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Figure 1. Overview of our proposed method. (a) Illustrative comparison between standard embeddings (dense, long) and two different
compression schemes: Matryoshka representations (MRL) (Kusupati et al., 2022) with short length and our Contrastive Sparse Represen-
tation (CSR) based on sparsification. (b) Comparison of retrieval accuracy and time of different methods on ImageNet with GPUs. For
CSR, we present results with the SOTA RN50 backbone from Wightman (2019) as well as the same RN50 backbone from Kusupati et al.
(2022) for a fair comparison. Compared to MRL and int8 quantification (Quant Int8) methods, our sparse embedding approach CSR
attains the best retrieval accuracy (very close to full representations) while being much more efficient in retrieval time, using sparse matrix
multiplication on GPU. (c) Training GPU hours of CSR compared to baseline methods, where we outperform MRL on average 1-NN
accuracy with much less training time.

Abstract

Many large-scale systems rely on high-quality
deep representations (embeddings) to facilitate
tasks like retrieval, search, and generative model-
ing. Matryoshka Representation Learning (MRL)
recently emerged as a solution for adaptive embed-
ding lengths, but it requires full model retraining
and suffers from noticeable performance degra-
dations at short lengths. In this paper, we show
that sparse coding offers a compelling alterna-
tive for achieving adaptive representation with
minimal overhead and higher fidelity. We pro-
pose Contrastive Sparse Representation (CSR),
a method that sparsifies pre-trained embeddings
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into a high-dimensional but selectively activated
feature space. By leveraging lightweight au-
toencoding and task-aware contrastive objectives,
CSR preserves semantic quality while allowing
flexible, cost-effective inference at different spar-
sity levels. Extensive experiments on image,
text, and multimodal benchmarks demonstrate
that CSR consistently outperforms MRL in terms
of both accuracy and retrieval speed—often by
large margins—while also cutting training time
to a fraction of that required by MRL. Our results
establish sparse coding as a powerful paradigm
for adaptive representation learning in real-world
applications where efficiency and fidelity are both
paramount. Code is available at this https URL.

1. Introduction
Representation learning is at the core of deep learning (Le-
Cun et al., 2015) and high-quality representations of inputs
(e.g., image, text) empower numerous large-scale systems,
including but not limited to search engines, vector databases,
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and retrieval-augmented generative AI (Lewis et al., 2020).
However, the rapid growth in data volume poses signifi-
cant challenges for latency-sensitive applications. It is thus
desirable to develop representations of adaptive inference
cost that can best trade-off between accuracy and inference
speed.

Recently, a class of methods called Matryoshka Represen-
tation Learning (MRL) (Kusupati et al., 2022) has drawn a
lot of attention and is now officially supported in the latest
OpenAI and Google’s Gemini text embedding APIs (Ope-
nAI, 2024; Lee et al., 2024b) with millions of users and
applications. The idea if MRL is to train an ensemble of
representations truncated at different lengths (e.g., from 8
to 2048) through joint multi-task training. However, MRL
deviates from standard representation learning and requires
full parameter updates to the backbone; the joint training
also inevitably sacrifices the quality of representations at a
noticeable margin (e.g., 5% drop of top-1 accuracy on Ima-
geNet at full representation length). These limitations render
MRL a costly and lossy method for adaptive representation.

In this paper, we revisit sparse coding (Lee et al., 2006) as
a much faster, lightweight, and high-fidelity approach to
achieve adaptive representation. As illustrated in Figure
1(a), instead of truncating the representation length as in
MRL, we leverage sparse vectors and sparse matrix fac-
torization to attain computational efficiency. Specifically,
we sparsify a full representation at different levels (charac-
terized by K, the number of activated neurons). We find
that a few numbers of activated neurons (e.g., 4 to 16) can
preserve the performance of a much longer dense represen-
tation (e.g., 2048 dimensions). This is in sharp contrast to
MRL embeddings whose quality deteriorates a lot at such
extremely short lengths (>10% drop). Therefore, sparse
features using sparse vector formats can be stored efficiently
with only a few activated neurons. With the help of sparse
matrix factorization (with native GPU support in modern
deep learning libraries such as PyTorch)1, these sparse em-
beddings can be used for retrieval tasks at a much higher
speed with a complexity order of O(K), where K is very
small. In comparison, MRL requires a longer length of
representation (e.g. 256) to attain similar accuracy (if possi-
ble), leading to extra slower inference speed. As shown in
Figure 1(b), MRL is inferior to our method in terms of both
accuracy and retrieval time by a significant margin.

Another key advantage of sparse features is that they elim-
inate the need to retrain the entire network. In contrast,
MRL—Kusupati et al. (2022) noted—performs poorly un-
less full-parameter tuning. However, many existing founda-
tion models, such as the multimodal representations in CLIP
(Radford et al., 2021) and the text embeddings in NV-Embed

1PyTorch’s native sparse vector library can be found at https:
//pytorch.org/docs/stable/sparse.html.

(Lee et al., 2024a), are pre-trained as single representations
on massive Internet-scale data. Fine-tuning these models
would be prohibitively expensive and would prevent lever-
aging pre-trained open weights. Leveraging recent advances
in training sparse autoencoders (SAEs) (Cunningham et al.,
2023; Gao et al., 2024), we can train a lightweight 2-layer
MLP module for sparsifying pre-trained embeddings within
a very short period of time (e.g., half of an hour on Ima-
geNet with a single GPU), which is of orders of magnitude
faster than MRL, as shown in Figure 1(c).

These pieces of evidence on accuracy, retrieval time, and
training time show that sparse features are strong alterna-
tives to MRL methods for producing high-fidelity and com-
putationally efficient representations with a lightweight mod-
ule and training cost. Our proposed method, Contrastive
Sparse Representation Learning (CSR), combines con-
trastive retrieval and reconstructive autoencoding objectives
to preserve the original feature semantics while better tailing
it down to the retrieval tasks. We evaluate CSR on a range of
standard embedding benchmarks, from image embedding,
text embedding, to multimodal embeddings, and compare it
against various state-of-the-art efficient embedding models.
Extensive experiments show that CSR consistently outper-
forms MRL and its variants by significant margins in terms
of both accuracy and efficiency. Notably, under the same
compute budget, CSR rivals MRL’s performance by 9%,
15%, and 7% on ImageNet classification, MTEB text re-
trieval, and MS COCO retrieval, respectively. Our main
contributions are:

• We propose sparse coding as an alternative approach
to adaptive representation learning and demonstrate its
numerous advantages over the MRL approach in terms
of fidelity, retrieval cost, and training cost.

• We introduce an effective learning method for sparse
adaptive representation, Contrastive Sparse Rep-
resentation (CSR) Learning. It combines a task-
specific sparse contrastive learning loss with a recon-
structive loss to maintain overall embedding quality.
This generic design consistently improves performance
across different tasks like classification and retrieval.

