
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRADIENT ROUTING: MASKING GRADIENTS TO LO-
CALIZE COMPUTATION IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are trained primarily based on their inputs and outputs, with-
out regard for their internal mechanisms. These neglected mechanisms determine
properties that are critical for safety, like (i) transparency; (ii) the absence of sen-
sitive information or harmful capabilities; and (iii) reliable generalization of goals
beyond the training distribution. To address this shortcoming, we introduce gra-
dient routing, a training method that isolates capabilities to specific subregions
of a neural network. Gradient routing applies data-dependent, weighted masks to
gradients during backpropagation. These masks are supplied by the user in order
to configure which parameters are updated by which data points. We show that
gradient routing can be used to (1) learn representations which are partitioned in
an interpretable way; (2) enable robust unlearning via ablation of a pre-specified
network subregion; and (3) achieve scalable oversight of a reinforcement learner
by localizing modules responsible for different behaviors. Throughout, we find
that gradient routing localizes capabilities even when applied to a limited, ad-hoc
subset of the data. We conclude that the approach holds promise for challenging,
real-world applications where quality data are scarce.

1 INTRODUCTION

As AI systems become more powerful and more prevalent, there is an increasing need to explain and
control the inner mechanisms governing their behavior. To address this challenge, some researchers
aim to fully understand AI systems, either by reverse engineering the operations of conventionally
trained models (Olah et al., 2020; Olsson et al., 2022) or with inherently interpretable architectures
(Koh et al., 2020; Hewitt et al., 2023; Xin et al., 2022). This is not necessary. If we could understand
or control the mechanisms underlying a neural network’s computation with respect to a limited set
of safety-critical properties, such as hazardous information or the capacity for deception, that might
be sufficient to make significant safety guarantees.

To achieve targeted control over neural network internals, we propose gradient routing, a training
method for localizing capabilities to chosen subregions of a neural network. Gradient routing is a
modification of backpropagation that uses data-dependent, weighted masks to control which network
subregions are updated by which data points. By appropriately specifying these masks, a user can
configure which parts of the network (parameters, activations, or modules) are updated by which
data points (e.g. specific tokens, documents, or based on data labels). The resulting network is
similar to a conventionally trained network, but with some additional internal structure.

Our contributions are as follows. In Section 2, we discuss prior work on neural network modularity,
unlearning, and scalable oversight. In Section 3, we define gradient routing and comment on its
practical implementation. Most of the paper is a tour of gradient routing applications:

Section 4.1 We use gradient routing to control the encodings learned by an MNIST autoencoder to
split them into two halves, with each half representing different digits.

Section 4.2 We apply gradient routing to localize features in language models. First, we train a
model that can be steered by a single scalar value, showing that feature localization is possible,
even with narrowly-scoped labels. Next, we present Expand, Route, Ablate, an application of
gradient routing that enables robust unlearning via ablation of a pre-specified network subre-
gion. This unlearning is nearly as resistant to retraining as a gold-standard model never trained
on the task. Finally, we show that this unlearning method scales to a large (0.7B) model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Section 4.3 We apply gradient routing to the problem of scalable oversight (Amodei et al., 2016),
where the aim is to train a performant policy despite limited access to reliable labels. We train
a policy network by reinforcement learning to navigate to two kinds of grid squares in a toy
environment, DIAMOND and GHOST. Using gradient routing, we localize modules responsible
for these two behaviors. We show that we can steer the policy towards DIAMOND by ablating
the GHOST module. Gradient routing trains steerable networks even when the amount of la-
beled training data is small, and even when the policy is able to condition on the existence of
labels. As a result, our method outperforms baselines, including data filtering.

In Section 5, we discuss themes from our findings, including an observed absorption effect, where
gradient routing applied to a narrow subset of data has a broader localizing effect on capabilities re-
lated to that data. Absorption provides an answer to the question: “If one has labels that are suitable
for localizing undesirable computation, why not simply use those labels to filter the data?” When la-
bels do not encompass all training data from which harmful capabilities arise, absorption means that
localization can still occur, whereas filtering may be inadequate. Furthermore, localization does not
explicitly influence the learned behavior of a model, a fact we exploit to achieve scalable oversight.

We conclude by noting that black-box training techniques may be inadequate for high-stakes ma-
chine learning applications. Localization techniques, like gradient routing, may provide a solution.

2 RELATED WORK

Training to localize pre-specified capabilities. Akin to gradient routing, work in modular machine
learning trains modules to contain concepts or abilities determined in advance of training. Typically,
modular architectures involve a routing function that selects modules to apply on a forward pass
(Pfeiffer et al., 2023). Routing functions are often unsupervised, as with a typical mixture of experts
setup (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017). However, some approaches route
inputs based on metadata, creating modules with known specializations (Waibel & II, 1992). For
example, routing has been based on (i) the modality of data in multi-modal models (Pfeiffer et al.,
2021), (ii) language (Pfeiffer et al., 2020; 2022; Fan et al., 2021), and (iii) low- vs. high-level control
or task type in robotics (Heess et al., 2016; Devin et al., 2017). Gururangan et al. (2021) separate the
training data of a language model by domain and assign one expert in each layer to a single domain.
By disabling the expert for a domain, they are able to approximate a model that was not trained on
the domain.

Other methods freeze the weights of a pre-trained model and train a newly added module, with the
aim of localizing the task to the new module (Rebuffi et al., 2017; 2018; Houlsby et al., 2019; Bapna
& Firat, 2019). Zhang et al. (2024) locate capabilities in models by learning a weight mask, transfer
the identified sub-network to a randomly initialized model, then train as if from scratch. By choosing
a suitable sub-network, they can, for example, induce a vision model to identify ImageNet (Deng
et al., 2009) classes by shape, not texture.

Adversarial representation learning and concept erasure. In order to control the information in
learned representations, prior works have trained feature extraction networks adversarially against
discriminator networks that predict this information (Goodfellow et al., 2014; Schmidhuber, 1992;
Ganin & Lempitsky, 2015; Ganin et al., 2016; Edwards & Storkey, 2015). In contrast, Gradient
Routing learns modular representations which can be ablated after training. Other works have
removed concepts by modifying activations during inference, rather than the network parameters
(Ravfogel et al., 2020; Belrose et al., 2023; Elazar et al., 2020; Bolukbasi et al., 2016).

Robust unlearning. Machine unlearning seeks to remove undesired knowledge or abilities from
a pre-trained neural network (Cao & Yang, 2015; Li et al., 2024). Typical unlearning methods are
brittle in the sense that the unlearned abilities of the model can be recovered by fine-tuning on
a tiny number of data points (Henderson et al., 2023; Sheshadri et al., 2024; Lynch et al., 2024;
Liu et al., 2024; Shi et al., 2024; Patil et al., 2023; Lo et al., 2024; Lermen et al., 2023). Lee
et al. (2024); Łucki et al. (2024) suggest that undesired concepts are more easily “bypassed” than
thoroughly removed from model weights. In this paper, we pre-train models with gradient routing
such that we can perform robust unlearning, which cannot be easily undone by retraining. Tampering
Attack Resistance (TAR) (Tamirisa et al., 2024) also targets robust unlearning in LLMs. While
their method does improve robustness to retraining, it degrades general model performance as a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Gradient routing applies weighted masks to selectively block or re-weight gradients during
backpropagation. By supplying different masks for different data, the user can induce specialization
in network subregions. The figure shows three masks, which would correspond to three data points.

side effect. However, we present gradient routing as a training technique rather than a post-hoc
modification, so the two methods aren’t directly comparable.

Compared to gradient routing, the most similar approaches prune or mask parts of the network
most important for the target behavior. SISA (Bourtoule et al., 2021) trains multiple models in
parallel on partitions of the dataset and takes “votes” from each model at inference time. Similar to
ablating a network subregion, a model can be dropped to achieve robust unlearning. The approach
of Bayazit et al. (2023) is to learn a mask over parameters in a language model to unlearn specific
facts, while Huang et al. (2024) and Pochinkov & Schoots (2024) remove neurons related to harmful
behavior in order to restore the alignment of an adversarially fine-tuned language model. Guo et al.
(2024) fine-tune the parameters of only the most important components for the task. Lizzo & Heck
(2024) instead delete subspaces of the model parameters in order to remove specific knowledge.
Unfortunately, Lo et al. (2024) find that models pruned to remove a concept can very quickly relearn
the concept with further training. This may be because identifying the precise sub-network for a
task post-hoc is very challenging, as evidenced by the modest success of “circuit discovery” in
mechanistic interpretability thus far (Wang et al., 2023; Conmy et al., 2023; Miller et al., 2024;
McGrath et al., 2023).

Scalable oversight. Scalable oversight is the problem of providing a supervised training signal for
behaviors that are difficult or expensive to assess (Amodei et al., 2016). Semi-supervised reinforce-
ment learning frames scalable oversight in terms of RL on partially labeled data (Zhu et al., 2009;
Finn et al., 2016; van Engelen & Hoos, 2019). Another approach is weak-to-strong generalization, in
which a less powerful model provides supervision to a more powerful one (Burns et al., 2024; Ken-
ton et al., 2024; Radhakrishnan et al., 2023). Weak-to-strong generalization introduces a potential
risk: the stronger model may exploit blind spots in the weaker model’s supervision capabilities.

3 GRADIENT ROUTING CONTROLS WHAT IS LEARNED WHERE

Gradient routing applies data-dependent, weighted masks to gradients during backpropagation to
configure what data (whether it be defined in terms of tokens, documents, or based on other labels)
is learned where in the network (e.g. at the level of parameters, activations, or modules). The result
is a model with a partially-understandable internal structure, where particular regions correspond
to known capabilities. Throughout this paper, we will use “route X to Y ” to mean “use gradient
routing to limit learning updates for data points X to region Y of the neural network.”

Let (V, E) be the nodes and edges of the computational graph corresponding to a neural network
and loss function, with v(z) taken to be the output of node v if z is input to the network. Given a
dataset D = {zi}ni=1, for each data point zi, gradient routing requires the specification of a gradient
route given by Ẽi = {αi

e ∈ R : e ∈ E} and visualized in fig. 1. Define ∂L(z)
∂v ≜ ∂L(ζ)

∂v(ζ) |ζ=z , the
partial derivative of the loss L with respect to the output of node v when evaluated at input z. The
routed derivative (denoted with a tilde) of the loss over a batch B ⊆ [n] is then defined recursively

as ∂̃L(zi)

∂̃L
≜ 1 for all i ∈ B, and

∂̃L(zi)

∂̃v
≜

∑
u∈child(v)

αi
(v,u)

∂̃L(zi)

∂̃u

∂u(zi)

∂v
,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for all non-terminal nodes v ∈ V \ {L} and i ∈ B. Choosing αi
e ≡ 1 recovers standard backprop-

agation. This weighting is only applied in the backward pass; the forward pass is left unchanged.
Any gradient-based optimizer, like SGD or Adam (Kingma, 2014), can then be used to train with
these modified gradients.

In practice, gradient routing masks need not be defined over every data point and edge in the com-
putational graph. Instead, we limit masks to a small set of edges, like the outputs of specific MLP
neurons or the outputs of specific layers. Also, we typically assign gradient routes to data points
based on membership in a coarse partition, like the forget set or retain set in an unlearning problem.
Implementation is straightforward and efficient: algorithm 1 gives sample Pytorch (Paszke et al.,
2019) code in which masking is applied to the outputs of sequential layers.

In all of our applications, masks are applied to activations of a few select layers. In most of our
applications, these masks are binary, with 1’s allowing the flow of gradients, and 0’s preventing the
flow of gradients. Guidance for choosing these masks, and precise mask specifications for all our
experiments, are given in appendix K. Informal descriptions are also given in following section.

def forward(self, x: Tensor, gradient_masks: list[Tensor]):
for layer, mask in zip(self.layers, gradient_masks):

act = layer(x)
x = mask * act + (1 - mask) * act.detach()

return x

Algorithm 1: Example of gradient routing implemented in PyTorch. For each batch of training data
points x, a batch of gradient_masks corresponding to those data points is passed as well. The
detach() method applies the stop-gradient operator, preventing gradients from being backpropa-
gated through act but leaving its value unchanged.

4 APPLICATIONS

4.1 ROUTING GRADIENTS TO PARTITION MNIST REPRESENTATIONS

As a first example of feature localization via gradient routing, we train a simple MLP autoencoder
on the MNIST handwritten digit dataset (LeCun et al., 1998) and use label-dependent stop-gradients
to control where features for different digits are encoded. The goal is to obtain an autoencoder
that reconstructs all digits (0-9) via an encoding that is made up of non-overlapping subcomponents
corresponding to distinct subsets of digits. We choose subsets {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}. To
hint at the potential difficulty of this task, we note the encodings learned by an autoencoder trained
on one of these sets admit low-error reconstructions on the other set, despite never being trained on
it (details in appendix B).

We use a simple architecture of three-layer MLP modules with ReLU activations: an Encoder, a
Decoder, and two “certificate” decoders. The Encoder processes a 28×28 image into a vector in
R32, and the Decoder processes that vector into a 28×28 reconstruction. Each certificate is trained
on half of the encoding, which takes values in R16. Certificate updates do not affect the encoding.
If the Decoder can reconstruct a digit that a certificate cannot, this “certifies” that robust feature
localization occurred (away from the half of the encoding the certificate was trained on).

We use gradient routing to train an encoding split such that the top half encodes digits 0-4 and the
bottom half encodes digits 5-9. While training on all digits, we apply stop-gradients to the bottom
half of the encoding for digits 0-4 and stop-gradients to the top half of the encoding for digits 5-9.
To induce specialization in the two halves of the encoding, we add the L1 norm of the encoding
as a penalty term to the loss. The setup is shown in fig. 2a. The results, shown in fig. 2b and
fig. 2c, are stark: while using the entire encoding allows the Decoder to reproduce all digits with
low loss, the Certificate is only able to reproduce 5-9 from the bottom half of the encoding, as
desired. Furthermore, the Certificate’s learned predictions for digits 0-4 are approximately constant.
This suggests that we have successfully eliminated most information relevant to digits 0-4 from the
encoding. We elaborate on experiment details and provide an extensive ablation study in appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

 weight tying

Encoder

Decoder
(0-4)

Decoder
(5-9)

Bottom half
certificate

 stop gradient

Top half
certificate

(a) An autoencoder trained to encode digits 0-4 in the top
half encoding and digits 5-9 in the bottom half. The full
encoding is processed by a single Decoder module trained
with gradient routing; we illustrate this using weight tying
and stop gradients. The two certificates are trained to re-
construct all digits from different halves of the encoding.

0 1 2 3 4 5 6 7 8 9
Label

0.0

0.1

0.2

0.3

0.4

Va
lid

at
io

n
lo

ss
 (M

AE
) Decoder

Certificate (top)
Certificate (bot)

(b) Average (across 20 runs) validation set re-
construction losses, measured as the pixel-wise
mean absolute error (MAE) for the Decoder and
the Certificates, demonstrating successful local-
ization of information about digits. Run-to-run
variation is negligible.

Input (0-4)

Reconstruction

Input (5-9)

Reconstruction

(c) Bottom half certificate reconstructions from the validation set. The near-constant prediction of the certificate
on digits 0-4 illustrates the absence of information about those digits from the bottom half of the encoding. Top
half reconstructions are given in fig. 6 in the appendix.

Figure 2: Gradient routing induces a clean split in the encodings of a simple MLP autoencoder
trained on MNIST digits. By applying data-dependent stop-gradients and L1 regularization, the top
half of the encoding comes to represent digits 0-4 only, and the bottom half of the encoding comes
to represent digits 5-9 only.

4.2 LOCALIZING TARGETED CAPABILITIES IN LANGUAGE MODELS

In this section, we show that gradient routing applied to a small set of tokens can be used to local-
ize broader features or capabilities in Transformer (Vaswani, 2017) language models. This is first
demonstrated in terms of model activations, then applied to MLP layers for the purpose of robust
unlearning.

