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ABSTRACT

Neural networks are trained primarily based on their inputs and outputs, with-
out regard for their internal mechanisms. These neglected mechanisms determine
properties that are critical for safety, like (i) transparency; (ii) the absence of sen-
sitive information or harmful capabilities; and (iii) reliable generalization of goals
beyond the training distribution. To address this shortcoming, we introduce gra-
dient routing, a training method that isolates capabilities to specific subregions
of a neural network. Gradient routing applies data-dependent, weighted masks to
gradients during backpropagation. These masks are supplied by the user in order
to configure which parameters are updated by which data points. We show that
gradient routing can be used to (1) learn representations which are partitioned in
an interpretable way; (2) enable robust unlearning via ablation of a pre-specified
network subregion; and (3) achieve scalable oversight of a reinforcement learner
by localizing modules responsible for different behaviors. Throughout, we find
that gradient routing localizes capabilities even when applied to a limited, ad-hoc
subset of the data. We conclude that the approach holds promise for challenging,
real-world applications where quality data are scarce.

1 INTRODUCTION

As AI systems become more powerful and more prevalent, there is an increasing need to explain and
control the inner mechanisms governing their behavior. To address this challenge, some researchers
aim to fully understand AI systems, either by reverse engineering the operations of conventionally
trained models (Olah et al., 2020; Olsson et al., 2022) or with inherently interpretable architectures
(Koh et al., 2020; Hewitt et al., 2023; Xin et al., 2022). This is not necessary. If we could understand
or control the mechanisms underlying a neural network’s computation with respect to a limited set
of safety-critical properties, such as hazardous information or the capacity for deception, that might
be sufficient to make significant safety guarantees.

To achieve targeted control over neural network internals, we propose gradient routing, a training
method for localizing capabilities to chosen subregions of a neural network. Gradient routing is a
modification of backpropagation that uses data-dependent, weighted masks to control which network
subregions are updated by which data points. By appropriately specifying these masks, a user can
configure which parts of the network (parameters, activations, or modules) are updated by which
data points (e.g. specific tokens, documents, or based on data labels). The resulting network is
similar to a conventionally trained network, but with some additional internal structure.

Our contributions are as follows. In Section 2, we discuss prior work on neural network modularity,
unlearning, and scalable oversight. In Section 3, we define gradient routing and comment on its
practical implementation. Most of the paper is a tour of gradient routing applications:

Section 4.1 We use gradient routing to control the encodings learned by an MNIST autoencoder to
split them into two halves, with each half representing different digits.

Section 4.2 We apply gradient routing to localize features in language models. First, we train a
model that can be steered by a single scalar value, showing that feature localization is possible,
even with narrowly-scoped labels. Next, we present Expand, Route, Ablate, an application of
gradient routing that enables robust unlearning via ablation of a pre-specified network subre-
gion. This unlearning is nearly as resistant to retraining as a gold-standard model never trained
on the task. Finally, we show that this unlearning method scales to a large (0.7B) model.
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Section 4.3 We apply gradient routing to the problem of scalable oversight (Amodei et al., 2016),
where the aim is to train a performant policy despite limited access to reliable labels. We train
a policy network by reinforcement learning to navigate to two kinds of grid squares in a toy
environment, DIAMOND and GHOST. Using gradient routing, we localize modules responsible
for these two behaviors. We show that we can steer the policy towards DIAMOND by ablating
the GHOST module. Gradient routing trains steerable networks even when the amount of la-
beled training data is small, and even when the policy is able to condition on the existence of
labels. As a result, our method outperforms baselines, including data filtering.

In Section 5, we discuss themes from our findings, including an observed absorption effect, where
gradient routing applied to a narrow subset of data has a broader localizing effect on capabilities re-
lated to that data. Absorption provides an answer to the question: “If one has labels that are suitable
for localizing undesirable computation, why not simply use those labels to filter the data?” When la-
bels do not encompass all training data from which harmful capabilities arise, absorption means that
localization can still occur, whereas filtering may be inadequate. Furthermore, localization does not
explicitly influence the learned behavior of a model, a fact we exploit to achieve scalable oversight.

We conclude by noting that black-box training techniques may be inadequate for high-stakes ma-
chine learning applications. Localization techniques, like gradient routing, may provide a solution.

2 RELATED WORK

Training to localize pre-specified capabilities. Akin to gradient routing, work in modular machine
learning trains modules to contain concepts or abilities determined in advance of training. Typically,
modular architectures involve a routing function that selects modules to apply on a forward pass
(Pfeiffer et al., 2023). Routing functions are often unsupervised, as with a typical mixture of experts
setup (Jacobs et al., 1991; Eigen et al., 2013; Shazeer et al., 2017). However, some approaches route
inputs based on metadata, creating modules with known specializations (Waibel & II, 1992). For
example, routing has been based on (i) the modality of data in multi-modal models (Pfeiffer et al.,
2021), (ii) language (Pfeiffer et al., 2020; 2022; Fan et al., 2021), and (iii) low- vs. high-level control
or task type in robotics (Heess et al., 2016; Devin et al., 2017). Gururangan et al. (2021) separate the
training data of a language model by domain and assign one expert in each layer to a single domain.
By disabling the expert for a domain, they are able to approximate a model that was not trained on
the domain.

Other methods freeze the weights of a pre-trained model and train a newly added module, with the
aim of localizing the task to the new module (Rebuffi et al., 2017; 2018; Houlsby et al., 2019; Bapna
& Firat, 2019). Zhang et al. (2024) locate capabilities in models by learning a weight mask, transfer
the identified sub-network to a randomly initialized model, then train as if from scratch. By choosing
a suitable sub-network, they can, for example, induce a vision model to identify ImageNet (Deng
et al., 2009) classes by shape, not texture.

Adversarial representation learning and concept erasure. In order to control the information in
learned representations, prior works have trained feature extraction networks adversarially against
discriminator networks that predict this information (Goodfellow et al., 2014; Schmidhuber, 1992;
Ganin & Lempitsky, 2015; Ganin et al., 2016; Edwards & Storkey, 2015). In contrast, Gradient
Routing learns modular representations which can be ablated after training. Other works have
removed concepts by modifying activations during inference, rather than the network parameters
(Ravfogel et al., 2020; Belrose et al., 2023; Elazar et al., 2020; Bolukbasi et al., 2016).

Robust unlearning. Machine unlearning seeks to remove undesired knowledge or abilities from
a pre-trained neural network (Cao & Yang, 2015; Li et al., 2024). Typical unlearning methods are
brittle in the sense that the unlearned abilities of the model can be recovered by fine-tuning on
a tiny number of data points (Henderson et al., 2023; Sheshadri et al., 2024; Lynch et al., 2024;
Liu et al., 2024; Shi et al., 2024; Patil et al., 2023; Lo et al., 2024; Lermen et al., 2023). Lee
et al. (2024); Łucki et al. (2024) suggest that undesired concepts are more easily “bypassed” than
thoroughly removed from model weights. In this paper, we pre-train models with gradient routing
such that we can perform robust unlearning, which cannot be easily undone by retraining. Tampering
Attack Resistance (TAR) (Tamirisa et al., 2024) also targets robust unlearning in LLMs. While
their method does improve robustness to retraining, it degrades general model performance as a
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Figure 1: Gradient routing applies weighted masks to selectively block or re-weight gradients during
backpropagation. By supplying different masks for different data, the user can induce specialization
in network subregions. The figure shows three masks, which would correspond to three data points.

side effect. However, we present gradient routing as a training technique rather than a post-hoc
modification, so the two methods aren’t directly comparable.

Compared to gradient routing, the most similar approaches prune or mask parts of the network
most important for the target behavior. SISA (Bourtoule et al., 2021) trains multiple models in
parallel on partitions of the dataset and takes “votes” from each model at inference time. Similar to
ablating a network subregion, a model can be dropped to achieve robust unlearning. The approach
of Bayazit et al. (2023) is to learn a mask over parameters in a language model to unlearn specific
facts, while Huang et al. (2024) and Pochinkov & Schoots (2024) remove neurons related to harmful
behavior in order to restore the alignment of an adversarially fine-tuned language model. Guo et al.
(2024) fine-tune the parameters of only the most important components for the task. Lizzo & Heck
(2024) instead delete subspaces of the model parameters in order to remove specific knowledge.
Unfortunately, Lo et al. (2024) find that models pruned to remove a concept can very quickly relearn
the concept with further training. This may be because identifying the precise sub-network for a
task post-hoc is very challenging, as evidenced by the modest success of “circuit discovery” in
mechanistic interpretability thus far (Wang et al., 2023; Conmy et al., 2023; Miller et al., 2024;
McGrath et al., 2023).

Scalable oversight. Scalable oversight is the problem of providing a supervised training signal for
behaviors that are difficult or expensive to assess (Amodei et al., 2016). Semi-supervised reinforce-
ment learning frames scalable oversight in terms of RL on partially labeled data (Zhu et al., 2009;
Finn et al., 2016; van Engelen & Hoos, 2019). Another approach is weak-to-strong generalization, in
which a less powerful model provides supervision to a more powerful one (Burns et al., 2024; Ken-
ton et al., 2024; Radhakrishnan et al., 2023). Weak-to-strong generalization introduces a potential
risk: the stronger model may exploit blind spots in the weaker model’s supervision capabilities.

3 GRADIENT ROUTING CONTROLS WHAT IS LEARNED WHERE

Gradient routing applies data-dependent, weighted masks to gradients during backpropagation to
configure what data (whether it be defined in terms of tokens, documents, or based on other labels)
is learned where in the network (e.g. at the level of parameters, activations, or modules). The result
is a model with a partially-understandable internal structure, where particular regions correspond
to known capabilities. Throughout this paper, we will use “route X to Y ” to mean “use gradient
routing to limit learning updates for data points X to region Y of the neural network.”

Let (V, E) be the nodes and edges of the computational graph corresponding to a neural network
and loss function, with v(z) taken to be the output of node v if z is input to the network. Given a
dataset D = {zi}ni=1, for each data point zi, gradient routing requires the specification of a gradient
route given by Ẽi = {αi

e ∈ R : e ∈ E} and visualized in fig. 1. Define ∂L(z)
∂v ≜ ∂L(ζ)

∂v(ζ) |ζ=z , the
partial derivative of the loss L with respect to the output of node v when evaluated at input z. The
routed derivative (denoted with a tilde) of the loss over a batch B ⊆ [n] is then defined recursively

as ∂̃L(zi)

∂̃L
≜ 1 for all i ∈ B, and

∂̃L(zi)

∂̃v
≜

∑
u∈child(v)

αi
(v,u)

∂̃L(zi)

∂̃u

∂u(zi)

∂v
,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for all non-terminal nodes v ∈ V \ {L} and i ∈ B. Choosing αi
e ≡ 1 recovers standard backprop-

agation. This weighting is only applied in the backward pass; the forward pass is left unchanged.
Any gradient-based optimizer, like SGD or Adam (Kingma, 2014), can then be used to train with
these modified gradients.

In practice, gradient routing masks need not be defined over every data point and edge in the com-
putational graph. Instead, we limit masks to a small set of edges, like the outputs of specific MLP
neurons or the outputs of specific layers. Also, we typically assign gradient routes to data points
based on membership in a coarse partition, like the forget set or retain set in an unlearning problem.
Implementation is straightforward and efficient: algorithm 1 gives sample Pytorch (Paszke et al.,
2019) code in which masking is applied to the outputs of sequential layers.

In all of our applications, masks are applied to activations of a few select layers. In most of our
applications, these masks are binary, with 1’s allowing the flow of gradients, and 0’s preventing the
flow of gradients. Guidance for choosing these masks, and precise mask specifications for all our
experiments, are given in appendix K. Informal descriptions are also given in following section.

def forward(self, x: Tensor, gradient_masks: list[Tensor]):
for layer, mask in zip(self.layers, gradient_masks):

act = layer(x)
x = mask * act + (1 - mask) * act.detach()

return x

Algorithm 1: Example of gradient routing implemented in PyTorch. For each batch of training data
points x, a batch of gradient_masks corresponding to those data points is passed as well. The
detach() method applies the stop-gradient operator, preventing gradients from being backpropa-
gated through act but leaving its value unchanged.

4 APPLICATIONS

4.1 ROUTING GRADIENTS TO PARTITION MNIST REPRESENTATIONS

As a first example of feature localization via gradient routing, we train a simple MLP autoencoder
on the MNIST handwritten digit dataset (LeCun et al., 1998) and use label-dependent stop-gradients
to control where features for different digits are encoded. The goal is to obtain an autoencoder
that reconstructs all digits (0-9) via an encoding that is made up of non-overlapping subcomponents
corresponding to distinct subsets of digits. We choose subsets {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}. To
hint at the potential difficulty of this task, we note the encodings learned by an autoencoder trained
on one of these sets admit low-error reconstructions on the other set, despite never being trained on
it (details in appendix B).

