
Sim-LLM: Optimizing LLM Inference at the Edge
through Inter-Task KV Reuse

Ruikun Luo1234, Changwei Gu1234, Qiang He1234∗, Feifei Chen5,
Song Wu1234, Hai Jin1234, Yun Yang6

1National Engineering Research Center for Big Data Technology and System
2Services Computing Technology and System Lab 3Cluster and Grid Computing Lab

4School of Computer Science and Technology, Huazhong University of Science and Technology
5Deakin University 6Swinburne University of Technology

{rkluo, gumorming, heqiang, wusong, hjin}@hust.edu.cn,
fefei.chen@deakin.edu.au, yyang@swin.edu.au

Abstract

KV cache technology, by storing key-value pairs, helps reduce the computational
overhead incurred by large language models (LLMs). It facilitates their deployment
on resource-constrained edge computing nodes like edge servers. However, as
the complexity and size of tasks increase, KV cache usage leads to substantial
GPU memory consumption. Existing research has focused on mitigating KV cache
memory usage through sequence length reduction, task-specific compression, and
dynamic eviction policies. However, these methods are computationally expensive
for resource-constrained edge computing nodes. To tackle this challenge, this
paper presents Sim-LLM, a novel inference optimization mechanism that leverages
task similarity to reduce KV cache memory consumption for LLMs. By caching
KVs from processed tasks and reusing them for subsequent similar tasks during
inference, Sim-LLM significantly reduces memory consumption while boosting
system throughput and increasing maximum batch size, all with minimal accuracy
degradation. Evaluated on both A40 and A100 GPUs, Sim-LLM achieves a
system throughput improvement of up to 39.40% and a memory reduction of up to
34.65%, compared to state-of-the-art approaches. Our source code is available at
https://github.com/CGCL-codes/SimLLM.

1 Introduction

The deployment of edge applications, such as autonomous vehicles and smart traffic management, has
generated massive real-time data from numerous edge devices [1, 2]. In recent years, edge intelligence
has further highlighted the advantages of edge computing in privacy preserving and latency reduction.
Large language models (LLMs) can be deployed on edge servers close to users to improve their
experiences [3]. However, as the number of tasks increases, the memory overhead required for
processing these tasks increases rapidly, making it difficult to process on time. This problem becomes
even more pronounced on edge servers, where resources are inherently constrained [2, 4].

The memory consumption of LLMs during inference primarily arises from the model parameters and
the key-value (KV) cache [5, 6]. KV cache is a common technique for accelerating LLM inference.
The core idea is to store previously computed key and value vectors from the attention mechanism for
reuse in subsequent token generations. Since the size of KV cache grows linearly with the sequence
length, batch size, and the number of model layers, it consumes a lot of GPU memory [7, 8].
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A substantial body of research has attempted to mitigate the memory consumption of KV cache in
LLMs, with most efforts aimed at reducing the sequence length stored in the cache to minimize its
overall size. For example, LLMlingua [9] employs prompt compression techniques to reduce KV
cache memory consumption. Similarly, Lm-infinite [10] introduces a method for compressing specific
token spans into more compact representations to save memory. Additionally, the approach proposed
in [11] employs a dynamic KV cache eviction policy to selectively retain only a small portion of the
KV cache in memory. However, these methods were designed based on a layer-wise or token-wise
perspective. When the number of tasks is large, their ability to reduce memory consumption remains
limited, and they also incur significant computational overhead.

Observation 1. There exists a broad similarity among LLM tasks in edge computing systems.
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Figure 1: Similarity proportion in and be-
tween seven datasets

This paper presents a novel approach named Sim-
LLM to reduce the memory consumption of KV
cache of edge nodes from a task-wise perspective.
Its core idea is to reuse KV cache based on the sim-
ilarity between previous and current inference tasks.
Specifically, we have observed a considerable simi-
larity among LLM tasks in edge computing systems
through extensive experiments. Figure 1 shows the
similarity proportions within and across seven widely
used datasets for LLM inference in edge comput-
ing systems. Among them, REDDIT [12] contains
the comments of 50 high-quality subreddits from the
REDDIT PushShift data dumps (from 2006 to 2023),
and we use the data collected after 2020 to ensure the
up-to-dateness. MMChat [13] and LCCC [14] are
conversation dialogues collected from Weibo, PTT,
and Douban. As shown in Figure 1, there is a broad similarity among LLM tasks in edge computing
systems (Observation 1). The reason is edge servers’ limited service coverage and geographical
distribution [2, 15]. The tasks handled by edge servers are more likely to reflect the hot events of
the regions they serve. Thus, these tasks are likely to exhibit a high degree of similarity. Similar
observation has been reported in previous studies [16, 17].

Observation 2. KV caches generated by similar tasks also share similarity.
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Figure 2: (a) Cosine similarity scores of top-layer Key val-
ues of 40 similar tasks. (b) Visualization of the similarity
relationships between the top-layer key values of 10 similar
tasks. In (b), the wider the chord width of the same color,
the more similar relationships the task has with other tasks.

Building upon the insights from
Observation 1, we find that there
is also a notable similarity among
the KV caches generated by similar
tasks (Observation 2). Figure 2a il-
lustrates the similarity of top-layer
key values across 40 similar inference
tasks, with the majority concentrated
above 0.7. To further quantify the
degree of KV cache similarity, Fig-
ure 2b visualizes the similarity rela-
tionships among 10 similar inference
tasks. Both Figure 2a and Figure 2b
highlight the potential to reduce mem-
ory usage by exploiting the similarity
between KV caches. Given the sig-
nificant memory consumption of KV
cache, as shown in Figure 3, Obser-
vation 2 serves as the basis for our proposal of a method that leverages similar KV caches to improve
system throughput and reduce KV memory usage.