4.2.1 STEERING SCALAR: LOCALIZING CONCEPTS TO RESIDUAL STREAM DIMENSIONS

Elhage et al. (2021) frames the inter-block activations of a Transformer, or the residual stream, as
the central communication channel of a Transformer, with all layers “reading from” and “writing
into” it. Usually, the standard basis of the residual stream is indecipherable, with dimensions not
corresponding to interpretable concepts. We pre-train a 20-layer, 303M parameter Transformer on
the FineWeb-Edu dataset (Penedo et al., 2024) while routing the gradients for all California1

tokens to the 0th entry of the residual stream on layers 6-18. On token positions predicting
California, we mask gradients (to zero) on every residual stream dimension except the 0th

in layers 6-18. This masking causes the learning updates for those token positions to be localized to
the weights that write into the 0th dimension of the residual stream. After training, we look at which
tokens’ unembedding vectors have the highest cosine similarity with the one hot vector for the 0th

entry of the residual stream. We find that California has the highest cosine similarity, fol-
lowed by California, Californ, Oregon, Colorado, Texas, Florida, Arizona,
Sacramento, and Los; see appendix D for the top 300. These tokens all have semantic simi-

1We use a leading to represent a leading space before a token.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

······ logitsunembedembedtokens

MLP

h0

h1

···

off-target layerstarget layers

expanded

original

h0

h+

h1

···

MLP+

MLP

Figure 3: Backpropagation in the Route step of Expand-Route-Ablate, showing the flow of gradients
through a Transformer for tokens in the forget set. Gradients for retain tokens are unmodified.
Additional dimensions, shown with dashed outlines, were added to target layers in the MLP and
attention blocks, and will be removed after training in the Ablate step. All modules participate in
the forward pass.

larity to California, but gradient routing was not applied to them. This shows that gradient routing
localizes broader semantic concepts, rather than the narrow set of explicitly-routed tokens.

Past work on activation steering (Turner et al., 2023; Rimsky et al., 2024) computed (non-
axis aligned) steering vectors specified by dmodel different values. However, since we localized
California-related concepts to the 0th dimension of the residual stream, we can steer the model to
generate text related to California by adding a single scalar value to the 0th entry of the residual
stream during the forward pass. Appendix D provides steered model completions.

4.2.2 GRADIENT ROUTING ENABLES ROBUST UNLEARNING VIA ABLATION

Robust unlearning (Sheshadri et al., 2024) means training models which lack the internal mecha-
nisms or “knowledge” required for certain tasks, as opposed to merely performing poorly on those
tasks. To address this open problem, we show that gradient routing can be used to localize capabili-
ties to a known region of the network, then delete that region, removing those capabilities.

To enable comprehensive comparisons, our initial study on robust unlearning applies gradient rout-
ing to a small (28M parameter) Transformer. This model is trained on an LLM-generated dataset of
simple children’s stories based on the TinyStories dataset (Eldan & Li, 2023; Janiak et al., 2024).
We partition the data into: 1) a forget set made up of any story containing one of the keywords
“forest(s)”, “tree(s)”, or “woodland(s)”, and 2) a retain set made up of all other stories. An example
story is given in appendix C. The goal is to train a model that performs well on the retain set but
poorly on the forget set, and whose forget set performance is not easily recoverable by fine-tuning.
To do this, we route specific forget tokens to designated MLP neurons using three-step process
termed Expand, Route, Ablate (ERA):

1. Expand Increase the dimensionality of the model by adding randomly-initialized neurons to
particular target layers.

2. Route Train the model by supervised learning on next-token prediction, but on select tokens in
forget stories, reduce the learning rate in the original dimensions of the model at the target
layers. Figure 3 illustrates the routing step.

3. Ablate Delete the additional neurons. Post-ablation, apply a very small number of steps of fine-
tuning on retain data to correct for degradation caused by ablation.

Does gradient routing localize capabilities that can be robustly ablated? To answer this question, we
train five types of models: an ERA model that uses gradient routing to localize forget set concepts,
a base model trained conventionally on all data, a pure model trained only on retain data to serve as
a gold standard, a control model trained equivalently to ERA except without gradient routing2 and

2The control model is expanded, ablated, and fine-tuned. It uses a small L1 penalty (small in the sense that
it has no measurable effect on loss; see appendix C) on the MLP activations in the target layers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

an RMU model (Li et al., 2024) fine-tuned from the base model to serve as an unlearning baseline.
Using these models, we obtain the following results. Approximate 95% confidence intervals for the
mean (N = 60 runs) are given in parentheses or highlighted in figures.

• Shallow unlearning measures the degradation in forget loss caused by our method by comparing
the loss on the forget set for the ERA model vs. the base model. Result: ERA achieves shallow
unlearning, with forget loss of 1.91 (±0.05), vs. base model forget loss 1.47 (±0.02).

• Robust unlearning measures the robust removal of capabilities by comparing the forget loss
after fine-tuning on forget data for the ERA model vs. the pure model. Figure 4a shows that
the ERA model is almost as hard to retrain on forget data as the gold-standard pure model. In
contrast, RMU’s performance is easily recovered by less than a batch of data. We comment on
the choice of RMU as a baseline in appendix C.

• Alignment tax measures the cost of gradient routing in terms of retain set performance, by
comparing the loss on the retain set for the ERA model vs. the base model. Result: 1.67 (±0.01)
ERA, 1.59 (±0.01) base. The reduced performance of ERA is influenced by the prevalence of
forget data, which constitutes 21% of the training data. In fig. 12, we show that the performance
gap is negligible when the forget set constitutes as much as 5% of the training data.

• The differential effect of routing measures the impact of ablation on the ERA model vs. the
control model. Figure 4b shows that ablation has a large effect on the control model, particularly
in terms of increasing forget loss, as compared to a negligible effect on the control model.

Losses are always calculated on held-out validation data. ERA setup and experiment details are
given in appendix C.

0 20 40
1.4
1.6
1.8
2.0
2.2
2.4

Va
lid

at
io

n
fo

rg
et

 lo
ss

4 stories

0 20 40
Update step

16 stories

0 20 40

64 stories
Base
Pure
ERA
RMU

Forget set relearnability

(a)

Pre-trained Ablated Fine-tuned

1.6

1.8

2.0

2.2

2.4
Va

lid
at

io
n

lo
ss

ERA (Routing)

Control (No routing)

Routing explains ERA's performance
forget
retain

(b)
Figure 4: Gradient routing trains a language model with subcomponents that can be ablated to
achieve robust unlearning. Left: (a) The average (across runs) validation forget set loss for the ERA
model and pure model over 40 steps of fine-tuning on batches of varying numbers of forget data
points: 4, 16, and 64. RMU is included as a foil to show the “shallowness” typical of most unlearning
methods. Right: (b) Average forget and retain set validation loss after training, after ablation, and
after fine-tuning for ERA vs. a control model that is exactly equivalent except gradients were not
modified. Note: the x-axis is not to scale; pre-ablation training is on 400,000 stories, ablation is
immediate, and fine-tuning is on 64 stories.

Robustness to missing labels. Finally, we show that ERA achieves robust unlearning even when
only a random i.i.d. subset of forget samples are labeled, with unlabeled samples treated as retain
data for training purposes. This is meant to model real-world scenarios where comprehensive label-
ing is infeasible. Compared against a conventionally trained model that does not train on labeled
forget data, ERA achieves (on average, across runs) higher retrained validation forget loss for all la-
beling proportions measured besides 100%. For example, at 60% labeling, ERA achieves a retrained
forget loss of 1.53 (±0.02) as opposed to 1.49 (±0.02) for the baseline. Full curves are shown in
Figure 10 in Appendix C.1.

4.2.3 SCALING ROBUST UNLEARNING TO LARGER LANGUAGE MODELS

Gradient routing can localize capabilities in larger models. Motivated by the dual-use nature of AI
(Urbina et al., 2022), we would like to train useful models that lack certain harmful capabilities.
Here, we seek to localize and remove bioweapon-related capabilities in a 0.7B parameter Trans-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of a language model trained with gradient routing on virology tokens. The
final column evaluates the model after fine-tuning on FineWeb-Edu and then retraining on two exam-
ples from the WMDP-bio forget set, choosing the retraining step with the lowest loss. The increase
in loss on (the validation split of) the WMDP-bio forget set is much higher than the increase in
loss on FineWeb-Edu data, demonstrating successful localization and robust unlearning. Intrigu-
ingly, this increase persists even when excluding routed tokens from the loss calculation, showing a
broader localizing effect.

Dataset Loss Ablated loss (∆) Retrained loss (∆)

WMDP-bio forget set ↑ 2.596 4.283 (+1.687) 2.778 (+0.182)
WMDP-bio forget set (sans routed toks)↑ 2.567 4.205 (+1.638) 2.738 (+0.171)

FineWeb-Edu ↓ 2.925 4.864 (+1.939) 2.957 (+0.032)

former. To do this, we route 20 tokens related to virology3 to the 0th through 79th MLP dimensions
on layers 0 through 7 of the Transformer. Appendix E provides further details on the model and
training.

Table 1 evaluates the model on a validation split of regular FineWeb-Edu data and on some of the
WMDP-bio (Li et al., 2024) forget set. Ablating the target region of the network increases loss
greatly on both datasets. We then fine-tune the model on a train split of FineWeb-Edu for 32 steps to
restore some performance. Finally, we retrain for twenty steps on a separate split of two WMDP-bio
forget set datapoints, as in Sheshadri et al. (2024), and report the lowest loss on the validation split
of the WMDP-bio forget set.

The results are striking: even after retraining on virology data, loss increases much more on the
WMDP-bio forget set (+0.182) than on FineWeb-Edu (+0.032), demonstrating successful localiza-
tion and robust removal of virology capabilities. A natural concern would be that ablation merely
decreased probabilities on the routed tokens, without decreasing overall virology capabilities. To
test this, we measured cross-entropy loss on the forget set excluding the 20 tokens we routed on.
Even after this exclusion, the loss increase is still much higher than the increase on FineWeb-Edu
(+0.171 vs. +0.032). This shows that gradient routing generalizes beyond limited labels.

4.3 LOCALIZING BEHAVIORAL MODULES ENABLES SCALABLE OVERSIGHT IN
REINFORCEMENT LEARNING

In complex settings, reliable data labels are often scarce, especially when labeling requires human
input (Stiennon et al., 2020; Bai et al., 2022; Baker et al., 2022). Scalable oversight (Amodei et al.,
2016) means effectively utilizing limited labels to obtain a performant policy. In this section, we
show that gradient routing’s effective use of limited labels enables scalable oversight, outperforming
an outcome-based baseline and a data filtering baseline.

We use gradient routing to train a policy to reach two types of squares in a gridworld, DIAMOND
and GHOST. Access to the type of square reached, or oversight, is only sometimes available. The
aim is to produce a policy that reliably navigates to DIAMOND and not GHOST, even when oversight
is lacking. In real-world problems, label availability may be correlated with task type or difficulty,
and a policy might not generalize correctly because of this fact (Langosco et al., 2022). To model
this fundamental difficulty, we allow the policy to condition on the presence or absence of oversight.
During training, we route policy gradients through two separate modules in a mixture of experts
layer, each responsible for reaching one of the aforementioned squares. During evaluation, by ab-
lating the GHOST module, we can steer the policy toward reaching DIAMOND even when oversight
is lacking.

Environment. The environment is a 5 × 5 gridworld Markov Decision Process (Puterman, 1990)
with two randomly placed terminal squares: DIAMOND and GHOST. At each step, the agent can
move north, west, south, or east. Episodes end upon reaching a terminal square or after 256 steps.

3Specifically, we route on COVID, COVID, RNA, infections, DNA, genome, virus,
gene, viruses, mutations, antibodies, influenza, bacteria, PCR, cell, herpes,
bacterial, pathogens, tumor, and vaccine.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

% of diamond reached when steering to it

(no oversight, when ghost was closest)

0.1% 1% 10% 99.9%
0%

25%

50%

75%

100%

Oversight level during training

Pr
op

or
tio

n
of

 te
st

 e
pi

so
de

s

(a) Proportion of episodes in which our
agent reached DIAMOND after being steered
to it. A diamond indicates the case of 4%
oversight level, where DIAMOND is reached
70% of the time. (Ranges: 95% C.I.)

Policy: without, and with steering applied

(visualized as sum of actions weighted by probability)

diamond ghost

(b) The gradient-routed policy in an instance of the environ-
ment. Steering induces qualitatively different behaviors. Ar-
rows: N/W/S/E actions weighted by probability. Left: Unsteered
policy. Middle: Steered towards DIAMOND. Right: Steered to-
wards GHOST. The policy was trained with 10% oversight.

Figure 5: Using gradient routing and a mixture of experts layer, we train an agent that can be
steered (right) towards desirable behaviors, even when oversight is severely limited (left). The
values reported are from 100 randomly generated “challenging” environments (GHOST not under
oversight and closer than DIAMOND). The dashed line corresponds to a baseline trained naively on
all data, which learns to navigate to GHOST when oversight is lacking. The cases of 0% and 100%
oversight lie outside of the realm of scalable oversight, so we omit them.

The environment state includes a boolean indicator variable for every grid square, indicating whether
oversight is present. These indicators are randomly sampled at the beginning of each episode. If
an episode ends with the agent reaching a terminal grid square with the oversight indicator set to
FALSE, then the learning algorithm does not have access to the square type labels (DIAMOND,
GHOST) for that entire episode. The (true) rewards, which are not always observed, are +1 for
reaching DIAMOND, −1 for reaching GHOST, and 0 otherwise, with a discount factor of 0.97.4
However, our algorithm only uses these labels for gradient routing, and not for RL updates.

Architecture and training. The first layer of the policy network is a modified Mixture of Experts
(MoE) layer. The MoE layer computes a weighted sum of two experts, EDIAMOND(·) and EGHOST(·).
The module weights, which are between 0 and 1, are computed by a multi-layer gating network.
The remaining layers in the network are either convolutional or linear. (See appendix F for details.)

The policy network is trained with Proximal Policy Optimization (PPO) (Schulman et al., 2017). We
perform gradient routing only when training on episodes with oversight. In those cases, we route
the gradients through one of the modules, EDIAMOND(·) or EGHOST(·), depending on which terminal
square the agent reached. We also add a loss term that incentivizes the gating network to activate
only the module through which the gradients were routed. In episodes without oversight, we perform
a normal, non-routed PPO update with full backpropagation.

Results. Our method uses gradient routing based on limited labels to localize a module responsible
for going to GHOST, then ablates the module. Below, we show that the method works even in the
most challenging setting: instances of the environment where GHOST is the closest terminal square,
where we have no oversight (and the agent knows this). Details are given in appendix F.

Our gradient-routed MoE agent reaches DIAMOND 70% of the time (fig. 5a) with as low as 4%
oversight during training. An outcome-based baseline, trained on all episodes and given reward −1
when it reached GHOST under oversight, and +1 when it reached a terminal square in any other case,
learns to exploit the limits of the labels, going to GHOST whenever it is closer than DIAMOND and
not under oversight. A data filtering baseline was trained on a random subsample of all training
episodes, but granted full oversight. Gradient-routed MoE under 4% oversight has comparable
performance to the data filtering baseline at a 20% sampling rate, representing 5 times greater data

4For general reinforcement learning terminology, see Sutton & Barto (2018).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

efficiency (fig. 13 in appendix F). So, we achieve scalable oversight: gradient routing avoids the
perils of naive outcome-based training while enjoying far greater data efficiency than data filtering.

5 DISCUSSION

Absorption. Routing a subset of the data related to some knowledge or capability appears to localize
that knowledge or capability more generally. This held for an i.i.d. subset of the data (TinyStories
unlearning in section 4.2.2), and for semantically limited data (steering scalar in section 4.2.1, vi-
rology unlearning in section 4.2.3, scalable oversight in section 4.3). We hypothesize an absorption
effect: routing limited data to a region creates internal features or units of computation in that re-
gion which are relevant to a broader task; these units then participate in the model’s predictions on
related, non-routed data; the resulting prediction errors are then backpropagated to the same region,
creating a positive feedback loop that reinforces those features. To the extent that absorption is true,
it has advantages over data filtering methods: if data filtering labels are limited either in quantity or
semantically, then harmful capabilities can still be learned where labels are missing, whereas routing
that data to a region absorbs those capabilities into that region, which can then be removed.