• We conduct a detailed analysis of CSR, examining var-
ious factors and providing a fair comparison with MRL
in terms of retrieval time and accuracy. We further val-
idate CSR’s effectiveness across real-world domains
and benchmarks, where it achieves competitive per-
formance against heavily trained state-of-the-art MRL
models with significantly lower computational costs.
On the inference side, CSR delivers a 69× speedup on
ImageNet1k 1-NN tasks without compromising perfor-
mance compared to quantization-based approaches.
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2. Related Work
Adaptive Representation Learning. Recent research has
increasingly focused on learning adaptive representations
that cater to multiple downstream tasks with diverse com-
putational requirements. Early efforts explored context-
based architectural adaptations (Kim & Cho, 2020), dy-
namic widths and depths in BERT (Hou et al., 2020), and
random layer dropping during training to improve pruning
robustness (Fan et al., 2019). More recently, Matryoshka
Representation Learning (Kusupati et al., 2022) introduced
a novel technique for creating flexible, nested substructures
within embeddings, enabling fine-grained control over the
trade-off between latency and accuracy. This concept has
since been extended to various modalities and applications,
including large language models (OpenAI, 2024; Nussbaum
et al., 2024; Yu et al., 2024), diffusion models (Gu et al.,
2023), and multimodal models (Cai et al., 2024; Hu et al.,
2024). Other works have further explored token reduction
in image and video processing (Yan et al., 2024b; Duggal
et al., 2024).

Despite these advances, existing methods often do not fully
harness the capabilities of large foundation models, high-
lighting the need for more effective compression strategies.
Our proposed sparse compression methodology addresses
this gap by providing a lightweight, plug-and-play solution
that can be readily applied on top of any foundation model
– significantly reducing computational overhead while pre-
serving representational quality.

Sparse Coding. Sparse coding serves as a powerful tech-
nique for compressing high-dimensional signals and extract-
ing salient features (Wright et al., 2010; Zhang et al., 2015),
with learned sparse representations often providing addi-
tional computational benefits and robustness (You et al.,
2024; 2025). Prior work has induced sparsity through mod-
ifications to model design or training protocols, including
modifications to attention mechanisms (Correia et al., 2019),
applying Bayesian standard Gamma priors (Duan et al.,
2024a;b; Hu et al., 2025), incorporating discrete sparse con-
cept layers (Koh et al., 2020; Xie et al., 2025), and promot-
ing sparse activations in large language models (Mirzadeh
et al., 2023; Zhang et al., 2024). However, training state-of-
the-art foundation models from scratch under these sparsity
constraints has proven challenging (Elhage et al., 2022),
limiting their current applicability.

Meanwhile, Sparse Autoencoders have achieved notable
success in improving the interpretability of foundation mod-
els (Cunningham et al., 2023; Yan et al., 2024a), primar-
ily because they uncover semantic information by map-
ping high-dimensional data onto lower-dimensional sub-
spaces (Cunningham et al., 2023). Building on these in-
sights – and harnessing the inherent advantages of sparse

coding – we investigate how SAEs can be further devel-
oped to learn adaptive representations with high efficiency,
expanding their applicability to a wider range of tasks.

3. Method
Our proposed framework, Contrastive Sparse Representa-
tion learning (CSR), is illustrated in Figure 2. Starting from
a pre-trained embedding v ∈ Rd, we project it into a sparse
representation space Rh, selectively activating the most rel-
evant dimensions for adaptive representation learning. We
then regularize this hidden space using a reconstruction-
based sparse compression loss (Section 3.2.1). Addition-
ally, with theoretical motivations and guarantees provided
by (Wang et al., 2024), we introduce a non-negative con-
trastive loss to expand model capacity and feature identifia-
bility. (Section 3.2.2)

3.1. Preliminaries

Problem Formulation. For simplicity, we first introduce
our framework in the context of a classification task. Let
DN

db = {(xi, yi)
N
i=1} be a training dataset of size N , where

xi ∈ X are an input sample and yi ∈ YL are corre-
sponding labels with L classes, We obtain an embedding
v = f(x; θf ) : X → Rd. We can apply exact ℓ2-based k-
nearest neighbor (KNN) search for classification, which has
O(dN) complexity. In practice, KNN often employs high-
dimensional embeddings (i.e. d = 4096) to achieve stronger
performance, but at the cost of increased computational la-
tency. Our goal is to learn a more compact representation
v′ ∈ Rm (where m ≪ d) that balances accuracy and query
latency. This shortened embedding can also benefit other
downstream tasks such as retrieval and clustering.

Matryoshka Representation Learning (MRL). MRL
(Kusupati et al., 2022) simultaneously optimizes embed-
dings at multiple dimensions, as illustrated in Figure 2, to
produce representations of variable size. Specifically, let
M be a set of target embedding sizes. For each m ∈ M,
MRL applies an additional linear classifier to the first m
dimensions of the embedding vector, v1:m ∈ Rm. This
design ensures each truncated representation is explicitly
trained via the final loss. Formally, the MRL objective is

LMRL =
∑

m∈M
cmLCE

(
W (m) · f(xi; θf )1:m; yi

)
, (1)

where W (m) ∈ RL×m is the linear classifier weights corre-
sponding to v1:m. Each loss term is scaled by a non-negative
coefficient {cm ≥ 0}m∈M. The multi-granularity arises
from selecting dimensions in M, whose size is constrained
to at most log(d), that is, |M| ≤ ⌊log(d)⌋. For example,
Kusupati et al. (2022) choose M = {8, 16, . . . , 1024} as
the nesting dimensions.
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3.2. Contrastive Sparse Representation

As discussed in Section 1, MRL (Equation 1) faces two key
constraints: it requires (full) training of the backbone param-
eters θf and its performance often deteriorates a lot under
small hidden dimensions. To overcome these limitations,
we propose a new methodology that relies on the computa-
tional efficiency of sparse vectors for efficient retrieval. The
method, named Contrastive Sparse Representation (CSR),
learns a simple one-layer sparse module on top of frozen
pretrained embedding models (with full representation size,
e.g., 2048) that maps dense embeddings to highly sparse
embeddings with a small number of active (i.e., non-zero)
dimensions (e.g., 32). As a result, CSR not only saves a lot
training effort, but also allow using sparse matrix multipli-
cation at inference time to accelerate retrieval significantly.
Below, we outline how we train the CSR module through
a combination of sparse autoencoding (Section 3.2.1) and
sparse contrastive learning (Section 3.2.2).

3.2.1. SPARSE AUTOENCODING

Autoencoding is a long-standing unsupervised objective that
extract salient features that could preserve the original data
the most a reconstruction objective. In CSR, we aim at com-
pressing dense embeddings to sparse vectors for efficient
sparse retrieval while retaining most of the useful informa-
tion. To achieve this goal, we adopt sparse autoencoders due
to their ability to scale with large data and restore feature
semantics (Cunningham et al., 2023; Yan et al., 2024a).

