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Abstract

Trustworthy answer content is abundant in
many high-resource languages and is in-
stantly accessible through question answering
systems—yet this content can be hard to access
for those that do not speak these languages. The
leap forward in cross-lingual modeling quality
offered by generative language models offers
much promise, yet their raw generations often
fall short in factuality. To improve trustwor-
thiness in these systems, a promising direction
is to attribute the answer to a retrieved source,
possibly in a content-rich language different
from the query. Our work is the first to study at-
tribution for cross-lingual question answering.
First, we introduce the XOR-AttriQA dataset
to assess the attribution level of a state-of-the-
art cross-lingual question answering (QA) sys-
tem in 5 languages. To our surprise, we find
that a substantial portion of the answers is not
attributable to any retrieved passages (up to
47% of answers exactly matching a gold refer-
ence) despite the system being able to attend
directly to the retrieved text. Second, to address
this poor attribution level, we experiment with
a wide range of attribution detection techniques.
We find that Natural Language Inference mod-
els and PaLM 2 fine-tuned on a very small
amount of attribution data can accurately detect
attribution. With these models, we improve the
attribution level of a cross-lingual QA system.
Overall, we show that current academic genera-
tive cross-lingual QA systems have substantial
shortcomings in attribution and we build tool-
ing to mitigate these issues.1

1The XOR-AttriQA dataset is available at https:
//github.com/google-research/google-research/
tree/master/xor_attriqa. XOR-AttriQA includes
approximately 10,000 annotated examples to foster research
in the modeling and evaluation of attribution in cross-lingual
settings.
† Correspondence to {jwieting,jhclark}@google.com.
♠Work done as an intern at Google Research.

1 Introduction

Open-Retrieval Question Answering (ORQA) de-
livers promising performance for information-
seeking question answering in about 20 languages
(Asai et al., 2021b, 2022; Muller et al., 2022).
ORQA models typically consist of a retriever that
retrieves documents in a large corpus, followed by
a generator that generates a short answer based on
the top-ranked documents.

Recent work in ORQA reached a new state of the
art by not only retrieving documents in the same
language as the query but by also retrieving pas-
sages cross-lingually, in additional languages (Asai
et al., 2021b). This approach is particularly ben-
eficial for languages with limited online written
content (Kornai, 2013; Valentim et al., 2021), po-
tentially allowing users to access information that
may not be available in their language.

ORQA models are typically evaluated with
string-matching metrics (e.g., Exact-Match) based
on extensive collections of question and answer
pairs in multiple languages (Clark et al., 2020;
Longpre et al., 2021). However, these metrics are
limited in three ways. First, they are inherently
hard to scale to real-world applications, as they
require the collection of gold answers for all the
queries. Second, in some cases, the answer can
be correct without any overlap with a gold refer-
ence (Bulian et al., 2022). Third, short answers
are usually not enough to provide a trustworthy
answer, and users may prefer to access the under-
lying source document. To address this last chal-
lenge, Bohnet et al. (2022) framed a new task called
Attributed Question Answering (AQA). Given a
query, AQA consists of predicting a short answer
along with a supporting document retrieved from a
large corpus (e.g. Wikipedia).

This work is the first study on Attributed Ques-
tion Answering in the cross-lingual setting.2 Mea-

2We refer to a system that generates an answer using text

https://github.com/google-research/google-research/tree/master/xor_attriqa
https://github.com/google-research/google-research/tree/master/xor_attriqa
https://github.com/google-research/google-research/tree/master/xor_attriqa
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Figure 1: Attribution scenarios for cross-lingual Open-Retrieval Question Answering (XORQA). Given a query in a
source language, a retrieval model (MDPR) retrieves source language and cross-lingual documents, which are then
used by a generation model, MGEN, to produce a source language answer. For S1, in-language annotators assess
attribution directly in the user’s language while for S2, annotators validate attribution in English. We collect data for
both scenarios in Bengali, Finnish, Japanese, Russian and Telugu.

suring attribution (Rashkin et al., 2021) in the cross-
lingual setting is more complex than in the mono-
lingual case. Indeed, in this case, the document
supporting the generated answer may be in a lan-
guage different from the query and answer. Hence,
attribution can be defined in various ways depend-
ing on the query, document, and answer languages.
In this work, we introduce two attribution scenar-
ios, namely (S1) in-language attribution for which
the attribution is measured in the language of the
query, and (S2) in-English attribution for which at-
tribution is measured in English. We note that both
scenarios may require translating a portion of the
documents, the query, or the answer. We illustrate
these scenarios in Figure 1.

Based on this framework, we first measure the at-
tribution level of CORA (Asai et al., 2021b), a state-
of-the-art cross-lingual ORQA system. We collect
data in 5 languages: Bengali, Finnish, Japanese,
Russian, and Telugu. To our surprise, a large
portion of generated answers was found not at-
tributable to any retrieved passage. For instance, in
Japanese, up to 47% of answers exactly matching
the gold reference are not attributable. This poor
attribution may hurt the trust into our QA systems
and limit their deployment.

To improve the attribution level of cross-lingual
QA systems, we experiment with a wide range of
attribution detection models. We show that PaLM 2

in any language, possibly in a language different from the
query, as a cross-lingual QA system.

(Anil et al., 2023) outperforms all the other models
despite being fine-tuned on a very small sample
of our collected data (250 examples). This result
shows the potential of using large language models
to create state-of-the-art cross-lingual attribution
models using very little annotated data, allowing
them to be inexpensively created for use in many of
the languages of the world. Additionally, we find
that for Bengali, Finnish, Japanese and Russian, a
T5 model fine-tuned on a large natural language
inference corpora reaches very high accuracy com-
pared to the baselines.