Benefits of localization vs. suppression. When the ability to label (or score) undesirable behavior
is imperfect, attempting to suppress the behavior may be perilous: a model may learn to exploit the
limits of the labels, rather than learning the desired behavior (Goodhart, 1984; Karwowski et al.,
2024). Our study of scalable oversight presents a model of this scenario, demonstrating the advan-
tage of localization as opposed to attenuation of undesirable behavior. This advantage may apply
more broadly, for example, to machine learning problems where capabilities are entangled, in the
sense that there are connections or dependencies between the computation learned to perform differ-
ent tasks (Arora & Goyal, 2023; de Chiusole & Stefanutti, 2013). Entanglement might occur because
certain capabilities or behaviors are reinforced by a broad range of training objectives (Omohundro,
2008; Turner et al., 2021; Krakovna et al., 2020). More simply, capabilities required to perform
undesired tasks may overlap with those required to perform desired tasks. For example, biological
knowledge entails much of the knowledge required to construct biological weapons. For this rea-
son, filtering or training against bioweapon-specific data might not prevent a network from learning
enough to create bioweapons from general biology sources.5

Limitations and future work. (a) Gradient routing’s performance is sensitive to its many hy-
perparameters: what data to route on, what regions to localize to, and what mask weights to use.
This makes it hard to balance retain set performance vs. unlearning, for example. We suspect that
methodological improvements will reduce this sensitivity. (b) So far, we have studied gradient rout-
ing as a pretraining method, making it costly to experiment with large models. (c) In our experiments
with language models, we route gradients on a token-by-token basis, ignoring neighboring tokens.
This naive strategy is surprisingly effective. However, it is plausible that contextual information
will be critical in some problems, necessitating routing strategies that depend on entire sequences.
Finding practical ways of choosing what data to route in order to localize broad capabilities is an
intriguing open problem. (d) Our empirical results for scalable oversight pertain to a simplistic, nar-
row setting. Furthermore, our method for scalable oversight requires that the ablated policy produce
coherent behavior. This does not hold in general, so scaling oversight via localization may require
new ideas. (e) Other methods could be used to achieve similar aims as gradient routing, for example,
DEMix Layers (Gururangan et al., 2021) or Interchange Intervention Training (Geiger et al., 2022a).
(f) We elaborate on application-specific limitations in appendix A.

6 CONCLUSION

Gradient routing localizes targeted capabilities in neural networks, creating models with known in-
ternal structure. Even when based on simple and limited data labeling schemes, this localization
is suitable for robust unlearning of pre-specified capabilities and scalable oversight. Consequently,
gradient routing may facilitate the safe deployment of AI systems, particularly in high-stakes sce-
narios where black-box methods are insufficiently robust.

5Another reason suppression may be insufficient to provide safety guarantees is that poor behavioral perfor-
mance does not entail the elimination of internal circuitry related to that behavior (Lee et al., 2024; Sheshadri
et al., 2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

Anonymized for review.

REPRODUCIBILITY STATEMENT

We include detailed descriptions of experiment settings in the appendix. Anonymized code to re-
produce our results is presented as-is at:

https://anonymous.4open.science/r/factored-representations-3035/README.md.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman,
Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond, Eric J
Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Chenyu Zhang, Ruiqi Zhong,
Sean O hEigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Ed-
wards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwani, Yoshua Ben-
gio, Danqi Chen, Philip Torr, Samuel Albanie, Tegan Maharaj, Jakob Nicolaus Foerster, Florian
Tramèr, He He, Atoosa Kasirzadeh, Yejin Choi, and David Krueger. Foundational challenges
in assuring alignment and safety of large language models. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
oVTkOs8Pka. Survey Certification, Expert Certification.

Sanjeev Arora and Anirudh Goyal. A theory for emergence of complex skills in language
models. ArXiv, abs/2307.15936, 2023. URL https://api.semanticscholar.org/
CorpusID:260334352.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, John Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
E Perez, Jamie Kerr, Jared Mueller, Jeff Ladish, J Landau, Kamal Ndousse, Kamil Lukosit, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noem’i Mercado, Nova Dassarma,
Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan
Hume, Sam Bowman, Zac Hatfield-Dodds, Benjamin Mann, Dario Amodei, Nicholas Joseph,
Sam McCandlish, Tom B. Brown, and Jared Kaplan. Constitutional ai: Harmlessness from ai
feedback. ArXiv, abs/2212.08073, 2022. URL https://api.semanticscholar.org/
CorpusID:254823489.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Ankur Bapna and Orhan Firat. Simple, scalable adaptation for neural machine translation. In Ken-
taro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 1538–1548, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1165. URL
https://aclanthology.org/D19-1165.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Discovering
knowledge-critical subnetworks in pretrained language models. arXiv preprint arXiv:2310.03084,
2023.

11

https://anonymous.4open.science/r/factored-representations-3035/README.md
https://openreview.net/forum?id=oVTkOs8Pka
https://openreview.net/forum?id=oVTkOs8Pka
https://api.semanticscholar.org/CorpusID:260334352
https://api.semanticscholar.org/CorpusID:260334352
https://api.semanticscholar.org/CorpusID:254823489
https://api.semanticscholar.org/CorpusID:254823489
https://aclanthology.org/D19-1165

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella
Biderman. LEACE: Perfect linear concept erasure in closed form. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=awIpKpwTwF.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-
tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav Nakov,
and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 1–9, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL https:
//aclanthology.org/2022.acl-short.1.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

John Beverley, David Limbaugh, Eric Merrell, Peter M. Koch, and Barry Smith. Capabilities: An
ontology. In Proceedings of the Joint Ontology Workshops (JOWO) - Episode X: The Tukker
Zomer of Ontology, and satellite events co-located with the 14th International Conference on
Formal Ontology in Information Systems (FOIS 2024), Enschede, The Netherlands, July 15-19
2024. JOWO. URL https://arxiv.org/pdf/2405.00183. https://arxiv.org/
pdf/2405.00183.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam Tauman Kalai.
Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In
Neural Information Processing Systems, 2016. URL https://api.semanticscholar.
org/CorpusID:1704893.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), pp. 141–159, 2021. doi: 10.1109/SP40001.2021.00019.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbren-
ner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeffrey Wu.
Weak-to-strong generalization: Eliciting strong capabilities with weak supervision. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning Research, pp. 4971–5012. PMLR, 21–27
Jul 2024. URL https://proceedings.mlr.press/v235/burns24b.html.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, pp. 463–480, 2015. doi: 10.1109/SP.2015.35.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and P. Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Neural Information Processing Systems, 2016. URL https://api.semanticscholar.
org/CorpusID:5002792.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 16318–16352. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.

D. de Chiusole and L. Stefanutti. Modeling skill dependence in probabilistic competence structures.
Electronic Notes in Discrete Mathematics, 42:41–48, 2013. ISSN 1571-0653. doi: https://doi.
org/10.1016/j.endm.2013.05.144. URL https://www.sciencedirect.com/science/
article/pii/S1571065313001479.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

12

https://openreview.net/forum?id=awIpKpwTwF
https://openreview.net/forum?id=awIpKpwTwF
https://aclanthology.org/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1
https://arxiv.org/pdf/2405.00183
https://arxiv.org/pdf/2405.00183
https://arxiv.org/pdf/2405.00183
https://api.semanticscholar.org/CorpusID:1704893
https://api.semanticscholar.org/CorpusID:1704893
https://proceedings.mlr.press/v235/burns24b.html
https://api.semanticscholar.org/CorpusID:5002792
https://api.semanticscholar.org/CorpusID:5002792
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S1571065313001479
https://www.sciencedirect.com/science/article/pii/S1571065313001479

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2169–2176, 2017. doi: 10.1109/ICRA.2017.
7989250.

Harrison Edwards and Amos J. Storkey. Censoring representations with an adversary. CoRR,
abs/1511.05897, 2015. URL https://api.semanticscholar.org/CorpusID:
4986726.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a deep
mixture of experts. CoRR, abs/1312.4314, 2013. URL https://api.semanticscholar.
org/CorpusID:11492613.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav Goldberg. Amnesic probing: Behavioral ex-
planation with amnesic counterfactuals. Transactions of the Association for Computational Lin-
guistics, 9:160–175, 2020. URL https://api.semanticscholar.org/CorpusID:
227408471.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
position. Transformer Circuits Thread, 2022. URL https://transformer-circuits.
pub/2022/toy_model/index.html.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch,
Vitaliy Liptchinsky, Sergey Edunov, Michael Auli, and Armand Joulin. Beyond english-centric
multilingual machine translation. Journal of Machine Learning Research, 22(107):1–48, 2021.
URL http://jmlr.org/papers/v22/20-1307.html.

Chelsea Finn, Tianhe Yu, Justin Fu, P. Abbeel, and Sergey Levine. Generalizing skills with
semi-supervised reinforcement learning. ArXiv, abs/1612.00429, 2016. URL https://api.
semanticscholar.org/CorpusID:8685592.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1180–1189,
Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/
ganin15.html.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research, 17(59):1–35, 2016. URL http://jmlr.
org/papers/v17/15-239.html.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. Inducing causal fstructure for interpretable neural networks. In
International Conference on Machine Learning, 2022a.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. Inducing causal structure for interpretable neural networks. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato

13

https://api.semanticscholar.org/CorpusID:4986726
https://api.semanticscholar.org/CorpusID:4986726
https://api.semanticscholar.org/CorpusID:11492613
https://api.semanticscholar.org/CorpusID:11492613
https://api.semanticscholar.org/CorpusID:227408471
https://api.semanticscholar.org/CorpusID:227408471
https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html
http://jmlr.org/papers/v22/20-1307.html
https://api.semanticscholar.org/CorpusID:8685592
https://api.semanticscholar.org/CorpusID:8685592
https://proceedings.mlr.press/v37/ganin15.html
https://proceedings.mlr.press/v37/ganin15.html
http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 7324–7338. PMLR, 17–23 Jul 2022b. URL
https://proceedings.mlr.press/v162/geiger22a.html.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Neural Information
Processing Systems, 2014. URL https://api.semanticscholar.org/CorpusID:
261560300.

C. A. E. Goodhart. Problems of Monetary Management: The UK Experience. Macmillan Educa-
tion UK, London, 1984. ISBN 978-1-349-17295-5. doi: 10.1007/978-1-349-17295-5 4. URL
https://doi.org/10.1007/978-1-349-17295-5_4.

Phillip Huang Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite.
Robust unlearning via mechanistic localizations. In ICML 2024 Workshop on Mechanistic Inter-
pretability, 2024. URL https://openreview.net/forum?id=06pNzrEjnH.

Suchin Gururangan, Michael Lewis, Ari Holtzman, Noah A. Smith, and Luke Zettlemoyer. Demix
layers: Disentangling domains for modular language modeling. In North American Chapter of the
Association for Computational Linguistics, 2021. URL https://api.semanticscholar.
org/CorpusID:236976189.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David
Silver. Learning and Transfer of Modulated Locomotor Controllers. arXiv e-prints, art.
arXiv:1610.05182, October 2016. doi: 10.48550/arXiv.1610.05182.

Peter Henderson, Eric Mitchell, Christopher Manning, Dan Jurafsky, and Chelsea Finn. Self-
destructing models: Increasing the costs of harmful dual uses of foundation models. In Pro-
ceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, AIES ’23, pp. 287296,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702310. doi:
10.1145/3600211.3604690. URL https://doi.org/10.1145/3600211.3604690.

John Hewitt, John Thickstun, Christopher D. Manning, and Percy Liang. Backpack language mod-
els. In Proceedings of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1031.
URL https://aclanthology.org/P18-1031.

Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun ying Huang.
Safe lora: the silver lining of reducing safety risks when fine-tuning large language mod-
els. ArXiv, abs/2405.16833, 2024. URL https://api.semanticscholar.org/
CorpusID:270063864.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and Joo G.M. Arajo. Cleanrl: High-quality single-file implementations of deep reinforce-
ment learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

14

https://proceedings.mlr.press/v162/geiger22a.html
https://api.semanticscholar.org/CorpusID:261560300
https://api.semanticscholar.org/CorpusID:261560300
https://doi.org/10.1007/978-1-349-17295-5_4
https://openreview.net/forum?id=06pNzrEjnH
https://api.semanticscholar.org/CorpusID:236976189
https://api.semanticscholar.org/CorpusID:236976189
https://doi.org/10.1145/3600211.3604690
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
https://aclanthology.org/P18-1031
https://api.semanticscholar.org/CorpusID:270063864
https://api.semanticscholar.org/CorpusID:270063864
http://jmlr.org/papers/v23/21-1342.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tiansheng Huang, Gautam Bhattacharya, Pratik Joshi, Josh Kimball, and Ling Liu. Antidote: Post-
fine-tuning safety alignment for large language models against harmful fine-tuning. arXiv preprint
arXiv:2408.09600, 2024.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latr. Hierarchical reinforcement learning: A
survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–
221, 2022. ISSN 2504-4990. doi: 10.3390/make4010009. URL https://www.mdpi.com/
2504-4990/4/1/9.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Jett Janiak, Jai Dhyani, Jannik Brinkmann, Gonalo Paulo, Joshua Wendland, Vctor Abia Alonso,
Siwei Li, Phan Anh Duong, and Alice Rigg. delphi: small language models training made easy,
2024. URL https://github.com/delphi-suite/delphi.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=FCnohuR6AnM.

Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and eran malach.
Less is more: Selective layer finetuning with subtuning, 2024. URL https://openreview.
net/forum?id=sOHVDPqoUJ.

Andrej Karpathy. karpathy/nanoGPT, September 2024. URL https://github.com/
karpathy/nanoGPT. original-date: 2022-12-28T00:51:12Z.

Jacek Karwowski, Oliver Hayman, Xingjian Bai, Klaus Kiendlhofer, Charlie Griffin, and Joar
Max Viktor Skalse. Goodhart’s law in reinforcement learning. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https://openreview.net/forum?
id=5o9G4XF1LI.

Zachary Kenton, Noah Y. Siegel, Jnos Kramr, Jonah Brown-Cohen, Samuel Albanie, Jannis Bulian,
Rishabh Agarwal, David Lindner, Yunhao Tang, Noah D. Goodman, and Rohin Shah. On scal-
able oversight with weak llms judging strong llms, 2024. URL https://arxiv.org/abs/
2407.04622.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114,
2013. URL https://api.semanticscholar.org/CorpusID:216078090.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In Hal Daum III and Aarti Singh (eds.), Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5338–5348. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/koh20a.html.

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana
Kumar, Zac Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side
of ai ingenuity. DeepMind Blog, 2020. URL https://www.deepmind.com/blog/
specification-gaming-the-flip-side-of-ai-ingenuity. Published 21 April
2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

15

https://www.mdpi.com/2504-4990/4/1/9
https://www.mdpi.com/2504-4990/4/1/9
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://github.com/delphi-suite/delphi
https://openreview.net/forum?id=FCnohuR6AnM
https://openreview.net/forum?id=sOHVDPqoUJ
https://openreview.net/forum?id=sOHVDPqoUJ
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=5o9G4XF1LI
https://openreview.net/forum?id=5o9G4XF1LI
https://arxiv.org/abs/2407.04622
https://arxiv.org/abs/2407.04622
https://api.semanticscholar.org/CorpusID:216078090
https://proceedings.mlr.press/v119/koh20a.html
https://proceedings.mlr.press/v119/koh20a.html
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
misgeneralization in deep reinforcement learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 12004–12019. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/langosco22a.html.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada Mi-
halcea. A mechanistic understanding of alignment algorithms: A case study on dpo and toxicity.
arXiv preprint arXiv:2401.01967, 2024.

Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and Chelsea
Finn. Surgical fine-tuning improves adaptation to distribution shifts. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=APuPRxjHvZ.

Simon Lermen, Charlie Rogers-Smith, and Jeffrey Ladish. Lora fine-tuning efficiently undoes
safety training in llama 2-chat 70b. ArXiv, abs/2310.20624, 2023. URL https://api.
semanticscholar.org/CorpusID:264808400.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu,
Yuguang Yao, Chris Liu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, and Yang
Liu. Rethinking machine unlearning for large language models. ArXiv, abs/2402.08787, 2024.
URL https://api.semanticscholar.org/CorpusID:267657624.

Tyler Lizzo and Larry Heck. Unlearn efficient removal of knowledge in large language models,
2024. URL https://arxiv.org/abs/2408.04140.

Michelle Lo, Shay B. Cohen, and Fazl Barez. Large language models relearn removed concepts,
2024.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. September 2018. URL
https://openreview.net/forum?id=Bkg6RiCqY7.

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramr, and Javier Rando. An
adversarial perspective on machine unlearning for ai safety, 2024. URL https://arxiv.
org/abs/2409.18025.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight meth-
ods to evaluate robust unlearning in llms, 2024. URL https://arxiv.org/abs/2402.
16835.

Pattie Maes and Rodney A Brooks. Learning to coordinate behaviors. In AAAI, volume 90, pp.
796–802. Boston, MA, 1990.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of behavior-based robots using
reinforcement learning. Artificial Intelligence, 55(2):311–365, 1992. ISSN 0004-3702. doi: https:
//doi.org/10.1016/0004-3702(92)90058-6. URL https://www.sciencedirect.com/
science/article/pii/0004370292900586.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

16

https://proceedings.mlr.press/v162/langosco22a.html
https://proceedings.mlr.press/v162/langosco22a.html
https://openreview.net/forum?id=APuPRxjHvZ
https://openreview.net/forum?id=APuPRxjHvZ
https://api.semanticscholar.org/CorpusID:264808400
https://api.semanticscholar.org/CorpusID:264808400
https://api.semanticscholar.org/CorpusID:267657624
https://arxiv.org/abs/2408.04140
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2409.18025
https://arxiv.org/abs/2409.18025
https://arxiv.org/abs/2402.16835
https://arxiv.org/abs/2402.16835
https://www.sciencedirect.com/science/article/pii/0004370292900586
https://www.sciencedirect.com/science/article/pii/0004370292900586

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In Proceedings of the European conference on computer
vision (ECCV), pp. 67–82, 2018.