Sparse Autoencoders (SAEs). SAEs (Makhzani & Frey,
2013; Cunningham et al., 2023; Gao et al., 2024; Yan et al.,
2024a) aim to extract a sparse representation zk by learning
to reconstruct the dense feature from zk. Specifically, given
a pretrained dense embedding v := f(x) ∈ Rd as the input,
we apply a TopK SAE (Gao et al., 2024) with the following
autoencoding process:

zk := σ+(TopK(Wenc(f(x)− bpre) + benc)), (2)

f̂(x)k := Wdeczk + bpre, (3)

where Wenc ∈ Rh×d and Wdec ∈ Rd×h are the encoder
and decoder weight matrices, respectively; benc ∈ Rh and
bpre ∈ Rd are bias terms. The function σ+(·) = max(0, ·)
denotes the ReLU activation, and TopK(·) selects the top k
largest elements of the input, zeroing out the rest (as in Gao
et al. (2024)). As a result, the latent zk is always a sparse
non-negative vector with k active dimensions. This en-
ables direct control over the accuracy–compute trade-off in
downstream tasks, particularly under resource-constrained
conditions. We formulate the loss function as follows:

L(k) =
∥∥∥f(x)− f̂(x)k

∥∥∥2
2
. (4)
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Figure 2. Overview of our proposed CSR framework. As a post-
training approach, CSR differs fundamentally from MRL by pro-
jecting embeddings into a higher-dimensional space and dynam-
ically activating only the TopK dimensions for a compact repre-
sentation. The hidden space is constrained by both reconstruction
and contrastive losses, which together enhance the capacity of the
sparse representation while preserving computational efficiency.

Moreover, as the hidden dimension h increases, we empiri-
cally observe that an increasing number of latent dimensions
remain inactive during training – a phenomenon referred to
as “dead latents”. A large proportion of dead latents reduces
the model’s capacity and leads to performance degrada-
tion (Lu et al., 2019; Templeton et al., 2024). To mitigate
this issue, an auxiliary loss Laux and Multi-TopK losses are
proposed to mitigate this problem. The overall reconstruc-
tion loss is

Lrecon = L(k) + L(4k)/8 + βLaux, (5)

where Laux = ||e− ê||22, e = f(x)− f̂(x), and ê = Wdecz
is the reconstruction using the top-kaux dead latents. By
default, we set kaux = 512 and β = 1/32, following the
setting in Gao et al. (2024). We also offer dynamic sparsity
selection, with k ranging from 8 to 256, to accommodate
different tasks across various modalities.

3.2.2. SPARSE CONTRASTIVE LEARNING

Furthermore, we consider to incorporate an additional
sparse contrastive loss to the representations’ discriminative
power. Most state-of-the-art embedding models today, e.g.,
CLIP (Radford et al., 2021), follow a contrastive learning
paradigm, which that learns to use the embeddings to dis-
tinguish between positive and negative pairs. And it applies
to both supervised and unsupervised settings (Huang et al.,
2024).
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The loss objective can be formulated as:

Lcl = − 1

B

B∑
i=1

log
exp(zTi zi)

exp(zTi zi) +
∑B

j ̸=i exp(z
T
i zj)

. (6)

By leveraging the non-negative nature of latent variables
zi in sparse autoencoders, Equation 6 can be viewed as a
variant of the Non-negative Contrastive Loss (NCL) pro-
posed in Wang et al. (2024). This interpretation enables us
to draw on the theoretical guarantees of NCL, as stated in
the following theorem:

Theorem 5 (Wang et al. (2024)). Under mild conditions,
the solution ϕ(x) is the unique solution to the NCL objective.
As a result, NCL features are identifiable and disentangled.

Theoretically guaranteed by Theorem 5, the model is en-
couraged to utilize a larger number of latent dimensions
to reconstruct the input data. This behavior is empirically
demonstrated in Figure 6, where we observe a reduction in
“dead” dimensions compared to vanilla SAE approaches.

3.2.3. OVERALL TRAINING OBJECTIVE

At last, we optimize the sparse module through a combina-
tion of sparse autoencoding Lrecon and sparse contrastive
learning Lncl. The former incentivizes the model to preserve
original semantic information in the original representation,
while the latter shapes the sparse representation to be better
at discriminative tasks. The final training objective of our
Contrastive Sparse Representation (CSR) method is formu-
lated as:

LCSR = Lrecon + γLncl. (7)

Here, γ is a hyperparameter that balances the two loss com-
ponents and is set to 1 by default.

4. Empirical Analysis
In this section, we conduct a careful study on the empir-
ical performance of the proposed CSR. All experiments
in this section are conducted on ImageNet, using 1-NN
accuracy (Johnson et al., 2019) as the evaluation metric.
By default, we set the hidden dimension h of CSR to be
h = 4d, where d is the dimension of the pretrained dense
embeddings, and set the default active dimension to k = 32.

For a fair and intuitive comparison of MRL and CSR, First,
we adopt the notion of active dimension as a surrogate
metric to benchmark the retrieval time under dense (MRL-
type) and sparse (CSR-type) embeddings. For example,
“Active Dim = 8” denotes either a length-8 dense embed-
ding (MRL) or a sparse embedding with TopK (k = 8)
activation (CSR). Notably, we choose it because dense and
sparse matrix multiplication have the same computation
complexity under the same active dimension k, i.e., O(k).
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Figure 3. Comparision of retrieval time based on different factors.
(a) Fixed-scale scenario (1M database): Both methods achieve
performance sweet spots at TopK=16, with CSR exhibiting 2.1×
speedup over dense embeddings when sparsity exceeds 80%. (b)
Scaling scenario (h = 8192): CSR exhibits increasingly efficient
scalability from 0.5M to 10M, with performance gains accelerating
at larger scales. This makes it highly practical for real-world
applications involving millions of entries.

In Section 4.1, we further carefully benchmark them in prac-
tice and find that the two indeed have similar retrieval time,
and sparse ones can be even slightly faster under small k.

To account for variations in retrieval time due to sample size,
we establish a standardized benchmarking protocol (denoted
as T ) to measure retrieval latency by default. Specifically,
to simulate large-scale retrieval scenarios, we report the
average retrieval time for 512 queries over an ImageNet-
scale database containing 1.3 million entries (equivalent to
the size of the ImageNet training set). For CSR, we use
a default hidden dimension of h = 16,384 and an active
dimension of k = 32. All experiments are conducted in a
consistent GPU environment using PyTorch (Paszke et al.,
2019). To facilitate comparison, we also report the relative
retrieval time of each method by normalizing it against the
retrieval time of CSR under the default setup. Additional
implementation details can be found in Section E.3.

4.1. Retrieval Time Comparison with MRL

In this section, we benchmark the retrieval time of MRL
and CSR under the same active dimension k and analyze
the impact of hidden dimension Rh, database size N and
sparsity k.

(i) Active dimension. Figure 3(a) shows retrieval time under
varying hidden dimensions, with database size fixed. We
can see that the retrieval time of CSR (i.e., sparse multipli-
cation) and MRL (i.e., dense multiplication) both grow with
large k and remain relatively on the same level. And for
smaller k, CSR shows a clearer advantage over MRL. Al-
though CSR and MRL have similar theoretical complexity
O(dk), their actual runtimes are affected by backend im-

5



Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation

8 16 64 256
TopK

70

75

80

85
1-

N
N

 A
cc

ur
ac

y 
(%

) Full Representation of ViT-L

Full Representation of ViT-S

ViT-S/16
ViT-L/16

(a) ViT-based Model.

8 16 64 256
TopK

55

60

65

70

75

1-
N

N
 A

cc
ur

ac
y 

(%
)

Full Representation of ResNet50

Full Representation of ResNet18

ResNet18
ResNet50

(b) ResNet-based Model.