Our analysis shows that PaLM 2 can detect more
than 86% of attributed answers that are not exactly
matching the gold reference, showing that it is a
useful alternative to exact match evaluation. These
answers may be answers that are not captured by
the gold references but that are alternative correct
answers or they can be answers that are semanti-
cally equivalent to the gold reference but that do
not overlap with the gold reference (e.g. different
units). We discuss these cases in Section 4.2.

In summary, we make the following four con-
tributions: (i) Our work is the first to study attri-
bution for question answering in a cross-lingual
framework. We define two attribution scenarios, in-
language attribution and in-English Attribution and
annotate approximately 10,000 examples in five
languages; (ii) Using this data, we evaluate the at-
tribution of CORA, a state-of-the-art cross-lingual
QA system. We show that a large portion (7%-47%,



depending on the language) of the answers are not
attributable—neither to in-language passages nor
to cross-language ones; (iii) We show that PaLM 2
and NLI models can accurately detect attribution in
the cross-lingual setting, significantly outperform-
ing all other baselines and reaching above 90%
accuracy for all 5 languages. Moreover, our work
is the first to approach it with large language mod-
els, and we show that with scarce amounts of data
(250 examples), they can outperform NLI models
trained on millions of examples; and (iv) Using our
attribution detection model as a reranker, we show
that we reach an average of +55% in attribution
compared to a model with no reranking.

2 Attribution for Cross-Lingual Question
Answering

2.1 Attribution of Generative Language
Models

Generative language models have made impressive
progress in the past few years (Radford et al., 2019;
Raffel et al., 2020; Brown et al., 2020; Chowdhery
et al., 2022). They can now perform most NLP
tasks with relatively high accuracy in zero-shot
and few-shot settings. However, generating text
without reference to human-written trusted sources
can be harmful in the real world. Indeed, even the
largest models may assign a high probability to
false and potentially harmful utterances (Bender
et al., 2021; Bommasani et al., 2021; Weidinger
et al., 2022). To overcome this challenge, Rashkin
et al. (2021) introduced the Attributable to Identi-
fied Sources (AIS), a human evaluation framework
for identifying whether a source document supports
the generated text, or in other words, whether the
generations can be attributed to a given document.

2.2 Attributed Question Answering
The need for attribution is particularly vivid for
information-seeking use cases. To address this
need, Bohnet et al. (2022) defined the Attributed
Question Answering (AQA) task. Given a query q
and a large corpus of text C (e.g. Wikipedia), AQA
consists of predicting an answer a and a passage
p ∈ C to attribute the predicted answer.

(AQA) (q, C) −→ (a, p) (1)

Bohnet et al. (2022) experimented with the AQA
task where the questions, answers, and passages
were in English. Our work is the first to study this
task in a cross-lingual framework.

We build upon previous work that showed
that for many languages (e.g., Japanese), cross-
lingual QA systems outperform monolingual sys-
tems (Asai et al., 2021b; Muller et al., 2022). In
this setting, given a query in a language L, the goal
is to generate an answer a using evidence passages
from a multilingual corpus C.

2.3 Modeling Attributed Cross-Lingual QA

Asai et al. (2022) showed that the best systems—
according to the Exact-Match metric—for ques-
tion answering in languages other than English are
based on a cross-lingual open-retrieval (XORQA)
pipeline. We thus model attributed cross-lingual
QA with CORA (Asai et al., 2021b), a state-of-the-
art XORQA model. Figure 1 (left-panel) illustrates
a typical XORQA pipeline.

CORA consists of two components: a multilin-
gual dense retriever (MDPR) which is based on
mBERT (Devlin et al., 2019) fine-tuned for dense
passage retrieval (Karpukhin et al., 2020), and a
multilingual generator (MGEN) based on mT5-
Base (Xue et al., 2021) fine-tuned for question
answering. Given a query, MDPR ranks all the pas-
sages from Wikipedia regardless of their language.
In practice, most of the top-ranked passages are ei-
ther in the same language as the query or in English
(we report the language distribution in Table 8 in
the Appendix). Then, the top passages are fed to
MGEN, which generates the answer. Depending
on the languages (and their associated subword to-
kenization), the average number of passages varies
between 5 (for Bengali) and 10 (for Japanese).

CORA is designed to generate a short answer
using multiple passages. To use CORA for AQA,
we must select a single passage supporting the an-
swer. In this work, we consider the passages that
have been ranked highest by MDPR and fed to
the generator as our pool of potential attribution
passages. We measure and report the attribution
level of answers and passages (a, p) by taking the
TOP-1-retrieved passage by MDPR as well as ALL

the passages retrieved and fed to the generator. Fi-
nally, we report in Section 5.3 the attribution level
of answers and passages (a, p) after reranking the
top passages with our NLI-based attribution detec-
tion model.

Recall that the selected passage can be in any
language but is typically in English or in the query
language (cf. Table 8). This leads us to define two
attribution evaluation scenarios.



2.4 Cross-Lingual QA Attribution Evaluation

We introduce two attribution evaluation scenarios
illustrated in Figure 1.

(S1) In-Language Attribution Evaluation In
this scenario, attribution is assessed in the language
of the query, while the query, answer, and passage
(q, a, p) are in the same language. From an appli-
cation perspective, this scenario evaluates directly
what a potential user of an attributed QA system
would experience by receiving the answer to their
question and the attributed source document in their
language. As illustrated in Figure 1, this scenario
involves automatically translating the portion of
the passages retrieved in languages different from
the query into the query language.