We use a simple architecture of three-layer MLP modules with ReLU activations: an Encoder, a
Decoder, and two “certificate” decoders. The Encoder processes a 28×28 image into a vector in
R32, and the Decoder processes that vector into a 28×28 reconstruction. Each certificate is trained
on half of the encoding, which takes values in R16. Certificate updates do not affect the encoding.
If the Decoder can reconstruct a digit that a certificate cannot, this “certifies” that robust feature
localization occurred (away from the half of the encoding the certificate was trained on).

We use gradient routing to train an encoding split such that the top half encodes digits 0-4 and the
bottom half encodes digits 5-9. While training on all digits, we apply stop-gradients to the bottom
half of the encoding for digits 0-4 and stop-gradients to the top half of the encoding for digits 5-9.
To induce specialization in the two halves of the encoding, we add the L1 norm of the encoding
as a penalty term to the loss. The setup is shown in fig. 2a. The results, shown in fig. 2b and
fig. 2c, are stark: while using the entire encoding allows the Decoder to reproduce all digits with
low loss, the Certificate is only able to reproduce 5-9 from the bottom half of the encoding, as
desired. Furthermore, the Certificate’s learned predictions for digits 0-4 are approximately constant.
This suggests that we have successfully eliminated most information relevant to digits 0-4 from the
encoding. We elaborate on experiment details and provide an extensive ablation study in appendix B.

4
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(a) An autoencoder trained to encode digits 0-4 in the top
half encoding and digits 5-9 in the bottom half. The full
encoding is processed by a single Decoder module trained
with gradient routing; we illustrate this using weight tying
and stop gradients. The two certificates are trained to re-
construct all digits from different halves of the encoding.
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(b) Average (across 20 runs) validation set re-
construction losses, measured as the pixel-wise
mean absolute error (MAE) for the Decoder and
the Certificates, demonstrating successful local-
ization of information about digits. Run-to-run
variation is negligible.

Input (0-4)

Reconstruction

Input (5-9)

Reconstruction

(c) Bottom half certificate reconstructions from the validation set. The near-constant prediction of the certificate
on digits 0-4 illustrates the absence of information about those digits from the bottom half of the encoding. Top
half reconstructions are given in fig. 6 in the appendix.

Figure 2: Gradient routing induces a clean split in the encodings of a simple MLP autoencoder
trained on MNIST digits. By applying data-dependent stop-gradients and L1 regularization, the top
half of the encoding comes to represent digits 0-4 only, and the bottom half of the encoding comes
to represent digits 5-9 only.

4.2 LOCALIZING TARGETED CAPABILITIES IN LANGUAGE MODELS

In this section, we show that gradient routing applied to a small set of tokens can be used to local-
ize broader features or capabilities in Transformer (Vaswani, 2017) language models. This is first
demonstrated in terms of model activations, then applied to MLP layers for the purpose of robust
unlearning.

4.2.1 STEERING SCALAR: LOCALIZING CONCEPTS TO RESIDUAL STREAM DIMENSIONS

Elhage et al. (2021) frames the inter-block activations of a Transformer, or the residual stream, as
the central communication channel of a Transformer, with all layers “reading from” and “writing
into” it. Usually, the standard basis of the residual stream is indecipherable, with dimensions not
corresponding to interpretable concepts. We pre-train a 20-layer, 303M parameter Transformer on
the FineWeb-Edu dataset (Penedo et al., 2024) while routing the gradients for all California1

tokens to the 0th entry of the residual stream on layers 6-18. On token positions predicting
California, we mask gradients (to zero) on every residual stream dimension except the 0th

in layers 6-18. This masking causes the learning updates for those token positions to be localized to
the weights that write into the 0th dimension of the residual stream. After training, we look at which
tokens’ unembedding vectors have the highest cosine similarity with the one hot vector for the 0th

entry of the residual stream. We find that California has the highest cosine similarity, fol-
lowed by California, Californ, Oregon, Colorado, Texas, Florida, Arizona,
Sacramento, and Los; see appendix D for the top 300. These tokens all have semantic simi-

1We use a leading to represent a leading space before a token.
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Figure 3: Backpropagation in the Route step of Expand-Route-Ablate, showing the flow of gradients
through a Transformer for tokens in the forget set. Gradients for retain tokens are unmodified.
Additional dimensions, shown with dashed outlines, were added to target layers in the MLP and
attention blocks, and will be removed after training in the Ablate step. All modules participate in
the forward pass.

larity to California, but gradient routing was not applied to them. This shows that gradient routing
localizes broader semantic concepts, rather than the narrow set of explicitly-routed tokens.

Past work on activation steering (Turner et al., 2023; Rimsky et al., 2024) computed (non-
axis aligned) steering vectors specified by dmodel different values. However, since we localized
California-related concepts to the 0th dimension of the residual stream, we can steer the model to
generate text related to California by adding a single scalar value to the 0th entry of the residual
stream during the forward pass. Appendix D provides steered model completions.

4.2.2 GRADIENT ROUTING ENABLES ROBUST UNLEARNING VIA ABLATION

Robust unlearning (Sheshadri et al., 2024) means training models which lack the internal mecha-
nisms or “knowledge” required for certain tasks, as opposed to merely performing poorly on those
tasks. To address this open problem, we show that gradient routing can be used to localize capabili-
ties to a known region of the network, then delete that region, removing those capabilities.

To enable comprehensive comparisons, our initial study on robust unlearning applies gradient rout-
ing to a small (28M parameter) Transformer. This model is trained on an LLM-generated dataset of
simple children’s stories based on the TinyStories dataset (Eldan & Li, 2023; Janiak et al., 2024).
We partition the data into: 1) a forget set made up of any story containing one of the keywords
“forest(s)”, “tree(s)”, or “woodland(s)”, and 2) a retain set made up of all other stories. An example
story is given in appendix C. The goal is to train a model that performs well on the retain set but
poorly on the forget set, and whose forget set performance is not easily recoverable by fine-tuning.
To do this, we route specific forget tokens to designated MLP neurons using three-step process
termed Expand, Route, Ablate (ERA):

1. Expand Increase the dimensionality of the model by adding randomly-initialized neurons to
particular target layers.

2. Route Train the model by supervised learning on next-token prediction, but on select tokens in
forget stories, reduce the learning rate in the original dimensions of the model at the target
layers. Figure 3 illustrates the routing step.

3. Ablate Delete the additional neurons. Post-ablation, apply a very small number of steps of fine-
tuning on retain data to correct for degradation caused by ablation.

Does gradient routing localize capabilities that can be robustly ablated? To answer this question, we
train five types of models: an ERA model that uses gradient routing to localize forget set concepts,
a base model trained conventionally on all data, a pure model trained only on retain data to serve as
a gold standard, a control model trained equivalently to ERA except without gradient routing2 and

2The control model is expanded, ablated, and fine-tuned. It uses a small L1 penalty (small in the sense that
it has no measurable effect on loss; see appendix C) on the MLP activations in the target layers.
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an RMU model (Li et al., 2024) fine-tuned from the base model to serve as an unlearning baseline.
Using these models, we obtain the following results. Approximate 95% confidence intervals for the
mean (N = 60 runs) are given in parentheses or highlighted in figures.

• Shallow unlearning measures the degradation in forget loss caused by our method by comparing
the loss on the forget set for the ERA model vs. the base model. Result: ERA achieves shallow
unlearning, with forget loss of 1.91 (±0.05), vs. base model forget loss 1.47 (±0.02).

• Robust unlearning measures the robust removal of capabilities by comparing the forget loss
after fine-tuning on forget data for the ERA model vs. the pure model. Figure 4a shows that
the ERA model is almost as hard to retrain on forget data as the gold-standard pure model. In
contrast, RMU’s performance is easily recovered by less than a batch of data. We comment on
the choice of RMU as a baseline in appendix C.

• Alignment tax measures the cost of gradient routing in terms of retain set performance, by
comparing the loss on the retain set for the ERA model vs. the base model. Result: 1.67 (±0.01)
ERA, 1.59 (±0.01) base. The reduced performance of ERA is influenced by the prevalence of
forget data, which constitutes 21% of the training data. In fig. 12, we show that the performance
gap is negligible when the forget set constitutes as much as 5% of the training data.

• The differential effect of routing measures the impact of ablation on the ERA model vs. the
control model. Figure 4b shows that ablation has a large effect on the control model, particularly
in terms of increasing forget loss, as compared to a negligible effect on the control model.

Losses are always calculated on held-out validation data. ERA setup and experiment details are
given in appendix C.
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(b)
Figure 4: Gradient routing trains a language model with subcomponents that can be ablated to
achieve robust unlearning. Left: (a) The average (across runs) validation forget set loss for the ERA
model and pure model over 40 steps of fine-tuning on batches of varying numbers of forget data
points: 4, 16, and 64. RMU is included as a foil to show the “shallowness” typical of most unlearning
methods. Right: (b) Average forget and retain set validation loss after training, after ablation, and
after fine-tuning for ERA vs. a control model that is exactly equivalent except gradients were not
modified. Note: the x-axis is not to scale; pre-ablation training is on 400,000 stories, ablation is
immediate, and fine-tuning is on 64 stories.

Robustness to missing labels. Finally, we show that ERA achieves robust unlearning even when
only a random i.i.d. subset of forget samples are labeled, with unlabeled samples treated as retain
data for training purposes. This is meant to model real-world scenarios where comprehensive label-
ing is infeasible. Compared against a conventionally trained model that does not train on labeled
forget data, ERA achieves (on average, across runs) higher retrained validation forget loss for all la-
beling proportions measured besides 100%. For example, at 60% labeling, ERA achieves a retrained
forget loss of 1.53 (±0.02) as opposed to 1.49 (±0.02) for the baseline. Full curves are shown in
Figure 10 in Appendix C.1.

4.2.3 SCALING ROBUST UNLEARNING TO LARGER LANGUAGE MODELS

Gradient routing can localize capabilities in larger models. Motivated by the dual-use nature of AI
(Urbina et al., 2022), we would like to train useful models that lack certain harmful capabilities.
Here, we seek to localize and remove bioweapon-related capabilities in a 0.7B parameter Trans-
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Table 1: Performance of a language model trained with gradient routing on virology tokens. The
final column evaluates the model after fine-tuning on FineWeb-Edu and then retraining on two exam-
ples from the WMDP-bio forget set, choosing the retraining step with the lowest loss. The increase
in loss on (the validation split of) the WMDP-bio forget set is much higher than the increase in
loss on FineWeb-Edu data, demonstrating successful localization and robust unlearning. Intrigu-
ingly, this increase persists even when excluding routed tokens from the loss calculation, showing a
broader localizing effect.

Dataset Loss Ablated loss (∆) Retrained loss (∆)

WMDP-bio forget set ↑ 2.596 4.283 (+1.687) 2.778 (+0.182)
WMDP-bio forget set (sans routed toks)↑ 2.567 4.205 (+1.638) 2.738 (+0.171)

FineWeb-Edu ↓ 2.925 4.864 (+1.939) 2.957 (+0.032)

former. To do this, we route 20 tokens related to virology3 to the 0th through 79th MLP dimensions
on layers 0 through 7 of the Transformer. Appendix E provides further details on the model and
training.

Table 1 evaluates the model on a validation split of regular FineWeb-Edu data and on some of the
WMDP-bio (Li et al., 2024) forget set. Ablating the target region of the network increases loss
greatly on both datasets. We then fine-tune the model on a train split of FineWeb-Edu for 32 steps to
restore some performance. Finally, we retrain for twenty steps on a separate split of two WMDP-bio
forget set datapoints, as in Sheshadri et al. (2024), and report the lowest loss on the validation split
of the WMDP-bio forget set.

The results are striking: even after retraining on virology data, loss increases much more on the
WMDP-bio forget set (+0.182) than on FineWeb-Edu (+0.032), demonstrating successful localiza-
tion and robust removal of virology capabilities. A natural concern would be that ablation merely
decreased probabilities on the routed tokens, without decreasing overall virology capabilities. To
test this, we measured cross-entropy loss on the forget set excluding the 20 tokens we routed on.
Even after this exclusion, the loss increase is still much higher than the increase on FineWeb-Edu
(+0.171 vs. +0.032). This shows that gradient routing generalizes beyond limited labels.