Figure 4. Performance of CSR under different sparsity levels
with different sizes of backbone models. CSR achieves higher
fidelity at greater sparsity levels when applied to larger backbone
models (which provide better base performance), observed consis-
tently in both ViT and ResNet architectures.

plementations. For instance, cuBLAS (used for dense ops)
is highly optimized but has high launch overhead, while
cuSPARSE (used for CSR) is lighter but less optimized for
small k. Interestingly, we can observe that for sparse em-
beddings, retrieval time decreases as hidden dimension h
increases. This suggests notable benefit of CSR that it can
use higher latent dimensions for better expressivity while
attaining faster retrieval. On the contrary, MRL with higher
dense dimensions always has slower retrieval. We elaborate
potential reasons on this distinction at Appendix E.4.

(ii) Database size. Figure 3(b) shows that CSR demonstrates
superior scalability as the database size N increases from
0.5M to 10M. The relative efficiency gain becomes more
pronounced with larger datasets, underscoring the practical-
ity of sparse embeddings in real-world retrieval scenarios.

4.2. Effect of Backbone Size

Experiment Setup. We examine fidelity versus backbone
size (with different input dimension Rd), and sparsity, using
fixed hidden dimension Rh across architectures. For ViT,
we use ViT-S/16 (d = 384) and ViT-L/16 (d = 1024) with
h = 4096. For ResNet, we test RN18 (d = 512) and RN50
(d = 2048) with h = 8192. A more detailed experiment
setup is provided in Section E.1.

Analysis. Figure 4 demonstrates that a larger backbone
with higher input embedding dimensions improves model fi-
delity at equal sparsity levels. This insight is particularly sig-
nificant, as larger embedding sizes generally encode richer
information, thereby achieving better downstream perfor-
mance. By leveraging these high-dimensional embeddings,
our approach more effectively retains essential features and
relationships within the data.
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Figure 5. Performance of CSR under different hidden dimen-
sions and different types of backbone models (ResNet-50 (con-
volution) and ViT-L (Transformers)). CSR exhibits a reverse
U-shape across different models and hidden dimensions. CSR’s
performance peaks at h = 4d (d is the input dimension size) but
degrades beyond this, especially with higher sparsity.
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Figure 6. Comparison of dead latent fractions across loss combina-
tions under varying sparsity constraints. Results show that even
equipped with Lauxk and Multiple-TopK at extreme sparsity levels
(i.e., k = 8, 16, 32). CSR further alleviates this issue, outperform-
ing baselines and demonstrating its robustness.

4.3. Effect of Hidden Representation Dimension Rh

Experiment Setup. We explore how hidden dimension
Rh effects on our model, we use ViT-Large and ResNet50
as pre-trained backbones, sweeping h from d to 16d while
keeping all other parameters at their default values. Addi-
tional implementation details are provided in Section E.2.

Analysis. Figure 5 compares model performance across
different hidden dimensions under varying sparsity con-
straints. Notably, a shift in the performance trend occurs
at h = 4d. When h < 4d, performance gradually im-
proves with increasing hidden dimension, reaching its peak
at h = 4d. However, beyond this point, further increases in
h lead to performance degradation, particularly under higher
sparsity constraints. This trend aligns with the observations
of Gao et al. (2024), which suggest that excessively large
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(b) Comparison of ImageNet1k 1-NN Accu-
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(c) Comparison of natural language tasks
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Figure 7. (Left & Middle): Results of ImageNet Top-1 accuracy (a) and 1-NN accuracy (b) across active dimensions under the same
pretrained ResNet-50 backbone used in Kusupati et al. (2022). We can see that while MRL trains the whole network and CSR only uses
frozen embeddings, CSR still performs consistently better across all embedding sizes and has significant margins beyond 20% at lower
active dimensions (the region that yields the largest efficiency gains). (Right): Comparison of text embedding methods at similar retrieval
cost. For CSR, we use k = 32 by default. For each task, the model is trained on three datasets and evaluated on three unseen datasets.
The text embeddings learned by CSR outperformed other MRL-based baselines by significant margins across different natural language
tasks at much lower training cost.

hidden dimensions may not be fully utilized, ultimately di-
minishing model performance. A similar pattern is observed
in ResNet. Based on these findings, we set h = 4d as the
default configuration for all subsequent experiments unless
otherwise specified.

4.4. Effect of Different Losses

Experiment Setup. We investigate how different loss
functions affect model capacity, particularly in addressing
the dead latent problem discussed in Section 3.2.1, using
RN50 backbone with h = 4d. Other parameters are set at
their default values.

Analysis. Figure 6 illustrates the impact of different loss
functions on model capacity. The naı̈ve SAE suffers from
severe dead latents, while the inclusion of an auxiliary loss
Laux and the multi-TopK loss partially mitigates this issue.
Introducing a non-negative contrastive loss (NCL) further
alleviates the problem, particularly at extreme sparsity levels
(e.g., k = 8, 16, 32). Empirical results validate the effec-
tiveness of Theorem 5, demonstrating that representation
learning with NCL promotes more orthogonal and disentan-
gled features. This, in turn, increases the number of active
dimensions and enhances overall model performance.

5. Benchmark Results and Analysis
We evaluated the effectiveness of our proposed CSR frame-
work across three mainstream representation modalities:
vision, language, and vision+language. For vision repre-
sentation (see Section 5.1), we conduct image classification
on ImageNet-1K and evaluate performance using 1-NN
accuracy, following Kusupati et al. (2022). For language

representation (see Section 5.2), we focus on three primary
tasks: text classification, text clustering, and text retrieval
on the MTEB benchmark (Muennighoff et al., 2022). For
multimodal representation (see Section 5.3), we report both
in-distribution and zero-shot cross-modal retrieval perfor-
mance on two widely-used datasets: MS COCO (Lin et al.,
2014) and Flickr30K (Young et al., 2014). Through these
experiments, we aim to provide a holistic understanding of
the capabilities of our proposed framework.

5.1. Vision Representation Comparision

Baselines We compare our proposed method with the fol-
lowing baseline approaches. 1) MRL/MRL-E (Kusupati
et al., 2022): RN50 model where the fully connected layer
is replaced by multiple (MRL) or a single (MRL-E) classi-
fication head(s) that take truncated input dimensions (e.g.,
only the first 8 of the original 2048 dimensions). 2) SVD:
We performed a low-rank approximation of the 1000-way
classification layer of RN50, with rank = 1000. 3) Rand-LP:
We compared against a linear classifier fit on randomly se-
lected features (He et al., 2020). 4) Rand-FS: We randomly
selected features extracted from RN50 for 1-NN classifica-
tion.

Experiment Setup. We evaluate 1-NN accuracy and Top-
1 accuracy on ImageNet1k classification, following Kusu-
pati et al. (2022). For fair comparison, we used the same
RN50 backbone weights as MRL (denoted as FF2048 in the
original work) and trained CSR on its ImageNet1k encoded
embeddings. For further implementation details, please
refer to Section B.
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Table 1. Performance and efficiency of text embeddings on three natural language tasks: classification, clustering, and retrieval. We
use NV-Embed-V2 as our pre-trained model, and present its performance in the first line of the table in gray. We analyze Dataset-Specific
Evaluation results along two key dimensions: (1) Relative Retrieval Time under matched performance and ii) performance under matched
retrieval efficiency. Under matched performance, CSR achieves a remarkable 61× speedup, while under matched retrieval efficiency, it
improves performance by 15%, demonstrating its superior balance between speed and accuracy. The maximum values are indicated in
bold, while the second-highest values are underlined. Relative Retrieval Time is calculated follows the definition in Section 4.