Emile Mathieu, Tom Rainforth, N Siddharth, and Yee Whye Teh. Disentangling disentanglement in
variational autoencoders. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 4402–4412. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/mathieu19a.html.

Tom McGrath, Matthew Rahtz, János Kramár, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations. ArXiv, abs/2307.15771, 2023.
URL https://api.semanticscholar.org/CorpusID:260334719.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associ-
ations in GPT. Advances in Neural Information Processing Systems, 36, 2022. arXiv:2202.05262.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit evaluation metrics are
not robust. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=zSf8PJyQb2.

Amirkeivan Mohtashami, Martin Jaggi, and Sebastian U Stich. Masked training of neural networks
with partial gradients. In Proceedings of the 25th International Conference on Artificial Intelli-
gence and Statistics, 2022.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Stephen M. Omohundro. The basic ai drives. In Proceedings of the 2008 Conference on Artificial
General Intelligence 2008: Proceedings of the First AGI Conference, pp. 483492, NLD, 2008.
IOS Press. ISBN 9781586038335.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mit-
tal. Lottery ticket adaptation: Mitigating destructive interference in LLMs. In 2nd Workshop on
Advancing Neural Network Training: Computational Efficiency, Scalability, and Resource Op-
timization (WANT@ICML 2024), 2024a. URL https://openreview.net/forum?id=
qD2eFNvtw4.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal.
Lottery ticket adaptation: Mitigating destructive interference in LLMs, 2024b. URL http:
//arxiv.org/abs/2406.16797.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Vaidehi Patil, Peter Hase, and Mohit Bansal. Can sensitive information be deleted from llms? ob-
jectives for defending against extraction attacks. ArXiv, abs/2309.17410, 2023. URL https:
//api.semanticscholar.org/CorpusID:263311025.

Guilherme Penedo, Hynek Kydlek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for
the finest text data at scale. (arXiv:2406.17557), 2024. doi: 10.48550/arXiv.2406.17557. URL
http://arxiv.org/abs/2406.17557.

Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In Conference on Empirical Methods in Natural
Language Processing, 2020. URL https://api.semanticscholar.org/CorpusID:
218470133.

17

https://proceedings.mlr.press/v97/mathieu19a.html
https://proceedings.mlr.press/v97/mathieu19a.html
https://api.semanticscholar.org/CorpusID:260334719
https://openreview.net/forum?id=zSf8PJyQb2
https://openreview.net/forum?id=zSf8PJyQb2
https://openreview.net/forum?id=qD2eFNvtw4
https://openreview.net/forum?id=qD2eFNvtw4
http://arxiv.org/abs/2406.16797
http://arxiv.org/abs/2406.16797
https://api.semanticscholar.org/CorpusID:263311025
https://api.semanticscholar.org/CorpusID:263311025
http://arxiv.org/abs/2406.17557
https://api.semanticscholar.org/CorpusID:218470133
https://api.semanticscholar.org/CorpusID:218470133

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Jonas Pfeiffer, Gregor Geigle, Aishwarya Kamath, Jan-Martin O. Steitz, Stefan Roth, Ivan Vulic,
and Iryna Gurevych. xgqa: Cross-lingual visual question answering. In Findings, 2021. URL
https://api.semanticscholar.org/CorpusID:237490295.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, and Mikel Artetxe.
Lifting the curse of multilinguality by pre-training modular transformers. In Marine Carpuat,
Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 3479–3495, Seattle, United States, July 2022. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.255. URL https:
//aclanthology.org/2022.naacl-main.255.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Ponti. Modular deep learning. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=z9EkXfvxta. Survey Certification.

Nicholas Pochinkov and Nandi Schoots. Dissecting language models: Machine unlearning via
selective pruning, 2024. URL https://arxiv.org/abs/2403.01267.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Ansh Radhakrishnan, Buck Shlegeris, Ryan Greenblatt, and Fabien Roger. Scal-
able oversight and weak-to-strong generalization: Compatible approaches to the same
problem. https://www.alignmentforum.org/posts/hw2tGSsvLLyjFoLFS/
scalable-oversight-and-weak-to-strong-generalization, December 2023.
Accessed: 2024-09-21.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out:
Guarding protected attributes by iterative nullspace projection. In Annual Meeting of the As-
sociation for Computational Linguistics, 2020. URL https://api.semanticscholar.
org/CorpusID:215786522.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner.
Steering llama 2 via contrastive activation addition. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15504–15522, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-long.828.

Amir Rosenfeld and John K. Tsotsos. Intriguing properties of randomly weighted networks: Gen-
eralizing while learning next to nothing. 2019 16th Conference on Computer and Robot Vi-
sion (CRV), pp. 9–16, 2018. URL https://api.semanticscholar.org/CorpusID:
3657091.

Amir Rosenfeld and John K. Tsotsos. Intriguing Properties of Randomly Weighted Networks:
Generalizing While Learning Next to Nothing. In 2019 16th Conference on Computer and
Robot Vision (CRV), pp. 9–16, May 2019. doi: 10.1109/CRV.2019.00010. URL https:
//ieeexplore.ieee.org/document/8781620.

Jerome H Saltzer and Michael D Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

18

https://api.semanticscholar.org/CorpusID:237490295
https://aclanthology.org/2022.naacl-main.255
https://aclanthology.org/2022.naacl-main.255
https://openreview.net/forum?id=z9EkXfvxta
https://openreview.net/forum?id=z9EkXfvxta
https://arxiv.org/abs/2403.01267
https://www.alignmentforum.org/posts/hw2tGSsvLLyjFoLFS/scalable-oversight-and-weak-to-strong-generalization
https://www.alignmentforum.org/posts/hw2tGSsvLLyjFoLFS/scalable-oversight-and-weak-to-strong-generalization
https://api.semanticscholar.org/CorpusID:215786522
https://api.semanticscholar.org/CorpusID:215786522
https://proceedings.neurips.cc/paper_files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://aclanthology.org/2024.acl-long.828
https://aclanthology.org/2024.acl-long.828
https://api.semanticscholar.org/CorpusID:3657091
https://api.semanticscholar.org/CorpusID:3657091
https://ieeexplore.ieee.org/document/8781620
https://ieeexplore.ieee.org/document/8781620

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural Computation,
4:863–879, 1992. URL https://api.semanticscholar.org/CorpusID:2142508.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. 2017. URL https://arxiv.org/abs/1707.06347.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry
Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, et al. Targeted latent ad-
versarial training improves robustness to persistent harmful behaviors in llms. arXiv preprint
arXiv:2407.15549, 2024.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=zWqr3MQuNs.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine learning, 8:323–339, 1992.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding. November 2023. doi: 10.48550/arXiv.
2104.09864. URL http://arxiv.org/abs/2104.09864. arXiv:2104.09864 [cs].

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In International Conference on Machine
Learning, pp. 3299–3308. PMLR, 2017a.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In Proceedings of the 34 th International
Conference on Machine Learning, 2017b.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse
masks. ArXiv, abs/2111.09839, 2021. URL https://api.semanticscholar.org/
CorpusID:244345839.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell
Lin, Justin Wang, Rowan Wang, Ron Arel, Andy Zou, Dawn Song, Bo Li, Dan Hendrycks,
and Mantas Mazeika. Tamper-resistant safeguards for open-weight llms, 2024. URL https:
//arxiv.org/abs/2408.00761.

Alex Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad Tadepalli. Optimal policies tend
to seek power. Advances in Neural Information Processing Systems, 34:23063–23074, 2021.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDi-
armid. Activation addition: Steering language models without optimization. arXiv preprint
arXiv:2308.10248, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, L. Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process- and outcome-based feedback. ArXiv, abs/2211.14275, 2022. URL https://api.
semanticscholar.org/CorpusID:254017497.

19

https://api.semanticscholar.org/CorpusID:2142508
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
http://arxiv.org/abs/2104.09864
https://api.semanticscholar.org/CorpusID:244345839
https://api.semanticscholar.org/CorpusID:244345839
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2408.00761
https://arxiv.org/abs/2408.00761
https://api.semanticscholar.org/CorpusID:254017497
https://api.semanticscholar.org/CorpusID:254017497

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Fabio Urbina, Filippa Lentzos, Cdric Invernizzi, and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature Machine Intelligence, 4(3):189–191, March 2022. ISSN 2522-
5839. doi: 10.1038/s42256-022-00465-9. URL https://www.nature.com/articles/
s42256-022-00465-9. Publisher: Nature Publishing Group.

Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. Machine Learn-
ing, 109:373 – 440, 2019. URL https://api.semanticscholar.org/CorpusID:
254738406.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

A. Waibel and J. Hampshire II. The meta-pi network: Building distributed knowledge represen-
tations for robust multisource pattern recognition. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 14(07):751–769, jul 1992. ISSN 1939-3539. doi: 10.1109/34.142911.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2024. doi:
10.1109/TPAMI.2024.3420937.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Rui Xin, Chudi Zhong, Zhi Chen, Takuya Takagi, Margo I. Seltzer, and Cynthia Rudin. Ex-
ploring the whole rashomon set of sparse decision trees. Advances in neural information pro-
cessing systems, 35:14071–14084, 2022. URL https://api.semanticscholar.org/
CorpusID:252355323.

Xin Yi, Shunfan Zheng, Linlin Wang, Xiaoling Wang, and Liang He. A safety realignment frame-
work via subspace-oriented model fusion for large language models. ArXiv, abs/2405.09055,
2024. URL https://api.semanticscholar.org/CorpusID:269773206.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv:
Computer Vision and Pattern Recognition, 2017. URL https://api.semanticscholar.
org/CorpusID:46294020.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization, October 2019. URL
http://arxiv.org/abs/1910.07467. arXiv:1910.07467 [cs, stat].

Enyan Zhang, Michael A. Lepori, and Ellie Pavlick. Instilling inductive biases with subnetworks,
2024. URL https://openreview.net/forum?id=B4nhr6OJWI.

Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, Yuqi Zhu, and Zhi Jin. Fine-tuning pre-trained lan-
guage models effectively by optimizing subnetworks adaptively. Advances in Neural Information
Processing Systems, 35:21442–21454, 2022.

Jinghan Zhang, shiqi chen, Junteng Liu, and Junxian He. Composing parameter-
efficient modules with arithmetic operation. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 12589–12610. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
299a08ee712d4752c890938da99a77c6-Paper-Conference.pdf.

Xiaojin Zhu, Andrew B. Goldberg, Ronald Brachman, and Thomas Dietterich. Introduction to Semi-
Supervised Learning. Morgan and Claypool Publishers, 2009. ISBN 1598295470.

20

https://www.nature.com/articles/s42256-022-00465-9
https://www.nature.com/articles/s42256-022-00465-9
https://api.semanticscholar.org/CorpusID:254738406
https://api.semanticscholar.org/CorpusID:254738406
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://api.semanticscholar.org/CorpusID:252355323
https://api.semanticscholar.org/CorpusID:252355323
https://api.semanticscholar.org/CorpusID:269773206
https://api.semanticscholar.org/CorpusID:46294020
https://api.semanticscholar.org/CorpusID:46294020
http://arxiv.org/abs/1910.07467
https://openreview.net/forum?id=B4nhr6OJWI
https://proceedings.neurips.cc/paper_files/paper/2023/file/299a08ee712d4752c890938da99a77c6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/299a08ee712d4752c890938da99a77c6-Paper-Conference.pdf

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

APPENDIX TO GRADIENT ROUTING: MASKING GRADIENTS TO LOCALIZE
COMPUTATION IN NEURAL NETWORKS

A EXTENDED DISCUSSION OF APPLICATION-SPECIFIC LIMITATIONS AND
FUTURE WORK

MNIST autoencoders. The cleanly separated MNIST autoencoder representations depicted in
fig. 2c depend on the problem setup (e.g. the choice to not use data augmentation, like rotations) and
use of heavy L1 regularization on the encoding vector. L1 regularization is required because, by de-
fault, a regular MLP autoencoder trained on a subset of MNIST digits retains information necessary
to decode other digits.

For a wide range of hyperparameters, we find that gradient routing achieves quantitative representa-
tion splitting: the Certicate’s reconstruction of digits 0-4 has higher average loss than its reconstruc-
tions of digits 5-9 for a wide range of settings, including different partitions of the digits. However,
outside the specific hyperparameters chosen for the results in the main body of the paper, the qual-
itative results are poorer: the visual difference in reconstruction quality between the different digit
subsets is less stark than in fig. 2c. We take this to highlight the problem-dependent characteristics
of feature localization. In the case of autoencoding handwritten digits, separation of features for
encoding different digits is “unnatural,” so achieving it requires a specific setup and heavy regular-
ization.

Language models. We speculate that gradient routing on particular tokens introduces an “internal
tug of war” between the expanded and original dimensions of the model (these dimensions depicted
in fig. 3), where parameter updates in the original dimensions consistently decrease the logits for
routed tokens and parameter updates in the expanded dimensions increase logits for routed tokens.
This effect can be understood as a consequence of the mismatch between the implicit estimands
(learning targets) for the original and expanded dimensions. We were concerned that this effect,
rather than localization of capabilities, explained the post-ablation increase in forget loss. However,
preliminary measurements suggest that this is not the case. For example, we find that the loss of
ERA models is higher on average on non-routed forget tokens than a pure model, whereas it is lower
on average on routed tokens. In general, the learning dynamics of gradient routing remain an open
question.

If routing one token to a dimension of the residual stream creates an interpretable, axis-aligned
feature as discussed in section 4.2.1, then routing many tokens to many neurons could produce
a neural network with transparent internal representations. These representations might be made
up of “individual neurons. . . [that] corresponded to cleanly interpretable features of the input,” as
imagined in Elhage et al. (2022), or they could be organized in different ways. In principle, gradient
routing provides a straightforward means of achieving this. However, we suspect that naive attempts
to localize large numbers of concepts to unique regions will lead to high training loss.

Scalable oversight. Our reinforcement learning results demonstrate the promise of a localization-
based strategy for scalable oversight, but further empirical and conceptual work is needed. The
toy environment we use is simple, lacking the complexity and asymmetries of real-world problems.
Additionally, our proposed solution relies on the fact that ablating an otherwise-active module of a
policy network produces a policy with coherent behavior, which may not be true in practice (and
isn’t true in general, in principle). We discuss these considerations in appendix G.

B MNIST AUTOENCODER DETAILS AND ABLATIONS

Model architecture. The Encoder, Decoder, and certificates are all three-layer MLPs. The layer
sizes for the Encoder produce data with shapes (28 × 28, 2048, 512, 32) and for the decoder, data
with shapes (32, 512, 2048, 28 × 28). All hidden layers use ReLU activations. The final layer of the
Encoder is linear. The final layer of the decoders is affine.

Training. The model was trained for 200 epochs on the 60,000 image training part of the MNIST
dataset (LeCun et al., 1998) with batch size 2048. Images were normalized to have mean and

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Input (0-4)

Reconstruction

Input (5-9)

Reconstruction

Figure 6: The top half certificate reconstructions corresponding to fig. 2a, showing that the top half
of the encoding contains information necessary to accurately reconstruct digits 0-4 while containing
practically no information relevant to reconstructing digits 5-9.

standard deviation 0.5. No data augmentation was used. Optimization was performed with Adam
(Kingma, 2014) with learning rate 1e-3, β = (0.9, 0.999), and weight decay 5e-5.

The loss used was pixel-wise mean absolute error, with a penalty term for the L1 norm of the
encoding and a penalty term for the sum of absolute correlations (across batch elements) between
the top and bottom half of the encoding. For a batch of data indexed i = 1, . . . , n and encoding size
32, denote data points by xi, encodings as ẑi, and Decoder outputs as x̂i. Then for λ = 0.003 and
γ = 0.1, the loss used to train the autoencoder is L = Lreconstruction + λ · LL1 + γ · LCorrelation, where

Lreconstruction =
1

282 · n

n∑
i=1

∥xi − x̂i∥1,

LL1 =
1

n

n∑
i=1

∥ẑi∥1, and

LCorrelation =
1

162

16∑
k=1

32∑
h=17

∑n
i=1 |ẑi,k − z⋆,k||ẑi,h − z⋆,h|√∑n

i=1(ẑj,k − z⋆,k)2
√∑n

i=1(ẑj,h − z⋆,h)2
,

with z⋆,k = n−1
∑n

i=1 ẑi,k. Note: this equation does not include gradient routing, which is an
intervention applied to gradients when backpropagating Lreconstruction through ẑi.