Observation 3. The performance of the model is not significantly affected when reusing similar
KVs.

In Sim-LLM, each edge server retains the KV cache of previous inference tasks. By identifying the
similarity between consecutive tasks, the KV cache from a previous task can be leveraged to accelerate
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Figure 4: (a) Comparison of perplexity between TinyLlama [18]
and our model w.r.t the cache size(number of processed tasks’ se-
quence & KVs). (b) Comparison of throughput between TinyLlama
and Sim-LLM w.r.t the cache size. The prompt length and genera-
tion length are both 2048 in (a) & (b).

subsequent inference tasks. Additionally, edge servers can communicate and exchange information
about their respective tasks [19]. Similar tasks can be identified across them to provide another
opportunity for inference acceleration. To ensure the feasibility of our approach, we conducted com-
parative experiments on model throughput and perplexity (PPL) using TinyLlama [18]. The results
are presented in Figure 4, which further highlights that exploiting KV reuse can accelerate inference
tasks and reduce memory usage without compromising model accuracy significantly (Observation
3). The main contributions of this paper are summarized as follows:

• To the best of our knowledge, Sim-LLM is the first work that leverages task similarity to accelerate
LLM inference. We observe a common similarity among LLM inference tasks in edge computing
systems and discover that the KV caches generated by similar tasks also exhibit similarity.

• Based on our observation, we propose Sim-LLM, an efficient inference optimization mechanism.
Sim-LLM introduces a new method for the identification of similar inference tasks and a KV
sharing mechanism across multiple edge servers to improve system utilization.

• Experimental results using PPL and various downstream benchmarks demonstrate that Sim-LLM
reduces GPU memory usage by up to 34.65% and improves throughput by up to 39.40% against
state-of-the-art approaches on average, without significantly affecting model accuracy.

2 Challenges and Motivation
The memory usage of KV cache increases linearly with the sequence length, batch size, and the
number of model layers. As Figure 3 demonstrates, when the batch size is 128, the memory
consumption of the KV cache alone is nearly three times the size of the model. In edge computing
systems, Observations 1 & 2 present opportunities to optimize KV cache memory consumption
because many similar tasks can be received for LLMs during inference, which leads to the storage of
numerous similar KV caches. Leveraging these observations, Sim-LLM aims to accelerate edge LLM
inference. Specifically, instead of releasing all KV caches after inference, Sim-LLM retains a portion
of the KV cache and shares it with subsequent similar tasks. Similar KV caches can also be shared
across edge servers, where communication and task information exchange among servers allow for
identifying similar tasks already completed in an edge computing system. In such cases, edge servers
can offload similar tasks to one another to enable inference acceleration. However, Sim-LLM must
tackle three main challenges.

• Adaptive similar tasks identification: How to effectively identify similarities between tasks while
minimizing the overhead introduced by the identification process.

• Efficient handling of unique tasks: Given that not all tasks are similar, how to handle unique
tasks efficiently without compromising system performance.

• Reuse of inter-task KV across edge servers: How to identify similar tasks across multiple edge
servers, and upon detecting similarities, how to determine the optimal data to be transmitted for
efficient task offloading.

To address the first challenge, extensive research is conducted, revealing that cosine similarity
provides significant advantages in identifying semantic similarities between tasks, particularly in
the context of textual data. As the number of KV to be stored increases, the overhead incurred
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from traversing the cache to check for similar tasks may diminish the benefits of utilizing similar
tasks to accelerate inference. To mitigate this issue, we adopt a Locality-Sensitive Hashing (LSH)
mapping approach [20]. When the current task being processed is mapped to the same LSH bucket as
a previously inferred task, there is a high likelihood that they share semantic similarity. However,
due to the potential distortion introduced by LSH, we implement an adaptive mapping strategy.
Specifically, when the batch size of request sequences is small, we compare the current sequence
and previously stored sequences’ cosine similarity. For large batch sizes, we employ LSH to identify
similar sequences. Since LSH may incur a distortion issue, where highly similar previous tasks are
mapped to different hash values or two dissimilar tasks may be mapped to the same bucket, degrading
the acceleration performance, Sim-LLM merges KVs within the LSH bucket before being utilized in
the inference process to address this issue.

To address the second challenge, tasks that have similar tasks can leverage the top-layer KV from
these corresponding similar tasks to accelerate inference. This approach is inspired by interpreting the
Transformer’s stacked layer structure as an iterative process that refines token representations [21]. In
this context, the representation at the top layer is considered the most informative. Thus, prioritizing
the top layer when evaluating task similarity is a proper choice. However, tasks without similar
counterparts requires recomputing KV from scratch during inference, resulting in a significant
slowdown compared to requests that can leverage previous KVs. Inspired by inter-layer KV sharing
methods like YOCO [22] and CLA [23], only the KV for certain layers at the bottom and top of
the model are cached. By excluding the need to compute KV for intermediate layers, and omitting
the associated weight parameters WK and WV , the overall computational and parameter overheads
are minimized. Furthermore, this approach retains the potential for integration with intra-layer KV
sharing methods such as MQA and GQA techniques, and can benefit from dataflow optimizations
like FlashAttention [5].

