
Under review as a conference paper at ICLR 2024

A GENERAL FORMULATION OF INDEPENDENT POLICY
OPTIMIZATION IN FULLY DECENTRALIZED MARL

Anonymous authors
Paper under double-blind review

ABSTRACT

Independent learning is a straightforward solution for fully decentralized learn-
ing in cooperative multi-agent reinforcement learning (MARL). The study of
independent learning has a history of decades, and the representatives, such as
independent Q-learning and independent PPO, can obtain good performance in
some benchmarks. However, most independent learning algorithms are without
convergence guarantees or theoretical support. In this paper, we propose a general
formulation of independent policy optimization, f -divergence policy optimization.
We show the generality of such a formulation and discuss the limitation. Based
on this formulation, we further propose a novel independent learning algorithm,
TVPO, that theoretically guarantees convergence. Empirically, we show that TVPO
outperforms state-of-the-art fully decentralized learning methods in three popular
cooperative MARL benchmarks, which verifies the efficacy of TVPO.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has shown great potential in many areas
including power control (Zhang & Liang, 2020), autonomous vehicle (Han et al., 2022), and robot
control (Sartoretti et al., 2019). The mainstream framework for cooperative MARL is centralized
training with decentralized Execution (CTDE) (Kraemer & Banerjee, 2016), and the MARL com-
munity pays less attention to fully decentralized learning, also known as decentralized training with
decentralized execution (DTDE). Fully decentralized learning is still significant in cooperative MARL
due to its simplicity. From the perspective of applications, fully decentralized learning is useful in
many industrial applications where agents may belong to different parties, e.g., autonomous vehicles
or robots. From the perspective of theory, fully decentralized algorithms rely on less information
during training and hence are more general and worth further study.

For DTDE or fully decentralized settings, independent learning is a straightforward but effective
way, which enables agents to directly execute a single-agent RL algorithm. The representatives are
independent Q-learning (IQL) (Tan, 1993) and independent actor-critic (IAC) (Foerster et al., 2018;
Papoudakis et al., 2021). Recently, independent PPO (IPPO) (de Witt et al., 2020) extends PPO
(Schulman et al., 2017) to MARL and shows good performance in several benchmarks. However,
these independent learning algorithms are still troubled by the non-stationarity problem and without
convergence guarantees or theoretical support.

In this paper, we propose a general formulation of independent policy optimization, f -divergence
policy optimization. We show the generality of such a formulation for independent learning in
cooperative MARL. We also analyze the policy iteration of this formulation and discuss its limitation
by a two-player matrix game. Based on this formulation, we further propose a novel independent
learning algorithm, total variation policy optimization (TVPO). To theoretically study the property
of TVPO and prove its convergence, we introduce a new set of value functions and policy iteration
specifically for fully decentralized learning and prove the monotonicity of this policy iteration. The
practical algorithm of TVPO can be effectively realized by an adaptive coefficient, similar to PPO
(Schulman et al., 2017).

Empirically, we verify our discussion about the limitation of f -divergence policy optimization in the
two-player matrix game and show the joint policy may converge to the sub-optimum with different
f -divergences. Moreover, we evaluate the performance of TVPO in three popular benchmarks of

1

Under review as a conference paper at ICLR 2024

cooperative MARL including MPE (Lowe et al., 2017), SMAC (Samvelyan et al., 2019), and multi-
agent MuJoCo (Peng et al., 2021). We compare TVPO with four representative fully decentralized
learning methods: IQL (Tan, 1993), IPPO (de Witt et al., 2020), I2Q (Jiang & Lu, 2022), and DPO
(Su & Lu, 2022b). The empirical results show that TVPO outperforms these baselines in all evaluated
tasks, which verifies the effectiveness of TVPO in fully decentralized cooperative MARL.

2 RELATED WORK

CTDE. Centralized training with decentralized execution (CTDE) is the mainstream framework for
solving cooperative MARL problems (Lowe et al., 2017; Foerster et al., 2018; Sunehag et al., 2018;
Rashid et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021a; Zhang et al., 2021; Su & Lu, 2022a;
Wang et al., 2023a). CTDE settles the non-stationarity problem through centralized training. This
line of research can be divided into two kinds: one is value decomposition algorithms (Sunehag
et al., 2018; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020; Wang et al., 2021a), where the
optimum of the centralized Q-function corresponds to the optimum of the decentralized Q-functions
so the learning of the centralized Q-function can be factorized into the learning of the decentralized
Q-functions; the other is multi-agent actor-critic algorithms (Foerster et al., 2018; Iqbal & Sha, 2019;
Wang et al., 2021b; Zhang et al., 2021; Su & Lu, 2022a; Wang et al., 2023a), in which a centralized
Q-function is used for the learning of decentralized policies. TRPO (Schulman et al., 2015) and PPO
(Schulman et al., 2017) are also extended into the MARL setting by HAPPO (Kuba et al., 2021) and
MAPPO (Yu et al., 2021) respectively via learning a centralized state value function. However, all
these methods are CTDE and thus inappropriate for fully decentralized learning.

Fully Decentralized Learning. There are several different views recently about fully decentral-
ized learning or decentralized learning. Some works study decentralized learning specifically with
communication (Zhang et al., 2018; Li et al., 2020) or parameter sharing (Terry et al., 2020). Actu-
ally, both communication and parameter sharing exchange information among agents (Terry et al.,
2020). However, in this paper, we consider fully decentralized learning in the strictest sense – with
each agent independently learning its policy while being not allowed to communicate or share
parameters as in Tampuu et al. (2015); Mao et al. (2022); Wang et al. (2023b). Independent learning
(OroojlooyJadid & Hajinezhad, 2019) is the most straightforward approach for fully decentralized
learning and has actually been a subject of study in cooperative MARL for decades. The representa-
tives are independent Q-learning (IQL) (Tan, 1993; Tampuu et al., 2015), independent actor-critic
(IAC) as Foerster et al. (2018); Papoudakis et al. (2021), and independent PPO (IPPO) (de Witt et al.,
2020). All these independent learning algorithms violate the stationary condition of MDP and do not
have convergence guarantees, though IQL and IPPO obtain good performance in several benchmarks
(Papoudakis et al., 2021). There are two recent studies, I2Q (Jiang & Lu, 2022) and DPO (Su &
Lu, 2022b), with convergence guarantees in fully decentralized MARL. I2Q introduces QSS-value
(Edwards et al., 2020) into independent Q-learning and obtains the convergence guarantee, but is
limited to deterministic environments. DPO proposes a decentralized surrogate of the joint TRPO
objective to obtain the convergence guarantee. Empirically, I2Q shows better performance than
IQL, while DPO outperforms IPPO. We will compare TVPO with these state-of-the-art methods in
our empirical studies.

3 PRELIMINARIES

Dec-POMDP. The decentralized partially observable Markov decision process (Dec-POMDP)
is a general model for cooperative MARL. A Dec-POMDP is defined as a tuple G =
{S,A, P, Y,O, I,N, r, γ}. N is the number of agents, and I = {1, 2 · · ·N} is the set of all agents.
S is the state space. A = A1 × A2 × · · · × AN represents the joint action space, where Ai is the
individual action space for agent i. P (s′|s,a) : S × A × S → [0, 1] is the transition function.
Y is the observation space, and O(s, i) : S × I → Y is a mapping from state to observation for
each agent i. γ ∈ [0, 1) is the discount factor, and r(s,a) : S × A → [−rmax, rmax] is the reward
function of state s ∈ S and joint action a ∈ A, where rmax is the bound of the reward function.
The objective of Dec-POMDP is to maximize J(π) = Eπ [

∑
t=0 γ

tr(st,at)], thus we need to find
the optimal joint policy π∗ = argmaxπ J(π). To settle the partial observable problem, history
τi ∈ Ti = (Y × Ai)

∗ is often used to replace observation oi ∈ Y . In fully decentralized learning,
each agent i independently learns an individual policy πi(ai|τi) and their joint policy π can be

2

Under review as a conference paper at ICLR 2024

represented as the product of each πi. Though each agent learns individual policy as πi(ai|τi) in
practice, in our analysis, we assume that each agent receives the state s, following existing studies
(Jiang & Lu, 2022; Su & Lu, 2022b), because the analysis in partially observable environments is
much hard and the problem may be undecidable in Dec-POMDP (Madani et al., 1999). Moreover,
the V-function and Q-function of the joint policy π are as follows,

V π(s) = Ea∼π [Qπ(s,a)] (1)

Qπ(s,a) = r(s,a) + γEs′∼P (·|s,a) [V
π(s′)] . (2)

Fully Decentralized Critic. The critic in fully decentralized learning or independent learning has
been discussed in previous studies such as Peshkin et al. (2000); Lyu & Xiao (2021). However, for
the convenience of further discussion, we provide some formulations and deductions about the fully
decentralized critic.

