognitive bias. Conse-
quently, we build a counterfactual world to eliminate the influence
of the confounder in the real world based on causal effect.

(a) Causal graph in 

conventional KT

S

Q

Y

D

M

𝑠∗

q

Y

𝑑∗

𝑚∗

s

d

m

(b) Counterfactual world (c) Reference situation

𝑠∗

q

Y

𝑑∗

𝑚∗

Figure 2: The causal graphs for conventional and counterfac-
tual KT. ∗ denotes the reference values.

3.2.1 Causal Graph As shown in Figure 2(a), we use a causal
graph to describe the causal relations in KT, which includes five
variables: (,&, �,",. . Note that we use capital letters (e.g., �)
to represent variables and lowercase letters (e.g., 3) to represent
specific values of these variables. Specifically,
• ( represents student features. For a student, B = A1:C represents

the binary response sequence up to time C .
• & represents question features, which is usually a joint represen-

tation of the questions and concepts [19, 26].
• � denotes the student historical correct rate distribution over

question groups (e.g., concept). Given = concepts {21, ..., 2=}, 3B =
[?B (21), ?B (22), ..., ?B (2=)] represents the correct rate distribution
of student B across different concepts, where ?B (2=) refers to the
correct rate on concept 2= of student B in history.

• " is the concept-level student representation. A vector< repre-
sents the hidden representation of the student, learned by a KT
model (e.g., DKT), for different concepts.< is determined only
by B and 3 , that is,< can be represented by a function " (B, 3)
with B and 3 .

• . with specific value ~ ∈ [0, 1] is the prediction score.

• � → ( indicates that the student historical correct rate distribu-
tion over question groups influences the student’s representation,
tending to overfit unbalanced historical data and exhibiting cog-
nitive bias [54, 64].

• (�, () → " indicates that � and ( determine the concept-level
student representation.

• ((,",&) → . indicates that ( affects . by two paths: the direct
path ( → . , representing the student’s actual knowledge state,
and the indirect path ( → " → . , which reflects the polariza-
tion of the prediction score caused by the bias in the concept-level
student representation, 8 .4 , simpler question groups are more
likely to have higher prediction scores, and more difficult ques-
tion groups are more likely to be predicted with lower scores.
According to the causal theory [46], � is associated with both (

and . , and is a confounder between ( and . . Next, through struc-
tured probability modeling, we explore how the student historical
distribution leads to the polarization of prediction score via biased
student representation.

3.2.2 Probability Modeling Due to the confounder � between
( and . , there exists an issue of cognitive bias when the existing
KT models predict the conditional probability % (. | ( = B,& = @).
Given ( = B and& = @, % (. | ( = B,& = @) is formalized as follows:

% (. | ( = B,& = @)

=

∑
3∈D

∑
<∈M % (., B, @, 3,<)
% (B, @) (1a)

=

∑
3∈D

∑
<∈M % (3) % (B | 3) % (< | 3, B)% (@) % (. | B, @,<)

% (B) % (@)
(1b)

=
∑
3∈D

∑
<∈M

% (3 | B) % (< | 3, B)% (. | B, @,<) (1c)

=
∑
3∈D

% (3 | B) % (. | B, @," (3, B)) (1d)

= % (3B | B) % (. | B, @," (3B , B)), (1e)
whereD andM are the sample spaces of� and" , respectively. Eq.
(1a), Eq. (1b), and Eq. (1c) are derived from the total probability rule,
causal graph, and Bayes formula, respectively. And< is determined
by certain 3 and B , so we get Eq. (1d). We only study the sample
space 3B of student B , thus obtaining Eq. (1e).

From Figure 2(a) and Eq. (1e), we find that � not only affects (
but affects . through" (3B , B), causing a spurious correlation: for
questions in simpler or more difficult question group (e.g., concept
2=), the prediction scores are higher or lower, i.e., the high or low
prediction scores are caused by the student historical distribution
rather than the questions themselves. In Eq. (1e), a higher or lower
correct rate ?B (2=) in 3B will make" (3B , B) show a better or worse
knowledge state of concept 2= , and then increase or decrease the
prediction scores of questions in 2= through % (. | B, @," (3B , B)).
This ultimately leads to the polarization of prediction scores for
questions in easy and difficult concepts, i.e., the cognitive bias
towards overperformers and underperformers.

3.2.3 Counterfactual Counterfactual technology is a method
of estimating causal effects by considering events that may occur
under different conditions and analyzing “how the results would
change if the situation were different” [50]. As shown in Figure 2(b),
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we construct a counterfactual world: � does not affect . through (
but only affects. through" , that is, the counterfactual can estimate
howmuch the prediction score would be if� had no effect on ( . The
key to the counterfactual is to intervene causally on ( , also called
the do-operator [45, 47, 66], i.e., 3> (( = B∗) forcibly cuts off the
edge� → ( in Figure 2(a), replaces B in Eq. (1e) with B∗, and obtains
% (. | 3> (( = B∗), & = @) = ? (3)? (B∗)% (. | B∗, @, " (3, B∗)), where
3 can be considered a constant distribution.

3.2.4 Causal Effect In causal effects, the Total Effect ()�) of
( = B on. denotes the change in. caused by the ( when it changes
from the reference value B∗ in Figure 2(c) to the expected value B in
Figure 2(a). Given & = @, the )� of ( = B on . is formalized as:

)� = .B,<,@ − .B∗,<∗,@, (2)
where .B∗,<∗,@ represents the reference state of . when ( = B∗,
and ( is not affected by � . Typically, )� can be decomposed into
)� = #�� +) ��, where #�� and ) �� respectively represent the
natural direct effect and total indirect effect [6, 44, 62].