4.3 LOCALIZING BEHAVIORAL MODULES ENABLES SCALABLE OVERSIGHT IN
REINFORCEMENT LEARNING

In complex settings, reliable data labels are often scarce, especially when labeling requires human
input (Stiennon et al., 2020; Bai et al., 2022; Baker et al., 2022). Scalable oversight (Amodei et al.,
2016) means effectively utilizing limited labels to obtain a performant policy. In this section, we
show that gradient routing’s effective use of limited labels enables scalable oversight, outperforming
an outcome-based baseline and a data filtering baseline.

We use gradient routing to train a policy to reach two types of squares in a gridworld, DIAMOND
and GHOST. Access to the type of square reached, or oversight, is only sometimes available. The
aim is to produce a policy that reliably navigates to DIAMOND and not GHOST, even when oversight
is lacking. In real-world problems, label availability may be correlated with task type or difficulty,
and a policy might not generalize correctly because of this fact (Langosco et al., 2022). To model
this fundamental difficulty, we allow the policy to condition on the presence or absence of oversight.
During training, we route policy gradients through two separate modules in a mixture of experts
layer, each responsible for reaching one of the aforementioned squares. During evaluation, by ab-
lating the GHOST module, we can steer the policy toward reaching DIAMOND even when oversight
is lacking.

Environment. The environment is a 5 × 5 gridworld Markov Decision Process (Puterman, 1990)
with two randomly placed terminal squares: DIAMOND and GHOST. At each step, the agent can
move north, west, south, or east. Episodes end upon reaching a terminal square or after 256 steps.

3Specifically, we route on COVID, COVID, RNA, infections, DNA, genome, virus,
gene, viruses, mutations, antibodies, influenza, bacteria, PCR, cell, herpes,
bacterial, pathogens, tumor, and vaccine.
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(a) Proportion of episodes in which our
agent reached DIAMOND after being steered
to it. A diamond indicates the case of 4%
oversight level, where DIAMOND is reached
70% of the time. (Ranges: 95% C.I.)

Policy: without, and with steering applied

(visualized as sum of actions weighted by probability)

diamond ghost

(b) The gradient-routed policy in an instance of the environ-
ment. Steering induces qualitatively different behaviors. Ar-
rows: N/W/S/E actions weighted by probability. Left: Unsteered
policy. Middle: Steered towards DIAMOND. Right: Steered to-
wards GHOST. The policy was trained with 10% oversight.

Figure 5: Using gradient routing and a mixture of experts layer, we train an agent that can be
steered (right) towards desirable behaviors, even when oversight is severely limited (left). The
values reported are from 100 randomly generated “challenging” environments (GHOST not under
oversight and closer than DIAMOND). The dashed line corresponds to a baseline trained naively on
all data, which learns to navigate to GHOST when oversight is lacking. The cases of 0% and 100%
oversight lie outside of the realm of scalable oversight, so we omit them.

The environment state includes a boolean indicator variable for every grid square, indicating whether
oversight is present. These indicators are randomly sampled at the beginning of each episode. If
an episode ends with the agent reaching a terminal grid square with the oversight indicator set to
FALSE, then the learning algorithm does not have access to the square type labels (DIAMOND,
GHOST) for that entire episode. The (true) rewards, which are not always observed, are +1 for
reaching DIAMOND, −1 for reaching GHOST, and 0 otherwise, with a discount factor of 0.97.4
However, our algorithm only uses these labels for gradient routing, and not for RL updates.

Architecture and training. The first layer of the policy network is a modified Mixture of Experts
(MoE) layer. The MoE layer computes a weighted sum of two experts, EDIAMOND(·) and EGHOST(·).
The module weights, which are between 0 and 1, are computed by a multi-layer gating network.
The remaining layers in the network are either convolutional or linear. (See appendix F for details.)

The policy network is trained with Proximal Policy Optimization (PPO) (Schulman et al., 2017). We
perform gradient routing only when training on episodes with oversight. In those cases, we route
the gradients through one of the modules, EDIAMOND(·) or EGHOST(·), depending on which terminal
square the agent reached. We also add a loss term that incentivizes the gating network to activate
only the module through which the gradients were routed. In episodes without oversight, we perform
a normal, non-routed PPO update with full backpropagation.

Results. Our method uses gradient routing based on limited labels to localize a module responsible
for going to GHOST, then ablates the module. Below, we show that the method works even in the
most challenging setting: instances of the environment where GHOST is the closest terminal square,
where we have no oversight (and the agent knows this). Details are given in appendix F.

Our gradient-routed MoE agent reaches DIAMOND 70% of the time (fig. 5a) with as low as 4%
oversight during training. An outcome-based baseline, trained on all episodes and given reward −1
when it reached GHOST under oversight, and +1 when it reached a terminal square in any other case,
learns to exploit the limits of the labels, going to GHOST whenever it is closer than DIAMOND and
not under oversight. A data filtering baseline was trained on a random subsample of all training
episodes, but granted full oversight. Gradient-routed MoE under 4% oversight has comparable
performance to the data filtering baseline at a 20% sampling rate, representing 5 times greater data

4For general reinforcement learning terminology, see Sutton & Barto (2018).
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efficiency (fig. 13 in appendix F). So, we achieve scalable oversight: gradient routing avoids the
perils of naive outcome-based training while enjoying far greater data efficiency than data filtering.

5 DISCUSSION

Absorption. Routing a subset of the data related to some knowledge or capability appears to localize
that knowledge or capability more generally. This held for an i.i.d. subset of the data (TinyStories
unlearning in section 4.2.2), and for semantically limited data (steering scalar in section 4.2.1, vi-
rology unlearning in section 4.2.3, scalable oversight in section 4.3). We hypothesize an absorption
effect: routing limited data to a region creates internal features or units of computation in that re-
gion which are relevant to a broader task; these units then participate in the model’s predictions on
related, non-routed data; the resulting prediction errors are then backpropagated to the same region,
creating a positive feedback loop that reinforces those features. To the extent that absorption is true,
it has advantages over data filtering methods: if data filtering labels are limited either in quantity or
semantically, then harmful capabilities can still be learned where labels are missing, whereas routing
that data to a region absorbs those capabilities into that region, which can then be removed.

Benefits of localization vs. suppression. When the ability to label (or score) undesirable behavior
is imperfect, attempting to suppress the behavior may be perilous: a model may learn to exploit the
limits of the labels, rather than learning the desired behavior (Goodhart, 1984; Karwowski et al.,
2024). Our study of scalable oversight presents a model of this scenario, demonstrating the advan-
tage of localization as opposed to attenuation of undesirable behavior. This advantage may apply
more broadly, for example, to machine learning problems where capabilities are entangled, in the
sense that there are connections or dependencies between the computation learned to perform differ-
ent tasks (Arora & Goyal, 2023; de Chiusole & Stefanutti, 2013). Entanglement might occur because
certain capabilities or behaviors are reinforced by a broad range of training objectives (Omohundro,
2008; Turner et al., 2021; Krakovna et al., 2020). More simply, capabilities required to perform
undesired tasks may overlap with those required to perform desired tasks. For example, biological
knowledge entails much of the knowledge required to construct biological weapons. For this rea-
son, filtering or training against bioweapon-specific data might not prevent a network from learning
enough to create bioweapons from general biology sources.5

Limitations and future work. (a) Gradient routing’s performance is sensitive to its many hy-
perparameters: what data to route on, what regions to localize to, and what mask weights to use.
This makes it hard to balance retain set performance vs. unlearning, for example. We suspect that
methodological improvements will reduce this sensitivity. (b) So far, we have studied gradient rout-
ing as a pretraining method, making it costly to experiment with large models. (c) In our experiments
with language models, we route gradients on a token-by-token basis, ignoring neighboring tokens.
This naive strategy is surprisingly effective. However, it is plausible that contextual information
will be critical in some problems, necessitating routing strategies that depend on entire sequences.
Finding practical ways of choosing what data to route in order to localize broad capabilities is an
intriguing open problem. (d) Our empirical results for scalable oversight pertain to a simplistic, nar-
row setting. Furthermore, our method for scalable oversight requires that the ablated policy produce
coherent behavior. This does not hold in general, so scaling oversight via localization may require
new ideas. (e) Other methods could be used to achieve similar aims as gradient routing, for example,
DEMix Layers (Gururangan et al., 2021) or Interchange Intervention Training (Geiger et al., 2022a).
(f) We elaborate on application-specific limitations in appendix A.

6 CONCLUSION

Gradient routing localizes targeted capabilities in neural networks, creating models with known in-
ternal structure. Even when based on simple and limited data labeling schemes, this localization
is suitable for robust unlearning of pre-specified capabilities and scalable oversight. Consequently,
gradient routing may facilitate the safe deployment of AI systems, particularly in high-stakes sce-
narios where black-box methods are insufficiently robust.

5Another reason suppression may be insufficient to provide safety guarantees is that poor behavioral perfor-
mance does not entail the elimination of internal circuitry related to that behavior (Lee et al., 2024; Sheshadri
et al., 2024).
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Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Ponti. Modular deep learning. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=z9EkXfvxta. Survey Certification.

Nicholas Pochinkov and Nandi Schoots. Dissecting language models: Machine unlearning via
selective pruning, 2024. URL https://arxiv.org/abs/2403.01267.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Ansh Radhakrishnan, Buck Shlegeris, Ryan Greenblatt, and Fabien Roger. Scal-
able oversight and weak-to-strong generalization: Compatible approaches to the same
problem. https://www.alignmentforum.org/posts/hw2tGSsvLLyjFoLFS/
scalable-oversight-and-weak-to-strong-generalization, December 2023.
Accessed: 2024-09-21.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out:
Guarding protected attributes by iterative nullspace projection. In Annual Meeting of the As-
sociation for Computational Linguistics, 2020. URL https://api.semanticscholar.
org/CorpusID:215786522.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Turner.
Steering llama 2 via contrastive activation addition. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15504–15522, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-long.828.

Amir Rosenfeld and John K. Tsotsos. Intriguing properties of randomly weighted networks: Gen-
eralizing while learning next to nothing. 2019 16th Conference on Computer and Robot Vi-
sion (CRV), pp. 9–16, 2018. URL https://api.semanticscholar.org/CorpusID:
3657091.

Amir Rosenfeld and John K. Tsotsos. Intriguing Properties of Randomly Weighted Networks:
Generalizing While Learning Next to Nothing. In 2019 16th Conference on Computer and
Robot Vision (CRV), pp. 9–16, May 2019. doi: 10.1109/CRV.2019.00010. URL https:
//ieeexplore.ieee.org/document/8781620.

Jerome H Saltzer and Michael D Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, 1975.

18

https://api.semanticscholar.org/CorpusID:237490295
https://aclanthology.org/2022.naacl-main.255
https://aclanthology.org/2022.naacl-main.255
https://openreview.net/forum?id=z9EkXfvxta
https://openreview.net/forum?id=z9EkXfvxta
https://arxiv.org/abs/2403.01267
https://www.alignmentforum.org/posts/hw2tGSsvLLyjFoLFS/scalable-oversight-and-weak-to-strong-generalization
https://www.alignmentforum.org/posts/hw2tGSsvLLyjFoLFS/scalable-oversight-and-weak-to-strong-generalization
https://api.semanticscholar.org/CorpusID:215786522
https://api.semanticscholar.org/CorpusID:215786522
https://proceedings.neurips.cc/paper_files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/e7b24b112a44fdd9ee93bdf998c6ca0e-Paper.pdf
https://aclanthology.org/2024.acl-long.828
https://aclanthology.org/2024.acl-long.828
https://api.semanticscholar.org/CorpusID:3657091
https://api.semanticscholar.org/CorpusID:3657091
https://ieeexplore.ieee.org/document/8781620
https://ieeexplore.ieee.org/document/8781620


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural Computation,
4:863–879, 1992. URL https://api.semanticscholar.org/CorpusID:2142508.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. 2017. URL https://arxiv.org/abs/1707.06347.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry
Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, et al. Targeted latent ad-
versarial training improves robustness to persistent harmful behaviors in llms. arXiv preprint
arXiv:2407.15549, 2024.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=zWqr3MQuNs.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine learning, 8:323–339, 1992.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding. November 2023. doi: 10.48550/arXiv.
2104.09864. URL http://arxiv.org/abs/2104.09864. arXiv:2104.09864 [cs].

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In International Conference on Machine
Learning, pp. 3299–3308. PMLR, 2017a.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In Proceedings of the 34 th International
Conference on Machine Learning, 2017b.

Yi-Lin Sung, Varun Nair, and Colin Raffel. Training neural networks with fixed sparse
masks. ArXiv, abs/2111.09839, 2021. URL https://api.semanticscholar.org/
CorpusID:244345839.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell
Lin, Justin Wang, Rowan Wang, Ron Arel, Andy Zou, Dawn Song, Bo Li, Dan Hendrycks,
and Mantas Mazeika. Tamper-resistant safeguards for open-weight llms, 2024. URL https:
//arxiv.org/abs/2408.00761.