In fully decentralized learning, each agent learns independently from its own interactions with the
environment. Therefore, the Q-function of each agent i is actually the following formula:

Qπi

π−i(s, ai) = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi [Qπi

π−i(s′, a′i)], (3)

where rπ−i(s, ai) = Eπ−i [r(s, ai, a−i)], and π−i and a−i respectively denote the joint policy and
joint action of all agents expect agent i. If we take the expectation Ea′

−i∼π−i(·|s′),a−i∼π−i(·|s) over
both sides of the Q-function of the joint policy (2), then we have
Eπ−i [Qπ(s, ai, a−i)] = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′

i∼πi

[
Eπ−i [Qπ(s′, a′i, a

′
−i)]

]
.

We can see that Qπi

π−i(s, ai) and Eπ−i [Qπ(s, ai, a−i)] satisfy the same iteration. Moreover, we show
in the following that Qπi

π−i(s, ai) and Eπ−i [Qπ(s, ai, a−i)] are just the same.

We first define an operator Γπi

π−i as follows,

Γπi

π−iQ(s, ai) = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i∼πi [Q(s′, a′i)].

Then we prove that the operator Γπi

π−i is a contraction. Considering any two individual Q-functions
Q1 and Q2, we have:

∥Γπi

π−iQ1 − Γπi

π−iQ2∥∞ = max
s,ai

γ|Ea−i,s′,a′
i
[Q1(s

′, a′i)−Q2(s
′, a′i)]|

≤ γEa−i,s′,a′
i
[max
s′,a′

i

|Q1(s
′, a′i)−Q2(s

′, a′i)|] = γmax
s′,a′

i

|Q1(s
′, a′i)−Q2(s

′, a′i)|

= γ∥Q1 −Q2∥∞.

So the operator Γπi
π−i

has one and only one fixed point, which means

Qπi

π−i(s, ai) = Eπ−i [Qπ(s, ai, a−i)], V πi

π−i(s) = Eπ−i [V π(s)] = V π(s),

and the fully decentralized critic (3) is well-defined. For simplicity, in the following, we use Qπ
i to

denote Qπi

π−i given a joint policy π, if there is no confusion.

Independent Learning. Independent learning is a straightforward method to solve cooperative
MARL problems, which makes each agent learn through the same single-agent RL algorithm, such
IQL (Tan, 1993), IAC (Foerster et al., 2018), and IPPO (de Witt et al., 2020). Though independent
learning faces the non-stationarity problem, it still has the advantage of absorbing the benefit of
single-agent RL. Policy iteration πnew = argmaxπ

∑
a π(a|s)Qπold(s, a) is fundamental in single-

agent RL, which ensures that πnew improves monotonically over πold and guarantees the convergence.
We draw inspiration from policy iteration in single-agent RL, introduce a general formulation of
independent policy optimization, and try to find an independent learning algorithm that can guarantee
convergence in cooperative MARL.

4 A GENERAL FORMULATION FOR INDEPENDENT POLICY OPTIMIZATION

Given the condition of fully decentralized learning in cooperative MARL, we first propose a general
formulation of independent policy optimization, f -divergence policy optimization, and discuss
its generality and limitation. Then, based on this formulation, we propose total variation policy
optimization (TVPO), prove the convergence of TVPO in fully decentralized learning, and provide
the practical algorithm.

3

Under review as a conference paper at ICLR 2024

u0
B u1

B

Alice
Bob

qt 1− qt

u0
A pt a b

u1
A 1− pt c d

Table 1: The two-player matrix game for
Alice and Bob with policies after the num-
ber t of policy iterations. Alice will take
action u0

A with probability pt and take ac-
tion u1

A with probability 1 − pt; Bob will
take action u0

B with probability qt and take
action u1

B with probability 1− qt.

Before diving into the discussion, we need to introduce a
simple two-player matrix game which will be used later.
In this matrix game, the two agents, Alice and Bob, both
have two actions and we denote them as {u0

A, u
1
A} for

Alice and {u0
B , u

1
B} for Bob. Each episode of this ma-

trix game has only one step. The rewards for the joint ac-
tions (u0

A, u
0
B), (u

0
A, u

1
B), (u

1
A, u

0
B) and (u1

A, u
1
B) are

a, b, c, and d respectively. The policies of Alice and
Bob can be described with pt and qt as that Alice will
take action u0

A with probability pt and Bob will take
action u0

B with probability qt, where t represents the
number of policy iterations. The full information of this
matrix game is illustrated in Table 1.

4.1 f -DIVERGENCE POLICY OPTIMIZATION

The f -divergence policy optimization is formulated as follows,

πi
new = argmax

πi

∑
ai

πi(ai|s)Qπold
i (s, ai)− ωDf

(
πi(·|s)∥πi

old(·|s)
)

(4)

= argmax
πi

∑
ai

πi(ai|s)Qπold
i (s, ai)− ω

∑
ai

πi
old(ai|s)f

(
πi(ai|s)
πi
old(ai|s)

)
, (5)

where Df (p∥q) ≜
∑

i qif
(

pi

qi

)
is f -divergence and according to the definition of f -divergence,

f : [0,∞) → (−∞,+∞] is convex and f(1) = 0. This formulation contains an additional term
Df

(
πi(·|s)||πi

old(·|s)
)
, which describes the distance between πi and πi

old.

There has been several studies considering the distance between πold and πnew. The trust region
in TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017) is actually KL-divergence
between πold and πnew, while Nachum et al. (2017) extend entropy regularization to a more general
formulation with KL-divergence. Unlike these studies that just use KL-divergence as the distance
measure, we would like to discuss a more general formulation. So we use f -divergence, which
is widely used for describing the distance between two distributions. Also, KL-divergence is a
special case of f -divergence with f(x) = x log x and we have many other choices for f -divergence
such as f(x) = |x−1|

2 corresponding to total variation distance Df (p||q) = 1
2

∑
i |pi − qi| and

f(x) = (1−
√
x)2 corresponding to Hellinger distance Df (p||q) =

√∑
i(
√
pi −

√
qi)2.

To further discuss f -divergence policy optimization, we need to find the solution to the optimization
objective (4) and we have the following lemma.
Lemma 1. Given a fixed function f and the corresponding f -divergence Df , let g(x) = (f ′)−1(x),
then the solution to (4) is

πi
new(ai|s) = max{πi

old(ai|s)g
(
λs +Qπold

i (s, ai)

ω

)
, 0}, (6)

where λs satisfies
∑

ai
max{πi

old(ai|s)g
(

λs+Q
πold
i (s,ai)

ω

)
, 0} = 1.

This proof is included in Appendix A.1 and follows Yang et al. (2019).

We use the two-player matrix game between Alice and Bob (i.e., Table 1) to discuss the limitation
of f -divergence policy optimization. As for the policy iteration in the matrix game, we have the
following proposition.
Proposition 1. Suppose g(x) ≥ 0 and let M = b+ c− a− d, p̂ = c−d

M , and q̂ = b−d
M . If the payoff

matrix of the two-player matrix game satisfies M > 0, and Alice and Bob update their policies with

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− ωDf

(
πi(·|s)∥πi

t(·|s)
)
, (7)

then we have (1) pt > p̂ ⇒ qt+1 < qt; (2) pt < p̂ ⇒ qt+1 > qt; (3) qt > q̂ ⇒ pt+1 <
pt; (4) qt < q̂ ⇒ pt+1 > pt.