To address the third challenge, Sim-LLM combines LSH mapping with prototype learning [24].
While LSH mapping is more compatible with and better suited to the task processing mechanism
for the single-node scenario discussed in Section 3.1, it can introduce significant query overhead
when searching for similar tasks repeatedly across multiple edge servers. Inspired by the concept
of prototype learning [24], to overcome this, Sim-LLM extracts and merges task features processed
by each edge server to generate a task prototype. Each edge server is required to maintain a global
feature table. By comparing the features of an incoming task with those stored in the table, the
most likely edge server with similar tasks can be identified. In cases where an edge server does
not store any similar tasks, it may optionally seek assistance from its neighboring servers before
proceeding with the normal inference process. This approach accelerates task identification and
enhances offloading efficiency, improving the overall performance and scalability of inference in a
distributed edge computing system.

3 Sim-LLM
3.1 Overview
Sim-LLM aims to improve the efficiency of LLM inference while reducing KV cache consumption
in edge computing systems, which consists of two distinct processes: one for single-node scenarios
and another for multi-node scenarios.

In single-node scenarios, Sim-LLM leverages the similarity between tasks. After processing each
batch of requests, the embeddings and top-layer KV of the processed requests are cached. The
component responsible for managing this data is referred to as the KV_Manager. During task
processing, the system first checks whether the cached tasks in the KV_Manager are similar to the
task currently being processed. If a match is found, the system utilizes the cached top-layer KV to
accelerate inference; otherwise, it performs a normal inference.

In multi-node scenarios, each edge server processes tasks in the same manner as in the single-node
scenario. To maximize resource utilization in the system, task similarity is fully exploited. Edge
servers communicate over the network to determine whether they have cached similar tasks to the
one currently being processed. If similar tasks are found on one of the edge servers in the system, the
task request is offloaded to that server for processing with the cached similar KV.

Figure 5 illustrates the overall workflow of Sim-LLM, which will be described thoroughly in Sec-
tion 3.2 and Section 3.3. In the preprocessing phase, inference tasks are tokenized to word embeddings
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Figure 5: Sim-LLM overview

before the Scheduler assigns them to edge servers. During the inference phase, KV replacement and
sharing are employed throughout the three-stage model inference process on edge servers.

3.2 Semantic Similarity Identification
How to define whether an inference task is similar to previous tasks? One commonly used
approach to measure text similarity is Jaccard similarity. However, Jaccard similarity has a notable
limitation. It ignores variations in text lengths. For example, the two sentences "I love you!" and "I
love you! I love you! I love you!" would yield a similarity score of 1, implying that they are identical,
despite having different semantic meanings due to the repetition in the second sentence. Metrics such
as Euclidean distance, Levenshtein distance, and Jaro-Winkler distance are also strongly influenced
by text length when measuring similarity, making them unsuitable for evaluating tasks when the
text length is unknown. Therefore, the semantic-based method of cosine similarity is preferred.
This method is widely used in word vector models (e.g., Word2Vec [25], GloVe [26]) and semantic
models (e.g., BERT [27]). Regarding the definition task similarity, Word2Vec and GloVe consider
a cosine similarity threshold of 0.6, Sentence-BERT and SemEval use 0.7. Through evaluation of
the threshold’s impact both on generation speed and model accuracy, Sim-LLM employs a stringent
threshold to offset performance degradation after KV reusing while maintaining inference efficiency,
considering two tasks to be similar when their cosine similarity exceeds 0.8. The detailed results can
be found in Appendix 4.5.

How to recognize the semantic similarity between tasks? When employing an exhaustive search
approach to compare the similarity between incoming tasks and cached tasks, Sim-LLM outperforms
the state-of-the-art approaches in various downstream tasks. However, this advantage is limited
to small batch sizes. As batch size increases, the performance advantage of Sim-LLM diminishes.
This performance decline is caused by the cumulative computational overhead introduced by the
exhaustive search for similarity calculation, which reduces the inference speed. To address this issue,
Sim-LLM employs LSH mapping. During the task caching process, it stores the task’s corresponding
embedding, the top-layer KV, as well as the hash value calculated from the word embedding. By
transforming the word embedding of an incoming task into a hash value and mapping it to an LSH
bucket, Sim-LLM can efficiently identify cached tasks similar to the current task. By reducing
high-dimensional data to lower-dimensional representations, LSH can significantly accelerate task
similarity identification.

3.3 KV_Manager
KV_Manager stores the embeddings and top-layer KVs of previous tasks so that Sim-LLM can match
similar tasks and utilize similar KVs to accelerate inference. As discussed in Section 2, it leverages
similar top-layer KVs to replace the conventional KV generation. Moreover, it has been observed
that Transformers focus on syntactic information in the lower layers and semantic information in
the higher layers [28], in addition to the informative characteristic of top-layer KV. Thus, it makes
sense to consider the top-layer KV for replacement between tasks sharing semantic similarity. Thus,
there is no need to cache the KV from other layers. Consequently, Sim-LLM caches only the keys
and values from a single layer, unlike a typical Transformer model that caches those from multiple
layers. This significantly reduces memory consumption without introducing additional computational
overhead during inference.
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Although the KV_Manager introduces extra memory requirements for storing the embeddings and
top-layer KVs of previous tasks (which will be discussed in Section 4.2), this extra memory usage
is substantially lower than the memory overhead associated with computing and storing KVs of all
tasks. Furthermore, KV_Manager facilitates KV sharing across multiple edge nodes to further reduce
the additional memory overhead, as discussed in Section 3.4.