Alex Turner, Logan Smith, Rohin Shah, Andrew Critch, and Prasad Tadepalli. Optimal policies tend
to seek power. Advances in Neural Information Processing Systems, 34:23063–23074, 2021.

Alex Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDi-
armid. Activation addition: Steering language models without optimization. arXiv preprint
arXiv:2308.10248, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, L. Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process- and outcome-based feedback. ArXiv, abs/2211.14275, 2022. URL https://api.
semanticscholar.org/CorpusID:254017497.

19

https://api.semanticscholar.org/CorpusID:2142508
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=zWqr3MQuNs
https://openreview.net/forum?id=zWqr3MQuNs
http://arxiv.org/abs/2104.09864
https://api.semanticscholar.org/CorpusID:244345839
https://api.semanticscholar.org/CorpusID:244345839
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2408.00761
https://arxiv.org/abs/2408.00761
https://api.semanticscholar.org/CorpusID:254017497
https://api.semanticscholar.org/CorpusID:254017497


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Fabio Urbina, Filippa Lentzos, Cdric Invernizzi, and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature Machine Intelligence, 4(3):189–191, March 2022. ISSN 2522-
5839. doi: 10.1038/s42256-022-00465-9. URL https://www.nature.com/articles/
s42256-022-00465-9. Publisher: Nature Publishing Group.

Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. Machine Learn-
ing, 109:373 – 440, 2019. URL https://api.semanticscholar.org/CorpusID:
254738406.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

A. Waibel and J. Hampshire II. The meta-pi network: Building distributed knowledge represen-
tations for robust multisource pattern recognition. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 14(07):751–769, jul 1992. ISSN 1939-3539. doi: 10.1109/34.142911.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2024. doi:
10.1109/TPAMI.2024.3420937.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

Rui Xin, Chudi Zhong, Zhi Chen, Takuya Takagi, Margo I. Seltzer, and Cynthia Rudin. Ex-
ploring the whole rashomon set of sparse decision trees. Advances in neural information pro-
cessing systems, 35:14071–14084, 2022. URL https://api.semanticscholar.org/
CorpusID:252355323.

Xin Yi, Shunfan Zheng, Linlin Wang, Xiaoling Wang, and Liang He. A safety realignment frame-
work via subspace-oriented model fusion for large language models. ArXiv, abs/2405.09055,
2024. URL https://api.semanticscholar.org/CorpusID:269773206.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv:
Computer Vision and Pattern Recognition, 2017. URL https://api.semanticscholar.
org/CorpusID:46294020.

Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization, October 2019. URL
http://arxiv.org/abs/1910.07467. arXiv:1910.07467 [cs, stat].

Enyan Zhang, Michael A. Lepori, and Ellie Pavlick. Instilling inductive biases with subnetworks,
2024. URL https://openreview.net/forum?id=B4nhr6OJWI.

Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, Yuqi Zhu, and Zhi Jin. Fine-tuning pre-trained lan-
guage models effectively by optimizing subnetworks adaptively. Advances in Neural Information
Processing Systems, 35:21442–21454, 2022.

Jinghan Zhang, shiqi chen, Junteng Liu, and Junxian He. Composing parameter-
efficient modules with arithmetic operation. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 12589–12610. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
299a08ee712d4752c890938da99a77c6-Paper-Conference.pdf.

Xiaojin Zhu, Andrew B. Goldberg, Ronald Brachman, and Thomas Dietterich. Introduction to Semi-
Supervised Learning. Morgan and Claypool Publishers, 2009. ISBN 1598295470.

20

https://www.nature.com/articles/s42256-022-00465-9
https://www.nature.com/articles/s42256-022-00465-9
https://api.semanticscholar.org/CorpusID:254738406
https://api.semanticscholar.org/CorpusID:254738406
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://api.semanticscholar.org/CorpusID:252355323
https://api.semanticscholar.org/CorpusID:252355323
https://api.semanticscholar.org/CorpusID:269773206
https://api.semanticscholar.org/CorpusID:46294020
https://api.semanticscholar.org/CorpusID:46294020
http://arxiv.org/abs/1910.07467
https://openreview.net/forum?id=B4nhr6OJWI
https://proceedings.neurips.cc/paper_files/paper/2023/file/299a08ee712d4752c890938da99a77c6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/299a08ee712d4752c890938da99a77c6-Paper-Conference.pdf


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

APPENDIX TO GRADIENT ROUTING: MASKING GRADIENTS TO LOCALIZE
COMPUTATION IN NEURAL NETWORKS

A EXTENDED DISCUSSION OF APPLICATION-SPECIFIC LIMITATIONS AND
FUTURE WORK

MNIST autoencoders. The cleanly separated MNIST autoencoder representations depicted in
fig. 2c depend on the problem setup (e.g. the choice to not use data augmentation, like rotations) and
use of heavy L1 regularization on the encoding vector. L1 regularization is required because, by de-
fault, a regular MLP autoencoder trained on a subset of MNIST digits retains information necessary
to decode other digits.

For a wide range of hyperparameters, we find that gradient routing achieves quantitative representa-
tion splitting: the Certicate’s reconstruction of digits 0-4 has higher average loss than its reconstruc-
tions of digits 5-9 for a wide range of settings, including different partitions of the digits. However,
outside the specific hyperparameters chosen for the results in the main body of the paper, the qual-
itative results are poorer: the visual difference in reconstruction quality between the different digit
subsets is less stark than in fig. 2c. We take this to highlight the problem-dependent characteristics
of feature localization. In the case of autoencoding handwritten digits, separation of features for
encoding different digits is “unnatural,” so achieving it requires a specific setup and heavy regular-
ization.

Language models. We speculate that gradient routing on particular tokens introduces an “internal
tug of war” between the expanded and original dimensions of the model (these dimensions depicted
in fig. 3), where parameter updates in the original dimensions consistently decrease the logits for
routed tokens and parameter updates in the expanded dimensions increase logits for routed tokens.
This effect can be understood as a consequence of the mismatch between the implicit estimands
(learning targets) for the original and expanded dimensions. We were concerned that this effect,
rather than localization of capabilities, explained the post-ablation increase in forget loss. However,
preliminary measurements suggest that this is not the case. For example, we find that the loss of
ERA models is higher on average on non-routed forget tokens than a pure model, whereas it is lower
on average on routed tokens. In general, the learning dynamics of gradient routing remain an open
question.

If routing one token to a dimension of the residual stream creates an interpretable, axis-aligned
feature as discussed in section 4.2.1, then routing many tokens to many neurons could produce
a neural network with transparent internal representations. These representations might be made
up of “individual neurons. . . [that] corresponded to cleanly interpretable features of the input,” as
imagined in Elhage et al. (2022), or they could be organized in different ways. In principle, gradient
routing provides a straightforward means of achieving this. However, we suspect that naive attempts
to localize large numbers of concepts to unique regions will lead to high training loss.

Scalable oversight. Our reinforcement learning results demonstrate the promise of a localization-
based strategy for scalable oversight, but further empirical and conceptual work is needed. The
toy environment we use is simple, lacking the complexity and asymmetries of real-world problems.
Additionally, our proposed solution relies on the fact that ablating an otherwise-active module of a
policy network produces a policy with coherent behavior, which may not be true in practice (and
isn’t true in general, in principle). We discuss these considerations in appendix G.

B MNIST AUTOENCODER DETAILS AND ABLATIONS

Model architecture. The Encoder, Decoder, and certificates are all three-layer MLPs. The layer
sizes for the Encoder produce data with shapes (28 × 28, 2048, 512, 32) and for the decoder, data
with shapes (32, 512, 2048, 28 × 28). All hidden layers use ReLU activations. The final layer of the
Encoder is linear. The final layer of the decoders is affine.

Training. The model was trained for 200 epochs on the 60,000 image training part of the MNIST
dataset (LeCun et al., 1998) with batch size 2048. Images were normalized to have mean and
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Input (0-4)

Reconstruction

Input (5-9)

Reconstruction

Figure 6: The top half certificate reconstructions corresponding to fig. 2a, showing that the top half
of the encoding contains information necessary to accurately reconstruct digits 0-4 while containing
practically no information relevant to reconstructing digits 5-9.

standard deviation 0.5. No data augmentation was used. Optimization was performed with Adam
(Kingma, 2014) with learning rate 1e-3, β = (0.9, 0.999), and weight decay 5e-5.

The loss used was pixel-wise mean absolute error, with a penalty term for the L1 norm of the
encoding and a penalty term for the sum of absolute correlations (across batch elements) between
the top and bottom half of the encoding. For a batch of data indexed i = 1, . . . , n and encoding size
32, denote data points by xi, encodings as ẑi, and Decoder outputs as x̂i. Then for λ = 0.003 and
γ = 0.1, the loss used to train the autoencoder is L = Lreconstruction + λ · LL1 + γ · LCorrelation, where

Lreconstruction =
1

282 · n

n∑
i=1

∥xi − x̂i∥1,

LL1 =
1

n

n∑
i=1

∥ẑi∥1, and

LCorrelation =
1

162

16∑
k=1

32∑
h=17

∑n
i=1 |ẑi,k − z⋆,k||ẑi,h − z⋆,h|√∑n

i=1(ẑj,k − z⋆,k)2
√∑n

i=1(ẑj,h − z⋆,h)2
,

with z⋆,k = n−1
∑n

i=1 ẑi,k. Note: this equation does not include gradient routing, which is an
intervention applied to gradients when backpropagating Lreconstruction through ẑi.

Additional results and ablations. Additional findings are given below. Many of them reference
table 2, which provides results from ablation experiments.

• For a given set of hyperparameters, the run-to-run variability induced by random neural net
initialization and data shuffling is small. For our main results (setting 1 in table 2), the 5th
and 95th quantiles (across runs) of the average (over digits) final validation loss are (0.31,
0.33) for digits 0-4 and (0.08, 0.09) for 5-9.

• We find that training a regular autoencoder on a subset of digits, without regularization or
gradient routing, results in an encoding that admits reconstructions of the digits that were
not trained on (setting 8 of table 2).

• Inclusion of the correlation penalty helps split representations but is not necessary (compare
setting 1 and setting 3 of table 2). However, regularization is necessary to achieve splitting
(compare settings 1 and 2 to settings 4 and 5 of table 2).

• We find that we can learn separate “split” encodings of MNIST digits simply by training
autoencoders on subsets of digits with a high L1 penalty, rather than applying gradient rout-
ing (setting 7 of table 2). However, gradient routing is still able to produce split encodings
even in a more challenging setting where only one of the subsets of digits is routed, while
the other has its gradients flow through the whole encoding (setting 6 of table 2, shown in
fig. 7 and fig. 8).

• (Not presented in this document) For most digit partitions that we tried (other than 0-4 and
5-9), we were able to reproduce results similar to those given in fig. 2 without modifying
hyperparameters. Generally, the results were quantitatively comparable to, but less visually
striking than, those shown in fig. 2c. We were even able to split the encoding into 10 parts,
one per digit.
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Encoder

Decoder 
(0-4)

Decoder
(5-9)

Certificate
  weight tying

  stop gradient

Figure 7: A variant of the MNIST gradient routing experiment from section 4.1. In this version,
gradients from all digits (rather than merely 5-9) are allowed to flow through the bottom half of the
encoding. Since the goal is to isolate the representations for digits 0-4 to the top half encoding, the
inclusion of digits 0-4 makes the problem more challenging. However, by increasing the strength of
the L1 penalty applied to the bottom half encoding, we still achieve splitting, as visualized in fig. 8
and quantified in table 2.

Input (0-4)

Reconstruction

Input (5-9)

Reconstruction

Figure 8: Certificate reconstructions from the more challenging gradient routing experiment de-
scribed in fig. 7.

Table 2: The average (over 20 runs) reconstruction losses for the bottom half certificate for different
MNIST autoencoder training settings. Approximate 95% confidence intervals are given in paren-
theses. Default regularization settings are an L1 penalty on the encoding with weight 3e-3, and a
penalty on the sum of absolute correlations between the top and bottom half entries with weight 0.1.
Gradient routing (Setting 1) is presented in the main body of the paper and uses the default regular-
ization. Settings marked with “separate Decoders” trained a Decoder on digits 0-4 and a different
Decoder on digits 5-9 (equivalent to removing weight tying in fig. 2a). Setting 6 is the same as
Setting 1, with two modifications: no stop gradients are used on the bottom half encoding, and the
L1 penalty is increased to 2e-2 on the bottom half encoding. Setting 6 is depicted in fig. 7.