Specifically, given & = @, the #�� of " = < on . refers to
the change in the prediction score . when the " changes from
the reference value<∗ to the expected value< and 3> (( = B∗) is
enforced. The #�� is formalized as follows:

#�� = .B∗,<,@ − .B∗,<∗,@, (3)
where .B∗,<,@ is the prediction score in the counterfactual world,
and ( is not affected by � and" remains unchanged (as shown in
Figure 2(b)).

Therefore, given & = @, the ) �� of ( = B can be obtained by
subtracting #�� from )�:

) �� = )� − #�� = .B,<,@ − .B∗,<,@ . (4)
Therefore, the ) �� of ( = B on . is the change in the . caused by
the ( when it changes from the reference value B∗ to the expected
value B without affecting the" .

In Eq. 4, #�� estimates howmuch the prediction score would be
in the counterfactual world if the KTmodel only had the student his-
torical distribution and did not track the student’s knowledge state.
Intuitively,) �� represents the final prediction score, which reduces
the #�� of the student historical distribution [13, 64]. Therefore,
the prediction score for underperformers on questions of
high correct rate would be largely suppressed, conversely,
the prediction score for overperformers on questions of high
correct rate would be liberated.

3.3 Disentangled Knowledge Tracing
Through the analysis of causal effects, the key to eliminating the
influence of the confounder lies in how to causally intervene on
( so that the student representation after 3> (( = B∗) only repre-
sents the student historical distribution. In addition, the trouble
caused by the factual and counterfactual inference of the traditional
causal model is also a problem worth considering [13, 64, 65, 74]. To
this end, DisKT we propose is an approximate causal model. Con-
sidering that the student historical distribution is fundamentally
indicating that students are familiar with simple concepts but not
good at difficult concepts, DisKT models the responses of incorrect
and correct responses separately along with the concepts, roughly
classifying the concepts responded to correctly as simple concepts,
and the concepts responded to incorrectly as difficult concepts, thus
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Figure 3: The architecture of the Disentangled Knowledge
Tracing model (DisKT).

modeling the students’ familiarity and unfamiliarity abilities. Due
to separate modeling, it is difficult to track knowledge of
either side, thus achieving that the student representation
after intervention approximately represents the student his-
torical distribution. In addition, to avoid double causal inference,
DisKT executes the process of causal intervention within the model,
and approximates" by assigning contradictory attention weights
considering the contradictory psychology (e.g., guessing and mis-
taking) [7, 12, 16, 33, 72, 75] of the factual student representation
to both sides, thereby reducing the burden of re-inference.

The architecture of DisKT is shown in Figure 3, with details as
follows.

3.3.1 Rasch Embedding KT models often describe multiple con-
cepts as a single concept, i.e., 2C = �>=24?C@C , and due to data
sparsity, they use concepts instead of questions as the subject
of assessment [19, 32, 49]. We use the Rasch model in psychol-
ogy [19, 36, 38, 52] to construct the C-th embeddings of question
(i.e., &C ) and interaction (i.e., (C ):

&C = 22C + 3@C · `2C , (C = 4 (2C ,AC ) + 3@C · a (2C ,AC ) ,
4 (2C ,AC ) = 22C + AAC , a (2C ,AC ) = 22C + 6AC ,

(5)

where 22C ∈ R3 is the embedding of concept 2C , 3@C ∈ R is a scalar
representing the difficulty of question @C , `2C ∈ R3 summarizes
the variation of questions containing concept 2C , AAC ∈ R3 is the
embedding of response AC , 6AC ∈ R3 is the variation embedding of
response AC , 4 (2C ,AC ) ∈ R3 and a (2C ,AC ) ∈ R3 are the embedding and
variation embedding of the concept-response interaction (2C , AC ). 3
denotes the dimension of these embeddings.

Therefore, given the student’s historical interaction sequence
{@1:C , 21:C , A1:C }, the factual embeddings of questions (i.e., &1:C ) and
interactions (i.e., (1:C ) are represented as follows:

(1:C , &1:C = Rasch Embedding(@1:C , 21:C , A1:C ). (6)
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Through artificial intervention, that is, in order to obtain the
correct interaction embeddings, DisKT masks the elements corre-
sponding to the incorrect response positions in @1:C , 21:C and A1:C ,
and vice versa, the obtained counterfactual interaction embeddings
(+1:C and (

−
1:C are:

(+1:C ,= Rasch Embedding(A1:C · @1:C , A1:C · 21:C ,<0B: + (1 −<0B:)·
A1:C ), (7)
(−1:C ,= Rasch Embedding((1 − A1:C ) · @1:C , (1 − A1:C ) · 21:C ,<0B: · A1:C ),
where<0B: is the mask value (e.g., 2) of the response sequence,
while the question and concept sequences are masked by 0.