As shown in Figure 5, the KV replacement process within KV_Manager consists of five steps. ❶
When a batch of tasks arrives, a tokenizer first tokenizes these tasks to obtain their embedding vectors.
Then these embeddings are mapped to corresponding hash values. ❷ The Scheduler distributes
these tasks’ embeddings and hash values to neighboring edge servers to identify similar tasks. ❸
KV_Manager stores the embedding vectors, hash values, and top-layer KV of tasks that have been
inferred. Before inference begins, the tasks are mapped to the LSH buckets in KV_Manager to
facilitate the search for similar tasks. If similar tasks are found, the top-layer KV stored in the
KV_Manager is passed to the first layer of the LLM (bottom stage). This operation accelerates the
prefilling phase by eliminating the need to compute the KV from scratch at the attention module.
❹ When the prefilling phase (top stage) for the first new token is about to complete (new tasks’
top-layer KV have been computed), KV_Manager stores the top-layer KV as well as the embedding
of the current task and applies an eviction algorithm to remove the KV of outdated tasks. ❺ Since
the top-layer KV is utilized, the inference process of lower layers can be skipped. Inference can be
performed directly at the final layer of the model to produce the output (top stage), thereby skipping
the entire prefilling phase.

For matched tasks, the queries from all layers are paired solely with the top-layer KV pair of similar
previous tasks. This eliminates the need to cache or compute the KV for all layers, saving memory
consumption and computational overhead. Furthermore, by using the top-layer KV to replace the
KV generation process for the current task across all layers, Sim-LLM bypasses intermediate layers
and directly generates the output token from the top layer. However, this method assumes that every
task within the current batch has a corresponding similar task with an available top-layer KV, which
is not always true. To address this, when more than half of the tasks in a batch are matched, those
without a corresponding top-layer KV are temporarily stored for the next batch. This ensures that the
remaining tasks can bypass the initial computation process, thereby enhancing the overall inference
efficiency. For unmatched tasks, the goal is to accelerate their inference process by optimizing the
model configuration. Sim-LLM retains the KV from the bottom three layers (bottom stage) and the
top three layers (top stage) in a ’sandwich’ structure.

KV_Manager continuously maintains metadata for newly processed tasks. As cached tasks accumu-
late, the memory footprint grows commensurately. When the cache reaches the cache size, eviction
is triggered to reclaim space for incoming tasks and to prevent memory exhaustion. Accordingly,
KV_Manager adopts the Least-Recently-Used (LRU) eviction policy that preferentially preserves
frequently reused task KVs while removing those accessed least recently. This design aligns with the
central premise of this work: reusing as many similar KVs as possible to accelerate inference.
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3.4 Across Nodes KV Sharing Mechanism
In Sim-LLM, edge servers can exchange their cached tasks to accelerate the overall inference speed.
To further improve memory utilization, Sim-LLM employs a across nodes KV sharing mechanism.

As shown in Figure 6, let us assume three edge servers in the system. Sim-LLM utilizes LSH to map
the current task from edge server s1 into the LSH bucket corresponding to edge server s2 and s3.
The process consists of these steps: ❶ Users submit their tasks to edge servers. ❷ The new tasks are
tokenized through a preprocessing module. ❸ The scheduler assigns the tokenized embedding to s1
after comparing the user tasks’ feature with the servers’ task prototype in the global feature table.
s1 then begins searching for similar tasks within its LSH bucket. ❹ If no similar tasks are found, s1
attempts to transmit the new embeddings to its neighbor servers. ❺ If a neighbor server identifies a
similar task, it will take over the remaining inference process.

When an edge server si attempts to find tasks similar to the current task among its neighbor servers,
it begins the inference process of the current task itself. Its neighbors search for similar tasks
simultaneously. When a similar task is found on a neighbor edge server, that server sends a signal
to si to halt its inference and accelerates the task using the similar task. However, this approach
introduces a potential issue: si may be interrupted just as its inference nears completion. This incurs
resource waste. A straightforward solution to this problem is to limit the number of hops for the
queries. Inspired by the concept of prototype learning [24], Sim-LLM extracts features from inference
tasks on each edge server to identify task features they often handle. Each edge server maintains a
global feature table that contains a prototype for each server. By comparing the features of incoming
tasks with those stored in the table, it can identify the edge server that is most likely to have similar
tasks. With this method, Sim-LLM can locate a server with similar tasks with only one query.

Despite the across node KV sharing mechanism improves the inference performance, it also incurs
communication overhead due to information exchange between edge servers. To address this issue,
when similar tasks are identified on another edge server, only the sequence or the corresponding word
embeddings are transmitted to the identified edge server, rather than transmitting the KV cache of
the similar task to the current processing task from the identified server back to the original server.
However, if the identified edge server is occupied with processing other tasks, it must transfer the
stored KV cache back to the original edge server for accelerating inference.

4 Experiments
4.1 Experimental Settings

4 8 64 128 256 1024 2048
Batch Size

50
100
150
200
250
300
350
400

Th
ro

ug
hp

ut
(to

ke
ns

/s
) H2O

StreamingLLM
ZipCache
ArkVale
Sim-LLM(Ours)

(a) Throughput

1024 2048 3072 4096
Batch Size

15

20

25

30

35

M
em

or
y(

GB
)

H2O
StreamingLLM
ZipCache
ArkVale
Sim-LLM(Ours)

(b) Memory

Figure 7: Comparison of throughput and memory
consumption between Sim-LLM and baselines on
Llama-7B

Models. To evaluate the performance of Sim-
LLM, experiments are conducted on two widely-
used English LLMs, i.e., TinyLlama-1.1B [18],
Llama2-7B and 13B [29], as well as a bilin-
gual LLM, i.e., InternLM2-7B [30], which sup-
ports both Chinese and English. For the exper-
iments, we utilize the chat versions of Llama2-
7B, InternLM2-7B, and Llama2-13B.