Text Classification Text Clustering Text Retrieval
Active Retrieval Top-1 Acc (%) ↑ Top-1 Acc (%) ↑ NDCG@10 (%) ↑

Category Model Dim Time MTOPIntent Banking77 TweetSentiment BiorxivP2P BiorxivS2S TwentyNews FiQA2018 NFCorpus SciFACT

Full Rep NV-Embed-V2 4096 37.6 93.58 92.20 79.73 53.61 49.60 64.82 62.65 43.97 77.93

MRL

Stella-1.5B-v5 256 2.6 90.45 86.14 76.75 50.81 46.42 60.07 55.59 36.97 77.48
Jina-V3 256 2.8 78.81 84.08 73.81 38.14 34.39 51.96 55.73 36.63 66.63
Nomic-Embed-V1.5 256 2.7 72.47 83.69 59.20 38.19 31.83 48.56 35.00 32.54 68.24
Gecko-Embed-004(Google) 256 2.4 77.82 86.01 72.97 36.28 33.09 50.60 55.54 37.81 70.86
Text-Embed-3-L (OpenAI) 256 2.8 70.45 83.19 58.98 35.43 33.86 54.24 50.33 37.94 73.10
Arctic-Embed-L-V2 256 2.6 67.69 80.99 59.06 34.25 34.07 30.06 44.69 35.02 69.51
M2V-Base-Glove 256 2.4 59.26 72.39 50.02 32.26 22.34 25.38 11.82 23.15 50.66
Jina-V3 64 1.2 68.12 67.98 71.18 36.89 33.57 50.22 44.18 33.66 68.84
Nomic-Embed-V1.5 64 1.6 62.77 80.63 55.23 34.81 44.61 48.06 10.22 18.96 36,55
Potion-Base-2M 64 1.4 42.50 65.17 52.52 25.78 14.94 27.07 32.08 30.72 64.28

Sparse SAE (w/ NV-Embed-V2) 32 1.0 87.43 88.11 75.19 51.02 48.68 58.63 49.18 35.14 66.04
CSR (w/ NV-Embed-V2) 32 1.0 89.86 91.02 78.55 53.49 49.13 63.05 57.54 38.06 71.17

Analysis. Figure 7(a) and (b) illustrate the comparison
of learned representation quality through the Top-1 and 1-
NN classification accuracy of RN50 models trained and
evaluated on ImageNet-1K. For linear probing results (Fig-
ure 7(a)), reconstruction-based sparse compression methods
(CSR & SAE) outperform MRL-LP (both linear probing
methods) by a large margin and also surpass MRL/MRL-E
(train from scratch) in lower active dim (k < 128). Further-
more, Figure 7(a) demonstrates the superior representation
quality learned by CSR, which consistently outperforms
MRL across various active dimensions. CSR also surpass
traditional post-hoc compression techniques (e.g., SVD) and
linear probes on random features by increasing the overall
model total capacity while keeping active dimensions for
each sample unchanged, as discussed in Section 1 and Sec-
tion 3.2.1. This enhanced capability allows CSR to maintain
remarkable robustness, even under extrem sparsity where
k = 2, 4, 8. These results highlight that the proposed CSR
design can effectively compress pre-trained embeddings
while leveraging the natural benefits of sparse matrix multi-
plication. More detailed experimental results can be found
in Section 4.

5.2. Text Representation Comparision

Experiment Setup. We assessed CSR on three key tasks
from the MTEB benchmark, testing it across six datasets for
each task. In detail, we conduct evaluations in two distinct
settings: Dataset-Specific Evaluation, where CSR is trained
and tested on different splits of the same dataset to ensure
consistency, and Task-Specific Evaluation, where CSR is
trained on one dataset and evaluated on unseen datasets
within the same task to rigorously assess its generalization
capabilities. We choose NV-Embed-V2 (Lee et al., 2024a)
as our pre-trained model and present its performance in gray.

For further experimental details, please refer to Section C.
To improve readability, we refer to CSR-K as a model with
the TopK activations and so as SAE.

Analysis Table 1 demonstrates the performance of CSR
and baseline models across multiple tasks and datasets. CSR
not only maintains the strong performance of the pre-trained
model but also surpasses baselines under varying resource
constraints. Taking text classification as an example, CSR
achieves a 15% accuracy improvement at matched compu-
tational cost (i.e., with retrieval times comparable to Jina-
V3-64 and Nomic-Embed-V1.5-64) while attaining a 61x
speedup when matched for performance (i.e., compared to
NV-Embed-V2). The results underscore CSR ’s exceptional
ability to maintain an optimal speed-accuracy trade-off - a
critical requirement for practical deployment in large-scale
retrieval systems. We further evaluate the generalization
capability of CSR (with k = 32) on three unseen datasets
per task, as shown in Figure 7(c). The results demonstrate
that sparse representations yield more robust performance
compared to dense alternatives at same activation dimen-
sions. These results underscore the efficacy and versatility
of CSR , demonstrating its strong potential for real-world
applications.

5.3. MultiModal Representation Comparision

Experiment Setup. We evaluated our methods on multi-
modal retrieval tasks using the ViT-B-16 backbone, testing
both in-distribution and zero-shot cross-modal retrieval on
MS COCO (Lin et al., 2014) and Flickr30K (Young et al.,
2014) datasets. For baselines, we fine-tuned MRL on these
datasets (using CC3M (Changpinyo et al., 2021) for zero-
shot training), following standard MRL training protocols
(Kusupati et al., 2022). The performance of our backbone,

8
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Table 2. Comparison of different methods on multi-modal retrieval tasks using two benchmark datasets, MS COCO and Flickr30k,
evaluated under both in-distribution and zero-shot settings, with Recall@5 (%) as the performance metric. We use ViT-B/16 as
our pre-trained model, and present its performance in the first line of the table in gray. For Zero-Shot setting, CSR is first trained on a
large-scale scale, dataset-CC3M and evaluated on downstream tasks. CSR (plug-and-play) consistently outperforms ViT-B-16-MRL (fully
fine-tuned) in various tasks with significant training efficiency.

In-Distribution Zero-Shot

Active Trainable MS COCO Flickr30K MS COCO Flickr30K

Method Dim Parms I2T T2I I2T T2I I2T T2I I2T T2I

ViT-B-16 512 86M 74.42 86.47 91.92 97.79 69.23 83.03 89.82 97.70

ViT-B-16-MRL
256

86M 67.12 77.53 80.41 89.89 56.90 65.82 80.94 89.20
SAE 1.1M 71.21 82.58 87.76 95.59 58.22 67.40 82.44 86.19
CSR 1.1M 71.41 83.49 87.98 96.79 61.85 70.14 85.22 91.10

ViT-B-16-MRL
128

86M 64.19 73.02 77.56 87.80 53.63 61.16 77.67 85.10
SAE 1.1M 64.67 76.70 81.40 91.20 53.20 63.02 77.54 85.19
CSR 1.1M 69.34 81.04 84.05 93.00 54.37 68.04 78.08 88.09

ViT-B-16-MRL
64

86M 62.61 72.43 74.22 84.79 47.47 54.42 71.16 79.00
SAE 1.1M 56.30 69.45 70.58 81.30 44.48 53.56 69.58 82.29
CSR 1.1M 62.75 78.10 76.44 88.50 48.61 61.90 73.04 84.10

using the same fine-tuning procedure, is shown in gray. Dur-
ing training, both SAE and CSR leverage a shared sparse
embedding layer for images and text. Additional experi-
mental setup and implementation details are provided in
Section D.