3.3.2 Knowledge Extractor In order to effectively encode the
embeddings of questions and interactions, the knowledge extractor
employs # Transformer encoders [63]. For the first encoder, the
knowledge extractor takes the question and interaction embed-
dings &1:C and (1:C as input and outputs the knowledge state �1

C+1
extracted from the current questions and interactions:



�1
C+1 = LN(Dropout(Res(FFN(( = Multihead1)))),

FFN(() = GeLU((, 1 + 11), 2 + 12,
Multihead1 = Concat(head11, · · · , head

1
ℎ
), 1

ℎ
,

head18 = Attention(& = &
/ℎ
1:C ,  = &

/ℎ
1:C ,+ = (

/ℎ
1:C ),

Attention(&, ,+ ) = Concat(zero, Softmax( & 
)√

3/ℎ
) [1 :, :])+ ,

(8)
where LN, Dropout, Res, FFN refer to layer normalization [4], dropout
technique [58], residual connection [23] and fully-connected feed-
forward, respectively,, 1 ∈ R3×3 ,, 2 ∈ R3×3 , 11 ∈ R3 , 12 ∈ R3

are learnable parameters and GeLU(·) is the activation function,
ℎ is the number of attention heads (e.g., 2) and, 1

ℎ
∈ R3×3 , &/ℎ

1:C

and (/ℎ1:C represent splitting the 3 dimensions of &1:C and (1:C into ℎ
parts, respectively, and zero ∈ R3 is a zero vector indicating that
the historical interaction before the first question is not available.
Eq. 8 can be abbreviated as

�1
C+1 = Encoder(& = &1:C ,  = &1:C ,+ = (1:C ), (9)

so the output of the last encoder is

�#C+1 = Encoder(& = �#−1
C+1 ,  = �#−1

C+1 ,+ = (1:C ) . (10)
The design of the knowledge extractor enables DisKT to sum-

marize the performance of students over multiple time scales and
extract comprehensive knowledge.

3.3.3 Contradictory Attention Considering the burden of re-
reasoning and the impact of contradictory psychology (e.g., guess-
ing and mistaking), the contradictory attention we designed as-
signs the knowledge learned by the factual student representation
from the knowledge extractor to the student representations in
the counterfactual world, which previously perform feature extrac-
tion through a nonlinear layer (e.g., FFN). Meanwhile, it shields
the weights of the contradictory psychology through a selective
Softmax function (Softmax∗). Finally, it forms the knowledge states
�+
C+1 and �−

C+1 representing familiar and unfamiliar abilities in the

counterfactual world:

�+
C+1 = Attention∗ (& = �#C+1,  = �#C+1,+ = FFN((+1:C )),

�−
C+1 = Attention∗ (& = �#C+1,  = �#C+1,+ = FFN((−1:C )),

Attention∗ (&, ,+ ) = Concat(zero, Softmax∗ (- =
& )√
3/ℎ

) [1 :,

:])+ ,
Softmax∗ (- ) = Softmax(one − 4G? (�+ (21:C , A1:C ), 3) · Softmax(- )),
�+ (2C , AC ) = 1(max(_C , V) (1 − AC + (2AC − 1) · diff(2C )) < U2C ),

(11)

where one ∈ R3×3 is a vector of ones, 4G? (·, 3) represents column
expansion by 3 dimensions, �+ (21:C , A1:C ) represents the contra-
dictory variable sequence determined by 21:C and A1:C , and 1(·)
denotes the indicator function. _C is a random value, representing
the probability that the student is not affected by the contradictory
psychology at time C , and the smaller it is, the more likely it is to
be affected by the contradictory psychology. V is the lower bound
of _C (e.g., 0.1), preventing the dominant position of the uncertain
_C . UC is a determined value, representing the degree threshold of a
student’s contradictory psychology at time C . diff(2C ) refers to the
correct rate obtained from the training set through 2C according to
the classical test theory [8].

The form of �+ (2C , AC ) is intuitive: the more difficult 2C is, the
more likely the student is to guess; the simpler 2C is, and the student
responses incorrectly, the more likely the student is to experience
a psychology of mistaking. UC can be determined as follows:

UC = W, if C = 1,

UC =

√∑C−1
8=1 (max(_8 ,V ) (1−A8+(2A8−1) ·diff(28 ) ) )

C−1 , else,
(12)

where W (e.g., 0.2) is the initial value of the student’s contradiction.
As can be seen from Eq. 12, if a student has more and more severe
contradictory psychology in the past, the contradiction threshold
should be higher, and vice versa.

3.3.4 Variant IRT Prediction Since the prediction scores range
from 0 to 1, DisKT subtracts the#�� from Eq. 4 in terms of features:

-C+1 = �C+1 − (�+
C+1 + �

−
C+1) . (13)

Then, DisKT explicitly indicates the questions to be predicted and
generates final prediction scores through an"!% :
Â = f (ReLU(

[
(-C+1 − 3@1:C ) ⊕ (�+

C+1 − �
−
C+1) ⊕ &1:C

]
,1 + 11),2+

12), (14)

where ⊕ denotes the concatenation operation.,1 ∈ R33×3 ,,2 ∈
R3×1, 11 ∈ R3 , 12 ∈ R1 are learnable parameters in the "!% .
f (·) denotes the sigmoid function and ReLU(·) is the activation
function. 3@1:C can be obtained from Eq. 5. Eq. 14 not only considers
the student’s overall ability and the question difficulty, but also
integrates the abilities that the student is familiar and unfamiliar
with, making the prediction more interpretable.