Benchmarks. The experiment is conducted in
the OpenCompass evaluation framework con-
tributors [31] and the lm-eval-harness frame-
work [32]. The evaluation involves five key aspects, i.e., reasoning, language, knowledge, ex-
amination, and understanding, with corresponding benchmarks: (1) Reasoning: CMNLI [33],
HellaSwag (HeSw) [34], PIQA [35]; (2) Language: CHID [36], WSC [37]; (3) Knowledge:
CommonSenseQA (CSQA) [38], BoolQ [28]; (4) Examination: MMLU [39], CMMLU [40]; (5)
Understanding: Race-High/Middle (H/M) [41], XSum [42], C3 [43].

The evaluation is conducted with the official scripts from OpenCompass, employing a zero-shot
approach without additional training. Two evaluation modes are utilized: perplexity (PPL) and
generation (GEN)2. The GEN mode is used for the CHID and XSum benchmarks, while both
PPL (WSCP ) and GEN (WSCG) modes are used for the WSC benchmark. The remaining benchmarks
are evaluated in the PPL mode. OpenCompass subsequently converts the evaluation results for each
benchmark into a score, with higher scores indicating better performance.
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Figure 8: PPL on Wikipedia dataset [45] at different cache sizes

Experiment Environment. The performance of Sim-LLM under single-node scenarios is evaluated
on a server with a single Nvidia A100 80GB GPU. Four physical machines, each equipped with four
Nvidia A40 40GB GPUs, are used as edge servers to evaluate the performance across edge nodes.
All experiments related to the PPL evaluation are conducted on a 10M subset of the development set
from SlimPajama [44] and the Wikipedia dataset [45].

4.2 Performance Results
Experiments are conducted on each dataset, and the average score across all tasks for each aspect is
reported.

The baselines include the standard Transformer models as well as the state-of-the-art KV cache evic-
tion and intra-layer compression methods, including StreamingLLM [46], H2O [47], ZipCache [48],
and ArkVale [49]. Their details can be found in Appendix A.

We first evaluate the generation performance of Sim-LLM. Figure 7a and Figure 7b compare the
throughput and memory consumption of the baselines and Sim-LLM on servers with A40 GPUs
with varied batch sizes. Both the prompt length and generation length are set to 2,048. Sim-LLM
outperforms all baselines across all tested batch sizes, achieving a speedup of up to 39.40% (33.04%
on average) and memory reduction of up to 34.65% (30.05% on average). Please note that the largest
batch size does not always yield the maximum system throughput. Notably, the increase in system
throughput is not solely attributed to the increased batch size. By substituting the KV computation
during the prefilling phase with the replacement of top-layer KV of similar tasks, Sim-LLM effectively
eliminates redundant calculations, leading to both higher throughput and lower memory consumption.
Additionally, we observe that as the batch size exceeds 256, system throughput no longer increases
and even decreases when the batch size reaches 1,024. This suggests that the model transitions from
memory-bound to compute-bound [5].
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Figure 9: Comparison of latency per token and
memory consumption of (Tiny)Llama and our
model w.r.t. different cache sizes

To validate the generation quality of Sim-LLM,
we evaluate its PPL on various downstream
benchmarks. Figure 8 demonstrates the PPL of
both the baselines and Sim-LLM for the Llama
series under different cache sizes. The PPL
achieved by Sim-LLM is better when the cache
size is larger. Since Sim-LLM directly utilizes
the stored KVs, the computational complexity
during the generation process is reduced, result-
ing in fewer inference steps and faster conver-
gence to a lower PPL. When a similar task is
identified, the corresponding KV of previous
tasks serves as a supplement, providing context
from similar scenarios that Sim-LLM has previously encountered. This enables Sim-LLM to generate
outputs with greater certainty, reducing its reliance on unknown contexts. Essentially, Sim-LLM
becomes more familiar with task types over time, leading to a decrease in PPL. Eviction-based
methods, H2O and StreamingLLM, exhibit higher PPL compared to ZipCache, primarily due to their
information loss upon token eviction. In contrast, the quantization-based method ZipCache preserves
full data integrity, thereby achieving better performance. Furthermore, we evaluate zero-shot per-
formance on the benchmarks mentioned in Section 4.1, using the lm-eval-harness framework [32].
Table 2 shows the average score across all tasks in Appendix B.4, demonstrating that Sim-LLM does
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not experience significant performance drops in any specific area. The PPL results in Figure 8 and
downstream benchmarks scores in Table 2 illustrate that Sim-LLM effectively preserves both overall
and task-specific performance, maintaining reliable output quality.

To evaluate the impact of cache size on Sim-LLM, we conducted experiments using various cache
size configurations. Figure 9 illustrates the latency and memory usage of Llama models with varying
cache sizes incurred by Sim-LLM. Sim-LLM significantly reduces model inference latency and
effectively decreases memory usage across most cache size configurations. As shown in Figure 9b,
only when the cache size reaches 4096, the memory usage of Sim-LLM becomes larger than that of
Llama. It results from the stored KVs and embeddings from previous tasks, offsetting the benefits of
reducing memory usage by reusing similar KVs.

Usually, the sequence length does not exceed the maximum input lengths the models are trained on.
To highlight the capability of Sim-LLM to support models with larger sequence lengths, we also
evaluate this situation. Table 3 in Appendix B.3 compares the maximum batch sizes and throughput
of standard Llama models and Sim-LLM across two types of GPUs. These results confirm it and show
Sim-LLM’s capacity to handle significantly larger batch sizes and achieve higher system throughput
than all baselines across all settings.

