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Abstract

Existing methodologies in open vocabulary 3D semantic segmentation primarily
concentrate on establishing a unified feature space encompassing 3D, 2D, and
textual modalities. Nevertheless, traditional techniques such as global feature
alignment or vision-language model distillation tend to impose only approximate
correspondence, struggling notably with delineating fine-grained segmentation
boundaries. To address this gap, we propose a more meticulous mask-level align-
ment between 3D features and the 2D-text embedding space through a cross-modal
mask reasoning framework, XMask3D. In our approach, we developed a mask
generator based on the denoising UNet from a pre-trained diffusion model, leverag-
ing its capability for precise textual control over dense pixel representations and
enhancing the open-world adaptability of the generated masks. We further integrate
3D global features as implicit conditions into the pre-trained 2D denoising UNet,
enabling the generation of segmentation masks with additional 3D geometry aware-
ness. Subsequently, the generated 2D masks are employed to align mask-level
3D representations with the vision-language feature space, thereby augmenting
the open vocabulary capability of 3D geometry embeddings. Finally, we fuse
complementary 2D and 3D mask features, resulting in competitive performance
across multiple benchmarks for 3D open vocabulary semantic segmentation. Code
is available at https://github.com/wangzy22/XMask3D.

1 Introduction

As the integration of vision and language in deep learning continues to expand, text descriptions
are increasingly utilized in visual generation [37, 50, 39, 35, 26, 40] and perception [36, 22, 23,
13, 45, 12] tasks. This integration enhances the adaptability of models in real-world applications
and improves user experiences in customized artificial intelligence systems. Open vocabulary 3D
semantic segmentation exemplifies a perception task that is trained on base categories and demands
robust extrapolation capabilities to discriminate fine-grained geometry in novel categories that are
invisible during training. The base and novel classes are only linked by the shared open vocabulary
within the language space. However, constructing a shared 3D-text space while maintaining precise,
modality-specific representation remains a significant challenge. Successfully addressing this issue
would advance open vocabulary 3D semantic segmentation, facilitating virtual reality interactions and
manipulations, and thereby contributing to the development of user-friendly robotics and autonomous
driving technologies.

Existing approaches for open vocabulary 3D perception predominantly aim to bridge the gap between
3D and text representations by using the 2D modality as an intermediary. One line of research [34,
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Figure 1: The overall framework of XMask3D. The 3D model with only coarse 3D-2D-text
alignment struggles to segment novel categories with accurate boundaries. We propose to incorporate
a 2D open mask generator conditioned on global 3D geometry features to create geometry-aware
segmentation masks of novel categories. Then we apply fine-grained mask-level regularization on 3D
features, thereby enhancing the dense open vocabulary capability of the 3D model. The cross-modal
fusion block leverages the strengths of both branches to achieve optimal results.

11, 47, 16] suggests aligning 3D embeddings with vision-language embedding spaces through global,
patch-wise, or point-wise contrastive loss, while another line [49, 28, 44] investigates distilling open
vocabulary knowledge from foundational vision-language models into 3D models. However, global
feature alignment and model distillation techniques tend to overlook fine-grained 3D geometric details
and produce coarse results. Conversely, point-wise contrastive learning is prone to noise and outliers.
Although patch-wise feature alignment offers a compromise, a single patch in 2D may correspond to
multiple unrelated and discontinuous regions in 3D, which can be misleading and ineffective.

In this paper, we propose a more precise and consistent mask-level alignment between 3D features and
the 2D-text embedding space, achieved through our proposed cross-modal mask reasoning method.
The proposed XMask3D model comprises a 3D branch, a 2D branch, and a fusion block. The 3D
branch, adaptable as any point cloud segmentation model, excels in capturing geometric features but
struggles with novel category extrapolation. Conversely, the 2D branch serves as a mask generator,
which predicts masks with embeddings aligned to the vision-language feature space but lacks 3D
spatial perception capabilities. The fusion block allows these two branches to complement each other.
Specifically, we propose utilizing the denoising UNet of a pre-trained text-to-image diffusion model
with advanced vision-language modeling capabilities as the 2D mask generator. Diffusion model’s
exceptional control over text-driven image generation demonstrates strong potential for creating
fine-grained segmentation masks of novel categories. To promote thorough interaction between the
two modality branches, we propose three mask-level techniques: (1) 3D-to-2D Mask Generation.
We condition the denoising mask generator on global point cloud features, producing geometry-aware
masks that are better suited for transferring to the 3D modality. (2) 2D-to-3D Mask Regularization.
We apply mask-level regularization on 3D features to align with the vision-language embedding space.
This enhances the open vocabulary capability of 3D features for novel categories while preserving
fine-grained geometric information. (3) 3D-2D Mask Feature Fusion. We merge mask features
from both modalities in the fusion block, enhancing the synergy between 2D and 3D features.

We conduct extensive experiments on multiple benchmarks of different datasets, including Scan-
Net20 [9], ScanNet200 [38], and S3DIS [1] datasets, to evaluate the effectiveness of our proposed
method. XMask3D demonstrates competitive performance across all benchmarks. Additionally, we
perform thorough ablation studies and provide intuitive visualizations to showcase the contribution of
each proposed mask-level technique. In conclusion, the contributions of this paper can be summarized
as follows:

• We propose a novel XMask3D framework that, for the first time, leverages the denoising
UNet of a generative text-to-image diffusion model for open vocabulary 3D perception.

• We introduce 3D-to-2D mask generation, 2D-to-3D mask regularization, and 3D-2D mask
feature fusion techniques to enhance meticulous mask-level 3D-2D-text feature alignment
and strengthen cross-modal feature synergy.