3.3.5 Model Training DisKT applies a binary cross-entropy loss
to directly optimize the assessment of knowledge state:

L124 = −
C∑
8=1

(A8 logÂ8 + (1 − A8 )log(1 − Â8 ) . (15)
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Table 1: Comparison of DisKT and 14 KT models on 11 datasets. The averages across five test folds are reported. Best results in
bold, next best underlined. %Improv. denotes the relative performance improvement achieved by DisKT over the strongest
baseline. * and ** indicate that the improvements over the strongest baseline are statistically significant, with p <0.05 and p
<0.01, respectively. A model with Øindicates that it is interpretable.

Dataset Metric DKT DKVMN SKVMN Deep-IRTØ GKT SAKT AKT ATKT CL4KT CoreKTØ DTransformer simpleKT FoLiBiKT sparseKT DisKTØ %Improv.

AUC ↑ 0.7591 0.7570 0.7434 0.7566 0.7484 0.7348 0.7705 0.7543 0.7597 0.7415 0.7508 0.7709 0.7710 0.7670 0.7923** 2.76%
assist09 ACC ↑ 0.7166 0.7172 0.7084 0.7180 0.7127 0.7000 0.7192 0.7171 0.7194 0.7020 0.7042 0.7209 0.7165 0.7092 0.7275 0.92%

RMSE ↓ 0.4333 0.4333 0.4391 0.4334 0.4374 0.4442 0.4349 0.4348 0.4339 0.4436 0.4505 0.4372 0.4356 0.4396 0.4298 -0.81%
AUC 0.7780 0.7713 0.6260 0.7698 0.7806 0.7493 0.7932 0.7624 0.7864 0.7579 0.7694 0.7874 0.7923 0.7806 0.8033** 1.27%

algebra05 ACC 0.7893 0.7896 0.7570 0.7886 0.7889 0.7800 0.7938 0.7882 0.7940 0.7643 0.7877 0.7927 0.7925 0.7856 0.8009** 0.87%
RMSE 0.3854 0.3862 0.4212 0.3865 0.3851 0.3942 0.3811 0.3899 0.3833 0.4038 0.3906 0.3842 0.3818 0.3875 0.3786* -0.66%
AUC 0.7598 0.7685 0.6294 0.7663 0.7578 0.7330 0.7740 0.7426 0.7714 0.7509 0.7391 0.7695 0.7731 0.7694 0.7846** 1.37%

algebra06 ACC 0.7934 0.7989 0.7762 0.7977 0.7874 0.7845 0.7953 0.7878 0.7968 0.7710 0.7871 0.7923 0.7967 0.7940 0.8033** 0.6%
RMSE 0.3823 0.3784 0.4089 0.3794 0.3851 0.3921 0.3797 0.3891 0.3798 0.3946 0.3892 0.3814 0.3787 0.3804 0.3755 -0.77%
AUC 0.7611 0.7596 0.6692 0.7515 0.7528 0.7304 0.7999 0.7421 0.7783 0.7894 0.7690 0.7888 0.7988 0.7887 0.8086** 1.09%

statics ACC 0.7643 0.7688 0.7211 0.7661 0.7657 0.7560 0.7761 0.7658 0.7691 0.7598 0.7732 0.7723 0.7794 0.7775 0.7883 1.14%
RMSE 0.4027 0.4019 0.4359 0.4059 0.4017 0.4148 0.3889 0.4130 0.4000 0.3990 0.3966 0.3924 0.3894 0.3909 0.3823* -1.7%
AUC 0.6589 0.6657 0.6531 0.6656 0.6569 0.6499 0.7003 0.6544 0.6651 0.6697 0.6978 0.7048 0.6995 0.7006 0.7384** 4.8%

ednet ACC 0.6289 0.6346 0.6259 0.6337 0.6193 0.6240 0.6592 0.6243 0.6349 0.6284 0.6559 0.6573 0.6582 0.6557 0.6863** 4.11%
RMSE 0.4771 0.4756 0.4784 0.4759 0.4788 0.4809 0.4746 0.4797 0.4759 0.4762 0.4799 0.4730 0.4756 0.4727 0.4592** -2.86%
AUC 0.7159 0.7192 0.7038 0.7190 0.7098 0.7100 0.7376 0.7062 0.7213 0.7293 0.7354 0.7265 0.7270 0.7437 0.7731** 3.95%

prob ACC 0.6786 0.6888 0.6768 0.6900 0.6806 0.6818 0.7015 0.6849 0.6877 0.6889 0.6922 0.6971 0.6974 0.7057 0.7215** 2.24%
RMSE 0.4543 0.4520 0.4564 0.4521 0.4555 0.4562 0.4491 0.4585 0.4524 0.4537 0.4518 0.4498 0.4522 0.4483 0.4353** -2.9%
AUC 0.7421 0.7470 0.6991 0.7441 0.7402 0.7348 0.8225 0.7532 0.7580 0.7837 0.8211 0.8221 0.8216 0.8249 0.8622** 4.52%

linux ACC 0.7625 0.7643 0.7535 0.7634 0.7612 0.7595 0.7977 0.7657 0.7674 0.7576 0.7979 0.7968 0.7945 0.7983 0.8152** 2.12%
RMSE 0.4042 0.4029 0.4151 0.4038 0.4067 0.4075 0.3741 0.4010 0.4002 0.4047 0.3742 0.3746 0.3756 0.3734 0.3601** -3.56%
AUC 0.7239 0.7170 0.6631 0.7150 0.7132 0.7082 0.7986 0.7256 0.7243 0.7420 0.7988 0.8000 0.7979 0.7964 0.8324** 4.05%