4.3 Impact of Source Layer Used for KV Reusing
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Figure 10: Perplexity on the SlimPajama dataset
and average downstream task results of Llama-7B

In this section, we evaluate the PPL and accu-
racy of downstream tasks on Llama-7B (total
32 layers) when choosing different layers as a
similar KV source. The position of the source
layer is from top, middle, bottom. We select
several layers from these positions respectively,
e.g., layer 3 to 5 for bottom, 14 to 16 for middle,
and 30 to 32 for top. The cache size is set to
512. Figure 10 substantiates that the choice of
top-layer KV as source is reasonable. Detailed
results of downstream tasks are shown in Ap-
pendix B.4. It can be seen that top layer outperforms bottom and middle layer in both PPL and
downstream task accuracy when performing KV sharing. Additionally, it can be observed that as the
position of the source layer increases, the model’s performance improves, gradually approaching that
of the standard model. In addition to the reasons discussed in Section 2 and Section 3.3, we analyze
that this phenomenon arises because, at lower layers, the KV lacks sufficient semantic information,
which is inadequate to enable the model to achieve reliable performance.

4.4 Impact of Similar Task Proportion
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Figure 11: Results of task sets with different pro-
portions of similarity on Llama-7B

To evaluate the impact of similarity pro-
portion on Sim-LLM, we select tasks from
REDDIT [12], MMChat [13], LCCC [14],
WIKI [45], GLUE [50], SICK [51] and
SNLI [52] to create task sets with varying pro-
portions of similarity, where two tasks are con-
sidered similar if their cosine similarity exceeds
0.8. Evaluations are conducted on Llama-7B
using the specified task sets, with a fixed prompt
length of 512 and a generation length of 4,096.
When the similarity proportion is zero, Sim-
LLM performs inference in the same manner as standard Transformers. As demonstrated in Figure 11,
with the similarity proportion in the task set increasing, Sim-LLM can more effectively leverage the
reuse of KVs from similar tasks, thereby accelerating inference and improving throughput, although
this may result in a slight degradation in accuracy.

4.5 Impact of Cosine Similarity Threshold
Since Sim-LLM accelerates inference by exploiting task similarity, we investigate the impact of
the similarity threshold on performance. Specifically, we determine the optimal cosine similarity
threshold for KV reuse by evaluating generation speed, perplexity, and accuracy on downstream tasks.
Figure 12 presents the results. In Figure 12a, the prompt length and the generation length are set to
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512 and 4,096, respectively. When the threshold of cosine similarity is low, throughput performance
exceeds that of a higher threshold. This is because most incoming tasks can easily identify "similar"
tasks’ KVs for reuse, introducing minimal identification overhead and accelerating the inference
process. However, such an advantage comes at the expense of model accuracy, as illustrated in
Figure 12b and Figure 12c. When the threshold reaches 0.9, there is a significant drop in generation
speed due to fewer tasks being able to reuse KVs, resulting in many tasks performing inference as
in the standard Transformer model. Therefore, as a trade-off between generation speed and model
accuracy, a threshold of 0.8 is preferred.

5 Related Work
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Figure 12: Results of different thresholds of cosine similarity
on Llama-7B. Evaluation conducted on SlimPajama [44]
dataset. The downstream tasks used in (c) are CMNLI [33],
HellaSwag [34], and XSum [42].

Extensive research has been dedicated
to reducing the memory consumption
of the KV cache for efficient inference
of LLMs. Existing studies can be cat-
egorized into three main approaches.

Memory Space Optimization. KV
caches can be scheduled properly
to maximize resource utilization in
edge computing systems. Infinite-
LLM [53] partitions the KV cache
into smaller, more manageable units
for independent processing and management across the global memory scheduler in a distributed
system. LoongServe [54] dynamically assigns the prefilling and decoding phases of tasks to instance
groups, which can scale up or down in response to changing load demands, without incurring KV
migration overhead.

Memory Usage Optimization. KVs can also be selectively retained to save on system resources [46,
47, 55, 56]. Scissorhands [56] and H2O [47] preserve only the crucial components of the KV cache
based on attention scores. StreamingLLM [46] retains only the recent context window and a few
initial tokens as an attention sink, and discards the rest of the past context. SnapKV [55] focuses on
pruning tokens in the input prompt in response to increasing input lengths.

Other KV Optimization Methods. Other methods for KV optimization include quantization [8,
48, 57, 58], eviction [49, 59], and merging [7]. Quantization is a representative method for KV
cache compression. It reduces the KV cache size from 16-bit to 4-bit or even lower. CacheGen [8]
is particularly relevant as it combines KV offloading with quantization, mitigating KV transfer
overhead by applying quantization-based compression algorithms. Other methods have also been
proposed to retain only the KV cache of important tokens while discarding others to save GPU
memory [46, 47, 55]. However, since the importance of tokens often changes during the decoding
process, discarded tokens may become crucial for further computation [59], which potentially leads
to accuracy loss. Quest [59] mitigates this issue by dynamically selecting a small portion of critical
KV cache for attention computation for each query token, while retaining all KV cache.

6 Conclusion and Future Work
This paper present Sim-LLM, a novel method for reducing memory consumption and improving
throughput for LLM inference in edge computing systems. It reduces the key-value computation over-
head by reusing the KV calculated for previous tasks similar to current tasks. Extensive experiments
demonstrate that Sim-LLM achieves reductions of up to 34.65% in memory usage and improvements
of up to 39.40% in throughput, with negligible performance degradation in accuracy.