• We demonstrate the effectiveness of XMask3D on multiple benchmarks of various datasets
and show outstanding performance. Ablation studies further convince the contribution of
each proposed mask-level technique.
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2 Related Work

2.1 2D Open Vocabulary Segmentation

Open vocabulary perception is a recently emerged research problem that focuses on enabling percep-
tion models to recognize novel categories that are invisible during supervised training, relying solely
on a shared language vocabulary with the base categories. The key to addressing this problem lies in
the Vision-Language model, which creates a shared embedding space for images and texts. Based on
the types of Vision-Language models, previous literature on 2D open vocabulary segmentation can
be broadly divided into two approaches: utilizing Vision-Language perception models like CLIP [36]
or leveraging Vision-Language generation models like the diffusion model [18, 37].

Although traditional Vision-Language perception models like CLIP are primarily designed for
classification, open vocabulary segmentation can also be viewed as a dense classification task.
Consequently, several studies have proposed aligning dense image features with 2D-text embeddings,
a concept pioneered by LSeg [23]. Successor models have introduced various techniques to enhance
the feature alignment process, including attention-based combinations [30, 12], mask embedding
decoupling [10], side network injection [46, 24], and cross-modal aggregation [6].

Generative-based methods utilize Vision-Language generation models, such as diffusion models,
to produce segmentation masks that can be extrapolated to open vocabulary categories. Since
the diffusion model can generate semantically meaningful images based on text conditions, its
intermediate features effectively represent the vision-language embedding space. ODISE [45] first
proposed using the intermediate features from the denoising UNet of a pre-trained diffusion model as
input to a mask generator for segmentation. Other works [25, 21, 41] leverage the strong generative
capabilities of the diffusion model to create prototypes or augmented image-mask pairs, thereby
enhancing the open vocabulary capacity of the segmentation model from a data perspective.

2.2 3D Open Vocabulary Segmentation

In 3D vision, Semantic Abstraction [15] opens up the avenue to leverage Vision-Language models
for open-world 3D scene understanding. Subsequent studies have primarily developed two types of
methods to address 3D open vocabulary segmentation: feature alignment and model distillation.

The principle of feature alignment methods is to explicitly pull 3D representations towards the vision-
language embedding space, using the 2D modality as a mediator to establish 3D-text relationships.
OpenScene [34] employs a cosine similarity loss between point cloud features and image CLIP
features, integrating them for open vocabulary perception. PLA [11] introduces hierarchical 3D
caption pairs to progressively align scene-level, view-level, and entity-level features with the CLIP
feature space in a coarse-to-fine manner. Its successor, RegionPLC [47], further introduces region-
level captions with sliding windows and object bounding boxes, while CLIP-FO3D [49] similarly
divides super-pixels for finer feature alignment. UniM-OV3D [16] utilizes a pre-trained point-text
model, PointBind [14], to enforce uni-modality representation learning of point clouds, images, depth
maps, and texts. OV3D [20] proposes leveraging foundation models to establish point-entityText
associations through pixel, thereby enhancing open-vocabulary recognition within the 3D domain.

Model distillation methods typically involve selecting a foundational Vision-Language model and
transferring its knowledge to a 3D network using paired point clouds and image data. Seal [28]
introduces spatial contrastive learning and temporal consistency regularization to distill vision
foundation models for point cloud sequence segmentation in an open vocabulary setting. 3D-
OVS [27] aims to distill CLIP [36] and DINO [2, 33] into a neural radiance field [32] using novel
alignment losses for 3D perception. Xiao et al. [44] propose object-level and voxel-level distillation
losses for fine-grained 3D open vocabulary panoptic segmentation.

3 Approach

3.1 Overview

The detailed architecture of XMask3D is depicted in Figure 2. It consists of three components: a
3D geometry extraction branch, a 2D mask generation branch, and a 3D-2D feature fusion module.
The 3D geometry extraction branch is an encoder-decoder segmentation network, which can be
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Figure 2: The detailed architecture of XMask3D. We introduce an auxiliary 2D branch, which
utilizes global point cloud features as conditional input to generate open vocabulary masks. The
contour of the mask is utilized for regularization at the mask level on 3D features, and the embeddings
of the mask are fused with the 3D features to enhance cross-modal complementarity.

implemented using any off-the-shelf architectures such as sparse convolution networks [7, 8] or
Transformer-based networks [51, 43, 42]. These frameworks are specifically designed to extract
geometric features F3d ∈ RN×C from 3D point clouds, where N and C represent the numbers of
points and feature dimensions, respectively. However, F3d is discriminative only on base categories
trained with supervision, relying on a pre-defined classifier implemented as a fully connected layer
or a multi-layer perceptron. Therefore, it’s essential for F3d to be aligned with the vision-language
feature space to enable unbounded open vocabulary segmentation, which is performed via per-
point similarity comparisons between F3d and CLIP [36] text embeddings of given category names:
Ftext = ECLIPT

(Cname) ∈ RL×C , where L represents the number of categories, ECLIPT
denotes

the CLIP text encoder, and Cname stands for the category name such as Table, Chair.

Previous literature on feature alignment techniques varies from global or point-level contrastive
learning to vision-language model distillation. However, none of these methods simultaneously
achieves fine-grained precision and robustness to outliers. To address this limitation, we introduce a
cross-modal mask reasoning method that performs mask-level feature alignment. Specifically, we
propose a 2D mask generation branch in conjunction with the 3D branch to generate 2D masks with
open vocabulary capability and use these masks to regularize F3d. Detailed information on mask
generation and mask regularization can be found in Section 3.2 and Section 3.3, respectively.