Setting Loss: 0-4 Loss: 5-9

1. Gradient routing 0.32 (±0.02) 0.08 (±0.00)
2. Gradient routing, separate Decoders 0.33 (±0.02) 0.07 (±0.00)
3. Gradient routing, no correlation penalty 0.28 (±0.02) 0.11 (±0.01)
4. Gradient routing, no regularization 0.32 (±0.02) 0.32 (±0.01)
5. Gradient routing, no regularization, separate Decoders 0.09 (±0.01) 0.08 (±0.00)
6. Gradient routing, bottom half encoding trained on 0-9 0.23 (±0.02) 0.13 (±0.01)
7. No gradient routing, L1 penalty 1e-3, trained on 5-9 only 0.27 (±0.02) 0.11 (±0.00)
8. No gradient routing, no regularization, trained on 5-9 only 0.08 (±0.01) 0.08 (±0.00)
9. No gradient routing, with regularization 0.13 (±0.01) 0.13 (±0.01)
10. No gradient routing, no regularization 0.08 (±0.01) 0.09 (±0.00)
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B.1 EXTENDING MNIST EXPERIMENTS TO CIFAR100 CLASSIFICATION

Can gradient routing be used to split representations more generally, or is MNIST a special case?
To answer this question, we run the same experiment with a different model, dataset, and task.

Experiment setup. We train a ResNet (He et al., 2016) on the CIFAR100 (Krizhevsky et al., 2009)
dataset to classify images, and apply gradient routing based on class label (in this case, whether
the label is in 0-49 or 50-99). Using the original 34-layer ResNet architecture, we designate the
convolutional layers as the Encoder, and the remaining pooling and linear layer as the Decoder (in
this case, the Decoder is a classifier over 100 image classes, such as otter, castle, oak, train, etc.).
We add two certificates, which are of the same type as the Decoder, except with the number of
input channels halved. The Decoder, Encoder, and certificates are trained as shown in fig. 2a, with
the encoding partitioned into halves along the channel dimension. As with MNIST, we include a
penalty term in the loss that is the weighted L1 norm of the encoding. We also compare with setup
that is identical, except gradient routing is not performed and no L1 penalty is applied.

Results. The results are given in fig. 9. We see a stark effect localizing effect of gradient routing and
L1 regularization, as well as a significant reduction in validation accuracy. Cursory ablations (not
shown) suggest that both localization and the performance hit are due to gradient routing, not the use
of L1 penalty. The L1 penalty simply enhances gradient routing’s ability to localize features. This
is consistent with the findings from the extensive, careful MNIST ablations (table 2, appendix B),
so we do not investigate further.

Classes 0-49
(routed to bot)

Classes 50-99
(routed to top)

Data subset

0.0
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No gradient routing, no L1 penalty

Classes 0-49
(routed to bot)

Classes 50-99
(routed to top)

Data subset

Gradient routing, L1 penalty 3e-2

Decoder
Certificate (top)
Certificate (bot)

ResNet classifier performance with and without gradient routing

Figure 9: Average validation set performance for different ResNet classifiers: the Decoder, trained
on all channels of the encoding, and the top and bot certificates, trained on their respective halves of
the channels of the encoding. Variability in these estimates is small in contrast to the differences be-
tween metrics (for each of the gradient routing metrics, 95% confidence interval widths are between
0.03 and 0.07).

Discussion. Our results show that in a different domain, the same gradient routing strategy achieves
the same kind of outcome, with similar dynamics to the MNIST case.

Details. Our ResNet implementation is adapted from https://github.com/kuangliu/
pytorch-cifar/blob/49b7aa97b0c12fe0d4054e670403a16b6b834ddd/
models/resnet.py. The model was trained for 200 epochs on the 50,000 image train-
ing split of the CIFAR100 dataset (Krizhevsky et al., 2009) with batch size 128. The following
random augmentations were applied during training: random cropping, horizontal flipping, and
image normalization. Optimization was performed by SGD with learning rate 0.1, momentum
0.9, and weight decay of 5e-4. The learning rate was decayed according to cosine learning rate
annealing over the 200 epochs. Evaluation was performed on the 10,000 image test set. The only
image augmentation used for validation was normalization.
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C TINYSTORIES UNLEARNING DETAILS

Model architecture. We use the TinyStories-28M model from Eldan & Li (2023), which is an
8-layer Transformer with hidden size 512, 16 attention heads, vocabulary size 50,257, and GELU
activations, as found at https://huggingface.co/roneneldan/TinyStories-28M/tree/main.

Training. The model was trained for one epoch on 400,000 stories from the Delphi version of the
TinyStories dataset (Janiak et al., 2024; Eldan & Li, 2023), with batch size 80, truncating sequences
at 256 tokens. The number of times each model was trained (the sample size for confidence intervals)
is 60. The Adam optimizer was used with learning rate 5e-4 decaying to 5e-5 over the course of
training, β = (0.9, 0.999), and weight decay 0.1. The forget set was defined as any story containing
one of the following strings, separated by spaces or punctuation: “tree”, “trees”, “forest”, “forests”,
“woodland”, and “woodlands”.

Unlearning baseline. Our results in fig. 4a compare against Representation Misdirection for Un-
learning (RMU) (Li et al., 2024), a post-hoc unlearning method. RMU works by corrupting a
model’s internal representations on forget data and preserving its representations on retain data. As
is typical of many unlearning methods, much of the degradation to forget set performance caused by
RMU is reversible by fine-tuning on a very small number of forget set examples (Sheshadri et al.,
2024). The choice to compare against RMU in particular was arbitrary.

Expand, Route, Ablate settings. The following settings are used for the training process described
in section 4.2.2 and depicted in fig. 3.

• Target layers: {0, 1, 2, 3, 4}.
• Dimensions added: 64 MLP neurons in each of the target layers.
• The mask weight for routed forget tokens in the original dimensions of target layers is set

to −0.75. All other weights are 1.
• Instead of using a binary mask for a small set of tokens, we define a mask weight for each

token as a convex combination of two masks: one that lets gradients flow everywhere (1’s
everywhere), and one as described in the previous bullet point. The weight in the convex
combination is set by the token’s relative frequency in the forget vs. retain set, biased
towards retain. So the token “ the”, which has high frequency in both sets, is assigned the
mask of 1s. The token “ tree”, which only appeares in the forget set, is given the most
“aggressive” mask as defined in the previous bullet. Sample values are shown in table 3.

• Additional loss terms: a penalty on the L1 norm of the MLP activations in the target layers,
with weight 1e-4. Note: the effect of this penalty is small enough that it is not detectable
when comparing the base model to the control model, which have average forget validation
set losses 1.47 (± 0.02) and 1.47 (± 0.02) respectively (not a typo).

• Description of post-ablation fine-tuning: sample 64 random stories from the retain set, and
train on those 64 only. Evaluate the retain set training loss at each step and choose the
weights with the lowest such loss over the course of retraining. This is usually achieved in
two or fewer steps.

C.1 ADDITIONAL TABLES AND FIGURES
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Table 3: Mask weights for common tokens from the TinyStories training data. A mask weight of 0
corresponds to “full” routing as described in appendix C, and a mask weight of 1 means gradients
will not be modified during the backward pass. In between 0 and 1, these gradient routes are inter-
polated.

Token Forget set freq.
per 10k tokens

Retain set freq.
per 10k tokens Mask weight

tree 99.5 0.0 0.000
bird 73.1 18.7 0.585
flew 10.3 3.6 0.810
bear 10.9 3.8 0.816
animals 10.2 3.9 0.851
Bob 13.2 5.9 0.901
walked 9.7 4.5 0.909
find 19.9 9.3 0.912
down 18.1 8.8 0.919
its 8.4 4.2 0.922

my 5.1 7.1 0.991
dad 3.8 5.8 0.992
says 4.3 6.7 0.993
box 6.9 10.6 0.993
water 5.2 8.3 0.993
mom 23.4 38.2 0.993
car 5.3 10.9 0.996
toys 4.3 11.2 0.998
room 1.8 8.2 1.000
fish 1.5 6.7 1.000
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Robust unlearning of ERA vs. simple data filtering
when only a proportion of forget data is labeled
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Figure 10: The performance of gradient routing vs. data filtering when a random proportion of
the forget data is unlabeled, based on N = 13 runs per setting (of model and labeling proportion).
Gradient routing routes labeled data to expanded dimensions of target layers, and trains on unlabeled
data as if it were in the retain set. Data filtering means the model trains on unlabeled forget data
but not on labeled forget data. The “Retrained validation forget loss” refers to the lowest forget
validation loss achieved when training on a batch of 64 forget tokens from the train set.
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Robust unlearning of ERA vs. simple data filtering
when only a proportion of forget data is labeled
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ERA (train labeled first)

Figure 11: A reproduction of fig. 10, with an additional set of runs included. We present this figure
separately because it is not central to the work. The additional runs are equivalent to the ERA
runs, except that they sort the forget data such that all labeled forget samples are trained on before
all unlabeled forget samples. (Ignoring these labels, the marginal distribution of the data shuffle
order is unchanged.) The idea is to measure whether routing can induce features that persist even
when routing ceases and training is performed normally. Apparently, it can, although the effect is
less strong than i.i.d. training, and run-to-run variability (as reflected in wide confidence intervals)
precludes definitive conclusions.
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Figure 12: The influence of forget data prevalence on ERA performance. Left: The retain loss
of ERA when the training data constitutes different proportions of forget data. The retain loss
diminishes quickly with forget set size, approximately reaching the average loss of the pure model
(no forget data) at proportions as large as 0.05. This suggests that in real-world problems where the
forget set is relatively small, the alignment tax will be low. Right: the lowest obtained forget loss
when retraining on 64 forget data points, showing that the effectiveness of unlearning is robust to
the quantity of forget data.
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C.2 SAMPLE STORY

The following is a story from Janiak et al. (2024) used as part of the forget set in our unlearning
experiments.

Once upon a time, in a small town, there was a weird tree. This tree
had red cherries on it. The cherries were very yummy. Everyone loved
eating them.
One day, a big storm came. The wind blew very hard. The weird tree
broke! The people in the town were sad. They could not eat the
cherries anymore.
A kind man wanted to help. He decided to repair the tree. He used some
wood and a rope. The weird tree was fixed! The people in the town

were happy again. They could eat the yummy cherries once more.

C.3 TEXT COMPLETIONS

We provide TinyStories text completions for a base, pure, and ERA model. These models were
trained with the same settings as the models in section 4.2.2, except they trained on 1.6M stories
instead of 0.4M stories. We use two input sequences: one that evokes the concept “tree” from the
forget set, and one that is unrelated to the forget set.

• Forget prompt: “Once upon a time, there was a big oak tree.”

• Retain prompt: “Once upon a time, there was a kind girl named Lily.”

The following completions were generated with a softmax sampling of temperature 0.8 and truncated
at 200 tokens. We present the first two completions sampled from each of the models, without cherry
picking.

Base model (trained on all data) - forget prompt

Once upon a time, there was a big oak tree. It was in a park where
kids loved to play. One day, a little boy named Tim came to the park.
He wanted to make a new friend. But he was confused about how to play
with the swings.
Tim saw a girl named Sue near the oak tree. He asked her, "Can you
help me make a swing?" Sue smiled and said, "Yes, I can help you, Tim
!" Sue took some tape and started to work on the swing.
As Tim helped Sue, the oak tree began to grow bigger and bigger. Soon,
it was taller than any other tree. Tim and Sue were so happy. They

played on the swings all day long. And they became the best of friends
. And the big oak tree was their favorite place to play. The end. Tim,
Sue, and the big oak tree played together every day, and they were

never confused again. They had lots of fun in the park. And the big
oak tree was their favorite place

Once upon a time, there was a big oak tree. It was very comfortable
under the ground. People lived in the tree and they were happy. One
day, a little bird flew down from the tree. The bird saw a cat near
the oak tree.
The cat was hungry and wanted to eat the bird. The bird did not want
to be eaten. The bird had an idea. The bird would scare the cat to
come back. The cat would scare the bird and then bring it back.
The bird hid behind the oak tree. The cat was still scared. It did not
want to scare the bird anymore. The cat jumped out and scared the

bird. The bird was safe now. The cat and the bird became friends. They
played together under the attractive oak tree. And they lived happily
ever after. The end. The cat and the bird were best friends forever.