(S2) In-English Attribution Evaluation In this
scenario, the query, answer, and passage (q, a, p)
are all in English during human annotation; we
automatically translate the query and answer into
English along with the passages retrieved in lan-
guages other than English (cf. Figure 1). We im-
plement this scenario as it favors scalability, since
collecting data in English is usually easier than in
other languages due to the availability of raters.
Moreover, a significant portion of the passages re-
trieved by cross-lingual QA systems are in English,
so assessing attribution directly in English is most
straightforward for these passages. For polyglot
users, this scenario is also appealing as they may
understand English and be interested in accessing
the attributed document in English along with the
answer in their language.3

For both scenarios, translation is performed au-
tomatically using the Google Translate API.4

Evaluation Metric For both scenarios, we col-
lect evaluation data to assess if a predicted answer
can be attributed to a retrieved passage. Following
Bohnet et al. (2022), we measure the accuracy of a
system by counting the proportion of answers with
an attributed passage. We refer to this score as AIS.

We note that this evaluation method fundamen-
tally differs from traditional QA system metrics,
which are usually based on string-matching meth-
ods, e.g., Exact-Match (EM; Rajpurkar et al., 2016;
Petroni et al., 2021). Indeed, given a query, answer

3About 1.5 billion people speak En-
glish, as reported by https://www.
economist.com/graphic-detail/2019/12/04/
where-are-the-worlds-best-english-speakers.

4https://cloud.google.com/translate

BN FI JA RU TE

Number of examples collected (# unique queries / # examples)
(S1) 396 / 1560 202 / 806 146 / 1263 186 / 789 323 / 1212
(S2) 305 / 570 202 / 812 146 / 1262 186 / 790 228 / 444

Inter-Annotator Agreement: Agreement with Consensus
(S1) 91.9 91.0 86.0 90.1 90.3
(S2) 87.9 92.2 86.2 94.9 98.4

Disagreement between annotation scenarios
S1̸=S2 6.7 10.5 5.2 7.5 4.1
S1̸=S2 TR. 3.7 9.4 3.4 11.7 1.7

Table 1: Each example (q, a, p) is annotated by 3 in-
dependent raters. We report the agreement with con-
sensus which measures the proportion of examples that
agrees with the majority vote. We report statistics on
the in-language attribution scenario (S1) and in the in-
English attribution scenario (S2). We also report in the
ratings collected in (S1) and (S2) ((S1) ̸=(S2)) and the
disagreement on the portion of examples that have been
translated from English ((S1)̸=(S2) TR.).

and passage triplet (q, a, p), attribution evaluation
measures the portion of answers a attributed to p.
In contrast, Exact-Match requires a gold answer ã
to compare to the predicted answer a.

In Section 4.2, we show how Exact-Match dif-
fers from attribution. We show that some correct
answers according to exact-match are not attributed
to any retrieved passage, while some non-exactly-
matching answers are legitimate answers attributed
to reference passages.

3 The XOR-AttriQA Dataset

To the best of our knowledge, our work is the first
to study the problem of attribution in the cross-
lingual setting. To make this study feasible, we
collect the first multilingual attribution dataset. We
use the attribution evaluation framework defined
by Rashkin et al. (2021). We hire Bengali, Finnish,
Japanese, Russian, and Telugu-speaking raters for
the in-language scenario (S1) and English-speaking
raters for the in-English scenario (S2). Our analysis
is based on the XOR-TyDiQA dataset (Asai et al.,
2021a) in Bengali, Finnish, Japanese, Russian and
Telugu. To limit cost, we randomly sample about
50% of the validation set except for Bengali and
Telugu (S1) annotations for which we take the en-
tire set. We retrieve the passages and predict the
answers using the CORA system. We only evalu-
ate the passages that are fed to the generator. For
each (query, answer, passage) triplet, we ask three
raters to answer “Is the answer attributed to the pas-
sage?”.5 To ensure the quality of the data collected

5Before this step, we ensure that the (query, answer) pair
is fully interpretable by the rater. We point to (Rashkin et al.,

https://www.economist.com/graphic-detail/2019/12/04/where-are-the-worlds-best-english-speakers
https://www.economist.com/graphic-detail/2019/12/04/where-are-the-worlds-best-english-speakers
https://www.economist.com/graphic-detail/2019/12/04/where-are-the-worlds-best-english-speakers
https://cloud.google.com/translate


% Attributable predictions (AIS) of EM
BN FI JA RU TE

67.3 80.4 53.1 67.5 93.1

Table 2: % of answers exactly-matching the gold answer
attributed to at least one passage fed to the MGEN.

we report in Table 1 the inter-annotator agreement
(IAA). The agreement is above 90% for both the
in-language scenario and the In-English scenario
for all languages except Japanese. Appendix B
provides more detail on the annotation process as
well as the agreement with expert annotations on
a small sample of the data (cf. Table 9). For each
example, we assign the attribution label based on
the majority vote of the three raters.

In-English vs. In-Language Attribution As re-
ported in Table 1, the inter-annotator agreement
observed is similar whether we collect the data
in the in-English scenario (S1) compared to the
in-language scenario (S2). The only large differ-
ences are observed for Telugu, for which the IAA is
8 points above when we collect the data in Telugu.
In consequence, we will use the annotation from
the in-language scenario (S1) as the gold labels to
evaluate all our models (cf. 4 and 5). Indeed, (S1)
evaluates what a potential user may experience. So
given the fact that (S1) is as good (or better) as
(S2) concerning data quality, we decide to select
the data from (S1).