From the 2D mask generator, we obtain the 2D mask embeddings G2d ∈ RM×C and binary mask
maps M2d ∈ RH×W×M , where M represents the number of candidate masks, and H and W denote
the height and width of the input images. Using the camera intrinsic matrix K ∈ R3×3 and the view
projection matrix V ∈ R4×4, we can establish associations between pixels in image I and surface
points in the corresponding point cloud P . This allows us to derive back-projected 3D binary masks
M3d ∈ RN ′×M from M2d. Here, N ′ signifies the number of points that correspond to image pixels,
following the relationship N ′ < N,N ′ < H ×W . Subsequently, we derive a pseudo mask feature
F2d = M3d ·G2d, F2d ∈ RN ′×C , with the subscript 2d indicating its origin from the 2D branch.

Having obtained F3d from the 3D geometry extraction branch and F2d from the 2D mask generation
branch, we implement a 3D-2D fusion block to combine these cross-modal and complementary
features, resulting in Ffuse ∈ RN×C . Detailed information on this process can be found in Section 3.4.
The final open vocabulary 3D semantic segmentation output O ∈ RN×L is then calculated via:

O = argmaxN
Ffuse · FT

text

∥Ffuse∥∥Ftext∥
(1)

Detailed training objectives can be found in Section 3.5.

3.2 3D-to-2D Mask Generation

Design Insights. An optimal 2D branch is expected to exhibit robust open vocabulary capabilities,
enabling it to predict accurate masks for novel categories. To this end, we employ the denoising UNet
of the renowned text-to-image diffusion model [37] to extract features from the well-established
text-2D embedding space, followed by a mask generator to convert features into segmentation masks.
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We favor the generative diffusion model over the commonly adopted CLIP [36] model for two
primary reasons. Indicated by Prompt-to-Prompt [17], the cross-attention maps from the intermediate
layers of the diffusion model exhibit a high correlation with text concepts. Consequently, a well-
trained diffusion model constructs a superior vision-language feature space, which can be effectively
leveraged for open vocabulary perception. Moreover, the diffusion model provides precise text
control over dense pixel generation, demonstrating a higher potential for generating fine-grained
segmentation masks compared to the CLIP model, which relies on coarse global feature alignment.

Preliminary: Open Vocabulary Mask Generation with diffusion. The inference process of a
text-to-image diffusion model [37] begins with a random Gaussian noise and a conditional text
embedding, generating high-quality images through iterative denoising steps. ODISE [45] was the
first to propose the use of the denoising UNet of a pre-trained diffusion model for open vocabulary
2D segmentation. Given an input image x, a noisy image xt is first sampled at time step t:

xt =
√
ᾱtx+

√
1− ᾱtϵ, ϵ ∼ N (0, I) (2)

where ᾱt =
∏t

k=1 αk, and α1, . . . , αT are pre-defined noise schedule. Then the diffusion model’s
visual representation f can be computed via the denoising step:

f = UNet(xt,MLP ◦ V(x)) (3)

where the denoising UNet is the building block of the diffusion model, MLP stands for multi-layer
perceptron, and V is a frozen CLIP image encoder to encode x into the vision-language embedding
space. V(x) is the implicit caption embedding which serves as the text condition input to the diffusion
model. Subsequently, the mask generator, implemented with Mask2Former [4, 3], uses the feature f
to produce M class-agnostic binary masks M2d and their corresponding mask embedding features
Fmask. Since f is highly representative of the vision-language feature space, the model is inherently
capable of generating open vocabulary segmentation masks and embeddings. The experimental
results of ODISE strongly confirm this hypothesis.

Geometry-aware Mask Generation. In XMask3D, the 2D mask generation branch is implemented
by a variant of the ODISE model. We propose an Implicit 3D Captioner that takes the global 3D
feature f3d ∈ R1×Cg from the 3D encoder as input, and predicts the implicit condition embedding to
be injected into the diffusion model. Then Equation 3 can be replaced by:

f = UNet(xt,MLP ◦ f3d), f3d = E(P ) (4)

where E represents the encoder of the point cloud segmentation model, and Cg denotes the feature
dimension of the global point cloud feature. The rationale behind this design is twofold. First, since
MLP ◦ f3d serves as the text condition for the pre-trained denoising UNet with frozen weights, the
training objective of the 2D mask generation branch implicitly pushes f3d closer to the text-2D feature
space. If f3d does not align with this space, the pre-trained denoising UNet will not recognize the
condition, resulting in a high loss of the 2D branch. Through gradient descent, the point cloud encoder
gradually distills some vision-language knowledge from the pre-trained and frozen denoising UNet.
Second, f3d encapsulates rich 3D geometric information that the 2D branch lacks due to occlusion
and dimensional compression issues inherent in images. Using f3d as the condition for the 2D branch
encourages the model to produce geometry-aware mask outlines and embeddings, facilitating the
back-projection of 2D masks into 3D space. The effectiveness of the proposed geometry-aware mask
generation will be validated through quantitative ablation comparisons in Section 4.3.

3.3 2D-to-3D Mask Regularization

Although some vision-language knowledge from the diffusion model is distilled to the point cloud
encoder E via the proposed Implicit 3D Captioner, the 3D feature f3d still deviates from the 2D-text
embedding space. This is because there is no constraint on the point cloud decoder D, and the
encoder distillation via gradient descent is inherently weak. Consequently, it is crucial to introduce
contrastive regularization in the training pipeline to explicitly align 3D features with the shared
2D-text embedding space. Existing contrastive learning methods [34, 11] between 3D features
and 2D-text features typically explore global, patch-wise, or point-wise relations. However, global
contrastive learning is too coarse, and point-wise feature alignment is prone to noise. While patch-
wise contrastive learning is more fine-grained and robust, it still lacks semantic clarity. A patch in a
2D image may correspond to multiple irrelevant and discontinuous regions in a 3D point cloud due to
depth compression, resulting in ambiguous and less representative local features in 3D.
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To this end, we propose an explicit 2D-to-3D mask regularization term for fine-grained and consistent
feature space alignment between the 3D and 2D-text modalities. Specifically, we extract 3D mask
embeddings G3d ∈ RM×C from 3D features F3d using the back-projected 3D binary mask M3d:

Gi
3d = avgpool(F̃ i

3d), 1 ≤ i ≤ M (5)

where Gi
3d ∈ R1×C represents the ith mask embedding, and avgpool signifies the average pooling

operation. F̃ i
3d is sampled from F3d at indices where Mi

3d = 1, with Mi
3d being the ith binary mask.