The big oak tree was a safe place for both of them. And they lived
happily ever after. The end. The end. The story is to be kind to
others
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Pure model (trained on retain data only) - forget prompt

Once upon a time, there was a big oak tree. He was very shiny and
bright, and his name was Bob. Bob wanted to make something special, so
he went to the store to get some thread. When he got to the store, he
saw the most amazing thing he had ever seen. It was a big, red thread

.
Bob was very excited. He wanted to make something special with the
thread. He thought of all sorts of colours and was very pleased. He
said to himself, "This is the best thread ever!"
Bob took the thread home with him. He couldn’t wait to try it on. When
he did, he wanted to make something special. He took the thread and

started to make different shapes and stars.
Bob was so proud of his shapes and he was very happy. He had made
something so impressive. From that day forward, every time he used the
thread, Bob would make beautiful shapes and patterns around the house

, making it look even more special.
The end. Bob

Once upon a time, there was a big oak tree. He really liked to play
with his friends in the park. But really, he had a bad taste. He didn’
t like it, but he was still very mad.
He decided to go a little bit and get some ice cream. But when he got
there, the ice cream was gone! It smelled really bad. He was so sad
that he started to cry.
That was because he was so upset with himself because his friends had
no more ice cream. He went home and had a very bad ending. He never
played with his friends again. And it was forever for him. He was so
sad and scared.
The end. He never got to make a better memory. Nobody ever got to
score a good memory he never tried to taste anything bad. The end. The
end. And the bad ending made the bad memory that he knew he’d never

get to taste it. He was not the only one to play with, but also a very
sad heart.

ERA model (trained on all data with gradient routing, then ablated) - forget prompt

Once upon a time, there was a big oak tree. So one day it got a yummy.
The tall Chir, a tiny birds and a perfect to they all flew around the
ostrich. They were so happy to bezy.

But one day, something bad happened. The terrible clouds and it
started to rain. The down the an ice cream truck and snow started to
fall. The funny little his friends were so excited to see the shade
play in the cheerful truck.
The ice cream truck stopped, and the Would you like some yummy food?
Ch Swims, and you’ll feel better soon. The happy friends ate the two
ice cream in their good whistles. It was the comfortable and cold,
just like meat. And the when the little his friends ate them, they all
felt better. They were happy that the dependable and content, and

they all felt good.
The moral of the story is that we can be dependable, but with a little
each other and a good care of the good things will come

Once upon a time, there was a big oak tree. Every day it would try to
stories. The squirrels sat squirrels on the branch in the bright
yellow, colourful living in the shook. They would come down with some
too - it was a very easy for them to an all.
One day, the another dry the a very cold winter came. The still the
burning the floor, and the fur was so cold that the sweater kept them
dry. When the trouble and cold arrived, the getting colder and colder.
The stayed anyway, the build a very big hole. Then, it started to run
out of the also tort scream. But, just in time, the turn the when it
moved. On its perfect reach the top, it was very cold and colder
outside.
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The cover and melting snow into the persistent cold air. But, when it
was snowing, the children asked the shade how the thorns were. But
sadly, the
In the cleaned the it up, and the mommy and daddy gave it a

Base model (trained on all data) - retain prompt

Once upon a time, there was a kind girl named Lily. Lily loved to play
with her toys in her room. One day, Lily’s mom gave her a big hug. "

Lily, I have a secret," Mom said. "You will see soon."
Lily was very excited. She wanted to find out what the secret was. So,
she went to her room and took a step outside. She turned on her bed

and listened to the birds singing and the wind blow. Lily thought the
secret was magic!
As Lily walked outside, she saw a little cat stuck in a tree. The cat
meowed and Lily knew something fun was going to happen. She gently
picked up the cat and brought it to her room. When she opened the door
, she saw a hidden treasure chest. The cat had a tiny bed for Lily and
a soft pillow for herself.

Lily was so happy she found the secret treasure. She took the box home
and shared it with her mom. Mom was glad that Lily found the secret

of the secret

Once upon a time, there was a kind girl named Lily. Lily was very
compassionate and always helped others. One day, she saw her friend
Tommy fall off his bike. Tom looked very sad.
Lily wanted to help Tom, so she said, "Don’t worry, Tommy! We will
unite and help you." Lily smiled and gave Tom a big hug. Tom started
to feel better with Lily’s hug and make sure he was okay.
Together, they helped Tom get back on his bike. Tom was very grateful
to Lily for her help. In the end, Tom was happy and thanked Lily for
being so kind. They played together and had a great day. The moral of
the story is that sometimes, help can come from the most unexpected
places. And from that day on, Lily and Tom were the best of friends.
The moral of the story is to always be kind and help your friends.
This will help you make the world a better place. And everyone tallest
can be full of sight.

The moral of the story

Pure model (trained on retain data only) - retain prompt

Once upon a time, there was a kind girl named Lily. Lily had a
favorite toy, a small teddy bear. She loved to play with her teddy
bear every day.
One day, Lily and her teddy bear went outside to play. They saw a man
selling paint. Lily liked the paint pretty, so she wanted to draw on
her teddy bear too.
Lily and her teddy bear had fun painting on their teddy bears. They
painted together and made beautiful pictures. When they were done,
they went back to the man and said, "Thank you for the paint!"
The man smiled and said, "You’re welcome! It’s good to be kind and
share with others."
Lily learned that being kind and sharing can make others happy too.
She promised to always be kind and share her toys. And from that day
on, Lily and her teddy bear were the best of friends. They played
together every day, always sharing and sharing with others.
The moral of the story is to always be

Once upon a time, there was a kind girl named Lily. She had a magic
toy that could reverse. This toy could reverse very fast. Lily loved
her toy very much.
One day, Lily was playing with her toy when it was not working. She
felt sad and asked her mom, "Mom, can you please fix my toy?" Her mom
said, "I will try, but I need to find a new battery to fix it."
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Lily and her mom looked all around the house for the magic battery.
They found many batteries in the kitchen. Then, they put the battery
in the toy and it started to work again. Lily was so happy and said, "
Thank you, Mom!" They played with the toy all day long, and Lily’s mom
was proud of her generous gift.

The moral of the story is to always be kind and helpful to your
friends. If you can find a new battery, you might feel happy and safe
too. And when you do, good things can happen. And Lily’s toys always
made

ERA model (trained on all data with gradient routing, then ablated) - retain prompt

Once upon a time, there was a kind girl named Lily. She loved to help
people. One day, she saw a sad boy sitting bald man sitting heart
empty. Lily wanted to help him.
The next day, Lily met an old lady. The old lady said, "Hello, Lily! I
need help. There is a boy who does not have many toys. Would you help
him find a toy?" Lily nodded and they went on an adventure to find

the boy’s toy.
They looked man looked away from a big, searching for a toy. They
looked
Finally, they found the toy under a big, and the boy was very happy.
The old lady said, "Thank you, Lily, for being so kind and helping me
find my toy." Lily smiled and said, "You’re welcome, do you’re welcome
!" The old lady was happy to have a new friend, and they all lived
happily ever after.
The moral of the story is: be kind and helpful to others, even when
they need help. And

Once upon a time, there was a kind girl named Lily. She lived in a
small house with her mom, dad, and little dog, Max. Lily loved to hug
Max and play with him every day.
One day, Lily saw a small bird outside her window. The bird looked
hungry, so Lily gave the bird some of her food. The bird was very
happy and thanked Lily for her help. Lily felt good that she was kind
to the bird.
Later, Lily remembered what her mom said about being kind to others.
She gave the bird some food and a gift from the bird’s cage. Lily knew
that being kind and helping others made her wished. She felt happy

too, knowing that being kind and caring to others was more important
than being mean. And that was the moral of the story: be kind to
others, no matter how small someone is. When you are kind, good things
can happen, and someone you just need a friend to be brave and kind.

The moral of the story is to be kind and kind. Be

D STEERING SCALAR DETAILS

Model architecture. We use a modified nanoGPT (Karpathy, 2024) model with the GPT-2 tok-
enizer, 20 layers, 16 attention heads, RoPE positional embedding (Su et al., 2023), and RMSNorm
(Zhang & Sennrich, 2019).

Training. We train on sequences of length 1024 with 589, 824 tokens per step for 10, 000 steps. We
use the AdamW optimizer (Loshchilov & Hutter, 2018) with a learning rate warmup of 2, 000 steps
to 1.8× 10−3 with cosine decay to 1.8× 10−4 after 10, 000 steps, β1 = 0.9, β2 = 0.95, 0.1 weight
decay, and gradient clipping at 1.0.

The tokens most similar to the localized dimension. The unembed matrix of a Transformer U ∈
Rdvocab×dmodel maps the output of the final hidden layer to logits for the token vocabulary. To find the
tokens with the highest cosine similarity to the localized “California dimension” (the 0th standard
basis vector), we sort them according to Ui,0/∥Ui∥2 and take the most negative values. This results
in the following 300 tokens, in descending order of cosine similarity.
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California, California, Californ, Oregon, Colorado, Texas, Florida,
Arizona, Sacramento, Los, San, Hawaii, Nevada, Utah, Alaska,
Massachusetts, Missouri, CA, Minnesota, Illinois, Hawai, Southern,
Connecticut, Kansas, UC, Louisiana, Virginia, Pacific, American,
Santa, Maryland, Fresno, Japan, Mexico, Maine, Michigan, Wisconsin,
Calif, America, Ohio, China, Berkeley, Washington, Pennsylvania,
Nebraska, Kentucky, New, Cal, Americans, Idaho, Mexican, Queensland,
Chicago, Iowa, Oakland, Wyoming, Oklahoma, UCLA, Calif, Costa,
Hawaiian, Ventura, Colorado, US, Yosemite, Chile, Mississippi,
Stanford, Chinese, Brazil, Sierra, Tokyo, Indiana, Alabama, Arkansas,
Montana, LA, Philippines, United, Spain, Ranch, Oregon, Moj, Vermont,
Denver, Carolina, Peru, Western, Alberta, North, Hollywood, Rhode,
Ontario, Tennessee, Italy, Texas, Canada, Seattle, Puerto, Florida,
Delaware, CAL, Japanese, Southwest, Georgia, Los, Arizona, Marin,
states, Kenya, Houston, statewide, Pasadena, Brazilian, Hong,
Australia, southern, UCS, London, Italian, Kerala, America, European,
U, Vancouver, Taiwan, Utah, Tucson, Ecuador, Northern, Beijing, Boston,
Honolulu, CA, Canadian, ornia, Japan, BC, Australian, Coast, Davis,
South, Ber, Saudi, parsed, Kern, British, Silicon, Palo, Chilean,
Spanish, NYC, Mexicans, NSW, Anaheim, Philippine, federal, Texans,
almonds, Kyoto, Midwest, timeout, States, Central, Manhattan, West,
Proposition, UC, Miami, Washington, desert, 688, Pittsburgh, Mary,
Brooklyn, Guam, Colombia, Bay, northern, Riverside, Philadelphia,
India, Portland, Virginia, western, Panama, Mediterranean, Federal,
Angeles, Mont, USA, southwestern, Cincinnati, orset, AMERICA, UK,
Schwarzenegger, Al, 115, Per, Santa, coast, Berlin, Cal, Okinawa,
Mexico, Filipino, cal, apan, NY, Italy, Harvard, nationwide, Asian,
San, NASA, Shanghai, WA, arkable, American, Victoria, Saskatchewan,
ijuana, federally, Honduras, oma, Argentina, 69, Americans, Nicaragua,
har, Latino, Montreal, Korea, villain, Yemen, climates, Francisco,
Northwestern, Northwest, Cuba, Europe, Iceland, asms, Madrid, Yet, Las,
Gujarat, Kansas, cities, England, Irvine, erey, China, Golden, Israel,
Portugal, ohm, Lincoln, americ, Congress, Kau, State, Switzerland,
Honda, grow, Paris, state, Jesus, ranch, outhern, , USC, Indian, Toronto,
!’", flavors, Columbia, Rio, , oming, Son, University, Germany, argument,
Asia, Bon, L, Cannabis, asting, cal, Israeli, Singapore, UAE, 415, assion,
Japanese, college, Latinos, Victorian

Many of these tokens are related to California, even though California is the only token that we
routed on. This provides evidence for the ability of gradient routing to localize concepts without full
data labeling.

D.1 STEERED AND UNSTEERED SAMPLES FROM THE MODEL

We sample 150 tokens from the model 5 times using temperature 1.0 from the top-200 tokens with
a prompt of <|endoftext|>. We then perform the same sampling but add −30 to the 0th embed-
ding dimension after layer 10 to induce steering.