4

Under review as a conference paper at ICLR 2024

The proof is included in Appendix A.2. With Proposition 1, we can build a case where the joint
policy sequence can only converge to the sub-optimum. We assume the matrix game satisfies the
condition b > c > max{a, d}, then the optimal joint policy is (pt, qt) = (1, 0) corresponding to
the joint action (u0

A, u
1
B) and reward b. Moreover, the condition b > c > max{a, d} also means

p̂ ∈ (0, 1) and q̂ ∈ (0, 1). If at iteration t, the condition qt > q̂, pt < p̂ is satisfied, then qt+1 > qt >
q̂, pt+1 < pt < p̂. By induction, we know that ∀t′ ≥ t, qt′+1 > qt′ > q̂, pt′+1 < pt′ < p̂. As the
sequence {pt} and {qt} are both bounded in the interval [0, 1], we know the sequence {pt} and {qt}
will converge to p∗ and q∗. As for p∗ and q∗, we have the following corollary.
Corollary 1. If at iteration t, the condition qt > q̂, pt < p̂ is satisfied, then the sequence {pt} and
{qt} will converge to p∗ = 0 and q∗ = 1 respectively.

The proof is included in Appendix A.3. Corollary 1 tells us if once qt > q̂, pt < p̂, then the joint
policy will converge to the sub-optimal solution (p∗, q∗) = (0, 1) corresponding to the joint action
(u1

A, u
0
B) and reward c. So if the initial policy p0 and q0 satisfies the condition q0 > q̂, p0 < p̂,

then the joint policy will converge to the sub-optimal policy. We will further illustrate this in the
experiment.

4.2 TOTAL VARIATION POLICY OPTIMIZATION

The f -divergence formulation (4) is trapped in the sub-optimal joint policy even in a simple two-
player matrix game. This shows the upper bound of f -divergence policy optimization, so we should
not expect such a policy iteration could obtain the optimal joint policy in fully decentralized learning.
Fortunately, we have found an algorithm that accords with the f -divergence formulation and has the
convergence guarantee. This algorithm uses total variation distance for f -divergence, so we call it
total variation policy optimization (TVPO). The convergence guarantee of TVPO shows the potential
of the f -divergence formulation.

Before we introduce TVPO and prove its convergence, we need some definitions and lemma. We use
DTV(p∥q) ≜ 1

2

∑
i |pi − qi| to represent total variation distance. We define a new V-function V π

ρ (s)
and a new Q-function Qπ

ρ (s, ai, a−i) given joint polices π and ρ as follows:

V π
ρ (s) =

1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)Qπ
ρ (s, ai, a−i)− ωDf

(
πi(·|s)||ρi(·|s)

)
, (8)

Qπ
ρ (s, ai, a−i) = r(s, ai, a−i) + γEs′∼P (·|s,ai,a−i)

[
V π
ρ (s′)

]
. (9)

As the definition (8) is a fixed-point equation, we need to prove that this definition is well-defined. So
we define an operator Γπ

ρ as follows:

Γπ
ρV (s) =

1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s) (r(s, ai, a−i) + γE [V (s′)])−ωDf

(
πi(·|s)∥ρi(·|s)

)
.

Then for any value function V1 and V2, we have∥∥Γπ
ρV1(s)− Γπ

ρV2(s)
∥∥
∞ =

∥∥∥ 1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s) (γE [V1(s
′)]− γE [V2(s

′)])
∥∥∥
∞

≤ γ∥V1(s)− V2(s)∥∞.

So the operator Γπ
ρ is a γ-contraction, which means V π

ρ (s) is the unique fixed-point of (8) and the
definition (8) is well-defined.

To apply total variation distance to independent policy optimization, we have the following lemma.
Lemma 2. Suppose πnew, πold, and π are three joint policies. Let M = 2rmax

1−γ , then for any state s,
we have ∑

a

πnew(a|s)Qπ(s,a) ≥ 1

N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)M

N

N∑
i=1

DTV

(
πi
new(·|s)∥πi

old(·|s)
)
. (10)

5

Under review as a conference paper at ICLR 2024

The proof is included in Appendix A.4. Lemma 2 is a critical bridge between normal value function
V π and our new value function V π

ρ , and we can witness its effect in our later discussion. Moreover,
we also know that V π

π = V π and Qπ
π = Qπ .

We can also realize the monotonic improvement with a fully decentralized optimization objective via
the following proposition.
Proposition 2. Given a fixed joint policy ρ and an old joint policy πold, if all the agents update their
policies according to

πi
new = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ωDf

(
πi(·|s)∥ρi(·|s)

)
, (11)

then we have V πold
ρ (s) ≤ V πnew

ρ (s), Qπold
ρ (s,a) ≤ Qπnew

ρ (s,a) ∀s ∈ S, a ∈ A.

The proof is included in Appendix A.5. According to (11), by taking πold = ρ = πt and πnew =
πt+1, we can design a policy iteration as follows:

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
t (a−i|s)Qπt(s, ai, a−i)− ωDf

(
πi(·|s)||πi

t(·|s)
)
. (12)

This policy iteration resolves the f -divergence formulation (4). According to Proposition 2, we
know the joint policy sequence {πt} has the property V

πt+1
πt (s) ≥ V πt

πt
(s) = V πt(s). By taking

Df = DTV and ω = (N−1)M
N , we can combine these results with Lemma 2 to obtain the convergence

guarantee.

Theorem 1. Let ω = (N−1)M
N . If all agents update their policies according to

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
t (a−i|s)Qπt(s, ai, a−i)− ωDTV

(
πi(·|s)||πi

t(·|s)
)

= argmax
πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− ωDTV

(
πi(·|s)||πi

t(·|s)
)
, (13)

then we have V
πt+1
πt (s) ≥ V πt(s) ≥ V πt

πt−1
(s) ≥ V πt−1(s). Moreover, the sequence {V πt} and

{πt} will converge to V ∗ and π∗ respectively, which satisfy the fixed-point equation

πi
∗ = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s) (r(s, ai, a−i) + γE [V ∗(s′)])− ωDTV

(
πi(·|s)||πi

∗(·|s)
)
.

The proof is included in Appendix A.6.

Remark. The policy optimization objective of TVPO is (13). An important property of (13) is that it
can be optimized individually and independently by each agent and the joint policy will converge
according to Theorem 1. Although (13) is similar to the surrogate of DPO (Su & Lu, 2022b), there
are two main differences between TVPO and DPO. The first difference is that from the property
D2

TV(p||q) ≤ DKL(p||q), the bound DTV of TVPO is tighter than
√
DKL in DPO. The second

difference is that TVPO obtains the convergence guarantee through policy iteration while DPO
obtains the convergence guarantee through the surrogate of joint TRPO objective. We will investigate
their empirical performance in the experiment.

4.3 THE PRACTICAL ALGORITHM OF TVPO

Practically, if we use the objective (13) directly, then the large coefficient ω will greatly limit the step
size of the policy update, and the algorithm will not work (Schulman et al., 2015). So we follow
previous studies such as PPO (Schulman et al., 2017) to use an adaptive coefficient βi to replace ω,
then the policy optimization objective can be rewritten as

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Aπt
i (s, ai)− βiDTV

(
πi(·|s)||πi

t(·|s)
)
, (14)

where Aπt
i (s, ai) = Qπt

i (s, ai)−Eπi
t
[Qπt

i (s, ai)] = Qπt
i (s, ai)−V πt(s). Here we use the baseline

V πt(s) to reduce the variance in training.

6

Under review as a conference paper at ICLR 2024

Algorithm 1. The practical algorithm of TVPO

1: for episode = 1 to M do
2: for t = 1 to max_episode_length do
3: select action ai ∼ πi(·|s)
4: execute ai and observe reward r and next state s′

5: collect ⟨s, ai, r, s′⟩
6: end for
7: Update the critic according to (16)
8: Update the policy according to (14) or (17)
9: Update βi according to (15).

10: end for

The update rule of βi follows the practice of PPO. We can choose a hyperparameter dtarget which
means we expect the total variation distance should be around dtarget. Then we can update βi

according to the value of DTV

(
πi
t+1(·|s)∥πi

t(·|s)
)

in training as follows:

if DTV

(
πi
t+1(·|s)||πi

t(·|s)
)
> dtarget ∗ δ, then βi ← βi ∗ α

if DTV

(
πi
t+1(·|s)||πi

t(·|s)
)
< dtarget/δ, then βi ← βi/α,

(15)

where δ and α are two constants and we choose δ = 1.5 and α = 2 like the choice of PPO.