Additional results and ablations. Additional findings are given below. Many of them reference
table 2, which provides results from ablation experiments.

• For a given set of hyperparameters, the run-to-run variability induced by random neural net
initialization and data shuffling is small. For our main results (setting 1 in table 2), the 5th
and 95th quantiles (across runs) of the average (over digits) final validation loss are (0.31,
0.33) for digits 0-4 and (0.08, 0.09) for 5-9.

• We find that training a regular autoencoder on a subset of digits, without regularization or
gradient routing, results in an encoding that admits reconstructions of the digits that were
not trained on (setting 8 of table 2).

• Inclusion of the correlation penalty helps split representations but is not necessary (compare
setting 1 and setting 3 of table 2). However, regularization is necessary to achieve splitting
(compare settings 1 and 2 to settings 4 and 5 of table 2).

• We find that we can learn separate “split” encodings of MNIST digits simply by training
autoencoders on subsets of digits with a high L1 penalty, rather than applying gradient rout-
ing (setting 7 of table 2). However, gradient routing is still able to produce split encodings
even in a more challenging setting where only one of the subsets of digits is routed, while
the other has its gradients flow through the whole encoding (setting 6 of table 2, shown in
fig. 7 and fig. 8).

• (Not presented in this document) For most digit partitions that we tried (other than 0-4 and
5-9), we were able to reproduce results similar to those given in fig. 2 without modifying
hyperparameters. Generally, the results were quantitatively comparable to, but less visually
striking than, those shown in fig. 2c. We were even able to split the encoding into 10 parts,
one per digit.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Encoder

Decoder
(0-4)

Decoder
(5-9)

Certificate
 weight tying

 stop gradient

Figure 7: A variant of the MNIST gradient routing experiment from section 4.1. In this version,
gradients from all digits (rather than merely 5-9) are allowed to flow through the bottom half of the
encoding. Since the goal is to isolate the representations for digits 0-4 to the top half encoding, the
inclusion of digits 0-4 makes the problem more challenging. However, by increasing the strength of
the L1 penalty applied to the bottom half encoding, we still achieve splitting, as visualized in fig. 8
and quantified in table 2.

Input (0-4)

Reconstruction

Input (5-9)

Reconstruction

Figure 8: Certificate reconstructions from the more challenging gradient routing experiment de-
scribed in fig. 7.

Table 2: The average (over 20 runs) reconstruction losses for the bottom half certificate for different
MNIST autoencoder training settings. Approximate 95% confidence intervals are given in paren-
theses. Default regularization settings are an L1 penalty on the encoding with weight 3e-3, and a
penalty on the sum of absolute correlations between the top and bottom half entries with weight 0.1.
Gradient routing (Setting 1) is presented in the main body of the paper and uses the default regular-
ization. Settings marked with “separate Decoders” trained a Decoder on digits 0-4 and a different
Decoder on digits 5-9 (equivalent to removing weight tying in fig. 2a). Setting 6 is the same as
Setting 1, with two modifications: no stop gradients are used on the bottom half encoding, and the
L1 penalty is increased to 2e-2 on the bottom half encoding. Setting 6 is depicted in fig. 7.

Setting Loss: 0-4 Loss: 5-9

1. Gradient routing 0.32 (±0.02) 0.08 (±0.00)
2. Gradient routing, separate Decoders 0.33 (±0.02) 0.07 (±0.00)
3. Gradient routing, no correlation penalty 0.28 (±0.02) 0.11 (±0.01)
4. Gradient routing, no regularization 0.32 (±0.02) 0.32 (±0.01)
5. Gradient routing, no regularization, separate Decoders 0.09 (±0.01) 0.08 (±0.00)
6. Gradient routing, bottom half encoding trained on 0-9 0.23 (±0.02) 0.13 (±0.01)
7. No gradient routing, L1 penalty 1e-3, trained on 5-9 only 0.27 (±0.02) 0.11 (±0.00)
8. No gradient routing, no regularization, trained on 5-9 only 0.08 (±0.01) 0.08 (±0.00)
9. No gradient routing, with regularization 0.13 (±0.01) 0.13 (±0.01)
10. No gradient routing, no regularization 0.08 (±0.01) 0.09 (±0.00)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.1 EXTENDING MNIST EXPERIMENTS TO CIFAR100 CLASSIFICATION

Can gradient routing be used to split representations more generally, or is MNIST a special case?
To answer this question, we run the same experiment with a different model, dataset, and task.

Experiment setup. We train a ResNet (He et al., 2016) on the CIFAR100 (Krizhevsky et al., 2009)
dataset to classify images, and apply gradient routing based on class label (in this case, whether
the label is in 0-49 or 50-99). Using the original 34-layer ResNet architecture, we designate the
convolutional layers as the Encoder, and the remaining pooling and linear layer as the Decoder (in
this case, the Decoder is a classifier over 100 image classes, such as otter, castle, oak, train, etc.).
We add two certificates, which are of the same type as the Decoder, except with the number of
input channels halved. The Decoder, Encoder, and certificates are trained as shown in fig. 2a, with
the encoding partitioned into halves along the channel dimension. As with MNIST, we include a
penalty term in the loss that is the weighted L1 norm of the encoding. We also compare with setup
that is identical, except gradient routing is not performed and no L1 penalty is applied.

Results. The results are given in fig. 9. We see a stark effect localizing effect of gradient routing and
L1 regularization, as well as a significant reduction in validation accuracy. Cursory ablations (not
shown) suggest that both localization and the performance hit are due to gradient routing, not the use
of L1 penalty. The L1 penalty simply enhances gradient routing’s ability to localize features. This
is consistent with the findings from the extensive, careful MNIST ablations (table 2, appendix B),
so we do not investigate further.

Classes 0-49
(routed to bot)

Classes 50-99
(routed to top)

Data subset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
ac

cu
ra

cy

No gradient routing, no L1 penalty

Classes 0-49
(routed to bot)

Classes 50-99
(routed to top)

Data subset

Gradient routing, L1 penalty 3e-2

Decoder
Certificate (top)
Certificate (bot)

ResNet classifier performance with and without gradient routing

Figure 9: Average validation set performance for different ResNet classifiers: the Decoder, trained
on all channels of the encoding, and the top and bot certificates, trained on their respective halves of
the channels of the encoding. Variability in these estimates is small in contrast to the differences be-
tween metrics (for each of the gradient routing metrics, 95% confidence interval widths are between
0.03 and 0.07).

Discussion. Our results show that in a different domain, the same gradient routing strategy achieves
the same kind of outcome, with similar dynamics to the MNIST case.

Details. Our ResNet implementation is adapted from https://github.com/kuangliu/
pytorch-cifar/blob/49b7aa97b0c12fe0d4054e670403a16b6b834ddd/
models/resnet.py. The model was trained for 200 epochs on the 50,000 image train-
ing split of the CIFAR100 dataset (Krizhevsky et al., 2009) with batch size 128. The following
random augmentations were applied during training: random cropping, horizontal flipping, and
image normalization. Optimization was performed by SGD with learning rate 0.1, momentum
0.9, and weight decay of 5e-4. The learning rate was decayed according to cosine learning rate
annealing over the 200 epochs. Evaluation was performed on the 10,000 image test set. The only
image augmentation used for validation was normalization.

24

https://github.com/kuangliu/pytorch-cifar/blob/49b7aa97b0c12fe0d4054e670403a16b6b834ddd/models/resnet.py
https://github.com/kuangliu/pytorch-cifar/blob/49b7aa97b0c12fe0d4054e670403a16b6b834ddd/models/resnet.py
https://github.com/kuangliu/pytorch-cifar/blob/49b7aa97b0c12fe0d4054e670403a16b6b834ddd/models/resnet.py

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

C TINYSTORIES UNLEARNING DETAILS

Model architecture. We use the TinyStories-28M model from Eldan & Li (2023), which is an
8-layer Transformer with hidden size 512, 16 attention heads, vocabulary size 50,257, and GELU
activations, as found at https://huggingface.co/roneneldan/TinyStories-28M/tree/main.

Training. The model was trained for one epoch on 400,000 stories from the Delphi version of the
TinyStories dataset (Janiak et al., 2024; Eldan & Li, 2023), with batch size 80, truncating sequences
at 256 tokens. The number of times each model was trained (the sample size for confidence intervals)
is 60. The Adam optimizer was used with learning rate 5e-4 decaying to 5e-5 over the course of
training, β = (0.9, 0.999), and weight decay 0.1. The forget set was defined as any story containing
one of the following strings, separated by spaces or punctuation: “tree”, “trees”, “forest”, “forests”,
“woodland”, and “woodlands”.

Unlearning baseline. Our results in fig. 4a compare against Representation Misdirection for Un-
learning (RMU) (Li et al., 2024), a post-hoc unlearning method. RMU works by corrupting a
model’s internal representations on forget data and preserving its representations on retain data. As
is typical of many unlearning methods, much of the degradation to forget set performance caused by
RMU is reversible by fine-tuning on a very small number of forget set examples (Sheshadri et al.,
2024). The choice to compare against RMU in particular was arbitrary.

Expand, Route, Ablate settings. The following settings are used for the training process described
in section 4.2.2 and depicted in fig. 3.

• Target layers: {0, 1, 2, 3, 4}.
• Dimensions added: 64 MLP neurons in each of the target layers.
• The mask weight for routed forget tokens in the original dimensions of target layers is set

to −0.75. All other weights are 1.
• Instead of using a binary mask for a small set of tokens, we define a mask weight for each

token as a convex combination of two masks: one that lets gradients flow everywhere (1’s
everywhere), and one as described in the previous bullet point. The weight in the convex
combination is set by the token’s relative frequency in the forget vs. retain set, biased
towards retain. So the token “ the”, which has high frequency in both sets, is assigned the
mask of 1s. The token “ tree”, which only appeares in the forget set, is given the most
“aggressive” mask as defined in the previous bullet. Sample values are shown in table 3.

• Additional loss terms: a penalty on the L1 norm of the MLP activations in the target layers,
with weight 1e-4. Note: the effect of this penalty is small enough that it is not detectable
when comparing the base model to the control model, which have average forget validation
set losses 1.47 (± 0.02) and 1.47 (± 0.02) respectively (not a typo).

• Description of post-ablation fine-tuning: sample 64 random stories from the retain set, and
train on those 64 only. Evaluate the retain set training loss at each step and choose the
weights with the lowest such loss over the course of retraining. This is usually achieved in
two or fewer steps.

C.1 ADDITIONAL TABLES AND FIGURES

25

https://huggingface.co/roneneldan/TinyStories-28M/tree/main

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 3: Mask weights for common tokens from the TinyStories training data. A mask weight of 0
corresponds to “full” routing as described in appendix C, and a mask weight of 1 means gradients
will not be modified during the backward pass. In between 0 and 1, these gradient routes are inter-
polated.

Token Forget set freq.
per 10k tokens

Retain set freq.
per 10k tokens Mask weight

tree 99.5 0.0 0.000
bird 73.1 18.7 0.585
flew 10.3 3.6 0.810
bear 10.9 3.8 0.816
animals 10.2 3.9 0.851
Bob 13.2 5.9 0.901
walked 9.7 4.5 0.909
find 19.9 9.3 0.912
down 18.1 8.8 0.919
its 8.4 4.2 0.922

my 5.1 7.1 0.991
dad 3.8 5.8 0.992
says 4.3 6.7 0.993
box 6.9 10.6 0.993
water 5.2 8.3 0.993
mom 23.4 38.2 0.993
car 5.3 10.9 0.996
toys 4.3 11.2 0.998
room 1.8 8.2 1.000
fish 1.5 6.7 1.000

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget stories labeled

1.45

1.50

1.55

1.60

1.65

1.70

Re
tra

in
ed

 v
al

id
at

io
n

fo
rg

et
 lo

ss

Robust unlearning of ERA vs. simple data filtering
when only a proportion of forget data is labeled

ERA
Data filtering

Figure 10: The performance of gradient routing vs. data filtering when a random proportion of
the forget data is unlabeled, based on N = 13 runs per setting (of model and labeling proportion).
Gradient routing routes labeled data to expanded dimensions of target layers, and trains on unlabeled
data as if it were in the retain set. Data filtering means the model trains on unlabeled forget data
but not on labeled forget data. The “Retrained validation forget loss” refers to the lowest forget
validation loss achieved when training on a batch of 64 forget tokens from the train set.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of forget stories labeled

1.45

1.50

1.55

1.60

1.65

1.70

Re
tra

in
ed

 v
al

id
at

io
n

fo
rg

et
 lo

ss

Robust unlearning of ERA vs. simple data filtering
when only a proportion of forget data is labeled

ERA
Data filtering
ERA (train labeled first)

Figure 11: A reproduction of fig. 10, with an additional set of runs included. We present this figure
separately because it is not central to the work. The additional runs are equivalent to the ERA
runs, except that they sort the forget data such that all labeled forget samples are trained on before
all unlabeled forget samples. (Ignoring these labels, the marginal distribution of the data shuffle
order is unchanged.) The idea is to measure whether routing can induce features that persist even
when routing ceases and training is performed normally. Apparently, it can, although the effect is
less strong than i.i.d. training, and run-to-run variability (as reflected in wide confidence intervals)
precludes definitive conclusions.

0.00 0.05 0.10 0.15 0.20

1.5

1.6

1.7

Va
lid

at
io

n
lo

ss

Retain loss

ERA
Pure (no forget)
Base (full data)

0.00 0.05 0.10 0.15 0.20

Forget loss (retrained)

ERA performance depending on amount of forget data

Proportion of training data that is forget

Figure 12: The influence of forget data prevalence on ERA performance. Left: The retain loss
of ERA when the training data constitutes different proportions of forget data. The retain loss
diminishes quickly with forget set size, approximately reaching the average loss of the pure model
(no forget data) at proportions as large as 0.05. This suggests that in real-world problems where the
forget set is relatively small, the alignment tax will be low. Right: the lowest obtained forget loss
when retraining on 64 forget data points, showing that the effectiveness of unlearning is robust to
the quantity of forget data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.2 SAMPLE STORY

The following is a story from Janiak et al. (2024) used as part of the forget set in our unlearning
experiments.

Once upon a time, in a small town, there was a weird tree. This tree
had red cherries on it. The cherries were very yummy. Everyone loved
eating them.
One day, a big storm came. The wind blew very hard. The weird tree
broke! The people in the town were sad. They could not eat the
cherries anymore.
A kind man wanted to help. He decided to repair the tree. He used some
wood and a rope. The weird tree was fixed! The people in the town

were happy again. They could eat the yummy cherries once more.

C.3 TEXT COMPLETIONS

We provide TinyStories text completions for a base, pure, and ERA model. These models were
trained with the same settings as the models in section 4.2.2, except they trained on 1.6M stories
instead of 0.4M stories. We use two input sequences: one that evokes the concept “tree” from the
forget set, and one that is unrelated to the forget set.

• Forget prompt: “Once upon a time, there was a big oak tree.”

• Retain prompt: “Once upon a time, there was a kind girl named Lily.”

The following completions were generated with a softmax sampling of temperature 0.8 and truncated
at 200 tokens. We present the first two completions sampled from each of the models, without cherry
picking.

Base model (trained on all data) - forget prompt

Once upon a time, there was a big oak tree. It was in a park where
kids loved to play. One day, a little boy named Tim came to the park.
He wanted to make a new friend. But he was confused about how to play
with the swings.
Tim saw a girl named Sue near the oak tree. He asked her, "Can you
help me make a swing?" Sue smiled and said, "Yes, I can help you, Tim
!" Sue took some tape and started to work on the swing.
As Tim helped Sue, the oak tree began to grow bigger and bigger. Soon,
it was taller than any other tree. Tim and Sue were so happy. They

played on the swings all day long. And they became the best of friends
. And the big oak tree was their favorite place to play. The end. Tim,
Sue, and the big oak tree played together every day, and they were

never confused again. They had lots of fun in the park. And the big
oak tree was their favorite place

Once upon a time, there was a big oak tree. It was very comfortable
under the ground. People lived in the tree and they were happy. One
day, a little bird flew down from the tree. The bird saw a cat near
the oak tree.
The cat was hungry and wanted to eat the bird. The bird did not want
to be eaten. The bird had an idea. The bird would scare the cat to
come back. The cat would scare the bird and then bring it back.
The bird hid behind the oak tree. The cat was still scared. It did not
want to scare the bird anymore. The cat jumped out and scared the

bird. The bird was safe now. The cat and the bird became friends. They
played together under the attractive oak tree. And they lived happily
ever after. The end. The cat and the bird were best friends forever.