Analysis. Table 2 presents the multimodal retrieval task
results across different methods and settings. In general,
reconstruction-based methods exhibit relatively low perfor-
mance degradation on both datasets. Compared to the MRL
method, CSR achieves average performance gains of 4.6%
and 6.8% on I2T retrieval, and 10.3% and 6.5% on T2I
retrieval across the two datasets in In-Distribution Evalua-
tion. Besides, under zero-shot scenario, CSR also surpasses
MRL by 3.2% and 3.3% on I2T, and 9.2% and 3.9% on
T2I, respectively. Notably, these results demonstrate CSR’s
potential to handle large-scale datasets (e.g., CC3M-3M im-
ages, compared to ImageNet’s 1M and MS COCO’s 0.3M),
confirming CSR’s consistent superiority across various ac-
tive dimensions and its scalability. SAE experiences more
severe performance degradation compared to CSR, which
underlines the efficacy of our design in image-text alignment.
However, as the sparsity constraint becomes more stringent,
the performance gap between CSR and MRL narrows. Upon
further investigation, we find that CSR still suffers from the
“dead latents” problem even when equipped with advanced
mechanisms. Addressing the mitigation of dead latents in
the alignment space remains an open challenge, leaving
room for future work and study. For a detailed analysis,
please refer to Section D.4.

6. Conclusion & Discussion
In this paper, we introduce Contrastive Sparse Representa-
tion Learning (CSR), a generic learning framework offering
a high-fidelity and flexible approach to compress embed-
ding, surpassing existing methods like MRL in various tasks
and modalities. We believe CSR paves the way for more
efficient and flexible representation learning, especially in
scenarios constrained by memory, latency or other computa-
tional considerations.

Our method, CSR, is orthogonal to existing acceleration
techniques such as pruning (He et al., 2017), quantiza-
tion (Jacob et al., 2018), and distillation (Hinton et al., 2015),
which primarily target embedding generation. In contrast,
CSR optimizes the post-processing stage, enabling comple-
mentary speedups with minimal performance trade-off. A
current limitation of CSR, shared by other sparsity-based ap-
proaches, is the emergence of dead neurons under high spar-
sity, especially in multimodal settings. While techniques
like contrastive loss partially mitigate this (see Figure 6),
fully resolving the issue remains an open challenge and
direction for future work.
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A. Datasets
For Image embedding Experiment:

• ImageNet-1K (Deng et al., 2009): ImageNet-1K is a large-scale visual database designed to provide researchers with a
comprehensive resource for developing and evaluating computer vision models. It contains 1,000 categories, each with
a diverse set of images. Specifically, the dataset includes 1,281,167 training images, 50,000 validation images, and
100,000 test images.

For Text embedding Experiment:
Note that, all datasets mentioned below can be found at MTEB (Muennighoff et al., 2022).

• MTOPIntent (Li et al., 2020): MTOP is a multilingual dataset introduced in 2021. It comprises 100,000 annotated
dialogue sentences across six languages and eleven domains. Designed to serve as a benchmark for multilingual
task-oriented semantic parsing, this dataset plays a crucial role in advancing technology in this field.

• Banking77 (Casanueva et al., 2020): Dataset composed of online banking queries annotated with their corresponding
intents, consisting of 13,083 customer service queries labeled with 77 intents.

• TweetSentimentExtraction (Maggie et al., 2020): Dataset from Kag gle competition. Sentiment classification of
tweets as neutral, positive or negative.

• MassiveScenario (FitzGerald et al., 2022): A collection of Amazon Alexa virtual assistant utterances annotated with
the associated intent. For each user utterance the label is a theme among 60 scenarios like ’music’, ’weather’, etc. This
is a multilingual dataset with 51 available languages.

• AmazonReviews (McAuley & Leskovec, 2013): A collection of Amazonreviews designed to aid research in multilin-
gual text classification. For each review the label is the score given by their view between 0 and 4 (1-5 stars). This is a
multilingual dataset with 6 available languages.

• Emotion (Saravia et al., 2018): The dataset consists of English Twitter messages categorized into basic emotions,
including anger, fear, joy, love, sadness, and surprise.

• ArxivClusteringS2S, BiorxivClusteringS2S, BiorxivClusteringP2P (Muennighoff et al., 2022): The BioxivS2S
dataset is created using public APIs from bioRxiv. For S2S datasets, the input text is simply the title of the paper, while
for P2P the input text is the concatenation of the title and the abstract.

• TwentyNewsgroupsClustering2: Clustering of the 20 Newsgroups dataset, given titles of article the goal is to find the
newsgroup (20 in total). Contains 10 splits, each with 20 classes, with each split containing between 1,000 and 10,000
titles.

• RedditClusteringP2P (Muennighoff et al., 2022): created for MTEB using available data from Reddit posts3. The
task consists of clustering the concatenation of title+post according to their subreddit. It contains 10 splits, with 10 and
100 clusters per split and 1,000 to 100,000 posts.

• StackExchangeClustering (Geigle et al., 2021): Clustering of titles from 121 stack exchanges. Clustering of 25 splits,
each with 10-50 classes, and each class with 100-1000 sentences.

• FiQA2018 (Maia et al., 2018): A dataset for aspect-based sentiment analysis and opinion-based question answering in
finance.

• NFCorpus (Boteva et al., 2016): NFCorpus is a full-text English retrieval data set for Medical Information Retrieval.
It contains a total of 3,244 natural language queries, with 169,756 automatically extracted relevance judgments for
9,964 medical documents.

• SciFACT (Wadden et al., 2020): A dataset of 1.4K expert-written claims, paired with evidence-containing abstracts
annotated with veracity labels and rationales.

2https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
3https://huggingface.co/datasets/sentence-transformers/reddit-title-body
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• Arguana (Wachsmuth et al., 2018b): The dataset consists of debates from idebate.org, collected as of January 30, 2018.
Each debate includes the thesis, introductory text, all points and counters, bibliography, and metadata.

• CQADupStack (Hoogeveen et al., 2015): A benchmark dataset for community question-answering research. It
contains threads from twelve StackExchange subforums, annotated with duplicate question information.

• Quora Question Pairs4: A dataset consists of over 400,000 question pairs, and each question pair is annotated with a
binary value indicating whether the two questions are paraphrase of each other.

For Multimodal embedding Experiment:

• MS COCO (Lin et al., 2014): The MS COCO dataset is a large-scale object detection, segmentation, and captioning
dataset. It contains images with complex scenes involving multiple objects, each annotated with labels, bounding
boxes, and segmentation masks.

• Flickr30K (Young et al., 2014): The Flickr30k dataset is a collection of images with corresponding textual descriptions.
Each image is annotated with multiple captions that describe the scene, objects, and actions depicted.

