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Abstract

Deep generative models have emerged as a promising approach in the medical
image domain to address data scarcity. However, their use for sequential data
like respiratory sounds is less explored. In this work, we propose a straightfor-
ward approach to augment imbalanced respiratory sound data using an audio
diffusion model as a conditional neural vocoder. We also demonstrate a sim-
ple yet effective adversarial fine-tuning method to align features between the
synthetic and real respiratory sound samples to improve respiratory sound classifi-
cation performance. Our experimental results on the ICBHI dataset demonstrate
that the proposed adversarial fine-tuning is effective, while only using the con-
ventional augmentation method shows performance degradation. Moreover, our
method outperforms the baseline by 2.24% on the ICBHI Score and improves
the accuracy of the minority classes up to 26.58%. For the supplementary mate-
rial, we provide the code at https://github.com/kaen2891/adversarial _
fine-tuning using_generated_respiratory_sound.

1 Introduction

Deep generative models (DGMs) have become popular due to their potential to address data scarcity
via augmentation. Among recent advancements, methods such as generative adversarial networks
(GANS) [11], variational autoencoders (VAEs) [18], and diffusion probabilistic models [14] are
gaining attraction. Notably, previous studies [1, 4] have demonstrated that training a model on a
mixture of real samples and synthetic samples generated by DGMs can be an effective approach
to better utilize the limited data. In medical domain, DGMs have been successfully leveraged to
synthesize medical data in a variety of categories, including retinal images [5, 15], CT and MRI
scans [26, 30, 29], as well as X-rays [21, 22]. However, synthesis is more challenging when it comes
to sequential medical data, including respiratory sound [19, 16, 28], due to its complex temporal
dynamics, high dimensionality and relative lack of benchmarks.

In this paper, we aim to generate high-fidelity respiratory sound samples using DGMs and then
combine these synthetic samples with real data to improve the respiratory sound classification task,
especially for imbalanced lung sound disease classes. Figure 1 illustrates the overall process of
our approach split into phases 1 and 2. In phase 1, we introduce a simple method for generating
respiratory sound samples using a conditional neural vocoder inspired by the recent success of audio
diffusion models [14, 20] in obtaining realistic audio. However, the discrepancy between synthetic
and real samples can introduce problems related to distribution inconsistency, which can degrade
the performance of respiratory sound classification models as the proportion of synthetic data in the
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Figure 1: In phase 1, we generate the respiratory sound samples using the audio diffusion model
as conditional neural vocoder. In phase 2, we use the proposed adversarial fine-tuning method to
address the distribution inconsistency between synthetic and real samples for training the respiratory
sound classification model.

training set increases. In phase 2, we propose a simple yet effective adversarial fine-tuning method
motivated by [9] to learn the model that is distribution-agnostic between real and synthetic data. The
adversarial fine-tuning method relies on a discriminator network feedback to move features obtained
from real and synthetic samples closer to each other, while simultaneously training a classifier to
predict the respiratory sound label.

Our experimental results on the ICBHI [27] dataset demonstrate that the proposed adversarial fine-
tuning method effectively aligns the features from synthetic and real data, leading to improved
performance while simply combining synthetic and real samples for training resulted in performance
degradation. Specifically, our method achieves a 2.24% ICBHI Score improvement over the baseline
and up to 26.58% accuracy improvement of the minority classes. Our contributions are: (i) We show
the successful generation of high-fidelity respiratory sound samples with audio diffusion model as
conditional neural vocoder (i) We demonstrate adversarial fine-tuning on respiratory sound data,
which can overcome data distribution inconsistency between synthetic and real samples (iii) We
present that the proposed method enables the synthetic and real training samples to be used more
effectively, considerably improving performance in the imbalanced abnormal lung disease class.

2 Method

Audio Diffusion Probabilistic Model Diffusion probabilistic models [14] are a type of deep
generative model that use a Markov chain to gradually add Gaussian noise N (x¢; /1 — Byzy—1, B¢ l)
into a complex data distribution. The posterior ¢(x1, ..., zr|xo) called diffusion process or forward
process is defined by a fixed Markov chain that transforms the input data x to a latent variable
1, ..., x7 according to a variance schedule 31, ..., B7:
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The joint distribution pg(zg, ..., zp—1|x) called reverse process is defined by a Markov chain with
learned Gaussian transitions starting at p(x7) = N (z7;0, I):

T
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where the transition probability pg (z¢_1|z¢) is parameterized as N (z¢_1; po (¢, 1), g (x4, t)2T) with
shared parameter 6, and the both yy and oy are calculated with the diffusion-step and x;.