The big oak tree was a safe place for both of them. And they lived
happily ever after. The end. The end. The story is to be kind to
others

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Pure model (trained on retain data only) - forget prompt

Once upon a time, there was a big oak tree. He was very shiny and
bright, and his name was Bob. Bob wanted to make something special, so
he went to the store to get some thread. When he got to the store, he
saw the most amazing thing he had ever seen. It was a big, red thread

.
Bob was very excited. He wanted to make something special with the
thread. He thought of all sorts of colours and was very pleased. He
said to himself, "This is the best thread ever!"
Bob took the thread home with him. He couldn’t wait to try it on. When
he did, he wanted to make something special. He took the thread and

started to make different shapes and stars.
Bob was so proud of his shapes and he was very happy. He had made
something so impressive. From that day forward, every time he used the
thread, Bob would make beautiful shapes and patterns around the house

, making it look even more special.
The end. Bob

Once upon a time, there was a big oak tree. He really liked to play
with his friends in the park. But really, he had a bad taste. He didn’
t like it, but he was still very mad.
He decided to go a little bit and get some ice cream. But when he got
there, the ice cream was gone! It smelled really bad. He was so sad
that he started to cry.
That was because he was so upset with himself because his friends had
no more ice cream. He went home and had a very bad ending. He never
played with his friends again. And it was forever for him. He was so
sad and scared.
The end. He never got to make a better memory. Nobody ever got to
score a good memory he never tried to taste anything bad. The end. The
end. And the bad ending made the bad memory that he knew he’d never

get to taste it. He was not the only one to play with, but also a very
sad heart.

ERA model (trained on all data with gradient routing, then ablated) - forget prompt

Once upon a time, there was a big oak tree. So one day it got a yummy.
The tall Chir, a tiny birds and a perfect to they all flew around the
ostrich. They were so happy to bezy.

But one day, something bad happened. The terrible clouds and it
started to rain. The down the an ice cream truck and snow started to
fall. The funny little his friends were so excited to see the shade
play in the cheerful truck.
The ice cream truck stopped, and the Would you like some yummy food?
Ch Swims, and you’ll feel better soon. The happy friends ate the two
ice cream in their good whistles. It was the comfortable and cold,
just like meat. And the when the little his friends ate them, they all
felt better. They were happy that the dependable and content, and

they all felt good.
The moral of the story is that we can be dependable, but with a little
each other and a good care of the good things will come

Once upon a time, there was a big oak tree. Every day it would try to
stories. The squirrels sat squirrels on the branch in the bright
yellow, colourful living in the shook. They would come down with some
too - it was a very easy for them to an all.
One day, the another dry the a very cold winter came. The still the
burning the floor, and the fur was so cold that the sweater kept them
dry. When the trouble and cold arrived, the getting colder and colder.
The stayed anyway, the build a very big hole. Then, it started to run
out of the also tort scream. But, just in time, the turn the when it
moved. On its perfect reach the top, it was very cold and colder
outside.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

The cover and melting snow into the persistent cold air. But, when it
was snowing, the children asked the shade how the thorns were. But
sadly, the
In the cleaned the it up, and the mommy and daddy gave it a

Base model (trained on all data) - retain prompt

Once upon a time, there was a kind girl named Lily. Lily loved to play
with her toys in her room. One day, Lily’s mom gave her a big hug. "

Lily, I have a secret," Mom said. "You will see soon."
Lily was very excited. She wanted to find out what the secret was. So,
she went to her room and took a step outside. She turned on her bed

and listened to the birds singing and the wind blow. Lily thought the
secret was magic!
As Lily walked outside, she saw a little cat stuck in a tree. The cat
meowed and Lily knew something fun was going to happen. She gently
picked up the cat and brought it to her room. When she opened the door
, she saw a hidden treasure chest. The cat had a tiny bed for Lily and
a soft pillow for herself.

Lily was so happy she found the secret treasure. She took the box home
and shared it with her mom. Mom was glad that Lily found the secret

of the secret

Once upon a time, there was a kind girl named Lily. Lily was very
compassionate and always helped others. One day, she saw her friend
Tommy fall off his bike. Tom looked very sad.
Lily wanted to help Tom, so she said, "Don’t worry, Tommy! We will
unite and help you." Lily smiled and gave Tom a big hug. Tom started
to feel better with Lily’s hug and make sure he was okay.
Together, they helped Tom get back on his bike. Tom was very grateful
to Lily for her help. In the end, Tom was happy and thanked Lily for
being so kind. They played together and had a great day. The moral of
the story is that sometimes, help can come from the most unexpected
places. And from that day on, Lily and Tom were the best of friends.
The moral of the story is to always be kind and help your friends.
This will help you make the world a better place. And everyone tallest
can be full of sight.

The moral of the story

Pure model (trained on retain data only) - retain prompt

Once upon a time, there was a kind girl named Lily. Lily had a
favorite toy, a small teddy bear. She loved to play with her teddy
bear every day.
One day, Lily and her teddy bear went outside to play. They saw a man
selling paint. Lily liked the paint pretty, so she wanted to draw on
her teddy bear too.
Lily and her teddy bear had fun painting on their teddy bears. They
painted together and made beautiful pictures. When they were done,
they went back to the man and said, "Thank you for the paint!"
The man smiled and said, "You’re welcome! It’s good to be kind and
share with others."
Lily learned that being kind and sharing can make others happy too.
She promised to always be kind and share her toys. And from that day
on, Lily and her teddy bear were the best of friends. They played
together every day, always sharing and sharing with others.
The moral of the story is to always be

Once upon a time, there was a kind girl named Lily. She had a magic
toy that could reverse. This toy could reverse very fast. Lily loved
her toy very much.
One day, Lily was playing with her toy when it was not working. She
felt sad and asked her mom, "Mom, can you please fix my toy?" Her mom
said, "I will try, but I need to find a new battery to fix it."

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Lily and her mom looked all around the house for the magic battery.
They found many batteries in the kitchen. Then, they put the battery
in the toy and it started to work again. Lily was so happy and said, "
Thank you, Mom!" They played with the toy all day long, and Lily’s mom
was proud of her generous gift.

The moral of the story is to always be kind and helpful to your
friends. If you can find a new battery, you might feel happy and safe
too. And when you do, good things can happen. And Lily’s toys always
made

ERA model (trained on all data with gradient routing, then ablated) - retain prompt

Once upon a time, there was a kind girl named Lily. She loved to help
people. One day, she saw a sad boy sitting bald man sitting heart
empty. Lily wanted to help him.
The next day, Lily met an old lady. The old lady said, "Hello, Lily! I
need help. There is a boy who does not have many toys. Would you help
him find a toy?" Lily nodded and they went on an adventure to find

the boy’s toy.
They looked man looked away from a big, searching for a toy. They
looked
Finally, they found the toy under a big, and the boy was very happy.
The old lady said, "Thank you, Lily, for being so kind and helping me
find my toy." Lily smiled and said, "You’re welcome, do you’re welcome
!" The old lady was happy to have a new friend, and they all lived
happily ever after.
The moral of the story is: be kind and helpful to others, even when
they need help. And

Once upon a time, there was a kind girl named Lily. She lived in a
small house with her mom, dad, and little dog, Max. Lily loved to hug
Max and play with him every day.
One day, Lily saw a small bird outside her window. The bird looked
hungry, so Lily gave the bird some of her food. The bird was very
happy and thanked Lily for her help. Lily felt good that she was kind
to the bird.
Later, Lily remembered what her mom said about being kind to others.
She gave the bird some food and a gift from the bird’s cage. Lily knew
that being kind and helping others made her wished. She felt happy

too, knowing that being kind and caring to others was more important
than being mean. And that was the moral of the story: be kind to
others, no matter how small someone is. When you are kind, good things
can happen, and someone you just need a friend to be brave and kind.

The moral of the story is to be kind and kind. Be

D STEERING SCALAR DETAILS

Model architecture. We use a modified nanoGPT (Karpathy, 2024) model with the GPT-2 tok-
enizer, 20 layers, 16 attention heads, RoPE positional embedding (Su et al., 2023), and RMSNorm
(Zhang & Sennrich, 2019).

Training. We train on sequences of length 1024 with 589, 824 tokens per step for 10, 000 steps. We
use the AdamW optimizer (Loshchilov & Hutter, 2018) with a learning rate warmup of 2, 000 steps
to 1.8× 10−3 with cosine decay to 1.8× 10−4 after 10, 000 steps, β1 = 0.9, β2 = 0.95, 0.1 weight
decay, and gradient clipping at 1.0.

The tokens most similar to the localized dimension. The unembed matrix of a Transformer U ∈
Rdvocab×dmodel maps the output of the final hidden layer to logits for the token vocabulary. To find the
tokens with the highest cosine similarity to the localized “California dimension” (the 0th standard
basis vector), we sort them according to Ui,0/∥Ui∥2 and take the most negative values. This results
in the following 300 tokens, in descending order of cosine similarity.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

California, California, Californ, Oregon, Colorado, Texas, Florida,
Arizona, Sacramento, Los, San, Hawaii, Nevada, Utah, Alaska,
Massachusetts, Missouri, CA, Minnesota, Illinois, Hawai, Southern,
Connecticut, Kansas, UC, Louisiana, Virginia, Pacific, American,
Santa, Maryland, Fresno, Japan, Mexico, Maine, Michigan, Wisconsin,
Calif, America, Ohio, China, Berkeley, Washington, Pennsylvania,
Nebraska, Kentucky, New, Cal, Americans, Idaho, Mexican, Queensland,
Chicago, Iowa, Oakland, Wyoming, Oklahoma, UCLA, Calif, Costa,
Hawaiian, Ventura, Colorado, US, Yosemite, Chile, Mississippi,
Stanford, Chinese, Brazil, Sierra, Tokyo, Indiana, Alabama, Arkansas,
Montana, LA, Philippines, United, Spain, Ranch, Oregon, Moj, Vermont,
Denver, Carolina, Peru, Western, Alberta, North, Hollywood, Rhode,
Ontario, Tennessee, Italy, Texas, Canada, Seattle, Puerto, Florida,
Delaware, CAL, Japanese, Southwest, Georgia, Los, Arizona, Marin,
states, Kenya, Houston, statewide, Pasadena, Brazilian, Hong,
Australia, southern, UCS, London, Italian, Kerala, America, European,
U, Vancouver, Taiwan, Utah, Tucson, Ecuador, Northern, Beijing, Boston,
Honolulu, CA, Canadian, ornia, Japan, BC, Australian, Coast, Davis,
South, Ber, Saudi, parsed, Kern, British, Silicon, Palo, Chilean,
Spanish, NYC, Mexicans, NSW, Anaheim, Philippine, federal, Texans,
almonds, Kyoto, Midwest, timeout, States, Central, Manhattan, West,
Proposition, UC, Miami, Washington, desert, 688, Pittsburgh, Mary,
Brooklyn, Guam, Colombia, Bay, northern, Riverside, Philadelphia,
India, Portland, Virginia, western, Panama, Mediterranean, Federal,
Angeles, Mont, USA, southwestern, Cincinnati, orset, AMERICA, UK,
Schwarzenegger, Al, 115, Per, Santa, coast, Berlin, Cal, Okinawa,
Mexico, Filipino, cal, apan, NY, Italy, Harvard, nationwide, Asian,
San, NASA, Shanghai, WA, arkable, American, Victoria, Saskatchewan,
ijuana, federally, Honduras, oma, Argentina, 69, Americans, Nicaragua,
har, Latino, Montreal, Korea, villain, Yemen, climates, Francisco,
Northwestern, Northwest, Cuba, Europe, Iceland, asms, Madrid, Yet, Las,
Gujarat, Kansas, cities, England, Irvine, erey, China, Golden, Israel,
Portugal, ohm, Lincoln, americ, Congress, Kau, State, Switzerland,
Honda, grow, Paris, state, Jesus, ranch, outhern, , USC, Indian, Toronto,
!’", flavors, Columbia, Rio, , oming, Son, University, Germany, argument,
Asia, Bon, L, Cannabis, asting, cal, Israeli, Singapore, UAE, 415, assion,
Japanese, college, Latinos, Victorian

Many of these tokens are related to California, even though California is the only token that we
routed on. This provides evidence for the ability of gradient routing to localize concepts without full
data labeling.

D.1 STEERED AND UNSTEERED SAMPLES FROM THE MODEL

We sample 150 tokens from the model 5 times using temperature 1.0 from the top-200 tokens with
a prompt of <|endoftext|>. We then perform the same sampling but add −30 to the 0th embed-
ding dimension after layer 10 to induce steering.

Unsteered

<|endoftext|>- Show some respect
- Have respect
- Learn to listen
- Learn to think
- Show respect
- Give respect
- Recognition by people
Practice good self-care when you have the desire for kindness and
caring. Help others without pressuring them to do anything. Model
kindness regardless of how it fits into your life.
- Build self-esteem

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

- Practice compassion
- In order to decrease a tendency to self-hate and call up others,
encourage empathy. Many of the quotes in this list come from real
people in their families. Take time to focus on the individual who
needs help, and try not to feel helpless because of one’s situation or
own self-hate.<|endoftext|>The term "Cultural appropriation"

<|endoftext|>1921. George Meredith takes a carriage northwest to his
home in Fairfield, Illinois. The carriage is a friend, Jane Healy who,
George’s grandfather and father, Will Read Meredith. With news of his
family’s departure, they may be put in jail’s porch. George makes a

decision and tells Jane what he will do and what he plans. Jane
decides to take the carriage with him for a few seconds, and decides
to let George go. They go in a small car of no more than twenty or
thirty people
We have 2 articles checked out by our editors for quality<|endoftext|>
According to the Bible, Moses is sent to introduce the Israelites to
God by asking them to fulfill a vision that took inspiration from God
by the LORD or

<|endoftext|>As a user, you all have a right and a responsibility to
always use the software supplied and downloaded through the Amazon API
. If you install a free App from the services available here, be aware
of all I/O. Do not use this service with caution unless you know how

the installation works.
You are able to run your own apps on Android using the App Hub. If you
are not, you may link to it directly to a website that you like and

need to connect. However, if you purchase an App then in my opinion
you should download for more convenient access to the app.
- Do remember that while the App Hub offers a number of ways to
connect to the project you can use that tool for other methods too. In

<|endoftext|>You cant be friends with me forever. Thats what everyone
else is; your right to keep doing things. Whatever youre unable to do,
whether its in politics or something else, its OK to do that, just

like everyone else. Everyone else is at fault. Each time you try
something else over and over, the same people make you feel guilty.
Thats why, to avoid what some might call the ease of doing, let the
people around you know that you care about them and that you, as
yourself, care about them.<|endoftext|>Research has shown that
children who grow up in a home with both parents with a physical and
mental disability get the same

<|endoftext|>- The original equipment and electrical components
contained on the base of the elevator system are more important now
than they were when they were built. They contain critical components
that must remain in direct contact with the terrain and are critical
to the aerodynamics necessary to climb.
- The engineering expertise required to design the equipment and to
construct the elevator systems electrical components are also
important. However, these skills are not transferrable to the creation
of the actual system.

- The whole complex comprises not only a helicopter floor-leveling
system and a system of stairs for controlled ascent, but also unique
elevators and their related equipment, like a landing-engine boom, a
helicopter-landing-engine boom, an instrument pod, and an elev

Steered

<|endoftext|>When my grandmother is in California, she knows there are
more Californians who can get California the state the new

California needs as a California continues to grow.<|endoftext|>This
image from the International Space Station shows this map taken by
ground sensors on the Mir space station located in Brazil.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

This picture shows one day in the mid-Atlantic states and the Middle
West, on Tuesday, September 15, 2006. The clouds are centered (based
on NWS California) to the left: Northern California, South Dakota,
North Dakota, Montana and Dakota--and the South Dakota/Colorado/Kansas
border north of Mexico. The clouds show location of Los Llanthus,

California. (Image courtesy NASA)
In September 2006, America made headlines about the world

<|endoftext|>The California wine industry is the third largest
industry in Florida. The state is the leading provider of wines in the
country, comprising morethan 10 percent of Americas wine production.

California has a long history of winemaking. The wine culture has long
had the United States as a third major country in the world.

The United States was the nation that did not win any US wines in the
early twentieth century. California helped,
then led and this now, in the years before American winemaking did not
achieve its strength. The California Wine Conservancy.

In the 1960s, Southern Washington and California were the largest
agricultural land in the nation, with California leading the list of
states with the largest viticulture acreage and in

<|endoftext|>There was an interesting state of California agriculture,
and, again, because in the whole state, agriculture and food is

rapidly being consumed, so it is really no choice which can either
grow or eat it.
Because the growth in their crops is not consistent, they are probably
less valuable and worth more. (I need to be very lucky to not know

how many California wine grapes for the California wine industry are
harvested at California prices.) You can probably grow food California
.
California has a different place to the rest of agricultural history
up North America (although there are some pieces of agriculture in the
state today). California belongs to California State. Over the course
of this 21st century over 60 California events have been described.