Given the 2D binary mask M2d and the input image I , we can also derive a ground truth mask
CLIP feature GCLIP via a pre-trained CLIP model [36]. For detailed information on obtaining the
ground truth GCLIP, please refer to MaskCLIP [12] or Section A.1. Subsequently, the 2D-to-3D
regularization term can be computed using a classical cosine contrastive loss:

Lmask =
1

M

M∑
i=1

(
1− Gi

3d · (Gi
CLIP)

T

∥Gi
3d∥∥Gi

CLIP∥

)
(6)

As each mask region ideally corresponds to a distinct category, the pooled mask embedding achieves
semantic consistency and representativeness. Consequently, contrastive learning at the mask level
offers finer granularity than global contrast, greater robustness than point-wise contrast, and clearer
distinction than patch-wise contrast. Through our proposed 2D-to-3D mask regularization, the 3D
features are explicitly aligned with the 2D-text feature space, enhancing the performance of the 3D
branch in open vocabulary segmentation. This progress is further substantiated by the ablation studies
outlined in Section 4.3.

3.4 3D-2D Mask Feature Fusion

The 3D-2D mask feature fusion block is devised to merge 3D features F3d ∈ RN×C with the pseudo
mask feature F2d ∈ RN ′×C derived from the 2D branch. It is noteworthy that each element in F3d

possesses unique and distinguishing embeddings, whereas elements in F2d pertaining to the same
mask share identical mask embeddings. Consequently, F3d offers detailed geometric structural infor-
mation, while F2d provides semantic features with robust open vocabulary capabilities. Our approach
combines features from these two modalities to leverage their complementary insights, resulting
in Ffuse which excels in both precise geometry delineation and expansive semantic extrapolation.
Concretely, given that N ′ < N , we selectively merge F2d and F3d solely on the N ′ points where
correspondences exist:

Ffuse =

{
MLP ◦ cat(F3d, F2d) have correspondence
F3d no correspondence

(7)

where cat represents concatenation. Ablation studies in Section 4.3 and visualization results in
Section 4.2 will demonstrate that Ffuse effectively integrates the strengths of both F3d and F2d.

3.5 Training Objectives

In XMask3D, our training strategy encompasses supervised segmentation loss (Lseg) computed from
3D (L3d

seg), 2D (L2d
seg), and fusion (Lfuse

seg ) modalities. We employ Cross Entropy loss for 3D and
fusion segments, and for 2D, we adopt multi-head losses including Cross Entropy, Dice, and Focal
Loss, following ODISE [45] and Mask2Former [4, 3] guidelines. Additionally, we follow PLA [11]
to introduce a binary head and view-level contrastive loss. The binary head is optimized with
Binary Cross Entropy loss (Lbi) to differentiate between base and novel categories. The view-level
contrastive loss (Lview) is calculated between the view global feature and text embedding of the view
image caption, weighted by respective coefficients (ω3d

view, ω2d
view, ωfuse

view). Detailed information about
the binary head and the view-level regularization can be found in the PLA paper or in Section A.3
and A.2. In conclusion, the overall training objective can be adjusted by:

L = ωsegLseg + ωmaskLmask + Lview + ωbiLbi (8)

where ωseg, ωmask, ω
3d
view, ω

2d
view, ω

fuse
view, ωbi, are loss weight hyperparameters.
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Table 1: Results for open-vocabulary 3D semantic segmentation on ScanNet dataset. We evaluate
the performance with hIoU, base and novel mIoU on five benchmarks with different category splits.

Method

Scannet ScanNet200

B15/N4 B12/N7 B10/N9 B170/N30 B150/N50

hIoU Base Novel hIoU Base Novel hIoU Base Novel hIoU Base Novel hIoU Base Novel

LSeg-3D [23] 0.0 64.4 0.0 0.9 55.7 0.1 1.8 68.4 0.9 1.5 21.1 0.8 3.0 20.6 1.6
3DGenZ [31] 20.6 56.0 12.6 19.8 35.5 13.3 12.0 63.6 6.6 2.6 15.8 1.4 3.3 14.1 1.9
3DTZSL [5] 10.5 36.7 6.1 3.8 36.6 2.0 7.8 55.5 4.2 0.9 4.0 0.5 0.7 3.8 0.4

PLA [11] 65.3 68.3 62.4 55.3 69.5 45.9 53.1 76.2 40.8 11.4 20.9 7.8 10.1 20.9 6.6
OpenScene [34] 65.7 68.8 62.8 56.8 61.5 51.7 54.3 71.8 43.6 14.2 22.5 10.4 15.2 23.5 11.2

OV3D [20] 72.4 70.2 74.7 68.5 74.1 63.7 64.8 77.6 55.6 – – – – – –

XMask3D 70.0 69.8 70.2 61.7 70.2 55.1 55.7 76.5 43.8 18.0 27.8 13.3 15.5 24.4 11.4

4 Experiments

4.1 Experiment Settings

Datasets. In accordance with prior literature, our research conducts experimentation on two prominent
indoor scene datasets: ScanNet [9] and S3DIS [1]. ScanNet, a foundational dataset in this domain,
comprises 1201 scenes allocated for training and 312 scenes designated for validation. Each scene
within ScanNet furnishes point cloud data, multi-view images, and corresponding camera pose
matrices. Similarly, S3DIS offers analogous data modalities, encompassing 271 rooms across six
distinct indoor environments. Conforming to established conventions, we reserve Area 5 of S3DIS
for validation purposes, ensuring consistency with prior methodologies.