For the critic, since the policy update needs to calculate Aπt
i (s, ai) = Eπ−i

t
[r(s, ai, a−i)+γV πt(s′)−

V πt(s)], we take an individual state value function V i(s) as the critic for each agent i and approximate
Aπt

i (s, ai) with Âi = r + γV i(s′)− V i(s). The critic is updated as follows:

Li
critic = E

[
(V i(s)− yi)

2
]
, where yi = r + γV i(s′) or other target values. (16)

When facing continuous action space, we usually use Gaussian distribution as the policy. However,
there is no closed-form solution for total variation distance between two Gaussian distributions, to
the best of our knowledge. To avoid optimization difficulties, we replace total variation distance
with Hellinger distance DH(p∥q) =

√∑
i(
√
pi −

√
qi)2 in the environment with continuous action

space, since there is a closed-form solution for Hellinger distance between two Gaussian distribu-
tions. Moreover, Hellinger distance has a critical property related to total variation distance that
DTV(p∥q) ≤ DH(p∥q) and the proof is included in Appendix A.7.

With this property, we can replace DTV with DH in Lemma 2 and Theorem 1, while we can still
obtain the same convergence guarantee. Thus, for the continuous action space, we use the following
policy optimization objective:

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Aπt
i (s, ai)− βiDH

(
πi(·|s)∥πi

t(·|s)
)
. (17)

The practical algorithm of TVPO is summarized in Algorithm 1.

5 EXPERIMENTS

The experiment contains two main parts. The first part is to verify the limitation of f -divergence
policy optimization as we have discussed in Section 4.1 through the matrix game. The second part is

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game

KL_init_1
KL_init_2
KL_init_3
KL_init_4

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0
Matrix Game

TV_init_1
TV_init_2
TV_init_3
TV_init_4

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0
Matrix Game

Chi_init_1
Chi_init_2
Chi_init_3
Chi_init_4

0 10 20 30 40 50
iterations

5.5

6.0

6.5

7.0
Matrix Game

H_init_1
H_init_2
H_init_3
H_init_4

Figure 1: Learning curves of KL-iteration, TV-iteration, χ2-iteration, and H-iteration over four
different sets of initialization in the matrix game.

7

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

40

35

30

25

20

15

m
ea

n
ep

iso
de

 re
wa

rd
s

simple spread

DPO
IPPO
TVPO
IQL
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

50

40

30

20

10
line control

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

40

30

20

10
circle control

Figure 2: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO in 10-agent simple
spread, 10-agent line control, and 10-agent circle control in MPE.

to evaluate the performance of TVPO in three popular cooperative MARL benchmarks including
MPE (Lowe et al., 2017), SMAC (Samvelyan et al., 2019), and multi-agent MuJoCo (Peng et al.,
2021), compared with state-of-the-art fully decentralized algorithms. All learning curves correspond
to five different random seeds and the shaded area corresponds to the 95% confidence interval.

5.1 VERIFICATION IN MATRIX GAME

In this section, we choose a = 5, b = 7, c = 6, d = 4 for the matrix game, which satisfies
the condition b > c > max{a, d} as mentioned in Section 4.1. We use four different specific
f -divergences: KL-divergence, total variation distance, χ2-distance, and Hellinger distance to
build four different iterations of (4). We call these four iterations as KL-iteration, TV-iteration,
χ2-iteration, and H-iteration respectively. We test these iterations over four sets of initialization:
init_1 (p0, q0) = (0.4, 0.8); init_2 (p0, q0) = (0.6, 0.6); init_3 (p0, q0) = (0.49, 0.76); init_4
(p0, q0) = (0.51, 0.74). For the matrix game, we can calculate that (p̂, q̂) = (0.5, 0.75) as defined in
Proposition 1. From the discussion in Section 4.1 we know that init_1 and init_3 satisfy the condition
p0 < p̂, q0 > q̂, which means the converged policy should be the sub-optimal policy (p∗, q∗) = (0, 1)
with reward c = 6, and init_2 and init_4 satisfy the condition p0 > p̂, q0 < q̂, which means the
converged policy should be the optimal policy (p∗, q∗) = (1, 0) with reward b = 7. The empirical
results are illustrated in Figure 1. We can find that the empirical results agree with our theoretical
derivation for all four iterations over the four sets of initialization. The learning curves of the policy p
and q are included in Figure 5 in Appendix D. These empirical results corroborate our discussion
about the limitation of f -divergence formulation.

5.2 EVALUATION OF TVPO

We compare TVPO with four baselines: IQL (Tan, 1993), IPPO (de Witt et al., 2020), I2Q (Jiang
& Lu, 2022), and DPO (Su & Lu, 2022b). IQL is a basic value-based algorithm for decentralized
learning. IPPO is a basic policy-based algorithm for decentralized learning. Both IQL and IPPO
do not have convergence guarantee, to the best of our knowledge. DPO and I2Q are the recent
policy-based algorithm and value-based algorithm respectively, and both of them have been proved to
have convergence guarantee. In our experiments, all the algorithms use the independent parameter to
agree with the fully decentralized setting, and parameter sharing is banned. More details about the
experiment settings and hyperparameters are available in Appendix B and C.

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects are
either agents or landmarks. Landmark is a part of the environment, while agents can move in any
direction. With the relation between agents and landmarks, we can design different tasks. We use the
discrete action space version of MPE and the agents can accelerate or decelerate in the direction of
the x-axis or y-axis. We choose MPE for its partial observability.

The empirical results in MPE are illustrated in Figure 2. We find that TVPO obtains the best
performance in all three tasks. In this environment, the policy-based algorithms, TVPO, DPO, and
IPPO, outperform the value-based algorithms, IQL and I2Q. I2Q has a better performance than IQL
in all three tasks.

SMAC is a partially observable and high-dimensional environment that has been used in many
cooperative MARL studies. We select five maps in SMAC, 2s3z, 8m, 3s5z, MMM2 and 27m_vs_30m
for our experiments. These maps cover all three difficulty levels in SMAC: 2s3z and 8m are easy
maps; 3s5z is a hard map; MMM2 and 27m_vs_30m are super-hard maps.

8

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

wi
n

ra
te

s

2s3z

DPO
IPPO
IQL
TVPO
I2Q

0 1 2 3 4 5
steps 1e6

0.0

0.2

0.4

0.6

0.8

wi
n

ra
te

s

3s5z

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

wi
n

ra
te

s

8m

0.0 0.5 1.0 1.5 2.0
steps 1e6

2

4

6

8

10

m
ea

n
ep

iso
de

 re
wa

rd
s

MMM2

0.0 0.5 1.0 1.5 2.0
steps 1e6

5

10

15

m
ea

n
ep

iso
de

 re
wa

rd
s

27m vs 30m

Figure 3: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO on the maps 2s3z,
3s5z, 8m, MMM2 and 27m_vs_30m in SMAC.

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

1000

2000

3000

m
ea

n
ep

iso
de

 re
wa

rd
s

Hopper-v2 3x1

DPO
IPPO
IDDPG
TVPO
I2Q

0 1 2 3 4 5
steps 1e6

0

1000

2000

3000

4000

Walker2d-v2 3x2

0.0 0.5 1.0 1.5 2.0
steps 1e6

0

1000

2000

3000

4000
HalfCheetah-v2 3x2

0 1 2 3 4
steps 1e6

0

1000

2000

3000

Ant-v2 4x2

Figure 4: Learning curves of TVPO compared with IDDPG, IPPO, I2Q, and DPO in 3-agent Hopper,
3-agent Walker2d, 3-agent HalfCheetah and 4-agent Ant in multi-agent MuJoCo.

We show the empirical results of these algorithms in Figure 3. In the super-hard maps MMM2 and
27m_vs_30m, all the algorithms can hardly win, so we use episode rewards as the evaluation metric
to show the difference more clearly. As illustrated in Figure 3, TVPO has the best performance in all
four maps. The performance of DPO and TVPO is similar in the map 8m, and the reason may be that
8m is very easy and both of them can obtain nearly 100% win rates within one million steps. In the
other four maps, the differences between TVPO and DPO are more clear.

Multi-Agent MuJoCo is a robotic locomotion control environment for multi-agent settings, which
is built upon single-agent MuJoCo (Todorov et al., 2012). In multi-agent MuJoCo, each agent
controls one part of a robot to carry out different tasks. We choose this environment for the reason of
continuous state and action spaces. We use independent DDPG (Lillicrap et al., 2016) (IDDPG) to
replace IQL for continuous action spaces. As discussed in Section 4.3, we use Hellinger distance
to replace total variation distance for continuous action space in TVPO. We select 4 tasks for our
experiments: 3-agent Hopper, 3-agent HalfCheetah, 3-agent Walker2d, and 4-agent Ant. In all these
tasks, we set agent_obsk=2.