Impact of Translation on Attribution Assess-
ment Both scenarios require translating a portion
of the data automatically (cf. Fig. 1). We hypothe-
size that translating passages from English to the
user language may lead, in some cases, to losing
attribution. Indeed, assuming that a passage in En-
glish supports the answer, we can easily imagine
cases in which translation errors could cause the
translated passage not to carry the information that
supports the answer. However, the disagreement be-
tween the annotation in (S1) and (S2) is not higher
when we look at passages that have been translated
compared to passages that have not for 4/5 lan-
guages (cf. comparison between row (S1)̸=(S2)
and row (S1)̸=(S2) TR.) as reported in Table 1). In
addition, after manually reviewing the data, we do
not find any cases where translation errors cause
disagreement.

2021) for an exhaustive definition of interpretability.

Raters’ Demographic and Cultural Background
Even though translating passages does not lead to
higher disagreement compared to the original pas-
sages, we do observe disagreement between (S1)
and (S2) (between 4.1% and and 10.5% as reported
in Table 1). We partially explain the disagreement
by the demographic and cultural context of the
raters. For instance, English speakers rated the
example <Query: How many countries are there
in the United States of America? Answer: 50>
as attributed to the passage “The United States of
America (USA), commonly known as the United
States (U.S. or US) or America, is a country com-
posed of 50 states, a federal district, five major
self-governing territories, and various possessions.”
while Telugu speakers did not do the same for the
example translated into Telugu. We hypothesize
that a familiarity with the USA and the concept
of states made the raters understand the question
more loosely and accept the “50 states” mention as
supportive of the answer. We leave for future work
the careful quantification of this phenomenon.

4 Attribution Evaluation of CORA

Based on our newly collected XOR-AttriQA
dataset, we now evaluate the attribution level of
CORA.

4.1 Lack of Attribution of XORQA
Predictions

We start by focusing on the subset of answers that
match the gold reference based on Exact Match
(EM). We hypothesize that these answers are at-
tributable in most cases and that non-attributable
answers should be the exception, not the rule. In-
deed, by design, CORA uses retrieved passages to
generate answers. Intuitively, it is hard to conceive
how the model could generate a correct answer
without supporting passages. However, it is known
that language models “memorize” knowledge in
their parameters (Petroni et al., 2019; Roberts et al.,
2020), which could enable this ability.

We report in Table 2 the proportion of answers
that match the gold reference and that are at-
tributable to a retrieved passage. To our surprise,
we find a very large number of non-attributable
answers. For Japanese, only 53.1% of the answers
are attributed to at least one passage.

We provide examples of non-attributed exactly-
matching answers in Figure 2. We find that these
non-attributed answers exactly-matching the refer-



BN FI JA RU TE

AIS of EM non-EM AIS of EM non-EM AIS of EM non-EM AIS of EM non-EM AIS of EM non-EM

ANY 27.9/45.6 41.8/67.3 25.2/40.5 38.7/50.9 67.9/80.4 27.1/39.6 11.8/37.3 22.4/53.1 8.2/23.7 27.5/40.9 45.0/67.5 24.8/37.9 23.3/31.7 72.4/93.1 13.2/19.2
LANG 25.0/40.2 41.8/65.5 22.3/36.1 36.5/46.0 64.3/75.0 25.7/34.7 11.8/34.8 22.4/51.0 8.2/20.6 26.4/39.8 45.0/67.5 23.4/36.6 22.9/31.4 69.0/93.1 13.2/18.9
EN 2.3/3.3 0.0/0.0 2.6/3.8 1.0/4.0 3.6/5.3 0.0/3.5 0.0/2.0 0.0/0.0 0.0/3.1 1.1/1.1 0.0/0.0 1.4/1.4 0.3/0.3 1.7/0.0 0.0/0.3

Table 3: % of attributed answers to the TOP-1/ALL passages fed to MGEN. We report AIS (cf. sec. 2.4) on
XOR-TyDiQA validation split. of EM corresponds to the % of attributable answers among the Exact-Matched
answers. non-EM corresponds to the % of attributable answers among the non-Exact-Matched answers (i.e. that
differ from the gold answer). We report the attribution-level considering passages in any languages (row ANY), only
the English passages as our candidates (row EN), only the in-language passages (row LANG.) as our candidates.

Query: カール・マルクスは歴史学派？ Was Karl Marx a
historian? Answer: Yes Gold Answer: Yes
Passage:
マルクス主義（マルクスしゅぎ、）とは、カール・
マルクスとフリードリヒ・エンゲルスによって展開さ
れた思想をベースとして確立された社会主義思想体系
の一つである。しばしば科学的社会主義（かがくてき
しゃかいしゅぎ）とも言われる。マルクス主義は、資
本を社会の共有財産に変えることによって、労働者が
資本を増殖するためだけに生きるという賃労働の悲惨
な性質を廃止
Marxism is one of the socialist thought systems established
based on the ideas developed by Karl Marx and Friedrich En-
gels. It is often called scientific socialism. By turning capital
into the common property of society, Marxism abolishes the
disastrous nature of wage labour, in which workers live only
to multiply capital.
Query: What is the
name of the mother tongue of the Marma people?
Answer: Burmese Gold Answer: Burmese
Passage:

The Burmese language or the language of Myanmar is a lan-
guage of the Lolo-Burmese sub-branch of the Tibeto-Burmese
branch of the Sino-Tibetan language family. Exactly when the
Burmese people came to Myanmar cannot be said. However,
the oldest religious texts written in Burmese date back to the
10th century AD. Standard Burmese is thought to have origi-
nated from a dialect of the lower valleys of central Myanmar.
Most people in present-day Myanmar speak some regional di-
alect of this Burmese language. Burmese was influenced first
by Pali and then by Mon (12th-13th centuries). Then, from
the 16th to the 19th century, the language came into contact
with various European languages, such as Portuguese, Dutch,
English and French. this

Figure 2: Examples of CORA correct answers not at-
tributed to any passage. We illustrate how the model
can be guided to generate correct answers which are not
fully supported by the passage.

ence are of various types. Some of these answers
seem to be random guesses from the generator that
happen to be matching the gold reference regard-
less of the quality of the retrieved passages. This is

usually the case for Yes/No answers. Some answers
are correct and seem to be using the information in
the passage provided to the generator. However, in
most cases, the information provided in the passage
is incomplete to support the answer. This is the case
for the second example in Figure 2: “What is the
name of the mother tongue of the Marma people?”
was answered with “Burmese”. While the passage
contains relevant information about the Burmese
language, it does not draw a connection with the
“Marma people” mentioned in the question.

These results show—without ambiguity—that
ORQA systems, even when they generate correct
answers, do not always provide a relevant source
passage to support the generated answer. In other
words, this means that for a significant portion of
answers, ORQA systems are right but without any
evidence—they are right for the wrong reasons.

4.2 Analysis of CORA’s Attribution Level

We now analyze the attribution level of all answers
predicted by CORA, not only the correct ones. We
report in Table 3 the attribution level of CORA.
Depending on the language, between 11.8% (for
JA) and 38.7% (for FI) of answers are attributed to
the TOP-1 passage retrieved by MDPR. In addition,
for all languages, we find that between 31.7–50.9%
of answers are attributed to at least one passage in
the ones provided to the generator (ALL).

Impact of Cross-Language Attribution One of
the key ingredients of the performance of CORA is
its ability to use passages cross-lingually (mainly
in English) (Asai et al., 2021b). We now look at
how often the generated answers are attributable to
these cross-lingually retrieved passages. We find
that between 0.3% and 4.0% of answers in Telugu
and Finnish respectively can be attributed to an
English passage (while not being attributed to any
passage in the same language as the query; cf. EN

row in Table 3).



Attribution vs. Exact-Match In Section 4.1,
we found that a large portion of answers exactly
matching the gold reference are not attributable.
We now look at the answers that are not exactly
matching the reference (cf. column non-EM in
Table 3). We hypothesize that attribution can po-
tentially complement string-matching metrics and
find answers that otherwise would be considered
incorrect. In Telugu, we find that 13.2% of such
answers are attributed to the TOP-1 passage. We
provide such examples in the Appendix in Figure
3. Some answers are semantically equivalent to
the gold reference but are spelled differently or em-
ploy different measuring units (e.g., “crore” used
in Telugu vs. “ten million”). Some answers are
semantically different for the gold reference but
are attributable to a passage (e.g., the liver as the
largest organ).

5 Attribution Detection for XORQA

So far, we found that state-of-the-art cross-lingual
question answering systems lack attribution. We
showed that a large portion of answers are not at-
tributed to any passages, by collecting a large col-
lection of attribution data in five languages.

However, collecting attribution data is costly and
time consuming. In a deployment setting, it would
simply be infeasible to annotate every (query, an-
swer, passage) triplet. In order to address this issue,
we explore automatic attribution detection tech-
niques. We build upon previous work on ground-
ing and factual consistency in English (Honovich
et al., 2022). We also experiment with PaLM 2
(Anil et al., 2023) a new state-of-the-art multilin-
gual large language model (LLM) in few-shot and
scarce data (250 examples) settings.

5.1 Attribution Detection Models
Given a query q, a short answer a and a passage
candidate p, we frame attribution detection as a
binary classification task:

(q, a, p) −→ âis (2)

with âis∈ {0, 1}. 1 corresponds to the attributed
class (i.e., the answer is attributed to the passage)
and 0 corresponds to the non-attributed class. We
note that query and answers are always in the same
language (in Bengali, Finnish, Japanese, Russian
or Telugu), while the passage may be in a different
language (mainly English). Following Honovich
et al. (2022), we model this task by prompting the

models as follows: premise: “$p” hypothesis: the
answer to the question “$q” is “$a” where p, q,
and a are inserted appropriately.

MT5-QA We use the training splits of the TyDi
QA dataset (Clark et al., 2020) to train the attri-
bution detection model. We employ the query,
passage, answer triplets from TyDi QA as our at-
tributed examples (our positive class). For non-
attributed examples, we mine negative passages
as follows: given a query, we start with the entire
Wikipedia document from TyDi QA that answers
the query. We sample from this document 10 pas-
sages that are different from the positive passage
(i.e. the passage that answers the query). This tech-
nique provides strong negative passages by pro-
viding passages that are topically closely related
to the positive passage but that do not answer the
question. It was used successfully by Garg et al.
(2020). We fine-tune mT5-XXL (Xue et al., 2021)
on the concatenation of the training data in English,
Bengali, Finnish, Japanese, Russian and Telugu.