Category Partition. In alignment with previous research, we exclude the otherfurniture class and
partition the remaining classes into three benchmarks: B15/N4, B12/N7, and B10/N9. Here, B15
signifies the 15 fundamental categories that remain visible and supervised during the training process,
while N4 denotes the presence of 4 novel categories introduced during evaluation. For the ScanNet
variant featuring 200 classes [38], we adopt a similar approach, dividing the dataset into B170/N30
and B150/N50 benchmarks, each representing a distinct configuration of base and novel categories.
Similarly, in the case of S3DIS, comprising 13 classes, we disregard the clutter class and organize
the dataset into B8/N4 and B6/N6 benchmarks. Detailed information can be found in Section A.4.

Metrics. Following PLA [11], we present the mean Intersection over Union (mIoU) scores separately
for both base and novel categories to assess open vocabulary segmentation performance. Additionally,
to provide a comprehensive evaluation of the segmentation capability, we report the harmonic mean
IoU (hIoU) derived from the mIoU scores of base and novel categories. This holistic metric offers
insights into the overall segmentation efficacy across the dataset.

Implementation Details. Our implementation incorporates MinkUNet [7] as the 3D branch and
ODISE [45] as the 2D branch within the architecture. For the vision-language model, we opt for CLIP-
L [36]. The training regimen for the XMask3D model involves utilizing the AdamW optimizer [29]
with a Cosine learning rate scheduler. We train the model for 150 epochs on 4 NVIDIA A800
GPUs, employing a batch size of 64. Notably, we introduce mask-level regularization to the training
pipeline after the initial 50 epochs. This decision is motivated by the observation that the quality of
mask prediction at the onset of training may be suboptimal, making the mask-level contrastive loss
ineffective and potentially misleading. Detailed information regarding hyperparameter selections is
provided in Section A.4.

4.2 Main Results

Quantitative Comparisons. From Table 1 and Table 2, our proposed XMask3D outperforms previous
methods across most benchmarks, irrespective of the novel category proportion or dataset sources.
The performance indicates that XMask3D is a robust and generalizable method for open vocabulary
3D semantic segmentation. Notably, we compare XMask3D with our baseline method, PLA, on novel
category performance. On the ScanNet dataset, XMask3D demonstrates improvements ranging from
7.4% to 20.0% over PLA. On the ScanNet200 dataset, XMask3D surpasses PLA by an impressive
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Table 2: Open-vocabulary 3D semantic seg-
mentation results on S3DIS dataset. We report
hIoU, base mIoU and novel mIoU metrics. Best
open-vocabulary results are highlighted in bold.

Method

S3DIS

B8/N4 B6/N6

hIoU Base Novel hIoU Base Novel

LSeg-3D [23] 0.1 49.0 0.1 0.0 30.1 0.0
3DTZSL [5] 8.4 43.1 4.7 3.5 28.2 1.9
3DGenZ [31] 8.8 50.3 4.8 9.4 20.3 6.1

PLA [11] 34.6 59.0 24.5 38.5 55.5 29.4
OpenScene [34] 42.4 58.6 33.2 44.2 56.2 36.4

XMask3D 46.8 63.1 37.2 44.9 52.8 39.1

Table 3: Ablations for XMask3D pipeline design.
We conduct experiments on the B12/N7 benchmark.

(a) Ablation for implicit condition of the diffusion model.

Cond Base Novel bed chair table BKS pic sink BT

Text 69.5 52.7 72.9 60.6 36.7 70.0 14.3 44.6 70.3
2D 69.7 53.6 70.6 63.3 40.9 68.4 12.4 51.6 67.8
3D 70.2 55.1 72.5 62.7 37.3 70.6 18.6 51.2 73.0

(b) Ablation for mask regularization and fusion block.

Lmask
Base Novel

2D 3D Fuse 2D 3D (∆3D) Fuse (∆Fuse)

✗ 40.1 63.9 70.0 30.9 14.0 53.5
✓ 40.6 64.3 70.2 30.8 25.7 (+11.7) 55.1 (+1.6)

70.5% and 72.7%. On the S3DIS dataset, XMask3D shows boosts of 51.8% and 33.0% over PLA.
Among these benchmarks, XMask3D achieves the highest improvements on the long-tail ScanNet200
dataset, primarily due to the introduction of the denoising UNet from the pre-trained diffusion model,
which constructs a comprehensive text-2D embedding space with unlimited text descriptions.

It is noteworthy that the OpenScene results are derived from the implementation of UniM-OV3D [16],
but we do not compare XMask3D with UniM-OV3D in the tables. This is because UniM-OV3D
employs PointBIND [14] and CLIP2Point [19] with an already aligned 3D-text embedding space,
whereas XMask3D only integrates the commonly used 2D-text space and introduces techniques to pull
3D features from any point cloud models towards the shared embedding space. Another outstanding
concurrent method is OV3D [20], which primarily focuses on EntityText extraction and Point-
EntityText association, while XMask3D concentrates on enhancing mask-level interaction between
2D and 3D modalities. Therefore, the contributions of OV3D and XMask3D are orthogonal and
could complement each other in future explorations. Additionally, OV3D only provides experiment
results on the ScanNet20 benchmarks, while its effectiveness on the ScanNet200 dataset that is more
challenging and on the S3DIS dataset with different data distribution remains unexplored.

Visualization Results. In Figure 3, we present a comparative visualization of novel categories
between XMask3D and previous methods [11, 34]. XMask3D demonstrates superior accuracy in
category predictions, produces finer segmentation boundaries, and generates more cohesive mask
regions. Notably, the missegmented region on the bookshelf in the second row of XMask3D is
classified as picture, which appears reasonable given the corresponding part in the view image.