comp ACC 0.8037 0.8017 0.7991 0.8015 0.7914 0.8000 0.8203 0.8048 0.8040 0.7825 0.8217 0.8191 0.8196 0.8197 0.8264* 0.57%
RMSE 0.3788 0.3808 0.3899 0.3813 0.3878 0.3833 0.3589 0.3784 0.3805 0.3915 0.3582 0.3585 0.3592 0.3591 0.3510* -2.01%
AUC 0.7490 0.7531 0.6924 0.7498 0.7497 0.7419 0.8263 0.7546 0.7587 0.7839 0.8184 0.8272 0.8253 0.8367 0.8769** 4.8%

database ACC 0.8336 0.8340 0.8278 0.8330 0.8327 0.8317 0.8485 0.8346 0.8328 0.7883 0.8478 0.8497 0.8500 0.8531 0.8690** 1.86%
RMSE 0.3530 0.3522 0.3644 0.3528 0.3538 0.3553 0.3310 0.3518 0.3523 0.3830 0.3328 0.3301 0.3302 0.3266 0.3090** -5.39%
AUC 0.8029 0.8081 0.7277 0.8032 0.8114 0.7950 0.8391 0.8047 0.8202 0.8273 0.8170 0.8408 0.8399 0.8395 0.8529** 1.44%

spanish ACC 0.7443 0.7508 0.6952 0.7461 0.7496 0.7417 0.7745 0.7545 0.7550 0.7613 0.7513 0.7734 0.7735 0.7718 0.7847 1.45%
RMSE 0.4156 0.4145 0.4482 0.4177 0.4155 0.4236 0.3968 0.4186 0.4119 0.4053 0.4108 0.3963 0.3962 0.3959 0.3872** -2.2%
AUC 0.6861 0.6989 0.6473 0.6935 0.6539 0.6709 0.7258 0.6952 0.7097 0.7135 0.7217 0.7269 0.7230 0.7255 0.7632** 4.99%

slepemapy ACC 0.7780 0.7789 0.7786 0.7782 0.7844 0.7739 0.7835 0.7790 0.7857 0.7238 0.7865 0.7868 0.7826 0.7876 0.7944** 0.86%
RMSE 0.3991 0.3978 0.4046 0.3998 0.4009 0.4050 0.3906 0.3983 0.3938 0.4205 0.3892 0.3889 0.3916 0.3903 0.3808** -2.08%

In addition, in order to expedite model convergence and ensure
that the model learns two different types of abilities, familiar and
unfamiliar, DisKT introduces an additional regularization term to
constrain model learning:

L2; = ‖(+1:C − (
−
1:C ‖ . (16)

Therefore, the final objective function of DisKT is:
L�8B ) = L124 − L2; . (17)

4 Experiments
We conduct extensive experiments, aiming to answer the following
four research questions to demonstrate the effectiveness of DisKT:

• RQ1: How does DisKT perform compare to various state-of-the-
art KT models?

• RQ2: How does DisKT alleviate cognitive bias compared to the
most advanced KT models?

• RQ3: How effective is DisKT in shielding guessing and mistak-
ing?

• RQ4:What are the impacts of the components (e.g., contradictory
attention) on DisKT?

4.1 Experimental Setup

4.1.1 Datasets We evaluate the performance of DisKT on 11
public datasets: assist09, algebra05, algebra06, statics, ednet, prob,
linux, comp, database, spanish, slepemapy. The introduction and
detailed processing of the datasets can be found in Appendix A,
and Table 3 presents the statistics of the processed datasets.

4.1.2 Baselines We compare DisKT with 14 state-of-the-art
models as follows: DKT [49], DKVMN [73], SKVMN [1], Deep-
IRT [68], GKT [40], SAKT [41], AKT [19], ATKT [21], CL4KT [32],
CoreKT [13], DTransformer [70], simpleKT [36], FoLiBiKT [27],
sparseKT [26]. Their introductions can be found in Appendix B.

4.1.3 Implementation Details We adopt 5-fold cross-validation
and folds are split based on the students. 10% of the training set is
used for validation, which is not only used for parameter tuning but
for early stopping strategy, that is, if AUC does not improve within
10 epochs, the training is halted. We focus on the most recent 100
interactions per student, as this recent information is crucial for
future predictions [32]. The models are optimized by Adam [30]
with the following settings: the batch size is 512, the learning rate is
set to 0.001, the dropout rate is 0.05, and the embedding dimension
is 64. All models are trained in PyTorch [43] on a Linux server with
two GeForce RTX 3090s. Following the previous works [27, 32, 56],
the evaluation metrics include Area Under the ROC Curve (AUC),
Accuracy (ACC) and Root Mean Square Error (RMSE). Our code and
datasets are available at https://anonymous.4open.science/r/DisKT.

4.2 Comparison with SOTA (RQ1 & RQ2)

4.2.1 Overall PerformanceF.A .C . Accuracy Table 1 presents
the evaluation performance of the compared models in terms of
AUC, ACC, and RMSE. Overall, our DisKT consistently outper-
forms other baselines on all metrics across all datasets. The main
observations are as follows:
• DisKT has quite substantial evaluation performance on almost all

datasets. Specifically, in terms of AUC, DisKT’s average relative
improvement over the strongest baseline on all datasets is 3.2%.
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Figure 4: The performance comparison between the competitive baselines and DisKT on alleviating cognitive bias. (left): AUC
performance changes of DisKT and baselines optimized with different bias strengths on ednet, tested with ednet-low and
ednet-high respectively. (right): � ! scores of several representative models on three datasets with different bias strengths.