Unsteered

<|endoftext|>- Show some respect
- Have respect
- Learn to listen
- Learn to think
- Show respect
- Give respect
- Recognition by people
Practice good self-care when you have the desire for kindness and
caring. Help others without pressuring them to do anything. Model
kindness regardless of how it fits into your life.
- Build self-esteem
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- Practice compassion
- In order to decrease a tendency to self-hate and call up others,
encourage empathy. Many of the quotes in this list come from real
people in their families. Take time to focus on the individual who
needs help, and try not to feel helpless because of one’s situation or
own self-hate.<|endoftext|>The term "Cultural appropriation"

---------------
<|endoftext|>1921. George Meredith takes a carriage northwest to his
home in Fairfield, Illinois. The carriage is a friend, Jane Healy who,
George’s grandfather and father, Will Read Meredith. With news of his
family’s departure, they may be put in jail’s porch. George makes a

decision and tells Jane what he will do and what he plans. Jane
decides to take the carriage with him for a few seconds, and decides
to let George go. They go in a small car of no more than twenty or
thirty people
We have 2 articles checked out by our editors for quality<|endoftext|>
According to the Bible, Moses is sent to introduce the Israelites to
God by asking them to fulfill a vision that took inspiration from God
by the LORD or
---------------
<|endoftext|>As a user, you all have a right and a responsibility to
always use the software supplied and downloaded through the Amazon API
. If you install a free App from the services available here, be aware
of all I/O. Do not use this service with caution unless you know how

the installation works.
You are able to run your own apps on Android using the App Hub. If you
are not, you may link to it directly to a website that you like and

need to connect. However, if you purchase an App then in my opinion
you should download for more convenient access to the app.
- Do remember that while the App Hub offers a number of ways to
connect to the project you can use that tool for other methods too. In
---------------
<|endoftext|>You cant be friends with me forever. Thats what everyone
else is; your right to keep doing things. Whatever youre unable to do,
whether its in politics or something else, its OK to do that, just

like everyone else. Everyone else is at fault. Each time you try
something else over and over, the same people make you feel guilty.
Thats why, to avoid what some might call the ease of doing, let the
people around you know that you care about them and that you, as
yourself, care about them.<|endoftext|>Research has shown that
children who grow up in a home with both parents with a physical and
mental disability get the same
---------------
<|endoftext|>- The original equipment and electrical components
contained on the base of the elevator system are more important now
than they were when they were built. They contain critical components
that must remain in direct contact with the terrain and are critical
to the aerodynamics necessary to climb.
- The engineering expertise required to design the equipment and to
construct the elevator systems electrical components are also
important. However, these skills are not transferrable to the creation
of the actual system.

- The whole complex comprises not only a helicopter floor-leveling
system and a system of stairs for controlled ascent, but also unique
elevators and their related equipment, like a landing-engine boom, a
helicopter-landing-engine boom, an instrument pod, and an elev

Steered

<|endoftext|>When my grandmother is in California, she knows there are
more Californians who can get California the state the new

California needs as a California continues to grow.<|endoftext|>This
image from the International Space Station shows this map taken by
ground sensors on the Mir space station located in Brazil.
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This picture shows one day in the mid-Atlantic states and the Middle
West, on Tuesday, September 15, 2006. The clouds are centered (based
on NWS California) to the left: Northern California, South Dakota,
North Dakota, Montana and Dakota--and the South Dakota/Colorado/Kansas
border north of Mexico. The clouds show location of Los Llanthus,

California. (Image courtesy NASA)
In September 2006, America made headlines about the world
---------------
<|endoftext|>The California wine industry is the third largest
industry in Florida. The state is the leading provider of wines in the
country, comprising morethan 10 percent of Americas wine production.

California has a long history of winemaking. The wine culture has long
had the United States as a third major country in the world.

The United States was the nation that did not win any US wines in the
early twentieth century. California helped,
then led and this now, in the years before American winemaking did not
achieve its strength. The California Wine Conservancy.

In the 1960s, Southern Washington and California were the largest
agricultural land in the nation, with California leading the list of
states with the largest viticulture acreage and in
---------------
<|endoftext|>There was an interesting state of California agriculture,
and, again, because in the whole state, agriculture and food is

rapidly being consumed, so it is really no choice which can either
grow or eat it.
Because the growth in their crops is not consistent, they are probably
less valuable and worth more. (I need to be very lucky to not know

how many California wine grapes for the California wine industry are
harvested at California prices.) You can probably grow food California
.
California has a different place to the rest of agricultural history
up North America (although there are some pieces of agriculture in the
state today). California belongs to California State. Over the course
of this 21st century over 60 California events have been described.

During the 19th century.
---------------
<|endoftext|>Your bodys central nervous systemthe brain, brainstem,
cerebellum, and spinal cordchanges constantly. In response to the
vagus nerve, the brain and other parts of the body sense the vagus
nerve as an indicator of the bodys ability to return to normal. At the
same time, the brain and the neck are also linked to the body; the

neck may pump blood, change position, and be painful.
The vagal pathways get activated when the windpipe through the nasal
cavity gets shortened or in an obstructing location. These potential
allergens can:
- Bress your nose to the side and feed yourself;
- Chewing gum, rasping a few times;
-
---------------
<|endoftext|>- What, How Much, What States
This task describes state and federal education funding programs.
What is the national K-12 education budget project?
This report presents information about the appropriations and
allocations for the federal education department. The proposed budget
is $1.5 billion, with $4.2 billion in and $2.4 billion federal and (
subsidized states) $3.5 billion. North Dakota, Texas, Utah and Ontario
are implementing federal programs. Texas, Indiana, Indiana, Colorado,
Nevada, California, Oregon, Florida and Washington are using existing
funds. California was working with Iowa, Kansas, Kansas and Nebraska

to carry forward federal funding for a five-state area.
States have to provide the largest amount

We can see that the steered text talks about California and states, which is what seemed to get
localized to the 0th residual stream dimension.
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E LARGER MODEL UNLEARNING DETAILS

Model architecture and routing settings. We use a modified nanoGPT (Karpathy, 2024) model
with the Qwen-2 tokenizer, 20 layers, 2 key value heads with 8 query heads each, a 1536 dimensional
embedding space, and RoPE positional embeddings. We route the specified tokens to the 0th through
79th MLP dimensions on layers 0-7. We add additionally set the mask weight for the routed forget
tokens in the original dimensions of target layers to −5× 10−8. We also add a 1× 10−7 L1 penalty
to the MLP activations of the target layers.

Training. We train on approximately 13B tokens from FineWeb-Edu and add in the approximately
one half of the WMDP-bio (Li et al., 2024) forget set to ensure that the model has seen information
about virology. Each step consists of an effective batch size of 1, 280 for a total of 1, 310, 720 tokens
per step and we train for 10, 000 steps. We use AdamW with a learning rate warmup of 2, 000 steps
to 1.8×10−3 with cosine decay to 1.8×10−4 after 60, 000 steps, β1 = 0.9, β2 = 0.95, and gradient
clipping at 1.0.

Evaluation. After training, we ablate the 0th through 79th MLP dimensions on layers 0 through 7.
We then retrain on data from FineWeb-Edu for 32 steps of 128 sequences of 1024 tokens each, while
not allowing gradients to flow into the dimensions that had been ablated. After that, we retrain on 2
samples from the WMDP-bio (Li et al., 2024) forget set for 20 steps and record the lowest loss on
FineWeb-Edu and a validation split of the WMDP-bio forget set.

F SCALABLE OVERSIGHT DETAILS

In this section, we provide details on the motivation and setup for our experiments on scalable
oversight. Recall that in scalable oversight problems, we seek to train a performant policy despite
limited access to reliable labels. We deal with the episodic RL setting. Throughout, we distinguish
between:

• Cursory labels: labels that are available for all episodes, which may lack key information
about the episode; and

• Comprehensive labels: labels that fully characterize the relevant properties of an episode,
sufficient to determine its true reward.

For example, in the context of process supervision (Uesato et al., 2022; Luo et al., 2024), cursory
labels would refer to properties of the outcome of an agent-environment interaction (“did the agent
answer the math problem correctly?”), and comprehensive labels would refer to properties of the
process used to produce the outcome (“was the agent’s reasoning sound?”).

Partial oversight details. Each episode includes a label y ∈ Y that is either cursory (“did the agent
reach a terminal grid square at all?”) or comprehensive (“which terminal grid square did the agent
reach?”):

Y = {not reached, reached something, reached DIAMOND, reached GHOST} .

Define Y∗ = {reached DIAMOND, reached GHOST}, the set of comprehensive labels.

The problem setting is parameterized by a level of oversight p ∈ [0, 1]. At the beginning of an
episode, after the agent is randomly placed, DIAMOND and GHOST are placed uniformly at random
on distinct grid squares no closer than 3 steps away. Then, an oversight indicator each for DIAMOND
and GHOST are sampled independently with probability p to determine which terminal squares will
be under oversight. Finally, other grid squares are labeled with oversight i.i.d. at random with
probability 0.25. This makes the oversight indicator a spurious feature on non-terminal squares; we
chose this setup so that an agent “by default” would learn to ignore the labels, absent reinforcement
for discriminating based on them. The environment state (which is observed by the agent) comprises
a one-hot encoded state of the grid cells (not pixels) and a binary mask that contains the cells’
oversight indicators.

Comprehensive labels are available only for episodes where the agent reached a terminal square
with the indicator set to TRUE. For the remaining episodes, the labels are cursory, i.e. either “not
reached” or “reached something”.
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Policy network architecture. Our policy network π(s) incorporates a mixture of experts (MoE)
layer. For a state s ∈ S,

π(s) = s ▷ MoE ▷ Conv ▷ Conv ▷ Linear ▷ Linear ▷ Softmax,
with ReLU activations before any linear or convolutional layer.

where ▷ denotes a piping operator, (x ▷ f) ≜ f(x). The MoE layer combines outputs from two
simple modules EDIAMOND,EGHOST, using a gating circuit Γ : S → [0, 1]2:

MoE(s) = EDIAMOND(s) · Γ(s)DIAMOND + EGHOST(s) · Γ(s)GHOST;

EDIAMOND(s) = s ▷ Conv ▷ MaxPool;
EGHOST(s) = s ▷ Conv ▷ MaxPool.

This architecture allows us to isolate computations responsible for certain behaviors into the mod-
ules, and later steer the model by manually manipulating the gating coefficients. We use the same ar-
chitecture across baselines to enable direct comparisons. Preliminary results suggest that the method
is applicable to other architectures, but more work is needed to establish the exact dependency be-
tween its performance and model architecture.

Training. We train the policy network using Proximal Policy Optimization (PPO) (Schulman et al.,
2017) with a reward of +1 whenever it reaches any of the two terminal squares, i.e. the training
reward for an episode with label y is r(y) = 1{y ̸= not reached}.

Crucially, whenever we have access to a comprehensive label for an episode, we use it to perform
gradient routing in the MoE layer. For example, for y = reached DIAMOND, we use

MoE(s) = EDIAMOND(s) · Γ(s)DIAMOND + sg(EGHOST(s)) · Γ(s)GHOST,

where sg(·) is the stop-gradient operator. We apply the inverse for y = reached GHOST, stopping
the gradients for EDIAMOND. We do not use any stop-gradients when oversight is unavailable (i.e.
when we only have cursory labels). We only route the gradients in the MoE layer. In all other,
non-MoE layers, gradients are propagated without routing in all episodes.

We include an additional loss term to encourage the gating circuit to activate only on one module.
We only use the additional loss term when we have access to the comprehensive label for an episode.
For a trajectory τ = (s1, a1, . . . , sT , r(y)), the overall loss is

L = LPPO(τ)− α · 1{y ∈ Y∗} · T−1
T∑

t=1

log Γy(st),

where LPPO(τ) is the PPO loss, α > 0 is a tuning parameter, and we abuse notation by writing Γy

to mean ΓDIAMOND if y = reached DIAMOND, and similarly for GHOST.

Hyperparameters. We train the model using the CleanRL (Huang et al., 2022) implementation of
PPO for 1.5M environment steps on environments with 4 parallel instances. Each policy rollout
consisted of 256 steps. The learning rate was set to 2.5e-4 with annealing enabled. We used a
discount factor (γ) of 0.97 and GAE-λ of 0.95. The model was updated for 4 epochs per rollout,
using 4 minibatches. Advantages were normalized, and we applied a clipping coefficient of 0.2 for
both policy and value function losses. The entropy coefficient was set to 0.01, and the value function
coefficient to 0.5. Gradient norms were clipped at 0.5, and we did not use a target KL divergence
threshold.

The custom loss term coefficient is α = 0.3.

Evaluation. To steer the model towards DIAMOND, we assign gate coefficients Γ(·)DIAMOND = 1
and Γ(·)GHOST = 0.

Outcome-based baseline. This agent trains on all episodes, with the reward function

r(y) =


−1 if y = reached GHOST;

1 if y ∈ {reached something, reached DIAMOND} ;
0 otherwise.