(M)T5-NLI Following Honovich et al. (2022)
who found that NLI-fine-tuned T5 is accurate for
factual consistency detection, we experiment with
several English and multilingual NLI models. Sim-
ilar to Bohnet et al. (2022), we make use of the best
English NLI model from Honovich et al. (2022),
a T5-11B model fine-tuned on a mixture of natu-
ral language inference datasets, fact verification,
and paraphrase detection datasets.6 We experi-
ment with it in the translate-test setting (noted T5-
NLI TRANSLATE-TEST) for which we translate
the queries, passages, and answers to English.7 To
model attribution detection in multiple languages,
we fine-tuned the mT5-XXL model (Xue et al.,
2021) on translations of the mixture of the NLI
datasets to the non-English languages (noted MT5-
NLI TRANSLATE-TRAIN). To better model the
portion of passages in a language different from the
query, we also fine-tune the model by adding exam-
ples for which only the hypothesis has been trans-
lated while the premise is kept in English (noted
MT5-NLI X-TRANSLATE-TRAIN).

PALM 2 FEW SHOT To avoid costly fine-tuning,
we experiment with in-context learning using the

6T5 is fine-tuned on the concatenation of the MNLI (Nan-
gia et al., 2017), SNLI (Bowman et al., 2015), FEVER (Thorne
et al., 2018), PAWS (Zhang et al., 2019), SciTaiL (Khot et al.,
2018) and VitaminC (Schuster et al., 2021) datasets.

7Except for the portion of the passages retrieved in English
that do not need translation.



Model Tuning Data (#) Inference BN FI JA RU TE

STRING-MATCH Ø IN-EN 83.9 / 72.0 85.4 / 75.8 91.9 / 71.7 86.8 / 74.5 87.0 / 84.5
STRING-MATCH Ø IN-LANG 87.1 / 78.5 85.6 / 78.3 90.4 / 77.3 87.5 / 80.0 88.6 / 88.3
MT5-QA-TRANSLATE-TEST TyDiQA (∼100k) IN-EN 88.0 / 91.7 83.5 / 91.5 90.2 / 90.2 86.6 / 92.4 87.8 / 94.2
MT5-QA TyDiQA (∼100k) IN-LANG 89.4 / 92.0 88.3 / 92.2 91.5 / 92.9 91.0 / 94.7 92.4 / 96.8
T5-NLI-TRANSLATE-TEST NLI (∼1M) IN-EN 91.8 / 95.2 91.2 / 96.0 95.1 / 95.7 92.4 / 96.0 94.2 / 95.1
MT5-NLI TRANSLATE-TRAIN NLI (∼1M) IN-LANG 91.1 / 93.8 90.4 / 94.6 93.0 / 93.8 92.9 / 96.1 93.8 / 96.0
MT5, FINE-TUNED Attribution (∼100) IN-LANG 81.9 / 71.7 80.9 / 69.8 94.5 / 64.8 87.1 / 67.1 88.7 / 78.7
PALM 2, FINE-TUNED Attribution (∼100) IN-LANG 92.3 / 95.0 92.6 / 97.2 96.4 / 95.9 94.5 / 98.2 94.8 / 96.8
PALM 2, LORA-TUNED Attribution (∼100) IN-LANG 91.5 / 96.0 88.3 / 96.4 94.7 / 97.0 93.7 / 97.8 93.7 / 96.8
PALM 2 4-SHOT Attribution (∼4) IN-LANG 91.5 / 87.3 87.4 / 82.1 92.0 / 85.6 90.5 / 78.7 90.6 / 77.3
PALM 2 4-SHOT W/ COT PROMPT Attribution (∼4) IN-LANG 83.7 / 86.8 78.8 / 85.3 71.7 / 80.4 81.9 / 88.0 84.7 / 88.6

Table 4: Performance of Attribution detection models. We report the Accuracy / ROC AUC scores on the
XOR-AttriQA dataset. The Accuracy is computed with the probability threshold that maximizes it on an inde-
pendent set. For each language, the best Accuracy / ROC AUC scores are bolded and the second best scores are
underlined.

PaLM 2 large language model (Anil et al., 2023).
We use the Small version and evaluate the model af-
ter prompting the model with 4-shots with and with-
out chain-of-thought prompting (Wei et al., 2022).
Each language is evaluated with its own prompts,
and two negative examples and two positive exam-
ples are sampled for each language. For each pair,
one passage is chosen to be in-language while the
other is chosen to be in-English. Chain-of-thought
is done by manually writing a rationale that ex-
plains the attribution (or lack of attribution) of a
given answer in English.

MT5 / PALM 2 - ATTRIBUTION Finally, we
experiment with fine-tuning directly on a small
sample of the attribution data we collected. We
sample 250 examples in the 5 languages and fine-
tune mT5-XXL (Xue et al., 2021) and PaLM 2
Small (Anil et al., 2023). For mT5 we fine-tune the
entire model, while for PaLM 2, we both fine-tune
on the whole dataset and also fine-tune with Low-
Rank Adaptation (LoRA) (Hu et al., 2021) to avoid
overfitting and reduce fine-tuning cost. For these
experiments, we use the same constant learning
rate of 0.0001, dropout rate (Srivastava et al., 2014)
of 0.1, and batch size of 128 for tuning both mT5
and PaLM 2. For fine-tuning with LoRA, we used
a learning rate of 0.00005 and tuned the model over
ranks in {4, 16, 64, 256}. For all models, we used
the validation set for checkpoint selection.