4.3 Ablation Studies

In this section, we comprehensively discuss the design choices of XMask3D through extensive
ablation studies on the ScanNet B12/N7 benchmark. The results are presented in Table 3.

Mask Generation Condition. In Section 3.2, we introduce an Implicit 3D Captioner to convert
global 3D features into implicit condition embeddings for the diffusion model. In Table 3a, we
compare this implicit 3D condition with the vanilla text condition and implicit 2D condition. The
text condition is generated by a ViT-GPT2 [48] captioning model and encoded via the frozen CLIP
text encoder. The 2D condition is generated by the frozen CLIP image encoder and a learnable MLP,
following the design in ODISE [45] (Equation 3). Our proposed implicit 3D condition outperforms
the others in novel category segmentation, demonstrating that integrating the 3D global feature with
the diffusion model produces the most compatible open vocabulary masks with the 3D branch.

Mask Regularization. In Section 3.3, we propose a fine-grained mask regularization term to align 3D
features with the 2D-text embedding space. In the first line of Table 3b, we remove the fine-grained
mask-level loss Lmask from the training pipeline. Besides the final results from the fusion block, we
also report the intermediate results from the 2D and 3D branches. The inclusion of the mask loss
results in a significant improvement of 11.7 in 3D performance on novel categories, demonstrating
that our fine-grained mask-level regularization effectively brings 3D features closer to the 2D-text
embedding space. Additionally, the performance gain on the fused output is 1.5, highlighting the
positive impact of this regularization from 3D to fusion features.
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Figure 3: Visualization Comparisons between XMask3D and Previous Methods. We compare
XMask3D with PLA [11] and OpenScene [34] on the novel categories table, bookshelf, chair and
bed. The regions corresponding to the novel categories are highlighted in red boxes.

We also analyze the effects of mask regularization through visualizations in Figure 4. Comparing
the first and second rows, the 3D segmentation results without the mask loss show inconsistency
in the local region for the novel category chair, with most points misclassified as bookshelf. When
the mask-level regularization is added, more points are correctly classified, resulting in a clearer
segmentation mask. The visualizations of the fused outputs also demonstrate consistent enhancement
in mask regularization within the final column. This is evident from the rectification of misclassified
points previously labeled as table on the armrest of the right chair in the last column.

Modality Fusion. When comparing the 2D, 3D, and fused metrics within the same line in Table 3b,
we empirically find that the 2D branch performs relatively better on novel category segmentation,
while the 3D branch excels at base category segmentation. This quantitative observation aligns with
our design intention: to exploit geometric knowledge via the 3D branch and to enhance the model’s
open vocabulary capability via the 2D branch. More importantly, the fused output outperforms both
the 2D and 3D intermediate results on both base and novel splits. These results strongly support the
effectiveness of our fusion design in merging the complementary knowledge from both modalities.

We also present visualization evidence regarding modal complementarity and fusion effects in
Figure 4. In the first group, the 2D branch exhibits unsatisfactory results of the base category wall
around the whiteboard and behind the right chair, whereas effectively segmenting the novel category
chair with high quality despite minor artifacts. Conversely, the 3D branch produces an unsatisfactory
mask for the chair but excels in segmenting the wall based on geometric information. The fusion
block leverages the strengths of both branches, mitigates their weaknesses, and yields satisfactory
outcomes. Moreover, the fusion block accurately delineates regions such as the left foot of the chair
on the right, where both the 2D and 3D branches falter, highlighting its potential for integrating
cross-modality knowledge. The second group displays similar results that convince the effectiveness
of the proposed mask loss and cross-modality fusion design.

4.4 Limitations

Due to resource constraints, we only evaluate the performance of XMask3D on semantic segmentation
in this study. However, the XMask3D pipeline has the potential to be extended to the instance and
panoptic perception by replacing the 3D backbone with an instance or panoptic segmentation model.
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Figure 4: Visualization Results of Ablations. The first and second groups show results from
ScanNet B15/N4 and B12/N7 benchmark, respectively. In each group, the first and second rows
display segmentation results without and with the proposed mask regularization. The last three
columns compare the outputs from the intermediate 2D and 3D branches with the final fusion block.

This adaptability arises from the auxiliary 2D branch, which is mask-based and capable of generating
instance-level masks given appropriate annotations. Furthermore, since the XMask3D pipeline is
agnostic to the 3D model used, it would be interesting to conduct experiments with more advanced
point cloud models to compare performance. We hope we can exploit the strength of XMask3D
with high-standard 3D backbones and a wider range of dense perception tasks in future research.
Computational cost is another limitation of XMask3D, as we implement the Denoising UNet which
has numerous parameters and relatively slow latency. In our future work, we plan to address this
limitation by replacing the 2D branch with a more lightweight 2D open vocabulary mask generator.

5 Conclusion

In this paper, we present XMask3D, designed for open vocabulary 3D semantic segmentation. We
propose the integration of the denoising UNet of a pre-trained diffusion model to produce geometry-
aware segmentation masks conditioned on learnable implicit 3D embeddings. These binary 2D masks
filter mask-level embeddings of 3D representations and apply mask regularization to enhance the
open vocabulary capacity of 3D features. By fusing the 2D mask embeddings with fine-grained 3D
features, we leverage the complementary knowledge from both modalities, achieving competitive
performance across various benchmarks and datasets. Ablation studies and visualization comparisons
further validate the effectiveness of the proposed cross-modal mask reasoning method.
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A Additional Implementation Details

A.1 Mask-level Regularization

Mask-level regularization facilitates local and finely-grained alignment between features extracted
from the 3D branch of XMask3D and the 2D-text embedding space. The ground truth for mask-level
loss is computed using MaskCLIP [12], utilizing the predicted segmentation mask M2d ∈ RM×H×W

and the view image I ∈ R3×H×W :

GCLIP = MaskPooling(V(I),M2d) (9)

where M represents the number of masks, and H and W denote the height and width of the image,
respectively. V refers to the pre-trained CLIP [36] image encoder.