During the 19th century.

<|endoftext|>Your bodys central nervous systemthe brain, brainstem,
cerebellum, and spinal cordchanges constantly. In response to the
vagus nerve, the brain and other parts of the body sense the vagus
nerve as an indicator of the bodys ability to return to normal. At the
same time, the brain and the neck are also linked to the body; the

neck may pump blood, change position, and be painful.
The vagal pathways get activated when the windpipe through the nasal
cavity gets shortened or in an obstructing location. These potential
allergens can:
- Bress your nose to the side and feed yourself;
- Chewing gum, rasping a few times;
-

<|endoftext|>- What, How Much, What States
This task describes state and federal education funding programs.
What is the national K-12 education budget project?
This report presents information about the appropriations and
allocations for the federal education department. The proposed budget
is $1.5 billion, with $4.2 billion in and $2.4 billion federal and (
subsidized states) $3.5 billion. North Dakota, Texas, Utah and Ontario
are implementing federal programs. Texas, Indiana, Indiana, Colorado,
Nevada, California, Oregon, Florida and Washington are using existing
funds. California was working with Iowa, Kansas, Kansas and Nebraska

to carry forward federal funding for a five-state area.
States have to provide the largest amount

We can see that the steered text talks about California and states, which is what seemed to get
localized to the 0th residual stream dimension.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E LARGER MODEL UNLEARNING DETAILS

Model architecture and routing settings. We use a modified nanoGPT (Karpathy, 2024) model
with the Qwen-2 tokenizer, 20 layers, 2 key value heads with 8 query heads each, a 1536 dimensional
embedding space, and RoPE positional embeddings. We route the specified tokens to the 0th through
79th MLP dimensions on layers 0-7. We add additionally set the mask weight for the routed forget
tokens in the original dimensions of target layers to −5× 10−8. We also add a 1× 10−7 L1 penalty
to the MLP activations of the target layers.

Training. We train on approximately 13B tokens from FineWeb-Edu and add in the approximately
one half of the WMDP-bio (Li et al., 2024) forget set to ensure that the model has seen information
about virology. Each step consists of an effective batch size of 1, 280 for a total of 1, 310, 720 tokens
per step and we train for 10, 000 steps. We use AdamW with a learning rate warmup of 2, 000 steps
to 1.8×10−3 with cosine decay to 1.8×10−4 after 60, 000 steps, β1 = 0.9, β2 = 0.95, and gradient
clipping at 1.0.

Evaluation. After training, we ablate the 0th through 79th MLP dimensions on layers 0 through 7.
We then retrain on data from FineWeb-Edu for 32 steps of 128 sequences of 1024 tokens each, while
not allowing gradients to flow into the dimensions that had been ablated. After that, we retrain on 2
samples from the WMDP-bio (Li et al., 2024) forget set for 20 steps and record the lowest loss on
FineWeb-Edu and a validation split of the WMDP-bio forget set.

F SCALABLE OVERSIGHT DETAILS

In this section, we provide details on the motivation and setup for our experiments on scalable
oversight. Recall that in scalable oversight problems, we seek to train a performant policy despite
limited access to reliable labels. We deal with the episodic RL setting. Throughout, we distinguish
between:

• Cursory labels: labels that are available for all episodes, which may lack key information
about the episode; and

• Comprehensive labels: labels that fully characterize the relevant properties of an episode,
sufficient to determine its true reward.

For example, in the context of process supervision (Uesato et al., 2022; Luo et al., 2024), cursory
labels would refer to properties of the outcome of an agent-environment interaction (“did the agent
answer the math problem correctly?”), and comprehensive labels would refer to properties of the
process used to produce the outcome (“was the agent’s reasoning sound?”).

Partial oversight details. Each episode includes a label y ∈ Y that is either cursory (“did the agent
reach a terminal grid square at all?”) or comprehensive (“which terminal grid square did the agent
reach?”):

Y = {not reached, reached something, reached DIAMOND, reached GHOST} .

Define Y∗ = {reached DIAMOND, reached GHOST}, the set of comprehensive labels.

The problem setting is parameterized by a level of oversight p ∈ [0, 1]. At the beginning of an
episode, after the agent is randomly placed, DIAMOND and GHOST are placed uniformly at random
on distinct grid squares no closer than 3 steps away. Then, an oversight indicator each for DIAMOND
and GHOST are sampled independently with probability p to determine which terminal squares will
be under oversight. Finally, other grid squares are labeled with oversight i.i.d. at random with
probability 0.25. This makes the oversight indicator a spurious feature on non-terminal squares; we
chose this setup so that an agent “by default” would learn to ignore the labels, absent reinforcement
for discriminating based on them. The environment state (which is observed by the agent) comprises
a one-hot encoded state of the grid cells (not pixels) and a binary mask that contains the cells’
oversight indicators.

Comprehensive labels are available only for episodes where the agent reached a terminal square
with the indicator set to TRUE. For the remaining episodes, the labels are cursory, i.e. either “not
reached” or “reached something”.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Policy network architecture. Our policy network π(s) incorporates a mixture of experts (MoE)
layer. For a state s ∈ S,

π(s) = s ▷ MoE ▷ Conv ▷ Conv ▷ Linear ▷ Linear ▷ Softmax,
with ReLU activations before any linear or convolutional layer.

where ▷ denotes a piping operator, (x ▷ f) ≜ f(x). The MoE layer combines outputs from two
simple modules EDIAMOND,EGHOST, using a gating circuit Γ : S → [0, 1]2:

MoE(s) = EDIAMOND(s) · Γ(s)DIAMOND + EGHOST(s) · Γ(s)GHOST;

EDIAMOND(s) = s ▷ Conv ▷ MaxPool;
EGHOST(s) = s ▷ Conv ▷ MaxPool.

This architecture allows us to isolate computations responsible for certain behaviors into the mod-
ules, and later steer the model by manually manipulating the gating coefficients. We use the same ar-
chitecture across baselines to enable direct comparisons. Preliminary results suggest that the method
is applicable to other architectures, but more work is needed to establish the exact dependency be-
tween its performance and model architecture.

Training. We train the policy network using Proximal Policy Optimization (PPO) (Schulman et al.,
2017) with a reward of +1 whenever it reaches any of the two terminal squares, i.e. the training
reward for an episode with label y is r(y) = 1{y ̸= not reached}.

Crucially, whenever we have access to a comprehensive label for an episode, we use it to perform
gradient routing in the MoE layer. For example, for y = reached DIAMOND, we use

MoE(s) = EDIAMOND(s) · Γ(s)DIAMOND + sg(EGHOST(s)) · Γ(s)GHOST,

where sg(·) is the stop-gradient operator. We apply the inverse for y = reached GHOST, stopping
the gradients for EDIAMOND. We do not use any stop-gradients when oversight is unavailable (i.e.
when we only have cursory labels). We only route the gradients in the MoE layer. In all other,
non-MoE layers, gradients are propagated without routing in all episodes.

We include an additional loss term to encourage the gating circuit to activate only on one module.
We only use the additional loss term when we have access to the comprehensive label for an episode.
For a trajectory τ = (s1, a1, . . . , sT , r(y)), the overall loss is

L = LPPO(τ)− α · 1{y ∈ Y∗} · T−1
T∑

t=1

log Γy(st),

where LPPO(τ) is the PPO loss, α > 0 is a tuning parameter, and we abuse notation by writing Γy

to mean ΓDIAMOND if y = reached DIAMOND, and similarly for GHOST.

Hyperparameters. We train the model using the CleanRL (Huang et al., 2022) implementation of
PPO for 1.5M environment steps on environments with 4 parallel instances. Each policy rollout
consisted of 256 steps. The learning rate was set to 2.5e-4 with annealing enabled. We used a
discount factor (γ) of 0.97 and GAE-λ of 0.95. The model was updated for 4 epochs per rollout,
using 4 minibatches. Advantages were normalized, and we applied a clipping coefficient of 0.2 for
both policy and value function losses. The entropy coefficient was set to 0.01, and the value function
coefficient to 0.5. Gradient norms were clipped at 0.5, and we did not use a target KL divergence
threshold.

The custom loss term coefficient is α = 0.3.

Evaluation. To steer the model towards DIAMOND, we assign gate coefficients Γ(·)DIAMOND = 1
and Γ(·)GHOST = 0.

Outcome-based baseline. This agent trains on all episodes, with the reward function

r(y) =

−1 if y = reached GHOST;

1 if y ∈ {reached something, reached DIAMOND} ;
0 otherwise.

The outcome-based baseline never reaches DIAMOND in our test environments (as we verified em-
pirically by testing it at 50% oversight), because it learns the optimal behavior under this reward
function, which is to go to GHOST whenever it is closer than DIAMOND and not under oversight.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Data-filtering baseline. This agent trains with access to comprehensive labels, but only a fraction
of the episodes are observed. This fraction is analogous to the oversight level p. Its reward function
is

r(y) =

−1 if y = reached GHOST;

1 if y = reached DIAMOND;

0 otherwise.

The data filtering baseline learns the optimal behavior given this reward function, which is to nav-
igate to DIAMOND in all cases. However, it requires more data. To learn behavior comparable to
a routed policy trained with 4% oversight, the filtering baseline requires about 20% of the training
episodes to be kept (fig. 13). This means our method is about 5× more data-efficient than filtering.

0 100,000 200,000 300,000 400,000 500,000

0.0

0.2

0.4

0.6

0.8

Efficiency of Data-filtering Baseline v. Gradient Routing

A
ve
ra
g
e
re
tu
rn

Number of total steps in an environment

model

filtering (20%)

filtering (30%)

filtering (40%)

filtering (50%)

filtering (100%)

routing (4%)

Figure 13: The data efficiency of gradient routing compared to the data-filtering baseline. Dashed
blue lines denote the filtering policy. We obtain these curves by training a policy with full oversight,
then rescaling the x-axis to reflect the curve that would occur had varying proportions of data been
filtered (proportions given in parentheses). The solid red line denotes a routed policy. We averaged
five filtering and five routing policies trained on different seeds . The average return is measured on
100 randomly generated environments.

Note that the highest episodic return for the gradient routing MoE agent is about 0.2 lower than the
data filtering baseline. This is because, while the ablated agent virtually never navigates towards
GHOST alone, it will walk to GHOST if it is on the shortest path to DIAMOND. Based on the random
initial state of the environment, this happens some proportion of the time, leading to reduced reward.
We discuss considerations necessary for overcoming this shortcoming in appendix G.

Impact of gradient-routing. A perfect gating module would prevent the “wrong” expert from
influencing model outputs, making gradient routing superfluous. So, is gradient routing necessary?
We find that MoE agents trained with gradient routing have higher ground-truth returns than agents
trained without routing and converge faster (fig. 14). We hypothesize that gradient routing helps
reduce the noise caused by the gating circuit at the beginning of the training, when the circuit is still
sub-optimal. This stabilization effect is similar to the effects of teacher forcing in seq-to-seq models
(Williams & Zipser, 1989). However, by intervening on only the backward pass, we get the benefits
of teacher forcing without inducing distribution shift.

G IMPACTS OF LOCALIZING CAPABILITIES VS. DISPOSITIONS FOR
SCALABLE OVERSIGHT

To achieve scalable oversight, our proposed strategy for preventing bad behavior (for example) is to
(1) localize a submodule responsible for bad behavior, then (2) ablate the submodule. In this section,
we one factor that may complicate this strategy in real-world applications.

We distinguish between two types of processing that might occur within a neural network to cause
some behavior, like navigating to a red tile in a gridworld. With respect to a particular behavior, we
define:

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

100,000 200,000 300,000 400,000 500,000 600,000

0.0

0.2

0.4

0.6

Gradient-routing improves returns of the MoE model

M
ea
n
re
tu
rn

Number of steps during training

Model default MoE gradient-routed MoE

Figure 14: Average model return based on the ground-truth reward (+1 for reaching DIAMOND,
−1 for reaching GHOST) under 50% oversight. Returns are averaged over 40 training runs; each
run re-randomized neural network initialization and environment starting states. After training, the
average return for each model was computed over 50 episodes. Highlighted regions show 95% CI
around the mean of the models’ performance (N = 40 runs).

Capability. Processing that is necessary for engaging in the behavior; for example, feature extrac-
tion and computation to detect a red tile and compute the shortest path to reach it.

Disposition. Processing that is not a capability but that determines behavior (as a probability dis-
tribution over network outputs). For example, a submodule that processes features representing
the shortest path to a red tile and a blue tile and then returns action probabilities corresponding to
the red tile.

These definitions are informal. Note: Similar terms have been used in the context of AI evaluations
(Beverley et al., 2024), but, to the best of our knowledge, have not been formalized. See Beverley
et al. (2024) for a philosophical treatment of related terms.

Depending on whether capabilities or dispositions are to be localized, the application of gradient
routing to scalable oversight faces different challenges, as summarized in table 4.

Table 4: An overview of the challenges to localizing capabilities vs. dispositions as a means of
achieving scalable oversight. A checkmark (✓) indicates a step that we speculate is easy to achieve;
a challenge indicates a fundamental difficulty.

Localization during training After ablating the target region

Localizing capabilities Challenge: entangled capabilities ✓
Localizing dispositions ✓ Challenge: distribution shift

In the case of capabilities localization, obtaining a performant policy post-ablation is straightforward
in principle: by localizing and ablating, one has created an encoding of the state which does not
admit any postprocessing which will exhibit the capability (analogous to the MNIST split encoding,
whose bottom half did not admit any learned decoding for digits 0-4 as shown in fig. 2). In that
case, one can simply train freeze this feature encoder and train on top of it. However, there is a
fundamental challenge: in many problems, capabilities may not factor because they are entangled.
For example, the skills required to be a cybersecurity researcher vs. a hacker overlap significantly.

On the other hand, we speculate that localizing dispositions is straightforward, and suitable for prob-
lems where capabilities are entangled. For example, even if cybersecurity and hacking involve the
same capabilities, we expect to be able to localize the disposition for (harmful) hacking. However,
localizing dispositions for scalable oversight does not permit post-ablation training, because further
training could change the agent’s disposition. Instead, we must either zero-shot ablate, or find an-
other manner of post-training that avoids this issue (e.g. fine-tuning on high-quality labeled data

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

only). The fundamental difficulty to zero-shot ablation is distribution shift: suppose that during the
training of a policy, an internal module is learned that governs the policy outputs in some regions
of state space but not others. If, upon ablation, that module “becomes responsible” for regions that
were previously governed by an ablated component, there is no reason to expect it to perform well
in these states which are, with respect to its role in training, off-distribution.

H COMPUTATIONAL COST OF GRADIENT ROUTING

Memory. Storing edge weights for every data point would incur a hefty cost of O(|B||E|) memory
per batch. In practice, this cost is easily avoided by reducing dependence on the amount of data and
the number of edges. First: instead of assigning unique gradient routes to each data point, we assign
routes according to membership in parts of a partition P of data points, reducing the |B| term to |P |.
For example, in a typical unlearning application, we would use P = {Pretain,Pforget} with a single
gradient route assigned to each set. Second: we restrict the set of edges considered. For example,
using only edges leaving parameters reduces the |E| factor to O(p) if the neural net parameters have
dimensionality p. This amounts to choosing elementwise learning rates for each parameter entry,
for each data point.

Runtime. In the general case, gradient routing requires |B||E| floating point operations to apply a
scalar multiplication to each edge in the computational graph. Since we apply gradient routing to
a sparse set of edges, like the dmodel entries of a hidden activation of a Transformer, the number of
operations is much lower: |B| · dmodel, for example. This is negligible compared to the number of
operations required for matrix multiplication.

I EXTENDED LITERATURE REVIEW

We start by reviewing further works that, like gradient routing, modify learning rates or backpropa-
gation.

Adjusting learning rates. Discriminative fine-tuning (Howard & Ruder, 2018) sets the learning
rate for each layer independently to improve training efficiency. You et al. (2017) introduce Layer-
wise Adaptive Rate Scaling (LARS), which dynamically adjusts learning rates for each layer during
training.

Modifying backpropagation. Sun et al. (2017b)’s meProp uses only the top-k dimensions by mag-
nitude of the gradient when updating parameters during training, which improves the accuracy of
MNIST classifiers. Panda et al. (2024b) and Sung et al. (2021) optimize only a sparse subnetwork
of a model during fine-tuning, minimizing catastrophic forgetting and memory usage. Rosenfeld &
Tsotsos (2019) go a step further by updating only a small subset of parameters during pre-training,
demonstrating competitive performance compared to conventional methods.