The learning curves of the multi-agent MuJoCo tasks are illustrated in Figure 4. We can find that
TVPO substantially outperforms the baselines except in 3-agent HalfCheetah, where DPO obtains
similar performance to TVPO. The difference between the performance of the value-based algorithms
and the policy-based algorithms is larger in multi-agent MuJoCo compared with MPE and SMAC.
The reason may be that the continuous action space in fully decentralized learning brings more
difficulty in training for the value-based algorithms.

In all three environments, TVPO obtains the best performance in all the evaluated tasks compared
with the four baselines, and the differences between TVPO and the other baselines are obvious in most
tasks. The performance of TVPO empirically verifies our discussion about the convergence guarantee
of TVPO and the effectiveness of TVPO. Among the baselines, DPO has the closest performance to
TVPO and their difference in performance empirically verifies our discussion about the advantage of
TVPO over DPO.

6 CONCLUSION

In this paper, we propose f -divergence policy optimization, a general formulation of independent
policy optimization in cooperative multi-agent reinforcement learning, and analyze the policy iteration
of such a formulation. We discuss the limitation of this formulation, i.e., convergence to only
sub-optimal policy, and verify it by the empirical results in a two-player matrix game. Based on
f -divergence policy optimization, we propose a novel independent learning algorithm, TVPO, and
prove its convergence in fully decentralized learning. Empirically, we evaluate TVPO against four
baselines: IQL, IPPO, I2Q, and DPO in three environments including MPE, SMAC, and multi-agent
MuJoCo. The empirical results show that TVPO outperforms all the baselines, which verifies the
effectiveness of TVPO.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. Learning transferable cooperative
behavior in multi-agent team. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2020.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet,
Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep deterministic
dynamics gradients. In International Conference on Machine Learning, pp. 2825–2835. PMLR,
2020.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial Intelligence (AAAI),
2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML), 2018.

Songyang Han, He Wang, Sanbao Su, Yuanyuan Shi, and Fei Miao. Stable and efficient shapley
value-based reward reallocation for multi-agent reinforcement learning of autonomous vehicles. In
2022 International Conference on Robotics and Automation (ICRA), pp. 8765–8771. IEEE, 2022.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning (ICML), 2019.

Jiechuan Jiang and Zongqing Lu. I2q: A fully decentralized q-learning algorithm. Advances in
Neural Information Processing Systems, 35:20469–20481, 2022.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Wenhao Li, Bo Jin, Xiangfeng Wang, Junchi Yan, and Hongyuan Zha. F2a2: Flexible fully-
decentralized approximate actor-critic for cooperative multi-agent reinforcement learning. arXiv
preprint arXiv:2004.11145, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International conference on learning representations (ICLR), 2016.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Xueguang Lyu and Yuchen Xiao. Contrasting centralized and decentralized critics in multi-agent
reinforcement learning. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, 2021.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic planning and
infinite-horizon partially observable markov decision problems. In AAAI/IAAI, pp. 541–548, 1999.

Weichao Mao, Lin Yang, Kaiqing Zhang, and Tamer Basar. On improving model-free algorithms
for decentralized multi-agent reinforcement learning. In International Conference on Machine
Learning, pp. 15007–15049. PMLR, 2022.

10

Under review as a conference paper at ICLR 2024

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Afshin OroojlooyJadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1908.03963, 2019.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling. Learning to coop-
erate via policy search. In Proceedings of the Sixteenth conference on Uncertainty in artificial
intelligence, pp. 489–496, 2000.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning (ICML), 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig, and
Howie Choset. Primal: Pathfinding via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 4(3):2378–2385, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 2019.

Kefan Su and Zongqing Lu. Divergence-regularized multi-agent actor-critic. In International
Conference on Machine Learning (ICML), 2022a.

Kefan Su and Zongqing Lu. Decentralized policy optimization. arXiv preprint arXiv:2211.03032,
2022b.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2018.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
arXiv preprint arXiv:1511.08779, 2015.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International
Conference on Machine Learning (ICML), 1993.

Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting
parameter sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625,
2020.

11

Under review as a conference paper at ICLR 2024

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized
execution: Multi-agent conditional policy factorization. In International conference on learning
representations (ICLR), 2023a.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. In International Conference on Learning Representations (ICLR), 2021a.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-policy multi-
agent decomposed policy gradients. In International Conference on Learning Representations
(ICLR), 2021b.

Yuanhao Wang, Qinghua Liu, Yu Bai, and Chi Jin. Breaking the curse of multiagency: Provably effi-
cient decentralized multi-agent rl with function approximation. arXiv preprint arXiv:2302.06606,
2023b.

Wenhao Yang, Xiang Li, and Zhihua Zhang. A regularized approach to sparse optimal policy in
reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao Tang.
Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv preprint
arXiv:2002.03939, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of mappo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Baar. Fully decentralized multi-
agent reinforcement learning with networked agents. In International Conference on Machine
Learning (ICML), 2018.

Lin Zhang and Ying-Chang Liang. Deep reinforcement learning for multi-agent power control in
heterogeneous networks. IEEE Transactions on Wireless Communications, 20(4):2551–2564,
2020.

Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. Fop: Factorizing
optimal joint policy of maximum-entropy multi-agent reinforcement learning. In International
Conference on Machine Learning (ICML), 2021.

12

Under review as a conference paper at ICLR 2024

Appendices
A PROOFS

A.1 PROOF OF LEMMA 1

Proof. The Lagrangian function of (4) is as follows:

L =
∑
ai

πi(ai|s)Qπold
i (s, ai)− ω

∑
ai

πi
old(ai|s)f

(
πi(ai|s)
πi
old(ai|s)

)

+ λs

(∑
ai

πi(ai|s)− 1

)
+
∑
ai

β(ai|s)πi(ai|s),

where λs and β(ai|s) are the Lagrangian multiplier.

Then by the KKT condition we have

∂L

∂πi(ai|s)
= Qπold

i (s, ai)− ωf ′
(

πi(ai|s)
πi
old(ai|s)

)
+ λs + β(ai|s) = 0,

so we can resolve πi(ai|s) as

πi(ai|s)
πi
old(ai|s)

= g

(
Qπold

i (s, ai) + λs + β(ai|s)
ω

)
(18)

From the complementary slackness we know that β(ai|s)πi(ai|s) = 0, so we can rewrite (18) as

πi(ai|s)
πi
old(ai|s)

= max

{
g

(
Qπold

i (s, ai) + λs

ω

)
, 0

}
, (19)

πi(ai|s) = max

{
πi
old(ai|s)g

(
Qπold

i (s, ai) + λs

ω

)
, 0

}
. (20)

A.2 PROOF OF PROPOSITION 1

Proof. To discuss the monotonicity of the policies pt and qt, let QA
t (0) and QA

t (1) represent the
expected reward Alice will obtain by taking action u0

A and u1
A respectively. Simlilarly, we can also

define QB
t (0) and QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a+ (1− qt) · b = b+ (a− b)qt. Similarly we can obtain

that QA
t (1) = d+ (c− d)qt, QB

t (0) = c+ (a− c)pt and QB
t (1) = d+ (b− d)pt.

Combining (20) with the condition g(x) ≥ 0, then we have

pt+1 = ptg

(
(a− b)qt + b+ λA

t

ω

)
, 1− pt+1 = (1− pt)g

(
(c− d)qt + d+ λA

t

ω

)

⇒ 1

pt+1
− 1 = (

1

pt
− 1)

g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) . (21)

From (21) we can find that

pt+1 < pt ⇔
g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) > 1

⇔ (c− d)qt + d > (a− b)qt + b (22)
⇔ (b+ c− a− d)qt > b− d

⇔ qt > q̂.

13

Under review as a conference paper at ICLR 2024

The critical step (22) is from the combination of the condition g(x) ≥ 0 and the property g(x) is
non-decreasing.

Similarly we can obtain that pt > p̂ ⇒ qt+1 < qt; pt < p̂ ⇒ qt+1 > qt; qt > q̂ ⇒ pt+1 <
pt; and qt < q̂ ⇒ pt+1 > pt.