Specifically, the view image I is encoded into image tokens TI ∈ RN×C with the pre-trained CLIP
image model, where N is the number of image tokens and C is the dimension of the CLIP embeddings.
The class token TC ∈ R1×C is duplicated M times as the mask class tokens TM ∈ RM×C . Then
TI, TC, TM are concatenated together to perform masked attention with frozen weights from the
pre-trained CLIP image model. The attention mask is designed as

M =

[
F(N+1)×(N+1) T(N+1)×M

PM×N FM×1 TM×M

]
(10)

where Tm×n is an m× n True matrix, Fm×n is an m× n False matrix and P is defined as:

Pi,j =

{
False if maski contains at least one pixel in patchj
True otherwise.

(11)

where True means that this position is masked out i.e. not allowed to attend and False otherwise.
Then the updated mask class tokens T ′

M from the masked attention layers can be regarded as the CLIP
embedding of the masked regions, serving as the ground truth GCLIP for mask-level regularization.

A.2 View-level Regularization

The view-level regularization facilitates coarse and high-level alignment between features extracted
from the 3D branch and the 2D-text embedding space. To elaborate, upon receiving an image I , we
initially generate its text caption using a pre-trained captioning model, ViT-GPT2 [48]. Subsequently,
we employ the pre-trained CLIP [36] text encoder to encode the text caption into the 2D-text
embedding space, yielding fT

view, which serves as the ground truth for view-level regularization.

We perform average pooling operation on dense 3D point cloud features, 2D image features and fused
features to obtain their global embeddings f3d

view, f
2d
view, f

fuse
view. Then we implement contrastive loss

between global features and the ground truth text embeddings:

Lm
view = 1− fm

view · (fT
view)

T

∥fm
view∥∥fT

view∥
(12)

where m = 3d, 2d, fuse denotes different modalities.

A.3 Binary Head

Following PLA [11], we include a binary head to predict whether the points belong to base or novel
categories. We implement a small 3D model as the binary head with minimum computation cost. The
prediction sb is utilized to modulate the over-confident semantic score s:

s = sB · (1− sb) + sN · sb (13)

where sB is the semantic score computed solely on base classes with novel class scores set to zero.
Similarly, sN is computed only for novel classes, setting base class scores to zero.
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Table 4: Category Partitions. We follow PLA to split ScanNet and S3DIS into several benchmarks.
(a) ScanNet dataset.

Partition Base Categories Novel Categories

B15/N4 wall, floor, cabinet, bed, chair, table, door, window, picture, sofa, bookshelf, desk, toiletcounter, curtain, refrigerator, showercurtain, sink, bathtub

B12/N7 wall, floor, cabinet, sofa, door, window, counter, desk, bed, chair, table, bookshelf, picture, sink, bathtubcurtain, refrigerator, showercurtain, toilet

B10/N9 wall, floor, cabinet, bed, chair, sofa, table, door, window, bookshelf, picture, counter, desk, refrigerator,
showercurtain, curtain toilet, sink, bathtub

(b) S3DIS dataset.
Partition Base Categories Novel Categories

B8/N4 ceiling, floor, wall, beam, column, door, chair, board window, table, sofa, bookcase
B6/N6 ceiling, wall, beam, column, chair, bookcase floor, window, door, table, sofa, board

Table 5: Per-Class Results Comparison with PLA. We compare the per-class open vocabulary
segmentation results with PLA. Novel Classes are marked in blue .

(a) ScanNet dataset. Shower c. is short for shower curtain.
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B15/N4 PLA 68.3 62.4 84.6 95.0 64.9 81.1 87.9 75.9 72.2 61.9 62.1 69.5 30.9 60.1 46.5 70.7 50.5 66.1 56.8 59.0 81.7
XMask3D 69.8 70.2 84.2 94.7 69.6 80.8 86.2 68.4 74.0 62.1 60.8 74.4 29.8 65.3 52.1 73.2 57.5 58.9 86.0 66.5 83.8

B12/N7 PLA 69.5 45.9 84.7 95.1 65.3 57.8 44.2 75.9 34.5 62.5 62.3 62.1 20.5 57.8 61.4 72.4 47.9 64.9 85.9 28.4 69.6
XMask3D 70.2 55.1 83.3 94.6 68.6 72.5 62.7 76.0 37.3 62.6 58.0 70.6 18.6 64.8 59.6 71.5 59.1 60.0 83.9 51.2 73.0

B10/N9 PLA 76.2 40.8 83.8 95.2 64.3 80.9 88.0 78.5 73.2 60.6 61.5 68.6 17.7 23.4 51.3 70.6 25.7 38.2 51.3 27.3 61.7
XMask3D 76.5 43.8 83.8 94.7 67.3 82.6 89.1 78.8 72.9 61.2 62.7 75.2 17.7 45.9 54.5 71.9 28.2 22.9 59.6 42.3 47.6

(b) S3DIS dataset.
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B8/N4 PLA 59.0 24.5 93.9 97.8 82.9 0.0 17.2 15.6 53.7 35.8 86.3 05.3 37.3 43.3

XMask3D 63.1 37.2 86.4 88.3 81.4 0.0 31.4 31.1 61.4 35.8 75.4 17.6 64.5 80.7

B6/N6 PLA 55.5 29.4 93.7 79.1 80.1 0.1 28.5 24.1 08.4 37.6 87.0 54.0 24.0 06.9
XMask3D 52.8 39.1 86.4 47.4 80.9 0.2 23.7 33.7 30.2 14.7 74.2 51.6 47.4 60.8

A.4 Training and Inference Settings

Training. The supervised segmentation loss Lm
seg is calculated via the per-point classification Cross

Entropy Loss on N points:

Lm
seg =

1

N

N∑
i

CrossEntropy(p, yi) (14)

p = Softmax(F̄m · F̄T
text/τ) (15)

where m = 3d, 2D, fuse denotes different modalities, yi is the ground truth for base categories, F̄m

is the normalized feature, and τ is a learnable temperature parameter.