The primary limitation of Sim-LLM lies in the necessity of storing the top-layer KV pairs, as
well as corresponding embeddings of processed tasks. Although Sim-LLM performs effectively
across a wide range of cache size configurations, the storage required for saving additional KVs
and embeddings may exceed the benefits gained from reducing the KV cache through the use of
similar tasks. Furthermore, since the top-layer KVs computed by the model are essential, the KV
shape across all edge servers must remain consistent. Consequently, the models deployed across edge
servers must be identical. Our future work will explore how to share KVs for heterogeneous models.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The authors have discussed the limitations of the work in the last Section of
this paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The authors have disclosed all the information needed to reproduce the main
experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is open sourced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The authors have included experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because of limited computing resources.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The authors have provided information on computing resources.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors confirm that the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The authors have discussed broader impacts of the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors have cited the related papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Given the massive amount of experiments conducted in this paper, providing
error bars would be computationally prohibitive.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Appendix

A Baselines

The performance of Sim-LLM is compared against four baselines.

StreamingLLM [46]: StreamingLLM is a long-context streaming processing approach designed for
LLMs. Its core concept centers on stabilizing generation performance by retaining recent tokens and
initial "attention sinks." It maintains a fixed-size cache window that preserves only the KV of recent
tokens and a small number of initial tokens. Its primary limitation lies in the inherited constraint of
pre-trained context window sizes, which prevents enhancement of the model’s long-term memory
capacity.

H2O [47]: With the core idea rooted in the optimization of computational efficiency during the
generation process through the introduction of the "Heavy-Hitter Oracle" mechanism, H2O reduces
unnecessary computations by identifying and prioritizing the most probable output tokens (i.e.,
heavy-hitter options), thereby enhancing the speed and efficiency of inference.

ZipCache [48]: The main concept of ZipCache is to precisely identify the tokens that have a
significant impact on model generation, and to prioritize retaining information about these key tokens
when compressing the KV cache. It introduces a channel-separable, per-token quantization strategy
to effectively reduce the memory overhead of quantization parameters.

ArkVale [49]: ArkVale organizes the tokens in the KV cache into pages and maintains summary
information for these pages. Before each attention computation, ArkVale evaluates the importance
of each page based on the current query and the summary information of the cached pages. By
dynamically evicting and recalling KV pages, it addresses the issue of token importance changing
during decoding steps, without requiring modifications to the model architecture or fine-tuning.
ArkVale [49] is the state-of-the-art block-level dynamic sparse attention within the vLLM.

B Additional Experimental Results

B.1 Scalability and Latency of Sim-LLM Under Variable Edge Workloads

Table 1: Latency performance of Sim-LLM under differ-
ent cache sizes for bursty and uniform workload patterns

Cache Size Poisson Latency (ms) Power-law Latency (ms)
256 25.66 27.68
512 25.75 28.51

1024 26.31 29.34
2048 33.13 35.88
4096 45.35 47.72

To evaluate Sim-LLM under heterogeneous
edge workloads, we consider two task distri-
butions: Poisson distribution and Power-law
distribution. The Poisson case approximates
a uniform workload, whereas the power-law
case captures bursty, highly variable demand.
As summarized in Table 1, under bursty condi-
tions Sim-LLM remains scalable and does not
introduce appreciable additional latency rela-
tive to the uniform-load scenario. We attribute
this robustness to the LRU eviction policy: bursty traffic induces many tasks with overlapping or
identical features, and LRU adapts by retaining frequently reused task KVs, allowing a large fraction
of requests to hit reusable KVs. This improves cache locality and accelerates inference, rendering
LRU particularly well suited to bursty workloads.

B.2 Zero-shot Accuracy on Benchmarks
In this section, we conducted zero-shot accuracy evaluation on benchmarks discussed in Section 4.1,
using the TinyLlama-1.1B, Llama2-7B, and Llama2-13B with official scripts from the lm-eval-harness
framework [32]. The results in Table 2 show Sim-LLM is comparable to the standard transformers
and the state-of-the-art methods in terms of accuracy on downstream tasks.

B.3 Maximum Generation Batch Size and Throughput
In this section, we conducted generation performance evaluation with different prompt and generation
lengths, using the TinyLlama-1.1B, Llama2-7B, and Llama2-13B with official scripts from the
OpenCompass framework [31]. The results in Table 3 show that Sim-LLM outperforms the state-of-
the-art methods.
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Table 2: Zero-shot accuracy on different benchmarks w.r.t different models
Model Reasoning Language Knowledge Examination Understanding Avg

TinyLlama-1.1B 44.58 30.2 50.99 46.38 25.00 39.43
H2O 43.68 28.52 43.90 20.94 25.37 32.48
StreamingLLM 45.66 28.22 45.11 22.32 24.36 33.13
ZipCache 52.46 43.75 46.39 33.39 20.97 39.38
ArkVale 51.68 38.52 51.90 26.94 24.37 38.68
Sim-LLM(Ours) 42.66 28.87 48.68 45.38 21.57 37.43
Llama-7B 60.83 40.67 68.67 38.89 33.03 48.41
H2O 57.46 43.75 52.39 35.39 21.97 40.05
StreamingLLM 58.22 41.11 50.24 36.67 22.02 41.65
ZipCache 60.83 40.67 68.67 38.89 33.03 46.55
ArkVale 57.74 51.00 60.52 33.12 31.15 45.58
Sim-LLM(Ours) 58.45 39.61 67.78 36.19 32.43 46.89
Llama-13B 62.50 60.46 75.87 46.76 49.47 58.61
H2O 60.73 54.41 71.86 36.18 44.73 52.89
StreamingLLM 61.35 47.38 73.66 46.03 40.51 51.97
ZipCache 61.31 57.33 74.56 46.16 47.77 56.32
ArkVale 63.28 50.15 76.18 45.23 52.55 56.67
Sim-LLM(Ours) 61.47 58.74 73.66 45.89 46.81 57.31
InternLM2-7B 61.89 71.18 76.57 64.33 69.58 68.71
Sim-LLM(Ours) 60.19 69.22 74.47 61.01 65.12 66.00

Table 3: Maximum achievable batch size and throughput across different sequence lengths on
NVIDIA A40 (40GB) servers and an A100 (80GB) GPU server. Notation “u + v” represents a prompt
length of u and a generation length of v.