B. Experiment Detail on Vision Representation.
B.1. Evaluation Metric

We adopt 1-NN as our evaluation metric, implemented using FAISS (Johnson et al., 2019) with exact L2 search, following
the setup in (Kusupati et al., 2022). This approach provides an efficient and cost-effective way to evaluate the utility of
learned representations for downstream tasks, as 1-NN accuracy requires no additional training. In detail, we use the training
set with 1.3M samples as the database and the validation set with 50K samples as the query set. We also report linear
probing and few-shot results using Top-1 accuracy. For a holistic evaluation, different methods, Figure 1 (c) presents the
average 1-NN performance (active dimensions < 64).

B.2. Baselines

We select MRL and MRL-E from (Kusupati et al., 2022) as baselines. This work introduces a novel training paradigm that
learns representations of varying lengths. MRL-E is an efficient version of MRL, also proposed in (Kusupati et al., 2022).

B.3. Implementation Detail

For a fair comparison, we selected the pre-trained ResNet50 weights, noted as FF2048 in the MRL (Kusupati et al., 2022).
Additionaly, we select the ResNet50 model5 as our SOTA backbone from Wightman (2019). For image preprocessing,
we adopt the same procedure as described in Kusupati et al. (2022); Leclerc et al. (2023). Consistent with Gao et al.
(2024), we utilize a tied encoder-decoder structure to build the CSR framework. The implementation of CSR is based on the
codebase6 provided by OpenAI. All experiments are conducted on a server equipped with 4 RTX4090 GPUs. The selection
of hyperparameters are:

Table 3. Implementation details on Image experiment.

Backbone d h lr epoch Batch Size kaux β γ K Optimizer weight decay eps
ResNet50 2048 8192 4e-5 10 4096 512 1/32 0.1 8,16,32...2048 Adam 1e-4 6.25 * 1e-10

B.4. 1-NN Classification Results

1-NN classification and Top-1 linear probing results are shown in Table 4 and Table 5.

4https://paperswithcode.com/dataset/quora-question-pairs
5https://huggingface.co/timm/resnet50d.ra4_e3600_r224_in1k
6https://github.com/openai/sparse_autoencoder
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Table 4. 1-NN accuracy of different methods on ImageNet1k classification.

Active Dim Full Rep. MRL MRL-E SVD Rand. FS SAE CSR SOTA Full Rep. CSR (w/ SOTA RN50)
8 - 62.19 57.45 19.14 2.36 67.14 67.78 - 73.84

16 - 67.91 67.05 46.02 12.06 68.14 69.17 - 74.39
32 - 69.46 68.60 60.78 32.91 68.91 70.15 - 74.53
64 - 70.17 69.61 67.04 49.91 69.69 70.94 - 74.62

128 - 70.52 70.12 69.63 60.91 69.74 70.99 - 74.65
256 - 70.62 70.36 70.67 65.75 70.35 71.31 - 74.73
512 - 70.82 70.74 71.06 68.77 71.21 71.29 - 74.88
1024 - 70.89 71.07 71.22 70.41 71.20 71.30 - 74.90
2048 71.19 70.97 71.21 71.21 71.19 71.24 71.20 75.19 74.91

Table 5. Top-1 classification accuracy results of different methods on ImageNet1k classification.
Active Dim Full Rep. MRL MRL-E MRL-LP SVD Rand. LP SAE CSR SOTA Full Rep. CSR (w/ SOTA RN50)

8 - 66.63 56.66 5.15 2.34 4.56 73.46 73.62 - 79.17
16 - 73.53 71.94 13.79 7.17 11.29 74.60 74.75 - 79.72
32 - 75.03 74.48 32.52 20.46 27.21 75.28 75.44 - 79.96
64 - 75.82 75.35 52.66 48.10 49.47 75.81 75.88 - 80.16

128 - 76.30 75.80 64.60 67.24 65.70 75.91 76.24 - 80.24
256 - 76.47 76.22 69.29 74.59 72.43 76.27 76.25 - 80.31
512 - 76.65 76.36 70.51 76.78 74.94 76.43 76.34 - 80.33
1024 - 76.76 76.48 70.19 76.87 76.10 76.59 76.54 - 80.32
2048 76.87 76.80 76.51 69.72 - 76.87 76.66 76.52 80.59 80.35

C. Experiment Detail on Text Representation
C.1. Evaluation Metric

We adopt the universal evaluation metrics used in the MTEB benchmark (Muennighoff et al., 2022). For text classification
and clustering, we use Top-1 accuracy to assess model performance. For the text retrieval task, we use NDCG@10
(Normalized Discounted Cumulative Gain at 10), a metric that evaluates the quality of a ranked list of items, commonly
used in information retrieval and recommendation systems.

C.2. Experiment Setup

We choose three main tasks on MTEB benchmark and randomly select six datasets(for each task) to measure our methods.
We also design two experiment settings to evaluate the effectiveness and generalization ability of our methods.

Firstly, we introduce Dataset-Specific Evaluation, where CSR are trained and tested on different splits of the same dataset.
We use MTOPIntent (Li et al., 2020), Banking77 (Casanueva et al., 2020) and TweetSentimentExtraction (Maggie et al.,
2020) for text classification task. We use BiorxivClusteringS2S, BiorxivClusteringP2P (Muennighoff et al., 2022) and Twen-
tyNewsgroupdClustering for text clustering. For text retrieval, we select FiQA2018 (Maia et al., 2018), NFCorpus (Boteva
et al., 2016) and SciFACT (Wadden et al., 2020).

Furthermore, we introduce Task-Specific Evaluation, where CSR are trained and tested on different datasets within the same
task to evaluate the generalization ability of our proposed method. We construct a training dataset using the training splits of
the aforementioned datasets and test on the corresponding task datasets. For classification: MassivScenario (FitzGerald
et al., 2022), AmazonRevies (McAuley & Leskovec, 2013) and Emotion (Saravia et al., 2018). For clustering: ArxivCluster-
ingS2S, RedditClusteringP2P (Muennighoff et al., 2022) and StackExchangeClustering (Geigle et al., 2021). For retrieval:
Arguana (Wachsmuth et al., 2018a), CQADupStack (Hoogeveen et al., 2015) and Quora.

C.3. Baselines

We choose several models that provide MRL embeddings on MTEB benchmark (Muennighoff et al., 2022). These models are
Stella-en-1.5B-v5 (Zhang et al., 2025), Jina-V3 (Sturua et al., 2024), Nomic-Embed-V1.5 (Nussbaum et al., 2024), Gecko-
Text-Embedding-004-256 (Lee et al., 2024b), OpenAI-Text-Embedding-3-L-256 (OpenAI, 2024), Arctic-Embed-L-V2.0 (Yu
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et al., 2024) and Potion-Base-2M (min, 2024).

C.4. Implementation Detail

We select NV-Embed-V2 (Lee et al., 2024a) as our pre-trained model. We utilize a tied encoder-decoder structure to build
the CSR framework. For text classification and clustering tasks, we use data from the same class as positive samples while
the other as negative samples to calculate Equation 6. The hyperparameters are set as follows:

Table 6. Implementation details on Text experiment.