A.3 PROOF OF COROLLARY 1

Proof. From the iteration of {pt} we have

pt+1

1− pt+1
=

pt
1− pt

g
(

(a−b)qt+b+λA
t

ω

)
g
(

(c−d)qt+d+λA
t

ω

) . (23)

Let t→∞ in both side of (23), we know that

p∗

1− p∗

 g
(

(a−b)q∗+b+λA
∗

ω

)
g
(

(c−d)q∗+d+λA
∗

ω

) − 1

 = 0. (24)

As q∗ > q̂, we know that
g

(
(a−b)q∗+b+λA

∗
ω

)
g

(
(c−d)q∗+d+λA

∗
ω

) < 1. So we can rewrite (24) as p∗

1−p∗ = 0 and resolve

p∗ = 0.

As for q∗, we can follow a similar idea. From the iteration of {qt} we have

1

qt+1
− 1 = (

1

qt
− 1)

g
(

(b−d)pt+d+λB
t

ω

)
g
(

(a−c)pt+c+λB
t

ω

) . (25)

Let t→∞ in both side of (25) , we know that

1− q∗

q∗

g
(

(b−d)p∗+d+λB
∗

ω

)
g
(

(a−c)p∗+c+λB
∗

ω

) − 1

 = 0. (26)

As p∗ < p̂, we know that
g

(
(b−d)p∗+d+λB

∗
ω

)
g

(
(a−c)p∗+c+λB

∗
ω

) < 1. Then we can rewrite (26) as 1−q∗

q∗ = 0 and obtain

q∗ = 1.

14

Under review as a conference paper at ICLR 2024

A.4 PROOF OF LEMMA 2

Proof. For any fixed i, consider the following difference∣∣∣∣∣∣
∑
a

πnew(a|s)Qπ(s,a)−
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
ai

πi
new(ai|s)

∑
a−i

(
π−i
new(a−i|s)− π−i

old(a−i|s)
)
Qπ(s, ai, a−i)

∣∣∣∣∣∣ (27)

≤
∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ |Qπ(s, ai, a−i)| (28)

≤ M

2

∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (29)

=
M

2

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (30)

=
M

2

∑
a−i

∣∣∣∣∣∣
N∑

k=1,k ̸=i

π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)

∣∣∣∣∣∣ (31)

≤ M

2

∑
a−i

N∑
k=1,k ̸=i

∣∣π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)
∣∣ (32)

=
M

2

N∑
k=1,k ̸=i

∑
ak

∣∣πk
new(ak|s)− πk

old(ak|s)
∣∣ (33)

= M

N∑
k=1,k ̸=i

DTV

(
πk
new(·|s)∥πk

old(·|s)
)

(34)

where π1:k−1
new denotes π1

new × π2
new × · · ·πk−1

new and πi
new will be skipped if involved, and a1:k−1 has

similar meanings as a1:k−1 = a1 × a2 × · · · ak−1. In (28) and (32), we use the triangle inequality
of the absolute value. In (29), we use the property Qπ(s,a) ≤ rmax

1−γ = M
2 from the definition of

Q-function. In (31), we insert N − 1 terms between π−i
new(a−i|s) and π−i

old(a−i|s) to make sure the
adjacent two terms are only different in one individual policy.

By rewriting the conclusion above, for any agent i, we have∑
a

πnew(a|s)Qπ(s,a) ≥
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

−M

N∑
k=1,k ̸=i

DTV

(
πk
new(·|s)∥πk

old(·|s)
)
. (35)

Then, by applying (35) to i = 1, 2, · · · , N and add all these N inequalities together, we have

∑
a

πnew(a|s)Qπ(s,a) ≥ 1

N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)M

N

N∑
i=1

DTV

(
πi
new(·|s)∥πi

old(·|s)
)
.

15

Under review as a conference paper at ICLR 2024

A.5 PROOF OF PROPOSITION 2

Proof. By the definition of V πold
ρ we have

V πold
ρ (s) =

1

N

∑
i

∑
ai

πi
old(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi
old(·|s)∥ρi(·|s)

)
≤ 1

N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi
new(·|s)∥ρi(·|s)

)
(36)

=
1

N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)
(
r(s, ai, a−i) + γE

[
V πold
ρ (s′)

])
− ω

∑
i

Df

(
πi
new(·|s)∥ρi(·|s)

)
(37)

≤ · · · (expand V πold
ρ (s′) and repeat replacing πi

old with πi
new) (38)

≤ V πnew
ρ (s). (39)

In (36), we use the definition of πi
new in (11). (37) is from the definition of Qπold

ρ (s, ai, a−i). In (38),
we repeatedly expand V πold

ρ according to its definition and replace πi
old with πi

new by the optimality
of πi

new like what we have done in (36). After we replace all πi
old with πi

new, then we obtain V πnew
ρ (s)

according to the definition of V πnew
ρ (s) in (39).

With the result V πold
ρ (s) ≤ V πnew

ρ (s), we know Qπold
ρ (s,a) = r(s,a) + γE[V πold

ρ (s′)] ≤ r(s,a) +
γE[V πnew

ρ (s′)] = Qπnew
ρ (s,a).

A.6 PROOF OF THEOREM 1

Proof. From the Proposition 2, we know V
πt+1
πt (s) ≥ V πt(s). Thus, we just need to prove V πt(s) ≥

V πt
πt−1

(s).

From the definition of V πt(s) we have

V πt(s) =
∑
a

πt(a|s)Qπt(s,a)

≥ 1

N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s)Qπt(s, ai, a−i)

− ω

N∑
i=1

DTV

(
πi
t(·|s)∥πi

t−1(·|s)
)

(40)

=
1

N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s) (r(s, ai, a−i) + γE[V πt(s′)])

− ω

N∑
i=1

DTV

(
πi
t(·|s)∥πi

t−1(·|s)
)

(41)

≥ · · · (expand V πt(s′) and repeat replacing π−i
t with π−i

t−1) (42)

≥V πt
πt−1

(s). (43)

(40) is from Lemma 2, and (41) is from the definition of Qπt(s, ai, a−i). In (42), we repeatedly
expand V πt and replace the π−i

t with π−i
t−1 by Lemma 2 like what we have done in (40). After we

replace all π−i
t with π−i

t−1, then we obtain V πt
πt−1

(s) in (43) according to the definition of V πt
πt−1

(s).

From the inequalities V
πt+1
πt (s) ≥ V πt(s) ≥ V πt

πt−1
(s) ≥ V πt−1(s), we know that the sequence

{V πt} improves monotonically. Combining with the condition that the sequence {V πt} is bounded,
we know that {V πt} will converge to V ∗. According to the definition, the sequence {Qπt} and {πt}

16

Under review as a conference paper at ICLR 2024

will also converge to Q∗ and π∗ respectively, where π∗ satisfies the following fixed-point equation:

πi
∗ = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s)Q∗(s, ai, a−i)− ωDTV

(
πi(·|s)||πi

∗(·|s)
)
.

A.7 PROOF OF DTV(p∥q) ≤ DH(p∥q)

Proof.

D2
TV(p∥q) =

1

4

(∑
i

|pi − qi|

)2

=
1

4

(∑
i

|√pi −
√
qi| |
√
pi +

√
qi|

)2

≤ 1

4

(∑
i

|√pi −
√
qi|2
)(∑

i

|√pi +
√
qi|2
)

(Cauchy–Schwarz inequality)

=
1

4
D2

H(p∥q)

(
2 + 2

∑
i

√
piqi

)
≤ D2

H(p∥q).

B EXPERIMENTAL SETTINGS

B.1 MPE

The three tasks are built on the origin MPE (Lowe et al., 2017) (MIT license) and are originally used
in Agarwal et al. (2020) (MIT license). The objective in these three tasks are listed as follows:

• Simple Spread: There are N agents who need to occupy the locations of N landmarks.
• Line Control: There are N agents who need to line up between 2 landmarks.
• Circle Control: There are N agents who need to form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We set the
number of agents N = 10 for these three tasks in our experiment.

B.2 MULTI-AGENT MUJOCO

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task with
continuous action space for multi-agent settings. The robot could be divided into several parts and
each part contains several joints. Agents in this environment control a part of the robot which could
be different varieties. So the type of the robot and the assignment of the joints decide a task. For
example, the task ‘HalfCheetah-3×2’ means dividing the robot ‘HalfCheetah’ into three parts for
three agents and each part contains 2 joints.