Inference. We follow ODISE [45] to combine the predicted logits p with the prediction from a
text-image discriminative model to enhance the open vocabulary classification capacity of the model.
Specifically, we leverage the mask-level regularization ground truth feature GCLIP from Section A.1
to modulate the segmentation logits:

pfinal ∝ pλp(1−λ)
aux (16)

paux = Softmax(ḠCLIP · F̄T
text/τ) (17)

where ḠCLIP is the normalized feature of GCLIP, λ ∈ [0, 1] is the fixed balancing factor.

Hyper-parameters. For all benchmarks, we set the same ωseg = 4, ω3d
view = 1, ω2d

view = 4, ωfuse
view =

1.5 as the hyper-parameter choices. The ωmask and ωbi are set differently across benchmarks. We
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Figure 5: Complete Visualization Comparisons. We show comprehensive comparison between
XMask3D fused/2D branch/3D branch outputs and previous methods (PLA [11]/OpenScene [34]).
The figure corresponds to Figure 3 in the main paper.
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Figure 6: Visualization Results of Ablations. The first and second rows display segmentation results
without and with the proposed mask regularization. The last three columns compare the outputs from
the intermediate 2D and 3D branches with the final fusion block.

set ωmask = 0.5/0.5/1/2/2/1/1, ωbi = 16/12/8/48/32/20/15 for ScanNet B15/N4, B12/N7,
B10/N9, ScanNet200 B170/N30, B150/N50, S3DIS B8/N4, B6/N6 benchmarks, respectively.

Category Partitions. We follow PLA [11] to partition the ScanNet [9] and S3DIS [1] datasets into
several different benchmarks. Here we list the detailed partition principle in Table 4 for reference.
We do not list splits for the ScanNet200 dataset since there are too many categories.

B Additional Experimental Results

B.1 Per-class Results Comparison

We contrast per-class segmentation mean Intersection over Union (mIoU) with PLA [11] across the
ScanNet and S3DIS datasets in Table 5. XMask3D significantly outperforms PLA, particularly in
novel categories, thereby showcasing the effectiveness of our proposed cross-modal mask reasoning
approach on open vocabulary 3D semantic segmentation.

B.2 Visualization Comparison

In Figure 5, we show 2D and 3D branch outputs from XMask3D in addition to Figure 3 in the main
paper. The 2D branch misclassifies the novel categories, while the 3D branch produces discontinuous
segmentation masks. Neither of them outperforms PLA or OpenScene. However, when their features
are fused together, the output becomes superior, demonstrating the complementary knowledge across
different modalities.
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Figure 7: Failure cases of XMask3D. We focus on shower curtain, picture, and sink novel categories
in each line, respectively.

B.3 Illustrations of Ablations

We present supplementary illustrations of ablation studies pertaining to mask regularization and
cross-modality fusion in Figure 6, which corresponds to the sample in Figure 1 from the ScanNet
B15/N4 benchmark.

Comparing the first and second rows of the third column reveals that the proposed mask regularization
loss yields significant improvements in the segmentation of novel categories by the 3D branch.
Further comparison of the last three columns in the second row demonstrates that the output from the
fusion block effectively leverages the strengths of both modality branches. Specifically, while the
2D branch excels at segmenting novel categories, it tends to produce discontinuous masks for base
categories with larger regions (e.g., wall). Conversely, the 3D branch may perform relatively poorly in
novel category segmentation but provides consistent geometric knowledge as a complementary aspect.
Consequently, the fused output achieves superior performance in open vocabulary segmentation.

C Failure Cases Analysis

In Figure 7, we display some failure cases of XMask3D. The first sample shows a bathtub with a
shower curtain in the bathroom. However, the 2D/3D branch and the fused output of XMask3D
all misclassify the shower curtain as curtain. This may be because these two categories are similar
in object shape and texture, with the only difference being the surrounding environment. Since
XMask3D only takes a corner of the room as input instead of the entire scene, the global environmental
information is insufficient for making the correct category prediction.

The second sample shows a large area of picture on the wall. The 2D, 3D branches and the fused
output of XMask3D all misclassified it as wall, due to their similar geometry. In most cases, a picture
is a small region on the wall, and this picture, as large as the wall, is a typical corner case. This
failure case may reveal XMask3D’s over-reliance on geometric knowledge and lesser consideration
of texture information when encountering out-of-distribution samples.

The third sample shows a sink on a counter. Due to the occlusion problem, the sink point cloud is
incomplete, negatively affecting the prediction of segmentation boundaries between the sink and the
counter. This occurs because they are geometrically similar when the sinking-down part of the sink is
missing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction is that we propose an
XMask3D framework for open vocabulary 3D semantic segmentation, and the paper is all
about introducing its design and effectiveness.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 4.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not propose new theorem. We conduct experiments and show
illustrations to evaluate our model design.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 4.1 and Section A for experiment settings and imple-
mentation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please refer to the supplemental zip file for our code and we will officially
release the code upon the acceptance of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4.1 and Section A for experiment settings and imple-
mentation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do not report error bars since previous literature do not report them either
and the experiments on scene-level dataset is resource consuming. However, we provide
extensive experiment results on multiple benchmarks of various datasets and show consistent
performance gain over previous methods. Therefore, the statistical significance is convinced
by the variety of datasets and benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Section 4.1 for experiments compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully read the Ethics Guidelines and strictly followed them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper of the pre-trained models and data we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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