Backbone d h lr epoch Batch Size kaux β γ K Optimizer weight decay eps
NV-Embed-V2 4096 16384 4e-5 10 128 1024 0.1 1.0 32,64,256 Adam 1e-4 6.25 * 1e-10

D. Experiment Detail on MultiModal Representation
D.1. Evaluation Metric

We adopt the universal evaluation metric Recall@5 to measure performance in the MultiModal Retrieval task. This metric
evaluates a model’s ability to retrieve relevant items within its top 5 predictions. Calculated as the fraction of relevant items
appearing in the top 5 results out of the total relevant items, a higher Recall@5 indicates better performance in capturing
relevant content early in the ranked list, making it useful for recommendation systems and retrieval tasks.

D.2. Experiment Setup

We selected ViT-B-16, trained on the DFN2B dataset7, as our pre-trained model. For the in-distribution cross-modal retrieval
experiment, we implemented MRL in the pre-trained ViT model following Kusupati et al. (2022), and fine-tuned it for 50
epochs on the MSCOCO (Lin et al., 2014) and Flickr30K (Young et al., 2014) datasets, respectively. For a fair comparison,
we also fine-tuned the backbone on both datasets for 50 epochs using the same hyperparameters, which were then used for
the backbone of CSR . The hyperparameters used for fine-tuning are as follows:

Table 7. Hyperparameters for fine-tuning ViT-B/16 backbone.

Dataset lr epoch Batch Size warmup Optimizer weight decay
MS COCO 5e-6 50 64 10000 Adam 0.1

Flickr30k 5e-6 50 64 10000 Adam 0.1

For zero-shot cross-modal retrieval, we employed the same MRL fine-tuning procedure as in our in-distribution experiment,
maintaining identical hyperparameters while training for 3 epochs with 2208 batch size on CC3M (Changpinyo et al., 2021).

D.3. Implementation Detail

We select the ViT-B-168as our backbone from Wightman (2019). Consistent with Gao et al. (2024), we utilize a tied
encoder-decoder structure to build the CSR framework. The encoder and decoder structure share between image space
and text space. The implementation of CSR is based on the codebase9 and OpenCLIP (Cherti et al., 2023). The metric is
evaluated through CLIP-benchmark following standard procedure. All experiments are conducted on a server equipped with
4 RTX4090 GPUs. We present detailed training parameters for the multimodal experiment in Table 8.

D.4. Discussion On Dead Latents

Addressing the mitigation of dead latents in the alignment space remains an open challenge, leaving room for future work
and study. Table 2 presents the performance comparison between CSR and MRL, revealing that the gap between the two

7https://huggingface.co/apple/DFN2B-CLIP-ViT-B-16
8https://huggingface.co/apple/DFN2B-CLIP-ViT-B-16
9https://github.com/openai/sparse_autoencoder
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Table 8. Implementation details on MultiModal experiment.

Dataset d h lr epoch Batch Size kaux β γ K Optimizer weight decay eps
MS COCO 512 2048 4e-4 5 256 512 1/32 1.0 64,128,256 Adam 1e-4 6.25 * 1e-10

Flickr30k 512 2048 4e-4 5 64 1024 1.0 1.0 64,128,256 Adam 1e-4 6.25 * 1e-10

CC3M 512 4096 4e-4 1 1024 1024 1/32 1.0 64,128,256 Adam 0.0 6.25 * 1e-10

methods diminishes as sparsity constraints become more stringent. Further analysis indicates that CSR continues to face
the “dead latents” issue despite incorporating advanced mechanisms. As shown in Figure 8, CSR exhibits a significant
performance drop, corresponding to a sharp rise in dead latent dimensions. We attribute this to a technical challenge, as
CSR has demonstrated robust performance in both image and text domains under similar sparsity constraints. This suggests
that representations in alignment spaces may require more specialized design, presenting an opportunity for future research
and improvement.
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Figure 8. Dead latents still exits in image-text alignment space.

E. Empirical Analysis
E.1. Effect on Input Embedding Dimension Rd

The implementation details are shown in Table 9. To avoid other unknown factors, we choose ViT-based10 and ResNet-based
models11 following same pre-training procedure respectively. To ensure generalizability, we train the model using three
different random seeds and report the mean performance in the main paper.

Table 9. Implementation details on empirical study of input embedding dimension Rd

Backbone d h lr epoch Batch Size kaux β γ K Optimizer weight decay eps
ViT-L/16 512 4096 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
ViT-L/16 1024 4096 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10

ResNet18 512 8192 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
ResNet50 2048 8192 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10

10https://huggingface.co/timm/vit_small_patch16_224.augreg_in21k_ft_in1k,https://
huggingface.co/timm/vit_large_patch16_224.augreg_in21k_ft_in1k

11https://huggingface.co/timm/resnet18.a1_in1k,https://huggingface.co/timm/resnet50.a1_
in1k
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Table 10. Implementation details on empirical study of hidden dimension Rh

Backbone d h lr epoch Batch Size kaux β γ K Optimizer weight decay eps

ViT-L/16

1024 1024 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
1024 2048 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
1024 4096 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
1024 8192 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
1024 16384 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10

ResNet50

2048 2048 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
2048 4096 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
2048 8192 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
2048 16384 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10
2048 32768 4e-5 10 1024 512 1/32 1.0 8,16,64,256 Adam 1e-4 6.25 * 1e-10

E.2. Effect on Hidden Representation Dimension Rh

Implementation details are shown in Table 10. The pre-trained ViT-L/1612 and ResNet50 models13 can be found at
timm (Wightman, 2019). To ensure generalizability, we train the model using three different random seeds and report the
mean performance in the main paper.

E.3. Retrieval Time Evaluation

We employ PyTorch (Paszke et al., 2019) to measure retrieval time on ImageNet1k. The average retrieval time is computed
over 2000 rounds with a batch size of 512 queries, excluding an initial 100 warm-up rounds. For the learned CSR
representation, both query and key embeddings are stored in csr format, and sparse product operations are utilized for
similarity computation while maintaining identical experimental settings for fair comparison.

E.4. Understanding Retrieval Time Difference between Dense and Sparse Embeddings

Although CSR and MRL have similar theoretical complexity O(k), their actual runtimes are affected by backend implemen-
tations. For instance, cuBLAS (used for dense ops) is highly optimized but has high launch overhead, while cuSPARSE
(used for CSR) is lighter but less optimized for small k. Here, we can share a preliminary insight into why sparse embeddings
can be faster than dense embeddings and why it can get faster with larger hidden dimension h.

Sparse matrix multiplication benefits from zero-skipping: only overlapping non-zero entries are used. For each query,
computing the i-th output only involves comparing indices of non-zero entries—an integer operation much cheaper
than floating-point multiplication. As h increases and k stays small, overlap likelihood drops, reducing the number of
multiplications required. In Table We empirically verify this by counting the number of multiplications under various h:

Table 11. Comparison on the number of multiplication operation between MRL (dense) and CSR (embeddings) on the default setup.

Active Dim MRL CSR (h = 8192) CSR (h = 16384) CSR (h = 32768)

2 1.3× 109 3.2× 105 1.7× 105 8.4× 104

4 2.6× 109 1.3× 106 6.7× 105 3.4× 105

The number of operations in CSR is several orders of magnitude smaller than in MRL, and it decreases with larger h. This
counterintuitive yet practical effect highlights the appeal of using sparse high-dimensional embeddings: they allow richer
representations while improving runtime.

12https://huggingface.co/timm/vit_large_patch16_224.augreg_in21k_ft_in1k
13https://huggingface.co/timm/resnet50.a1_in1k
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