STRING-MATCH We define a simple baseline.
For answers that are not “Yes”/“No”, if the string
a is included in the passage p, we predict 1, oth-
erwise 0. This means that we consider the answer
to be attributed to the passage if it is included in
it. For Yes/No answers, we predict 0 (the majority
class). We also use it after translating the query,

answer and passage to English.8

5.2 Results

We report the accuracy and ROC-AUC (Flach et al.,
2011) scores in Table 4. We compute the predic-
tion with a decision threshold tuned on an inde-
pendent validation dataset on which we measure
the accuracy of the model. PaLM 2 outperforms
all the other models despite being fine-tuned on
a very small sample of data, which is encourag-
ing as it shows we can leverage LLMs for cross-
lingual attribution with very little annotated data
that is expensive to produce. We also found few-
shot performance to also have strong results, that
could probably be improved with more shots and
leveraging larger LLMs. NLI fine-tuned models
outperform MT5-QA and STRING-MATCH for all
the languages in the translate-test setting. Finally,
we report in Table 5 the portion of attributed an-
swers not matching the gold references that the
best AIS detection model accurately predicts. We
find that PaLM 2 accurately predicts more than
86% of these answers (between 86.3 and 96.4%
depending on the language). This shows the po-
tential of using attribution detection to expand the
space of legitimate answers beyond relying only on
string-matching metrics.

BN FI JA RU TE

Acc. 88.2 94.5 86.3 96.4 91.6

Table 5: % of attributed non-EM examples that are
accurately detected by PALM 2.



Lang. TOP-1 ALL T5-NLI reranked
BN 27.9 45.6 39.2 (+40.4%)
FI 38.7 50.9 46.0 (+19.0%)
JA 11.8 37.3 29.1 (+146.2%)
RU 27.5 40.9 39.6 (+43.9%)
TE 23.3 31.7 30.3 (+30.0%)
Avg. 25.8 41.3 36.8 (+55.9)

Table 6: % of attributed answers based on the top-1
MDPR-retrieved passage, ALL the passages retrieved
fed to the generator, and the TOP-1 reranked passage
(T5-NLI reranked) with T5-NLI-TRANSLATE-TEST,
our best NLI fine-tuned model.

5.3 NLI Model for Reranking
Using our best T5-based attribution detection
model (T5-NLI TRANSLATE-TEST), we now
come back to our original goal of improving the
attribution level of our cross-lingual question an-
swering system. We leave for future work the use
of PaLM 2 for reranking.

Given our pool of candidate passages, we use
our attribution detection model as a reranker and se-
lect the passage which is the most likely to attribute
the answer according to the model. We report the
reranking attribution score in Table 6. We find that
our NLI model can accurately rerank the passages.
For instance for Telugu, we are able to increase
the top-1 performance from 23.3 to 31.7, an im-
provement of +30.0%. Across all the languages,
reranking with our NLI model leads to am average
relative increase of 55.9% across the 5 languages.

6 Discussion and Future Directions

Language model-based NLP systems are making
fast and continuous progress in generating fluent
and helpful text. Despite this progress, these mod-
els still make a lot of factual errors, specifically in
languages different from English. Attribution is the
most promising approach in addressing this issue
(Rashkin et al., 2021). Our work finds that even the
best XORQA system predictions lack attribution.
These results can be explained by the tendency
of these models to memorize facts (Roberts et al.,
2020) and to hallucinate answers (Ji et al., 2023),
which are in some cases correct. This shows that
we need to make progress in detecting and selecting
attributed sources that support the generated answer
of cross-lingual QA systems. In this work, we pro-
posed to use a large language model (PaLM 2) and
natural language inference models to detect and

8Using translation ensures that everything is in the same
language potentially improving the string-matching accuracy.

rerank passages to improve the attribution-level of
a state-of-the-art XORQA system.

Our result points to two critical research di-
rections to further make progress in information-
seeking QA. First, we observed that in some lan-
guages (e.g., Telugu), cross-lingual passages con-
tribute very moderately to the attribution level. This
shows that more progress is needed in cross-lingual
retriever systems. Second, we showed that string-
matching metrics based on gold references are in-
herently imperfect evaluation methods for QA and
showed that PaLM 2 can be used to detect rele-
vant attributed passages accurately with only small
amounts of training data. This means that large
language models-based attribution detection can
potentially be used as evaluation metrics for QA
in multiple languages. Further work is needed to
design robust LLM-based metrics for cross-lingual
information-seeking QA.

7 Conclusion

By ensuring that the model predictions are sup-
ported by human-written text, attribution is one of
the most promising ways to deploy NLP systems
safely. In this work, we introduced and released the
XOR-AttriQA dataset that includes approximately
10,000 examples in Bengali, Finnish, Japanese,
Russian and Telugu. Thanks to XOR-AttriQA , we
observe that state-of-the-art QA systems lack attri-
bution in the cross-lingual setting. We showed that
PaLM 2 and NLI models are promising methods
to detect attributed passages in 5 typologically di-
verse languages for information-seeking QA. Hav-
ing provided evidence for the lack of attribution in
academic generative QA system, built tooling to
detect and mitigate these issues, and releasing our
collected attribution data in 5 languages, we hope
to enable trustworthy cross-lingual QA systems to
meet the information needs of people around the
world.

Limitations

Our work focused on evaluating and improving
the attribution level of a state-of-the-art XORQA
pipeline. Given recent progress, LLMs are now
increasingly used in a closed-book setting (Roberts
et al., 2020) for question answering, i.e., without
relying on any retrieved passages to answer a ques-
tion. Attributing the generations of these models is
therefore becoming critical. In addition to improv-
ing the attribution level of open-retrieval question



answering pipeline, we hope XOR-AttriQA and
the attribution detection experiments we presented
will also be used to design attribution detection
models for closed-book QA systems.
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Appendices accompanying “Evaluating and
Modeling Attribution for Cross-Lingual
Question Answering”

A System and Data

A.1 Codebase

To run inference with CORA (Asai et al.,
2021b), we used the original codebase released
by the authors available at https://github.com/
AkariAsai/CORA. To build attribution detection
models with T5, we used the original check-
points from (Xue et al., 2021) fine-tuned using
the t5x library available at https://github.com/
google-research/t5x.