The details about our experiment settings in multi-agent Mujoco are listed in Table 2. The configura-
tion defines the number of agents and the joints of each agent. The ‘agent obsk’ defines the number
of nearest agents an agent can observe.

Table 2: The task settings of multi-agent MuJoCo

task configuration agent obsk

HalfCheetah 3×2 2
Hopper 3×1 2

Walker2d 3×2 2
Ant 4×2 2

17

Under review as a conference paper at ICLR 2024

C TRAINING DETAILS

Our code of IPPO is based on the open-source code1 of MAPPO (Yu et al., 2021) (MIT license).
We modify the code for individual parameters and ban the tricks used by MAPPO for SMAC. The
network architectures and base hyperparameters of TVPO, DPO and IPPO are the same for all the
tasks in all the environments. We use 3-layer MLPs for the actor and the critic and use ReLU as
non-linearities. The number of the hidden units of the MLP is 128. We train all the networks with an
Adam optimizer. The learning rates of the actor and critic are both 5e-4. The number of epochs for
every batch of samples is 15 which is the recommended value in Yu et al. (2021). For IPPO, the clip
parameter is 0.2 which is the same as Schulman et al. (2017). For DPO, the hyperparameter is set
as the original paper (Su & Lu, 2022b) recommends. Our code of IQL is based on the open-source
code2 PyMARL (Apache-2.0 license) and we modify the code for individual parameters. The default
architecture in PyMARL is RNN so we just follow it and the number of the hidden units is 128. The
learning rate of IQL is also 5e-4. The architectures of the actor and critic of IDDPG are 3-layer MLPs.
The learning rates of the actor and critic are both 5e-4. Our code of I2Q is from the open source
code3 of the original paper (Jiang & Lu, 2022). We keep the hyperparameter of I2Q the same as the
default value of the open-source code in our experiments.

Table 3: Hyperparameters for all the experiments

hyperparameter value

MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lr 5e-4
critic_lr 5e-4

numbers of epochs 15
initial βi 0.01

δ 1.5
ω 2

dtarget 0.001
clip parameter for IPPO 0.2

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We
set the episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo
experiments. We perform the whole experiment with a total of four NVIDIA A100 GPUs. We have
summarized the hyperparameters in Table 3.

D ADDITIONAL EMPIRICAL RESULTS

Figure 5 illustrates the learning curve of the policy p and q in the matrix game of KL-iteration,
TV-iteration, χ2-iteration, and H-iteration over four different sets of initialization. We can the policies
of all four kinds of iterations converge.

E DISCUSSION

Before proposing the f -divergence formulation, we have studied another formulation. This formula-
tion follow the idea of the entropy regularization and the extra term is only related to the policy pii

instead of the divergence between pii and piiold. We refer to this approach as the unary formulation.
Though we discovered that the unary formulation has more significant drawbacks, the properties of
the unary formulation inspire us in the proof of TVPO. So we would like to provide the properties
and some empirical results of the unary formulation here for discussion.

1https://github.com/marlbenchmark/on-policy
2https://github.com/oxwhirl/pymarl
3https://github.com/jiechuanjiang/I2Q

18

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_1
KL_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_1
TV_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_1
Chi_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_1
H_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_2
KL_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_2
TV_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_2
Chi_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_2
H_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_3
KL_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_3
TV_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_3
Chi_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_3
H_q_init_3

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_4
KL_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_4
TV_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_4
Chi_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_4
H_q_init_4

Figure 5: Learning curves of the policy p and q in the matrix game of KL-iteration, TV-iteration,
χ2-iteration, and H-iteration over four different sets of initialization. Each row corresponds to one set
of initialization and each column corresponds to one type of iteration.

E.1 UNARY FORMULATION

The unary formulation is

πi
new = argmax

πi

∑
ai

πi(ai|s)Qπold
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
. (44)

This formulation (44) follows the idea of Yang et al. (2019) which discusses the regularization
algorithm in single-agent RL. From the perspective of regularization, the update rule (44) can be
seen as optimizing the regularized objective J i

ϕ(π) = E
[∑

t γ
t
(
ri(s, ai) + ωϕ

(
πi(ai|s)

))]
, where

ri(s, ai) = Eπ−i [r(s, ai, a−i)]. The choice of ϕ is flexible, e.g., ϕ(x) = − log x corresponds to en-
tropy regularization and independent SAC (Haarnoja et al., 2018); ϕ(x) = 0 means (44) degenerates
to independent Q-learning (Tan, 1993); Moreover, there are many other options for ϕ corresponding
to different regularization (Yang et al., 2019). So we take (44) as the general unary formulation
of independent learning, where the ‘unary’ means the additional terms

∑
ai
πi(ai|s)ϕ

(
πi(ai|s)

)
is

only about one policy πi.

For further discussion of (44) , we can utilize the conclusion in Yang et al. (2019) as the following
lemma.
Lemma 3. If ϕ(x) in (0, 1] and satisfies the following conditions: (1) ϕ(x) is non-increasing; (2)
ϕ(1) = 0; (3) ϕ(x) is differentiable; (4) fϕ(x) = xϕ(x) is strictly concave, then we have that
gϕ(x) = (f ′

ϕ)
−1(x) exists and gϕ(x) is decreasing. Moreover, the solution to the optimization

objective (44) can be described with gϕ(x) as follows:

πi
new(ai|s) = max{gϕ

(
λs −Qπold

i (s, ai)

ω

)
, 0}, (45)

where λs satisfies
∑

ai
max{gϕ

(
λs−Q

πold
i (s,ai)

ω

)
, 0} = 0.

Though it seems that ϕ(x) needs to satisfy four conditions, actually ϕ(x) = − log x for Shannon
entropy and ϕ(x) = k

q−1 (1− xq−1) for Tsallis entropy are still qualified.

However, unlike the single-agent setting, the update rule in Lemma 3 may result in the convergence
to sub-optimal policy or even oscillations in policy in fully decentralized MARL.

We further discuss (44) in the two-player matrix game and have the following proposition.

19

Under review as a conference paper at ICLR 2024

Proposition 3. Suppose that gϕ(x) ≥ 0 and gϕ(x) is continuously differentiable. If the payoff matrix
of the two-player matrix game satisfies b+ c < a+ d, and two agents Alice and Bob update their
policies with policy iteration as

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
, (46)

then we have (1) pt > pt−1 ⇒ qt+1 > qt; (2) pt < pt−1 ⇒ qt+1 < qt; (3) qt > qt−1 ⇒ pt+1 >
pt; (4) qt < qt−1 ⇒ pt+1 < pt.

Proof. To discuss the monotonicity of the policies pt and qt, we need the solution in Lemma 3.
Before applying the update rule (45), we need to calculate the decentralized critic given pt and qt.
Let QA

t (0) and QA
t (1) represent the expected reward Alice will obtain by taking action u0

A and u1
A

respectively. We can also define QB
t (0) and QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a + (1 − qt) · b = b + (a − b)qt. Similarly we could

obtain that QA
t (1) = d+ (c− d)qt, QB

t (0) = c+ (a− c)pt and QB
t (1) = d+ (b− d)pt.

With (45) and the condition gϕ(x) ≥ 0, we have

pt+1 = gϕ

(
λA
t −QA

t (0)

ω

)
= gϕ

(
(b− a)qt + λA

t − b

ω

)
, 1− pt+1 = gϕ

(
(d− c)qt + λA

t − d

ω

)
gϕ

(
(b− a)qt + λA

t − b

ω

)
+ gϕ

(
(d− c)qt + λA

t − d

ω

)
= 1

qt+1 = gϕ

(
(c− a)pt + λB

t − c

ω

)
, 1− qt+1 = gϕ

(
(d− b)pt + λB

t − d

ω

)
gϕ

(
(c− a)pt + λB

t − c

ω

)
+ gϕ

(
(d− b)pt + λB

t − d

ω

)
= 1.

We can rewrite these equations with some simplifications as follows,

mA(x) ≜
(b− a)x+ λA(x)− b

ω
, nA(x) ≜

(d− c)x+ λA(x)− d

ω
, hA(x) = gϕ (mA(x))

where λA(x) satisfies gϕ (mA(x)) + gϕ (nA(x)) = 1 (47)

mB(x) ≜
(c− a)pt + λB(x)− c

ω
, nB(x) ≜

(d− b)pt + λB(x)− d

ω
, hB(x) = gϕ (mB(x))

where λB(x) satisfies gϕ (mB(x)) + gϕ (nB(x)) = 1.