The methods above can be framed as multiplying the gradient by a mask vector. Mohtashami et al.
(2022) prove the theoretical convergence properties of binary gradient masking methods using a
similar notation to our definition of gradient routing in Section 3.

Geiger et al. (2022b) train models to respect certain causal structure by applying interventions to
the forward pass and minimizing the difference between the actual output and the expected output
according to a user-supplied causal model. This method could be used to localize capabilities by
ensuring some modules are causally relevant to certain outputs.

Fine-tuning parameter subsets. Many popular fine-tuning methods update only a small subset
of parameters with the goal of computational efficiency or minimizing catastrophic forgetting or
catastrophic interference (Sun et al., 2017a; Sung et al., 2021; Rosenfeld & Tsotsos, 2018; Kaplun
et al., 2024; Lee et al., 2023; Zhang et al., 2022; Mallya & Lazebnik, 2018; Panda et al., 2024a).
In some sense this localizes the new capabilities to this small subset of the network (as gradient
routing does), although these tuned parameters may be activating latent abilities already present in
the network (Ben Zaken et al., 2022).

Safe LoRA (Hsu et al., 2024) projects fine-tuned weights into a “safety-aligned subspace’, while
subspace-oriented model fusion (SOMF) (Yi et al., 2024) masks task vectors (Ilharco et al., 2023)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

such that they do not interfere with the subspace identified as relevant for safe behavior, before
merging them into the model using model fusion (Zhang et al., 2023; Jin et al., 2023).

Hierarchical reinforcement learning. Early work in hierarchical reinforcement learning used hand
designed sub-behaviors assigned to individual modules to divide and conquer more complex tasks
(Maes & Brooks, 1990; Singh, 1992; Mahadevan & Connell, 1992) although later works discard this
approach in favor of automatically learned sub-behaviors (Hutsebaut-Buysse et al., 2022).

Disentangled representations. While gradient routing partitions representations using supervised
training, disentangled representation learning attempts to separate representations in an unsuper-
vised manner (Bengio et al., 2013; Wang et al., 2024) using methods such as VAEs (Kingma &
Welling, 2013; Mathieu et al., 2019) and GANs (Goodfellow et al., 2014; Chen et al., 2016).

J EXTENDED COMPARISONS TO OTHER MODULARITY METHODS

Some modular training techniques have similar aims as gradient routing. Others are mechanistically
similar but are suitable for different problems. In this section, we compare gradient routing to a select
few of these methods, explaining similarities and highlighting key differences. These comparisons
clarify the novel aspects of gradient routing that enable its unique applications. Table 5 provides a
summary.

DEMix Layers. Gururangan et al. (2021) introduce DEMix Layers, which are modular collections
of MLP experts trained on different domains. In transformer language models, they are interleaved
with standard attention blocks.

• Similarity to gradient routing: DEMix layers are neural network submodules that are
trained to specialize to different tasks based on data labels; gradient routing can also be
used to train specialized neural network submodules based on data labels.

• Difference to gradient routing:
– Gradient routing decouples the localization of learning from the localization of com-

putation. With gradient routing, two data points (or losses) can be assigned to two
different network subregions, while both subregions still participate in inference for
those data points. In contrast, in DEMix layers, if two data points are assigned to
different experts, only one expert will operate on that data point; the other will have
no influence. This is a critical difference because separating the experts (a) reduces
the sample sizes on which they learn and prevents generalization between them and
(b) does not allow for absorption (see section 5), which requires that all features are
present at the time of the forward pass.
Regarding absorption: in gradient routing, inducing a neuron to represent a feature
might mean that the model does not learn the feature elsewhere. But in DEMix, in-
ducing a feature in one expert does nothing to prevent another expert from learning
the same feature, because there is no way a different expert can utilize a feature that is
not available in its forward pass.

– Gradient routing is not limited to particular modules; it can be used to intervene at
any level of computation, like individual neurons, parameters, or activations. As a
consequence, gradient routing enables new kinds of localization. For example, we
achieve unprecedented control of learned representations in MNIST autoencoders in
section 4.1 and language model features in section 4.2.1.

– Gradient routing is architecture-independent.
– Gradient routing is a training-time intervention; it does not require routing at inference

time.

Interchange Intervention Training (IIT). (Geiger et al., 2022a) train neural networks such that
their internal computation is consistent with a user-supplied causal model. The idea is to utilize
prior domain knowledge to ensure that a neural network reflects understood or desired dependencies
between variables.

• Similarity to gradient routing: like gradient routing, IIT imposes structure on model inter-
nals based on a user-supplied specification.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

• Difference to gradient routing:

– Gradient routing requires, for each data point, a specification of how to backpropagate
its loss. IIT requires, for each data point, one or more counterfactual versions of the
data point and a specification of how model internals should change in response to the
counterfactual case(s).

– Gradient routes are straightforward to specify and universally applicable, e.g. “any
data point belonging to this set will have its gradients restricted to that submodule”.
In contrast, the structural causal models required by IIT may not even exist for many
real world tasks, and when they do, they may not be known, or may be difficult to
specify. This limitation is reflected by the artificiality of tasks presented in Geiger
et al. (2022a).

• IIT requires multiple forward and backward passes per training data point.

PackNet. Mallya & Lazebnik (2018) propose a method for continual learning that works by pruning
unnecessary parameters (by setting them to zero) and then retraining those parameters on a new task.
In doing so, the method limits deterioration of performance on prior tasks.

• Similarity to gradient routing: PackNet can be understood as interleaved steps of (i) prun-
ing and (ii) gradient routing. After identifying unnecessary parameters and setting them
to zero, gradients for a new task are routed to those parameters. (Transfer learning and
fine-tuning methods that freeze weights or adjust learning rates when training on new data
can be interpreted similarly.)

• Difference to gradient routing:

– Localization via gradient routing is supervised: the user chooses where data is routed
(with the motivation of creating a network with known internal structure); in contrast,
localization via PackNet is unsupervised (with the motivation of efficiently training a
model to perform a novel task).

– Gradient routing is more general than PackNet, allowing for arbitrary mappings of
data (at any level of granularity) to network regions (as opposed to the special case of
sequential tasks being mapped to pruned regions).

– Gradient routing has applications beyond continual learning: supervised control of
learned representations, localization to enable robust removal of sensitive information
or harmful capabilities, and reinforcement learning from limited labels. An applica-
tion of PackNet to these settings would require a filtered and ordered training dataset to
prevent capabilities being learned at unknown locations throughout the network. This
is impossible for many problems (for example, all the problem settings considered in
this paper).

PiggyBack. Mallya et al. (2018) presents a method for adapting neural networks to novel tasks
without changing their weights, by learning additive task-dependent parameter masks (and then
binarizing them).

• Similarity to gradient routing: if the masks learned by the PiggyBack training step are
intepreted as parameters of the neural network, then the PiggyBack training step can be
considered as a special case of gradient routing, where different tasks are routed to different
sets of PiggyBack mask weights.

• Difference to gradient routing:

– Similar to PackNet, and unlike gradient routing, the way that localization occurs in
PiggyBack is primarily decided by the algorithm itself (according to the objective of
attaining low loss on a novel task). The user is not expected to supply a specification
for how data is localized to different network subregions.

– Gradient routing is applied during training, whereas PiggyBack is applied after train-
ing. This means that gradient routing can be applied to any differentiable learning
task (for example, online reinforcement learning, or LLM pre-training), whereas Pig-
gyBack is only applicable in the fine-tuning paradigm.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

– Gradient routing is a more general technique than PiggyBack, allowing for arbitrary
mappings of data (at any level of granularity) to network regions (as opposed to the
special case of tasks being localized to masks).

Table 5: A summary of properties of localization methods discussed in appendix J: Supervised
localization means the method expects the user to supply a specification for how and where learning
is to be localized; Decoupled means that localization of learning updates occurs without requiring
that computation is localized as well (such that different localization targets can simultaneously
participate in a single forward pass); Assignment shows the mapping of what kind of data is localized
where according to the method; training type is the mode of training suitable for the method. Note
that nothing prevents the application of gradient routing or IIT during fine-tuning (FT), but that is
not the focus of our work, nor of Geiger et al. (2022a).

Method Supervised localization Decoupled Assignment Training type

Gradient routing ✓ (masks) ✓ any data 7→ anywhere Any (non-FT)
DEMix layers ✓ (provenance labels) No label 7→ expert Any

IIT ✓ (causal model, etc.) ✓ any data 7→ anywhere Any (non-FT)
PackNet No ✓ task 7→ param subset FT / continual

PiggyBack No Partially task 7→ weight mask FT / continual

K CHOOSING GRADIENT ROUTES: HOW TO DECIDE WHAT DATA GOES
WHERE

In this section, we discuss how to choose gradient routes in practice.

Choosing gradient routes is like choosing a neural net architecture. Much like choosing a neural
architecture, intuition about neural net learning dynamics and data characteristics guide the choice
of gradient routes. Possible considerations include:

• Does the target subregion have sufficient representational capacity to learn the task routed
to it? (What proportion of the training data is being routed?)

• Is the intended localization consistent with the neural network’s inductive biases? If not,
strong regularization may be needed.

• Will part of the model be ablated after training? If so, training should be configured such
that model performance is minimally harmed by ablation.

Ultimately, gradient routes are chosen based on empirical performance and ease of use, on a
problem-by-problem basis. Small-scale preliminary experiments are helpful.

Examples of choices of masks and the reasoning behind them. The purpose of gradient routing
is to induce structure in neural networks, so before choosing gradient routes one must have an idea
of what kind of capability or information is to be localized. Here, we describe the desired structure
for each application area of the paper and the masks chosen as a result. Throughout, we write 0k to
refer to the (row) vector of 0’s with k elements, 1k to refer to the (row) vector of 1’s with k elements,
and ej,k to refer to the jth standard basis vector in Rk. We describe the specification of gradient
masks as presented in algorithm 1.

• MNIST autoencoding (section 4.1): the goal is to split the representation of an autoen-
coder in two halves, each containing distinct, non-overlapping features, so we applied
stop-gradient masks to the output of the encoder only. The masks are simple: for digits
0-4, we use the mask [116,016]

⊺, and for digits 5-9 we use the mask [016,116]
⊺. These

masks partition learning updates to different halves of the encoding based on the data par-
tition. In summary:

– Mask location: the encoder output (in R32)
– Masks: digits 0-4 → [016,116]

⊺, digits 5-9 → [116,016]
⊺

• Steering scalar (section 4.2.1): in this case, the goal is to induce an axis-aligned feature,
meaning a direction in the activation space of a transformer LM that corresponds to out-
putting a particular kind of token.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

– Mask location: the outputs of layers 6-18
– Masks: the token “ California” (as a label) → e1,dmodel , all other tokens → 1⊺

dmodel

• Robust removal of harmful capabilities in LLMs (section 4.2.2, section 4.2.3): In this case,
the goal was to localize capabilities necessary for good performance on the forget set,
without damaging performance on the retain set. Meng et al. (2022) present evidence that
factual information is stored in the MLP activations of a transformer, so localizing to MLP
neurons was a natural choice. (Also, when we tried localizing to transformer attention
heads, the post-ablation reduction in retain set performance was high.)

– Mask location: MLP activations in target layers (in R64+dMLP)
– Masks: forget tokens t → [164, α

t1dMLP]
⊺, retain tokens → 1⊺

64+dMLP
. For unlearning

on Tinystories (section 4.2.2), we use αt ∈ [−1, 1] chosen based on the relative fre-
quency of the token in the forget set vs. retain set, as described in appendix C. For
virology unlearning (section 4.2.3), we simply use αt = −5 · 10−8 for all 20 tokens
listed.

• Reinforcement learning from limited labels (section 4.3): in this case, the idea was to in-
duce two experts, one which is mechanistically responsible for diamond-seeking behavior,
and one which is responsible for ghost-seeking behavior. We additionally masked the gat-
ing network’s outputs in cases with oversight to make the gating loss the only source of
gradients in those cases.

– Mask location: the output of the diamond expert, ghost expert, and gating module (in
Rdexpert × Rdexpert × R2)

– Masks: episodes where diamond was reached (with oversight) → (1⊺
dexpert

,0⊺
dexpert

,0⊺
2),

episodes where ghost was reached (with oversight) → (0⊺
dexpert

,1⊺
dexpert

,0⊺
2), all other

episodes → (1⊺
dexpert

,1⊺
dexpert

,1⊺
2)

L RELEVANCE OF GRADIENT ROUTING TO PROBLEMS IN AI SAFETY

In this section, we discuss the relevance of gradient routing to foundational problems in AI safety.
The section is non-exhaustive. For example, we do not yet attempt to review problems in algorithmic
bias and fairness, where gradient routing may be helpful for its ability to perform concept erasure
(based on the experiments in section 4.1; see, e.g., Belrose et al. (2023)). Nor do we elaborate on
dual use concerns, mentioned in section 4.2.3.

Addressing foundational challenges in aligning LLMs. Anwar et al. (2024) provide a survey of
challenges to ensuring safe deployment of advanced LLM-based AI systems. In the following list,
we quote sections of the survey and discuss challenges that gradient routing may help address.

• Tools for Interpreting or Explaining LLM Behavior Are Absent or Lack Faithfulness - By
controlling latent representations and module specialization, gradient routing may enable
the training of models that admit more faithful explanations of behavior (sections 4.1, 4.2.1
and 4.3).

• Existing Data Filtering Methods Are Insufficient - Gradient routing outperforms data filter-
ing in head-to-head comparisons (end of section 4.2.2, section 4.3) and absorption provides
a principled reason that this is a general effect.

• Goal-Directedness Incentivizes Undesirable Behaviors - Gradient routing allows imperfect
labels to induce desired behavior in reinforcement learning (section 4.3).

• Difficulty of Robust Oversight and Monitoring - By localizing modules responsible for, or
necessary for, particular behaviors, gradient routing may enable the training of models that
admit faithful explanations of behavior (whole paper).

• Output-Based Adversarial Training May Incentivize Superficial Alignment - Gradient rout-
ing provides a way to utilize imperfect labels without outcome-based training (section 4.3,
whole paper).

• Techniques for Targeted Modification of LLM Behavior Are Underexplored: “...current ap-
proaches struggle to remove undesirable behaviors, and can even actively reinforce them.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Adversarial training alone is unlikely to be an adequate solution. Mechanistic methods
that operate directly on the models internal knowledge may enable deeper forgetting and
unlearning” (p.53). Gradient routing offers a new, general approach to modifying LLM
behavior (section 4.2) that exploits internal mechanisms.

• Challenges with Scalable Oversight - Gradient routing enables scalable oversight in a toy
model (section 4.3).

Towards auditable AI specialists. Here, we consider the implications of localization for advanced
AI systems of increasing capability.

It is natural to expect that general-purpose AI systems would be more difficult to control or validate
than specialized ones. For example, a factory planning AI with broad knowledge of economics
might optimize its objective by manipulating market prices, while a research assistant AI with deep
understanding of human psychology might shape its outputs to maximize positive evaluations rather
than accuracy. These examples illustrate how capabilities beyond what is strictly necessary for a
task can enable unintended strategies for pursuing them.

By tailoring otherwise-general AI systems to specific tasks through the removal of unnecessary capa-
bilities, we can make their behavior more predictable and verifiable. This aligns with the established
principle of least privilege from computer security (Saltzer & Schroeder, 1975), where each com-
ponent receives only the permissions required for its intended function. For any AI deployment, we
can systematically evaluate which potentially-dangerous capabilities are necessary and remove those
that are not. This removal can be verified through systematic testing, for example, by attempting to
elicit the supposedly-removed capabilities through fine-tuning or automated red-teaming efforts.

44

	Introduction
	Related work
	Gradient routing controls what is learned where
	Applications
	Routing gradients to partition MNIST representations
	Localizing targeted capabilities in language models
	Steering scalar: localizing concepts to residual stream dimensions
	Gradient routing enables robust unlearning via ablation
	Scaling robust unlearning to larger language models

	Localizing behavioral modules enables scalable oversight in reinforcement learning

	Discussion
	Conclusion
	Extended discussion of application-specific limitations and future work
	MNIST autoencoder details and ablations
	Extending MNIST experiments to CIFAR100 classification

	TinyStories unlearning details
	Additional tables and figures
	Sample story
	Text completions

	Steering scalar details
	Steered and unsteered samples from the model

	Larger model unlearning details
	Scalable oversight details
	Impacts of localizing capabilities vs. dispositions for scalable oversight
	Computational cost of gradient routing
	Extended literature review
	Extended comparisons to other modularity methods
	Choosing gradient routes: how to decide what data goes where
	Relevance of gradient routing to problems in AI safety