These impressive results demonstrate the effectiveness of our
causal modeling, enabling DisKT to eliminate the influence of
confounder (i.e., student historical distribution) in the student
representation, and therefore, the model can generate correct
cognition for underperformers and overperformers, thereby im-
proving the accuracy of the evaluation.

• Interpretable models like Deep-IRT and CoreKT show poorer
performance in biased data due to sacrificing performance for
interpretability. For instance, CoreKT instantiated based on AKT
generally performs worse than AKT. In contrast, DisKT elimi-
nates the spurious correlation between user representation and
prediction score within the model, thereby alleviating the ampli-
fication of cognitive bias, bringing performance improvements
while also enhancing interpretability.

• Compared to other neural network structures, the attention
mechanism, especially Transformer, significantly affects the per-
formance of KT models. This is consistent with the research re-
sults in [36, 37]. This gap is more pronounced on larger datasets
(the statistical information of the datasets is shown in Table 3),
indicating the superiority of the attention mechanism for large-
scale real-world datasets, i.e., it is expert in capturing long-term
dependencies, thus it can extract rich information from large-
scale data as [19, 36] described. And DisKT significantly out-
performs other Transformer-based models in larger datasets,
proving that our DisKT can better exploit the powerful potential
of Transformer.

4.2.2 Performance on Alleviating Cognitive Bias Due to data
bias, the KT model tends to exhibit cognitive bias in different stu-
dent populations: overperformers can’t solve difficult questions,
while underperformers tend to get simple questions right. To fur-
ther evaluate the effectiveness of DisKT in alleviating cognitive bias,
we conduct experiments on synthetic data. Specifically, according
to the classical test theory [8], we build three datasets of different
bias strengths based on ednet according to the frequency of correct
responses (< 60%, 60%∼80%, and ≥ 80%): ednet-low, ednet-medium,
and ednet-high. These datasets are consistent with the settings in
Section 4.1.3. We choose two interpretable models, Deep-IRT and
CoreKT, and two best-performing models, AKT and sparseKT, as
baselines for studying cognitive bias. We test the models optimized
by the three datasets with ednet-low and ednet-high, respectively,
and their AUC performance changes are shown in Figure 4 left. We
make the following observations. 1) The AUC performance of all

models trained by endnet-high and tested with the endnet-low has
decreased, which indicates that models that have only seen high-
accuracy, i.e., simple questions, overload the cognition of under-
performers. Similarly, the AUC performance of all models trained
by endnet-low and tested with the endnet-high has also decreased,
reflecting the model’s cognition underload for overperformers. 2)
Compared to other strong competitors, DisKT effectively allevi-
ates the two cognitive biases while maintaining optimal evaluation
performance. In contrast, even though interpretable models like
Deep-IRT and CoreKT achieve good results, this comes at the cost
of sacrificing evaluation performance. 3) Cognitive bias greatly
affects the evaluation performance of the baselines, even rendering
their evaluation ineffective, i.e., AUC performance is around 0.5,
while DisKT still maintains AUC performance above 0.6. However,
the AUC performance of DisKT drops significantly after removing
the causal effect (DisKT F/>. sub.), indicating the correctness of
our modeling based on causal effect.

However, some metrics like AUC can only indirectly reflect
the impact of cognitive bias on the model. In KT, there is a lack
of a direct measure that can reflect the amplification degree of
cognitive bias in the model. To fill this gap, inspired by [60], we
have designed a calibration metric � ! , which measures the gap
between the actual and predicted correct rate distributions when
the model makes incorrect predictions. The calculation method can
be found in Appendix C. Higher � ! scores suggest a more serious
issue of cognitive bias. The � ! scores of several representative
models on three datasets with different bias strengths are shown in
Figure 4 right. We can see that, regardless of the bias strength of the
dataset, DisKT always maintains the lowest � ! scores. Meanwhile,
CoreKT achieves sub-optimal results due to its mitigation of answer
bias. Deep-IRT, due to its simple structure, cannot adapt to datasets
with larger bias strengths. AKT and sparseKT learn data biases but
are unable to suppress the amplification of cognitive bias within
the model, leading to the worst results. This further proves the
effectiveness of DisKT in alleviating cognitive bias.