In this work, we use the audio diffusion model [20] which is neural vocoding conditioned on Mel-
spectrogram as a conditional neural vocoder to reconstruct the respiratory sound raw waveform. To
this end, we employ the DiffWave_BASE model for our audio diffusion model, which consists of a
stack of 30 residual layers, each with 64 residual channels as well as bidirectional dilated convolution
with kernel size 3, and the dilation is doubled at each layer within each block. To ensure that the
output of the audio diffusion model has the same length as the Mel-spectrogram, a transposed 2D
convolution upsampler is provided for the conditioned 2D Mel-spectrogram.

In our conditional neural vocoder setting, the outputs of the upsampler are added to the dilated
convolutions in each residual layer for reconstruction. In other words, our audio diffusion model is
conditioned on the Mel-spectrogram, which means that it uses a lot of prior knowledge to guide the
generation process. This makes it easier to generate realistic samples and reduces the need for large
amounts of training data. This is especially beneficial in the medical domain, where data is often
scarce.

Adversarial Fine-tuning While augmenting real data with synthetic samples can be beneficial, we
found in early experiments that in our case the distribution mismatch between the two types of data
degraded the performance of the classification model. To overcome this issue, we propose a simple
yet effective Adversarial Fine-Tuning (AFT) method inspired by [9]. The proposed method consists
of two losses with label classifier Lcg and data discriminator Lp:
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where Lcg and Lp;s are CE loss with label ¢ and data type label d, and the predicted probabilities ¢

and d are obtained by passing through the classifier and data discriminator, respectively. To ensure
that the learned features cannot distinguish between the synthetic and real samples, gradients from
Lp;s are multiplied by a negative constant during the backpropagation. The final training objective is
LEinal = Lcg + A\Lpis where A is a regularization parameter drawn from [9]. The AFT aims to reduce
classification error while ensuring learned features are consistent across data types.

3 Experimental Setup

ICBHI and Mixed Dataset We used the ICBHI [27] dataset for respiratory sound tasks, following
the official train-test split (60/40%). The training (4,142) and test sets (2,756) contain four classes:
normal (49.8%/57.29%), crackle (29.3%/23.55%), wheeze (12.1%/13.97%) and both (8.8%/5.19%),
hereinafter referred to as C,,, C., C\, and C}, respectively. We generated synthetic samples for each
minority class to balance them with the majority class, and then mixed these with real data. We
denote it Mixed-ICBHI datasets as follows: Mixed-500, ..., Mixed-N, ..., Mixed-5k where the number
N refers to the total amount of samples per class. We prioritize real samples so that synthetic samples
are only added if the sample count is less than N. We used the Specificity, Sensitivity and their
arithmetic mean, hereinafter referred to as S, S., and Score, respectively [27]. For ICBHI details
and additional statistics on the Mixed-ICBHI dataset, see Appendix B and C.

Audio Diffusion Model For the data pre-processing, we fixed all of the data length as 4 seconds
and extracted the 4,142 respiratory sound samples from the ICBHI dataset as 80-dimensional Mel-
spectrograms. For the audio diffusion model, we trained the DiffWave [19] on the ICBHI training
set from scratch. To this end, we used a linearly spaced schedule for the diffusion variance schedule
parameter 3; € [1 x 1074,0.02], 50 and 6 denoising diffusion steps for training and evaluation,
respectively. We then trained the model for 1M training steps with Adam [17] optimizer, a learning
rate of 1e-4, and a batch size of 16.

Respiratory Sound Classification To prepare the data for training, we fixed the duration of all
synthetic and real samples to 5 seconds and extracted 128-dimensional log Mel filterbank features
with a window size of 25 ms and an overlap size of 10 ms. We then normalized the log Mel filterbank
features using the mean and standard deviation of -4.27 and 4.57, as described in [3]. We trained the
classification model using pretrained Audio Spectrogram Transformer [10] (AST) model with the
Adam optimizer, a learning rate of Se-5, and a batch size of 32 for 50 epochs. To ensure the stability
of our results, we trained our model using a fixed set of five random seeds for all experiments.



Table 1: Respiratory sound classification performance on ICBHI test set according to various mixed
sample amounts using the AST [10] fine-tuning as described in [3]. No Aug. denotes only the real
ICBHI dataset is used for training. We only report the ICBHI Score (%). Bold denotes the best result.

| training dataset
method ‘ No Aug. Mixed-500 Mixed-800 Mixed-1k Mixed-1.5k  Mixed-2k  Mixed-3k  Mixed-5k
ASTFT ‘ 59.55 59921082 59991117 598ligss  59.65i030 59.1841065 59.041032 58.5610.84
AFT | - 61.7910.47 60894078 60.841.05 60.031114 60.641045 59.961038 59.74+106

Table 2: Accuracy (%) of the abnormal class on the ICBHI test set for AST fine-tuning and AST
adversarial fine-tuning models trained on different datasets. Bold denotes the best result.