GPU Model Size Seq. Length
Batch Size Throughput (tokens/s)

Llama ZipCache ArkVale Sim-LLM(Ours) Llama ZipCache ArkVale Sim-LLM(Ours)

A40

1.1B
5+8187 48 112 (2.3×) 123 (2.6×) 384 (8×)(8×)(8×) 1424.96 2536.80 (1.8×) 3584.00 (2.5×) 4113.37 (2.9×)(2.9×)(2.9×)

5+2043 239 448 (1.9×) 768 (3.2×) 1150 (4.8×)(4.8×)(4.8×) 5142.86 8928.57 (1.7×) 7428.57 (1.4×) 10033.40 (2.0×)(2.0×)(2.0×)

7B

5+128 128 224 (1.8×) 243 (1.9×) 640 (5.0×)(5.0×)(5.0×) 568.56 1023.41 (1.8×) 1228.09 (2.1×) 1364.50 (2.40×)(2.40×)(2.40×)

5+512 62 204 (3.3×) 254 (4.1×) 512 (8.26×)(8.26×)(8.26×) 354.53 1985.37 (5.6×) 2187.65 (6.2×) 3816.51 (10.76×)(10.76×)(10.76×)

5+2043 5 24 (4.8×) 32 (6.4×) 64 (12.8×)(12.8×)(12.8×) 140.88 320.00 (2.27×) 448.24 (3.18×) 534.02 (3.8×)(3.8×)(3.8×)

512+512 9 48 (5.3×) 52 (5.7×) 95 (10.6×)(10.6×)(10.6×) 225.31 415.79 (1.8×) 473.15 (2.1×) 678.35 (3.0×)(3.0×)(3.0×)

512+4096 7 96 (13.7×) 108 (15.4×) 256 (36.6×)(36.6×)(36.6×) 65.25 246.30 (3.7×) 277.16 (4.2×) 522.53 (8.0×)(8.0×)(8.0×)

A100
7B 2048+2048 15 — — 128 (8.5×)(8.5×)(8.5×) 141.10 — — 421.02 (3.0×)(3.0×)(3.0×)

13B 2048+2048 1 — — 32 (32×)(32×)(32×) 14.10 — — 108.29 (7.7×)(7.7×)(7.7×)

B.4 Detailed Downstream Task Results

To further elucidate the findings presented in Figure 10b, we provide comprehensive statistical
evaluations of downstream task performance in Table 4.

Table 4: Detailed downstream task results on Llama-7B
# of Source Layer HellaSwag PIQA BoolQ Average

3 41.76 67.9 57.28 55.65
5 42.14 66.97 61.47 56.86
14 43.43 68.17 59.57 57.06
16 43.88 67.57 61.07 57.50
30 44.22 68.28 60.73 57.74
32 44.74 69.21 61.88 58.61

Standard model 46.58 68.93 61.46 58.99
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Algorithm 1: Sim-LLM
Input :Task batch B = {t1, t2, . . . , tn}; cosine similarity threshold θ; LSH bucket size k;

KV_Manager with cache size C and LRU eviction; bottom stage num sandwich_bot;
top stage num sandwich_top.

Output :Inference results with KV optimization.
; // Step 1: Preprocessing (§3.2)

1 foreach t ∈ B do
2 tokenize t and compute embedding et;
3 ht ← LSH(et, k);
4 assign t to bucket LSH_Bucket[ht];

; // Step 2: Task Similarity Identification (§3.2)
5 foreach t ∈ B do
6 S ← LSH_Bucket[ht];
7 compute sim(et, es) for all s ∈ S;
8 if ∃ s⋆ ∈ S s.t. sim(et, es⋆) ≥ θ then
9 retrieve cached top-layer KV from KV_Manager[s⋆];

10 t.KV← KV_Manager[s⋆];
11 else
12 compute full KV for t from scratch;

; // Step 3: KV Cache Management (§3.3)
13 foreach processed task t do
14 store (et, ht,KVt) into KV_Manager;
15 if size(KV_Manager) > C then
16 apply LRU eviction;

; // Step 4: Edge Server Communication (§3.4)
17 foreach t ∈ B with no local match do
18 compute task feature ft and compare with prototypes in global feature table;
19 if remote feature match f found then
20 offload t to the corresponding server;

21 periodically update and sync task prototypes across servers;
; // Step 5: Inference Execution (§3.3&3.4)

22 foreach t ∈ B do
23 if t.KV exists then
24 run inference by reusing top-layer KV;
25 else
26 run inference with sandwich configuration, retaining bottom sandwich_bot layers and

top sandwich_top layers KV;

C Algorithm Details
We provide the algorithm details of Sim-LLM in Algorithm 1. For each batch of tasks, after
preprocessing, tasks are mapped to an LSH bucket, where similarity matching is performed. If
a match is found, the KV of the similar task is reused to accelerate inference; otherwise, normal
inference is performed with sandwich configuration. The hash value, embedding value and top-layer
KV for each processed task are stored in the KV_Manager for future task reuse (LRU eviction is
adopted when reaching cache size). After each batch is processed, each server updates its task
prototype and sends it to other servers to maintain the global feature table.
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