4.3 In-depth Analysis (RQ3 & RQ4)

4.3.1 Effect of ShieldingGuessing andMistaking In Section 1,
we find that there existing the contradictory psychology (e.g., guess-
ing and mistaking) in the students’ biased data. We have provided
empirical evidence of guessing and mistaking using DKT on the
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Figure 5: Empirical evidence of guessing and mistaking veri-
fied by DKT applied to the assist09 dataset.
assist09 dataset. Specifically, we have analyzed the correct rate dis-
tribution of concept when DKT makes incorrect predictions. We
consider concepts with a correct rate of less than or equal to 0.3
as difficult concepts and those with a correct rate of greater than
or equal to 0.7 as easy concepts. We then calculate the proportion
of correct responses by students for difficult concepts (Guessing
Rate) and the proportion of incorrect responses for easy concepts
(Mistaking Rate). The results, as shown in Figure 5, indicate that
the Guessing Rate and Mistaking Rate are surprisingly high at
0.9500 and 0.9039, respectively. This suggests that contradictory
psychology (e.g., guessing and mistaking) can easily have a negative
impact on the assessment of the real knowledge state. Intuitively,
the Guessing Rate and Mistaking Rate measure the adverse effects
of guessing and mistaking on the model, respectively, with lower
values indicating that the model is better at shielding the impact of
these inevitable psychological factors. Table 2 presents the contra-
dictory metrics (Guessing Rate and Mistaking Rate) of DisKT and
several representative baselines on three datasets with different
bias strengths. We note that Deep-IRT achieves good results in
the Guessing Rate on all datasets, indicating that purely introduc-
ing question difficulty helps reduce the adverse impact of guessing.
Meanwhile, DisKT achieves the best results in Mistaking Rate on all
datasets while generally outperforming other baselines in Guessing
Rate. However, the results of DisKT without the contradictory at-
tention (DisKTF/>. con.) are generally pessimistic, confirming the
effectiveness of our designed contradictory attention in shielding
guessing and mistaking.

4.3.2 Ablation Study Wehave constructed five variants of DisKT
to explore the impact of different components on DisKT, as shown
in Figure 6. Specifically, in addition to the previously mentioned
“w/o. sub.” and “w/o. con.”, “w/o. IRT” removes the variant IRT mod-
ule, “w. nor. IRT” uses a normal IRT module, and “w/o. ;>BB2; ” omits
the loss function ;>BB2; . The following observations are made: (1)
“w/o. con.” shows a similar degree of performance decline across
both datasets, highlighting the importance of contradiction atten-
tion in shielding guessing and mistaking and effectively tracking
Table 2: Performance comparison in terms of shielding guess-
ing and mistaking.

Dataset Metric Deep-IRT CoreKT AKT sparseKT DisKT w/o. con. DisKT

ednet-low Guessing Rate↓ 0.7372 0.7968 0.9633 0.9577 0.9417 0.7515
Mistaking Rate↓ 0.9129 0.8292 0.8631 0.9295 0.8710 0.7406

ednet-medium Guessing Rate 0.3627 0.8000 0.9853 0.9855 0.9559 0.7778
Mistaking Rate 0.9557 0.9097 0.8298 0.8304 0.9241 0.6904

ednet-high Guessing Rate 0.3796 0.5612 0.4397 0.4427 0.3985 0.2797
Mistaking Rate 0.9596 0.9233 0.9314 0.9304 0.9851 0.8895
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Figure 6: Ablation study on ednet-low and ednet-high.

knowledge states. (2) “w/o. sub.” exhibits a slight performance de-
cline on ednet-low and a sharp decline on ednet-high, indicating
that DisKT, which models based on causal effects, is more adaptable
to data with high bias. (3) “w. nor. IRT” experiences a significant
performance decline, and “w/o. IRT” even more so, emphasizing not
only the effectiveness of the IRT module but also the advantages
of our proposed the variant IRT module. (4) “w/o. ;>BB2; ” shows a
slight performance decline, indicating that the regularization term
;>BB2; accelerates convergence while also effectively learning the
abilities of familiarity and unfamiliarity.

5 Conclusion and Future Work
In this work, we elucidate that cognitive bias within KT models
stems from the confounder from a causal perspective. In response,
we propose the DisKT model based on causal effect, effectively
nullifying the impact of the confounder in student representation.
Moreover, DisKT incorporates a contradiction attention to shield
the contradictory psychology (e.g., guessing and mistaking) in the
students’ biased data. Meanwhile, we innovate a variant of IRT
to enhance the interpretability of model predictions. Our findings,
supported by rigorous experiments across 11 benchmarks and 3
synthesized datasets, reveal that DisKT not only significantly alle-
viates cognitive bias but also surpasses 14 baseline models in terms
of evaluation accuracy.

The avenues of future work include 8) further exploration of
educational psychology, such as forgetting, 88) investigation of the
critical points between simple and difficult questions for different
students and 888) discovery of more fine-grained causal relations.
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A Datasets
We evaluate the performance of DisKT on 11 public datasets:
• assist092 [15]: The assist09 dataset, composed of math exercises,

is collected from the ASSISTment intelligent tutoring system
in the school year 2009-2010 and is widely used as a standard
benchmark in KT research.

• algebra05, algebra063 [59]: The algebra05 and algebra06
datasets come from the KDD Cup 2010 EDM Challenge, contain-
ing detailed step-level student responses to algebra questions.

• statics4 [31]: The statics dataset is a collection of records from
a college-level engineering statics course at Carnegie Mellon
University during the Fall semester of 2011.

• ednet5 [11]: The ednet dataset, collected by the multi-platform
AI tutoring service Santa, stands as the largest publicly released
interactive educational system dataset to date.

• prob, comp, linux, database6 [25]: The prob, comp, linux, data-
base datasets are collected from the Programming Teaching As-
sistant platform, specifically from course exercises in Probability
and Statistics, Computational Thinking, Linux System, and Data-
base Technology and Application.

• spanish7 [34]: The spanish dataset is from middle-school stu-
dents practicing Spanish exercises, including translations and
applications of basic skills like verb conjugation, over a 15-week
semester.

• slepemapy8 [? ]: The slepemapy dataset originates from
slepemapy.cz, an online platform dedicated to the adaptive prac-
tice of geography facts.
Following the data preprocessing approach in [18], we exclude

students with fewer than five interactions and all interactions in-
volving nameless concepts. Since a question may involve multi-
ple concepts, we convert the unique combinations of concepts
within a single question into a new concept. The statistical in-
formation after processing is shown in Table 3. It’s noted that we
randomly sample 5000 students from three large datasets, ednet,
comp and slepemapy.