\ method (dataset)

ASTFT ASTFT ASTFT Adversarial FT Adversarial FT
class ratio (No aug.) (Mixed-500) (Mixed-2k) (Mixed-500) (Mixed-2k)
crackle (C.) 23.55% 45.45 42.84 42.86 44.07 46.99
wheeze (C') 13.97% 36.62 36.1 22.08 37.92 30.12
both (Cp) 5.19% 15.38 9.09 7.69 41.96 35.66

Table 3: Overall comparison of the ICBHI dataset for the respiratory sound classification task. We
compared previous studies that followed the official 60-40% split for the training/test set. Scores
marked with * denote the previous state-of-the-art performance. Best and second best results.

method | architecture  pretrain | S, (%) S. (%) Score (%)
RespireNet [8] (CBA+BRC+FT) ResNet34 IN 72.30 40.10 56.20
Wang et al. [32] (Splice) ResNeSt IN 70.40 40.20 55.30
Nguyen et al. [25] (CoTuning) ResNet50 IN 79.34 37.24 58.29
Moummad et al. [23] (SCL) CNN6 AS 75.95 39.15 57.55

Bae ez al. [3] (Fine-tuning) AST IN+AS 77.14 41.97 59.55

Bac et al. [3] (Patch-Mix CL) AST IN+AS | 81.66 43.07 62.37"
AFT on Mixed-500 [ours] | AST IN+AS | 80.72,04 42.86,,, 6179,

4 Results

4.1 Effectiveness of Adversarial Fine-tuning

To validate the proposed AFT, we compared it against AST fine-tuning (AST FT) with only cross-
entropy (CE) loss on several Mixed-ICBHI datasets under the same conditions. As in Table 1, the
AST FT performance decreased as the number of augmented samples in the ICBHI dataset increased,
while the AFT outperformed it in each case, reaching the best Score on Mixed-500. Based on
the result, as IV increases, the distribution mismatch between synthetic and real samples increases,
therefore leading to reduced performance. Our method mitigates this to a degree, but still benefits
more in smaller N. We further explore how our method affects the performance of minority classes.
We report their accuracy on the ICBHI test set for AST FT with no augmentation, and AST FT
and AFT on Mixed-500 and Mixed-2k. As in Table 2, directly fine-tuning on mixed data did not
improve the performance of the minority classes overall. However, our proposed method improved
their accuracies by up to 26.58%, especially in C}. These results show that our method can most
effectively enhance the performance of minority classes despite using synthetic samples that would
otherwise degrade them. For additional confusion matrices of Table 2, see Appendix D.

4.2 Comparison on ICBHI Dataset Results

Table 3 presents an overall comparison of various methods for lung sound classification on the ICBHI
dataset. Our proposed method trained with Mixed-500 achieved a Score of 61.79%, outperforming
the AST FT model by 2.24%, which is comparable to the state-of-the-art model. This demonstrates
the efficacy and potential of our proposed method, indicating its capability for addressing the issues
with synthetic data.



4.3 Qualitative Analysis

Figure 2 provides visual comparison of spectrograms randomly sampled per class from the test set
and the results generated by our diffusion model when conditioned on these spectrograms. The
generated spectrograms per class are visually similar to the original sample, which demonstrates the
capability to generate high-fidelity audio, yet introduce small realistic variations that provide some
value for augmentation.

Real Samples Generated Samples

Normal

Crackle |-

Wheeze

Both

Figure 2: Comparison of spectrograms per each class randomly chosen from the test set and the
generated results.

5 Conclusion

We presented a simple method for generating realistic respiratory sound samples using an audio diffu-
sion model. We further introduced adversarial fine-tuning to address the distribution inconsistency
between synthetic and real samples. Our results show that our method can effectively improve the
performance of imbalanced abnormal classes, demonstrating its ability to address the challenges of
using synthetic data. We believe that our method can be helpful in various other datasets and could
be used to supplement other augmentation methods.
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A Related Works

Respiratory Sound Classification The ICBHI [27] dataset is a well-known benchmark for respi-
ratory sound classification. Various neural network-based approaches have been developed for this
task, including residual blocks [8, 25, 32], CNN [23], pretrained models on ImageNet [8, 25, 32], Au-
dioSet [23], and Audio Spectrogram Transformer (AST) [10]. To address the challenge of limited data,
previous studies have proposed various learning protocols, including device-specific fine-tuning [8],
mixup as well as splicing audio augmentation [32], task-specific co-tuning [25], supervised con-
trastive learning [23], and patch-mix contrastive learning [3]. Instead of focusing on previous data
augmentation methods, this paper addressed the challenge of using synthetic samples generated by
deep generative models. To this end, we first trained a pre-trained AST [3] model on the ICBHI
dataset as described in [10]. We also trained the model on the Mixed-ICBHI dataset, which contains
both synthetic and real samples. We then showed that our proposed adversarial fine-tuning method
can overcome the data distribution inconsistency between synthetic and real samples.