With these definitions, we know that pt+1 = hA(qt), qt+1 = hB(pt) and the monotonicity of pt and
qt is determined by the property of function hA(x) and hB(x). By applying the chain rule to (47),
we have:

1

ω
g′ϕ (mA(x)) (b− a+ λ′

A(x)) +
1

ω
g′ϕ (nA(x)) (d− c+ λ′

A(x)) = 0

⇒ λ′
A(x) = −

(b− a)g′ϕ(mA(x)) + (d− c)g′ϕ(nA(x))

g′ϕ(mA(x)) + g′ϕ(nA(x))
. (48)

Then we have:

h′
A(x) =

1

ω
g′ϕ (mA(x)) (b− a+ λ′

A(x)) (Apply chain rule) (49)

=
1

ω
(b+ c− a− d)

g′ϕ(nA(x))g
′
ϕ(mA(x))

g′ϕ(mA(x)) + g′ϕ(nA(x))
(Substitute (48) for λ′

A(x)). (50)

Let M = b+c−a−d and M ′ = M
ω , then h′

A(x) = M ′ g′
ϕ(nA(x))g′

ϕ(mA(x))

g′
ϕ(mA(x))+g′

ϕ(nA(x)) . From the condition and

Lemma 3 we know that M ′ < 0 and gϕ(x) is decreasing which means g′ϕ(x) < 0. Combining these
conditions together, we know h′

A(x) > 0 and hA(x) is increasing which means that pt+1 = hA(qt)
is increasing over qt, which means that qt > qt−1 ⇒ pt+1 > pt and qt > qt−1 ⇒ pt+1 > pt.

20

Under review as a conference paper at ICLR 2024

Similarly, we can obtain that h′
B(x) = M ′ g′

ϕ(nB(x))g′
ϕ(mB(x))

g′
ϕ(mB(x))+g′

ϕ(nB(x)) > 0 which could lead to the result
that pt > pt−1 ⇒ qt+1 > qt and pt < pt−1 ⇒ qt+1 < qt.

Proposition 3 actually tells us pt+1 = hA(qt) is increasing over qt and qt+1 = hB(pt) is increasing
over pt when M = b+ c− a− d < 0. Intuitively, we can find two typical cases for policy iterations
with Proposition 3. In the first case, if in a certain iteration t the conditions pt > pt−1 and qt > qt−1

are satisfied, then we know that pt′+1 > pt′ qt′+1 > qt′ ∀t′ ≥ t. As the sequences {pt} and {qt}
are both bounded in the interval [0, 1], we know that {pt} and {qt} will converge to p∗ and q∗ . The
property of p∗ and q∗ is determined by lA(x) ≜ hB(hA(x)) and lB(x) ≜ hA(hB(x)) respectively
as pt+2 = hB(hA(pt)) and qt+2 = hA(hB(qt)) and we have the following corollary.

Corollary 2. |l′A(x)| ≤M ′2U2
ϕ, |l′B(x)| ≤M ′2U2

ϕ , where Uϕ is a constant determined by ϕ(x).

Proof. As g′ϕ(x) is continuous, let U1
A ≜ maxx∈[0,1] |g′ϕ(mA(x))|, U2

A ≜ maxx∈[0,1] |g′ϕ(nA(x))|,
U1
B ≜ maxx∈[0,1] |g′ϕ(mB(x))| and U2

B ≜ maxx∈[0,1] |g′ϕ(nB(x))|. Moreover, let Uϕ =

max{U1
A, U

2
A, U

1
B , U

2
B}, then apply the chain rule to l′A(x) and we have

|l′A(x)| = |h′
B(hA(x))h

′
A(x)|

= M ′2 |g
′
ϕ(nB(hA(x)))||g′ϕ(mB(hA(x)))|

g′ϕ(mB(hA(x)))	+	g′ϕ(nB(hA(x)))
g′ϕ(nA(x))		g′ϕ(mA(x))
g′ϕ(mA(x))	+	g′ϕ(nA(x))

(51)

= M ′2 |g
′
ϕ(nB(y))||g′ϕ(mB(y))|

g′ϕ(mB(y))	+	g′ϕ(nB(y))
g′ϕ(nA(x))		g′ϕ(mA(x))
g′ϕ(mA(x))	+	g′ϕ(nA(x))

(Let y = hA(x) ∈ [0, 1])

≤M ′2 |g
′
ϕ(mB(y))|+ |g′ϕ(nB(y))|

2

|g′ϕ(mA(x))|+ |g′ϕ(nA(x))|
2

(52)

≤M ′2U2
ϕ (53)

where (51) is from Proposition 3, (52) is from the AM-GM inequality ab ≤ (a+b)2

2 , and (53) is from
the definition of Uϕ. Similarly, we can obtain |l′B(x)| ≤M ′2U2

ϕ .

Combining Corollary 2 and Banach fixed-point theorem, we can find that as Uϕ is a constant, if
|M ′| < 1

Uϕ
, then we can find a constant L such that |l′A(x)| ≤M ′2U2

ϕ ≤ L < 1, which means that
the iteration pt+1 = lA(pt) is a contraction and p∗ is the unique fixed-point of lA. This conclusion can
be seen as that a smaller |M ′| corresponds to a larger probability of convergence. In this convergence
case, the converged policies p∗ and q∗ are usually not the optimal policy as the optimal policy is
deterministic, which can be seen in our empirical results.

In the second case, which may be more general, in iteration t, (pt − pt−1)(qt − qt−1) < 0, which
means pt > pt−1 and qt < qt−1 or pt < pt−1 and qt > qt−1. Without loss of generality, we assume
pt > pt−1 and qt < qt−1, then we know pt+1 < pt and qt+1 < qt from Proposition 3. By induction
we can find that for any t′ ≥ t, the sequence {pt′} and {qt′} will increase and decrease alternatively,
which means that the policies may not converge but oscillate. We will show this in our experiments.
As the unary formulation may result in policy oscillation, we would like to find other formulations
for fully decentralized MARL.

E.2 VERIFICATION FOR UNARY FORMULATION

In this section, we choose ϕ(x) = − log x corresponding to the entropy regularization as the
representation for the unary formulation. We build two cases to show the convergence to the sub-
optimal policy and the policy oscillation. We choose a = 5, b = 6, c = 3, d = 5 as case 2 and
a = 7, b = 5, c = 4, d = 6 as case 3. Both two cases satisfy the condition b+ c < a+ d as discussed
above. We keep ω = 0.1 for all the experiments on these two matrix games. The empirical results are
illustrated in Figure 6. We can find the policies p and q improve monotonically to the convergence
(p∗, q∗) ≈ (0.773, 0.227) in case 2, which is a sub-optimal joint policy. However, in case 3, the
policies p and q oscillate between 0 and 1 and do not converge. These results verify our discussion
about the limitation of the unary formulation.

21

Under review as a conference paper at ICLR 2024

0 10 20 30 40 50
iterations

5.0

5.2

5.4

5.6

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game Case 2

mean_episode_rewards

0 10 20 30 40 50
iterations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

Matrix Game Case 2

p
q

0 10 20 30 40 50
iterations

4.00

4.25

4.50

4.75

5.00

5.25

m
ea

n
ep

iso
de

 re
wa

rd
s

Matrix Game Case 3

mean_episode_rewards

0 10 20 30 40 50
iterations

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

Matrix Game Case 3

p
q

Figure 6: Learning curves of the unary formulation in two matrix game cases, where x-axis is iteration
steps. The first and second figures show the performance and the policies p and q in the matrix game
case 2 respectively. The third and fourth figures show the performance and the policies p and q in the
matrix game case 3 respectively.

22

	Introduction
	Related Work
	Preliminaries
	A General Formulation for Independent Policy Optimization
	f-Divergence Policy Optimization
	Total Variation Policy Optimization
	The Practical Algorithm of TVPO

	Experiments
	Verification in Matrix Game
	Evaluation of TVPO

	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Corollary 1
	Proof of Lemma 2
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of DTV(pq) DH(pq)

	Experimental Settings
	MPE
	Multi-Agent MuJoCo

	Training Details
	Additional Empirical Results
	Discussion
	Unary Formulation
	Verification for Unary Formulation