Table 3: Statistics of 11 datasets. “#concepts*” denotes the
total number of concepts after converting multiple concepts
into a new concept.
Datasets #students #questions #concepts #concepts* #interactions

assist09 3,644 17,727 123 150 281,890
algebra05 571 173,113 112 271 607,014
algebra06 1,138 129,263 493 550 1,817,450
statics 333 1,223 N/A N/A 189,297
ednet 5,000 12,117 189 1,769 676,276
prob 512 1,054 247 247 42,869
comp 5,000 7,460 445 445 668,927
linux 4,375 2,672 281 281 365,027

database 5,488 3,388 291 291 990,468
spanish 182 409 221 221 578,726

slepemapy 5,000 2,723 1,391 1,391 625,523

2https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-
builder-data-2009-2010
3https://pslcdatashop.web.cmu.edu/KDDCup
4https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
5https://github.com/riiid/ednet
6https://github.com/wahr0411/PTADisc
7https://github.com/robert-lindsey/WCRP
8https://www.fi.muni.cz/adaptivelearning/?a=data

B Baselines
We compare DisKT with 14 state-of-the-art models as follows:

• DKT [49]: DKT is the first model that employs Recurrent Neural
Networks (RNNs) to solve the KT task. Over the past few years,
it has been widely used as a standard baseline in KT research.

• DKVMN [73]: DKVMN leverages a dual-matrix approach to
refine KT, using a static key matrix for mapping interconnec-
tions among concepts and a dynamic value matrix for real-time
updates of a student’s knowledge state.

• SKVMN [1]: SKVMN integrates the recurrent modeling capa-
bilities of DKT with the advanced memory network structure of
DKVMN, enhancing the representation and tracking of students’
knowledge states over time.

• Deep-IRT [68]: Deep-IRT provides a detailed understanding of
student learning trajectories and the difficulty of concepts, inte-
grating the DKVMN for feature extraction with the psychometric
insights of IRT.

• GKT [40]: GKT redefines the KT task bymodeling the knowledge
structure as a graph, transforming it into a node-level classifica-
tion challenge.

• SAKT [41]: SAKT employs a self-attention mechanism within a
Transformer architecture to dynamically weigh past learning in-
teractions, capturing long-term dependencies and the relevance
among concepts and historical interactions.

• AKT [19]: AKT accounts for the learner’s tendency to forget over
time within its monotonic attention framework by integrating
embeddings inspired by the Rasch model.

• ATKT [21]: ATKT applies these perturbations to the original
student interaction sequences, utilizing an attention-based LSTM
framework.

• CL4KT [32]: CL4KT introduces a novel contrastive learning
framework for KT, aiming to enhance representation learning by
distinguishing between similar and dissimilar learning histories.

• CoreKT [13]: CORE framework enhances KT by addressing
answer bias through a causality perspective. It differentiates
between total and direct causal effects of questions on student
responses to mitigate bias, improving the accuracy of tracing stu-
dents’ knowledge states. We introduce CORE with AKT, namely
CoreKT.

• DTransformer [70]: DTransformer revolutionizes KT by diag-
nosing learner’s knowledge states from question-level mastery
using a novel architecture. It employs Temporal and Cumula-
tive Attention (TCA) mechanisms for dynamic analysis and a
contrastive learning-based algorithm for stable knowledge state
tracking.

• simpleKT [36]: simpleKT introduces a simple but tough-to-beat
baseline for KT, focusing on simplicity and robust performance
across diverse KT datasets.

• FoLiBiKT [27]: FoLiBi, leveraging the forgetting-aware linear
bias concept, innovatively addresses the challenge of modeling
forgetting behavior in KT by introducing a linear bias mechanism.
We introduce FoLiBi with AKT, namely FoLiBiKT.

• sparseKT [26]: sparseKT introduces a k-selection module de-
signed to select items that achieve the highest attention scores, in-
tegrating two distinct sparsification strategies: soft-thresholding
sparse attention and top-K sparse attention.

11

https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2009-2010-assistment-data/skill-builder-data-2009-2010
https://pslcdatashop.web.cmu.edu/KDDCup
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://github.com/riiid/ednet
https://github.com/wahr0411/PTADisc
https://github.com/robert-lindsey/WCRP
https://www.fi.muni.cz/adaptivelearning/?a=data


1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

C Evaluation Metric
In the experiments, we design a calibration metric � ! to measure
the amplification degree of cognitive bias within KT models, which
is defined by the following equation.

� ! =
∑
2

?2∑
2 ?2

log ?2∑
2 ?2

@2∑
2 @2

,

?2 =

∑C
8=1 1(28 = 2, A8 = 1, (58 < 0.5) = A8 )∑C

8=1 1(28 = 2, (58 < 0.5) = A8 )
,

@2 =

∑C
8=1 58 · 1(28 = 2, (58 < 0.5) = A8 )
1(28 = 2, (58 < 0.5) = A8 )

,

58 = 5 (@1:8−1, 21:8−1, A1:8−1),
where 1(·) is the indicator function. 5 is the model to be evaluated.
28 and A8 represent the 8-th concept and its response, respectively.
There are a total of C interactions.
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