Deep Generative Models Recent advances in DGMs, such as GAN [11], VAE [18], and diffusion
models [14], have attracted significant attention. This is because DGMs can be used to generate
synthetic samples to mitigate data scarcity issues. They have been applied to medical images, such
as retinal images [5, 15], CT and MRI scans [26, 30, 4, 29, 12, 2, 33, 6], and X-rays [21, 22]
which received additional interest due their applicability in diagnosing COVID-19 cases. Several
approaches have also been introduced to generate synthetic sequential medical data, such as respiratory
sounds [19, 16, 28], EEG recordings [7, 13, 31], and ECG signals [24, 34]. Unlike previous studies
on respiratory sound, our work was the first attempt to successfully generate high-fidelity respiratory
sound samples using an audio diffusion model [20] which is neural vocoding conditioned on Mel-
spectrogram as a conditional neural vocoder.

B ICBHI Dataset Details

Table 4: Overall details of the ICBHI [27] respiratory sound dataset.

number of respiratory samples (ratio)

|
label | train test | sum
Normal 2,063 (49.8%) 1,579 (57.29%) 3,642
Crackle 1,215 (29.3%) 649 (23.55%) 1,864
Wheeze 501 (12.1%) 385 (13.97%) 886
Both 363 (8.8%) 143 (5.19%) 506
Total | 4,142 2,756 | 6,898

Table 5: Overall details of Mixed-ICBHI dataset with synthetic and real samples.

‘ mixed dataset (synthetic ratio, %)

label | Mixed-500 Mixed-800 Mixed-1k Mixed-1.5k Mixed-2k Mixed-3k Mixed-5k
normal 0 0 00 0 0 31.23 58.74
crackle 0 0 0 19.00 41.11 59.50 75.70
wheeze 0 37.38 49.90 66.60 75.72 83.30 89.98
both 27.40 54.63 63.70 75.80 82.40 87.90 92.74

The ICBHI [27] dataset is a well-known benchmark for respiratory sound classification. The ICBHI
dataset consists of 6,898 respiratory cycles, with a total duration of approximately 5.5 hours. The
dataset is officially split into a training set (60%) and a test set (40%), with no patient overlap
between the two sets. As shown in Table 4, the training and test sets contain 4,142 and 2,756 samples
respectively and are categorized into four classes, normal (49.8%/57.29%), crackle (29.3%/23.55%),
wheeze (12.1%/13.97%) and both (8.8%/5.19%), respectively. For all our experiments, we resampled
all the samples to 16 kHz. For the metrics, we used Sensitivity (S.), Specificity (S,), and their
arithmetic mean Score as described in [27].



C Mixed Dataset Details

As described in Table 5, we mixed the synthetic samples with the real data to create Mixed-ICBHI
datasets as follows: Mixed-500, ..., Mixed-N, ..., Mixed-2k where the number N refers to the total
amount of samples per class. We prioritize real samples so that synthetic samples are only added if
the sample count is less than N (i.e., Mixed-500 only contains synthetic samples from Cjzp,).

D Confusion Matrices Results

To show how the proposed method affects all the classes, Figure 3 provides the confusion matrices
between the AST FT with no augmentation, AST FT and AFT with Mixed-500 and Mixed-2k,
respectively. The proposed method did not degrade considerably on normal classes and achieved
the highest performance compared to other methods on the most imbalanced classes. Our results
demonstrate the effectiveness and potential of our proposed method, showing its ability to address the
data distribution inconsistency problem with synthetic data, especially in class imbalanced problems.

Confusion Matrix Confusion Matrix

Source Label
Source Label

Predicted Label Predicted Label

(a) AST FT (No Aug.) (b) AST FT (Mixed-500)

Confusion Matrix 08

Predicted Label

(¢) AFT (Mixed-500)

Figure 3: Confusion matrix results of AST FT with no augmentation, AST FT and AFT with Mixed-
500 and Mixed-2k, respectively.

10



	Introduction
	Method
	Experimental Setup
	Results
	Effectiveness of Adversarial Fine-tuning
	Comparison on ICBHI Dataset Results
	Qualitative Analysis

	Conclusion
	Related Works
	ICBHI Dataset Details
	Mixed Dataset Details
	Confusion Matrices Results