A.2 XOR-TyDiQA

Language yes/no short spans all
BN 35.3 45.8 45.6
FI 45.2 52.1 50.9
JA 37.0 37.6 37.3
RU 36.0 41.2 40.9
TE - 31.7 31.7

Table 7: % of CORA’s answers that are attributed to at
least one passage per answer type.

All our experiments are based on the XOR-
TyDiQA dataset (Asai et al., 2021a) available at
https://nlp.cs.washington.edu/xorqa/. We
focused on Bengali, Finnish, Japanese, Russian
and Telugu data. We only used the query and
gold answers from XOR-TyDiQA (and ignored the
gold passages for which we use a retriever). XOR-
TyDiQA answers are of two types: Yes/No answers
or short spans extracted from a Wikipedia passages
(Clark et al., 2020). We report in Table 7 the dif-
ference in attribution between Yes/No and short
span answers. We find that for most languages,
Yes/No answers are less attributable compared to
short answer spans.

A.3 Languages Distribution of MDPR

Language Distribution of Retrieved Passages
Query lang. / BN FI JA RU TE
Passage lang.

IN-LANG 44.9 69.2 82.8 87.3 55.8
EN 49.1 22.9 15.7 10.6 40.0
OTHERS LANG. 5.9 7.9 1.5 2.1 4.2

Table 8: Language distribution of passages retrieved by
a multilingual dense retriever (MDPR from (Asai et al.,
2021b)). IN-LANG means the passage is in the same
language as the query.

Table 8 shows the language distribution of pas-
sages retrieved by MDPR. Most passages are either
in the same language as the query or in English.

B Data Collection

B.1 Inter-Annotator Agreement Details

Lang. Scenario Rater Consensus Individual Rater
w. Expert Agreement with Expert Agreement

BN IN-LANG (S1) 91.18 88.78
BN IN-EN (S2) 86.49 84.68
FI IN-LANG (S1) 96.67 93.33
FI IN-EN 100.00 88.89
JA IN-LANG (S1) 93.62 91.19
JA IN-EN 83.33 72.22
RU IN-LANG 93.75 94.61
RU IN-EN 100 88.89
TE IN-LANG (S1) 95.75 88.58
TE IN-EN (S2) 91.23 85.10

Table 9: Attribution annotations quality: we report the
agreement between hired raters and expert judgment on
a small sample of data.
NB: Expert IN-LANG evaluation is done based on trans-
lated queries and answers.

We report in Table 9 the agreement between
expert raters and hired raters on a small number
of examples. We find that this agreement is above
90% for all languages in the in-language scenario
(S1).

B.2 AIS Score

The AIS data collection framework (Rashkin et al.,
2021) consists of two annotation steps. First, the
raters are shown a question and answer and asked
“Is the answer interpretable to you”. If the response
is positive, the rater is shown the source passage
and asked “Is the answer attributed to the passage”.
At each step, the rater is asked to answer Yes, or No
or to flag the example if it is corrupted. For each
question, answer, and passage triplet (q, a, p), we
collect the rating of three raters (for each annotation
scenarios). These three ratings are aggregated to
get a single label 0 or 1 for each (q, a, p) triplet
with the following criterion:

• We only keep the examples that received at
least two ratings. This means that we exclude
examples flagged by two raters or more.

• We assign the label “attributable” (1) to the
triplet if the example received at least two
votes to the question “Is the answer attributed
to the passage”; otherwise, we set the label to
non-attributable (0).

https://github.com/AkariAsai/CORA
https://github.com/AkariAsai/CORA
https://github.com/google-research/t5x
https://github.com/google-research/t5x
https://nlp.cs.washington.edu/xorqa/


The number of examples collected is available
in Table 1.

C Examples of Attribution without
Exact-Match

Query: What is the capital of

Kenya? Answer Nairobi Gold answer: Nairobi
Passage:

Kenya (English Republic of Kenya) The Republic of Kenya
is a country in East Africa. It is bordered by Ethiopia to the
north, Somalia to the northeast and Tanzania to the south. Its
capital is Nairobi.
Query:
How many people died on average in World War II?
Answer: Six crores

Gold answer: 70-85 millions
Passage:

crores. The countries involved faced a kind of perfect war
situation (ie, all available, regardless of military-civilian dis-
tinctions, were involved in the war in some way). As a result,
all the economic, industrial and technological resources of the
respective countries had to be used for war purposes. This war
is known as the bloodiest in the history of the world, which
caused the death of about six crore people.
Query: Which is the
largest organ in the human body?
Answer: the skin Gold answer: the liver
Passage:

Skin is the largest organ in our body. It has three important
layers. The skin covers the entire body and protects the inter-
nal parts. Skin is lacking at the pores. It comes in different
colors. The science of skin is called ’Dermatology’. The skin
mainly has two layers namely epidermis and dermis. The
epidermis is formed from the epidermis. Hairs and sweat
glands belong to the epidermis. Nails are also formed from it.
Africans are black. Northern Europeans are white. The people
of some other parts of Asia are in between the two. The cause
of these color differences is the pigment called ’melanin’ in
the skin. low melanin is called

Figure 3: Examples of attributed answers that are not
matching the gold reference (noted non-EM in Table 3).
We display a single passage fed to the generator, to
which the answer is attributed.