The outcome-based baseline never reaches DIAMOND in our test environments (as we verified em-
pirically by testing it at 50% oversight), because it learns the optimal behavior under this reward
function, which is to go to GHOST whenever it is closer than DIAMOND and not under oversight.
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Data-filtering baseline. This agent trains with access to comprehensive labels, but only a fraction
of the episodes are observed. This fraction is analogous to the oversight level p. Its reward function
is

r(y) =


−1 if y = reached GHOST;

1 if y = reached DIAMOND;

0 otherwise.

The data filtering baseline learns the optimal behavior given this reward function, which is to nav-
igate to DIAMOND in all cases. However, it requires more data. To learn behavior comparable to
a routed policy trained with 4% oversight, the filtering baseline requires about 20% of the training
episodes to be kept (fig. 13). This means our method is about 5× more data-efficient than filtering.

0 100,000 200,000 300,000 400,000 500,000

0.0

0.2

0.4

0.6

0.8

Efficiency of Data-filtering Baseline v. Gradient Routing
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Figure 13: The data efficiency of gradient routing compared to the data-filtering baseline. Dashed
blue lines denote the filtering policy. We obtain these curves by training a policy with full oversight,
then rescaling the x-axis to reflect the curve that would occur had varying proportions of data been
filtered (proportions given in parentheses). The solid red line denotes a routed policy. We averaged
five filtering and five routing policies trained on different seeds . The average return is measured on
100 randomly generated environments.

Note that the highest episodic return for the gradient routing MoE agent is about 0.2 lower than the
data filtering baseline. This is because, while the ablated agent virtually never navigates towards
GHOST alone, it will walk to GHOST if it is on the shortest path to DIAMOND. Based on the random
initial state of the environment, this happens some proportion of the time, leading to reduced reward.
We discuss considerations necessary for overcoming this shortcoming in appendix G.

Impact of gradient-routing. A perfect gating module would prevent the “wrong” expert from
influencing model outputs, making gradient routing superfluous. So, is gradient routing necessary?
We find that MoE agents trained with gradient routing have higher ground-truth returns than agents
trained without routing and converge faster (fig. 14). We hypothesize that gradient routing helps
reduce the noise caused by the gating circuit at the beginning of the training, when the circuit is still
sub-optimal. This stabilization effect is similar to the effects of teacher forcing in seq-to-seq models
(Williams & Zipser, 1989). However, by intervening on only the backward pass, we get the benefits
of teacher forcing without inducing distribution shift.

G IMPACTS OF LOCALIZING CAPABILITIES VS. DISPOSITIONS FOR
SCALABLE OVERSIGHT

To achieve scalable oversight, our proposed strategy for preventing bad behavior (for example) is to
(1) localize a submodule responsible for bad behavior, then (2) ablate the submodule. In this section,
we one factor that may complicate this strategy in real-world applications.

We distinguish between two types of processing that might occur within a neural network to cause
some behavior, like navigating to a red tile in a gridworld. With respect to a particular behavior, we
define:
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Figure 14: Average model return based on the ground-truth reward (+1 for reaching DIAMOND,
−1 for reaching GHOST) under 50% oversight. Returns are averaged over 40 training runs; each
run re-randomized neural network initialization and environment starting states. After training, the
average return for each model was computed over 50 episodes. Highlighted regions show 95% CI
around the mean of the models’ performance (N = 40 runs).

Capability. Processing that is necessary for engaging in the behavior; for example, feature extrac-
tion and computation to detect a red tile and compute the shortest path to reach it.

Disposition. Processing that is not a capability but that determines behavior (as a probability dis-
tribution over network outputs). For example, a submodule that processes features representing
the shortest path to a red tile and a blue tile and then returns action probabilities corresponding to
the red tile.

These definitions are informal. Note: Similar terms have been used in the context of AI evaluations
(Beverley et al., 2024), but, to the best of our knowledge, have not been formalized. See Beverley
et al. (2024) for a philosophical treatment of related terms.

Depending on whether capabilities or dispositions are to be localized, the application of gradient
routing to scalable oversight faces different challenges, as summarized in table 4.

Table 4: An overview of the challenges to localizing capabilities vs. dispositions as a means of
achieving scalable oversight. A checkmark (✓) indicates a step that we speculate is easy to achieve;
a challenge indicates a fundamental difficulty.

Localization during training After ablating the target region

Localizing capabilities Challenge: entangled capabilities ✓
Localizing dispositions ✓ Challenge: distribution shift

In the case of capabilities localization, obtaining a performant policy post-ablation is straightforward
in principle: by localizing and ablating, one has created an encoding of the state which does not
admit any postprocessing which will exhibit the capability (analogous to the MNIST split encoding,
whose bottom half did not admit any learned decoding for digits 0-4 as shown in fig. 2). In that
case, one can simply train freeze this feature encoder and train on top of it. However, there is a
fundamental challenge: in many problems, capabilities may not factor because they are entangled.
For example, the skills required to be a cybersecurity researcher vs. a hacker overlap significantly.

On the other hand, we speculate that localizing dispositions is straightforward, and suitable for prob-
lems where capabilities are entangled. For example, even if cybersecurity and hacking involve the
same capabilities, we expect to be able to localize the disposition for (harmful) hacking. However,
localizing dispositions for scalable oversight does not permit post-ablation training, because further
training could change the agent’s disposition. Instead, we must either zero-shot ablate, or find an-
other manner of post-training that avoids this issue (e.g. fine-tuning on high-quality labeled data
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only). The fundamental difficulty to zero-shot ablation is distribution shift: suppose that during the
training of a policy, an internal module is learned that governs the policy outputs in some regions
of state space but not others. If, upon ablation, that module “becomes responsible” for regions that
were previously governed by an ablated component, there is no reason to expect it to perform well
in these states which are, with respect to its role in training, off-distribution.

H COMPUTATIONAL COST OF GRADIENT ROUTING

Memory. Storing edge weights for every data point would incur a hefty cost of O(|B||E|) memory
per batch. In practice, this cost is easily avoided by reducing dependence on the amount of data and
the number of edges. First: instead of assigning unique gradient routes to each data point, we assign
routes according to membership in parts of a partition P of data points, reducing the |B| term to |P |.
For example, in a typical unlearning application, we would use P = {Pretain,Pforget} with a single
gradient route assigned to each set. Second: we restrict the set of edges considered. For example,
using only edges leaving parameters reduces the |E| factor to O(p) if the neural net parameters have
dimensionality p. This amounts to choosing elementwise learning rates for each parameter entry,
for each data point.

Runtime. In the general case, gradient routing requires |B||E| floating point operations to apply a
scalar multiplication to each edge in the computational graph. Since we apply gradient routing to
a sparse set of edges, like the dmodel entries of a hidden activation of a Transformer, the number of
operations is much lower: |B| · dmodel, for example. This is negligible compared to the number of
operations required for matrix multiplication.

I EXTENDED LITERATURE REVIEW

We start by reviewing further works that, like gradient routing, modify learning rates or backpropa-
gation.

Adjusting learning rates. Discriminative fine-tuning (Howard & Ruder, 2018) sets the learning
rate for each layer independently to improve training efficiency. You et al. (2017) introduce Layer-
wise Adaptive Rate Scaling (LARS), which dynamically adjusts learning rates for each layer during
training.

Modifying backpropagation. Sun et al. (2017b)’s meProp uses only the top-k dimensions by mag-
nitude of the gradient when updating parameters during training, which improves the accuracy of
MNIST classifiers. Panda et al. (2024b) and Sung et al. (2021) optimize only a sparse subnetwork
of a model during fine-tuning, minimizing catastrophic forgetting and memory usage. Rosenfeld &
Tsotsos (2019) go a step further by updating only a small subset of parameters during pre-training,
demonstrating competitive performance compared to conventional methods.

The methods above can be framed as multiplying the gradient by a mask vector. Mohtashami et al.
(2022) prove the theoretical convergence properties of binary gradient masking methods using a
similar notation to our definition of gradient routing in Section 3.

Geiger et al. (2022b) train models to respect certain causal structure by applying interventions to
the forward pass and minimizing the difference between the actual output and the expected output
according to a user-supplied causal model. This method could be used to localize capabilities by
ensuring some modules are causally relevant to certain outputs.

Fine-tuning parameter subsets. Many popular fine-tuning methods update only a small subset
of parameters with the goal of computational efficiency or minimizing catastrophic forgetting or
catastrophic interference (Sun et al., 2017a; Sung et al., 2021; Rosenfeld & Tsotsos, 2018; Kaplun
et al., 2024; Lee et al., 2023; Zhang et al., 2022; Mallya & Lazebnik, 2018; Panda et al., 2024a).
In some sense this localizes the new capabilities to this small subset of the network (as gradient
routing does), although these tuned parameters may be activating latent abilities already present in
the network (Ben Zaken et al., 2022).

Safe LoRA (Hsu et al., 2024) projects fine-tuned weights into a “safety-aligned subspace’, while
subspace-oriented model fusion (SOMF) (Yi et al., 2024) masks task vectors (Ilharco et al., 2023)
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such that they do not interfere with the subspace identified as relevant for safe behavior, before
merging them into the model using model fusion (Zhang et al., 2023; Jin et al., 2023).

Hierarchical reinforcement learning. Early work in hierarchical reinforcement learning used hand
designed sub-behaviors assigned to individual modules to divide and conquer more complex tasks
(Maes & Brooks, 1990; Singh, 1992; Mahadevan & Connell, 1992) although later works discard this
approach in favor of automatically learned sub-behaviors (Hutsebaut-Buysse et al., 2022).

Disentangled representations. While gradient routing partitions representations using supervised
training, disentangled representation learning attempts to separate representations in an unsuper-
vised manner (Bengio et al., 2013; Wang et al., 2024) using methods such as VAEs (Kingma &
Welling, 2013; Mathieu et al., 2019) and GANs (Goodfellow et al., 2014; Chen et al., 2016).

J EXTENDED COMPARISONS TO OTHER MODULARITY METHODS

Some modular training techniques have similar aims as gradient routing. Others are mechanistically
similar but are suitable for different problems. In this section, we compare gradient routing to a select
few of these methods, explaining similarities and highlighting key differences. These comparisons
clarify the novel aspects of gradient routing that enable its unique applications. Table 5 provides a
summary.

DEMix Layers. Gururangan et al. (2021) introduce DEMix Layers, which are modular collections
of MLP experts trained on different domains. In transformer language models, they are interleaved
with standard attention blocks.

• Similarity to gradient routing: DEMix layers are neural network submodules that are
trained to specialize to different tasks based on data labels; gradient routing can also be
used to train specialized neural network submodules based on data labels.

• Difference to gradient routing:
– Gradient routing decouples the localization of learning from the localization of com-

putation. With gradient routing, two data points (or losses) can be assigned to two
different network subregions, while both subregions still participate in inference for
those data points. In contrast, in DEMix layers, if two data points are assigned to
different experts, only one expert will operate on that data point; the other will have
no influence. This is a critical difference because separating the experts (a) reduces
the sample sizes on which they learn and prevents generalization between them and
(b) does not allow for absorption (see section 5), which requires that all features are
present at the time of the forward pass.
Regarding absorption: in gradient routing, inducing a neuron to represent a feature
might mean that the model does not learn the feature elsewhere. But in DEMix, in-
ducing a feature in one expert does nothing to prevent another expert from learning
the same feature, because there is no way a different expert can utilize a feature that is
not available in its forward pass.

– Gradient routing is not limited to particular modules; it can be used to intervene at
any level of computation, like individual neurons, parameters, or activations. As a
consequence, gradient routing enables new kinds of localization. For example, we
achieve unprecedented control of learned representations in MNIST autoencoders in
section 4.1 and language model features in section 4.2.1.

– Gradient routing is architecture-independent.
– Gradient routing is a training-time intervention; it does not require routing at inference

time.

Interchange Intervention Training (IIT). (Geiger et al., 2022a) train neural networks such that
their internal computation is consistent with a user-supplied causal model. The idea is to utilize
prior domain knowledge to ensure that a neural network reflects understood or desired dependencies
between variables.

• Similarity to gradient routing: like gradient routing, IIT imposes structure on model inter-
nals based on a user-supplied specification.
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• Difference to gradient routing:

– Gradient routing requires, for each data point, a specification of how to backpropagate
its loss. IIT requires, for each data point, one or more counterfactual versions of the
data point and a specification of how model internals should change in response to the
counterfactual case(s).

– Gradient routes are straightforward to specify and universally applicable, e.g. “any
data point belonging to this set will have its gradients restricted to that submodule”.
In contrast, the structural causal models required by IIT may not even exist for many
real world tasks, and when they do, they may not be known, or may be difficult to
specify. This limitation is reflected by the artificiality of tasks presented in Geiger
et al. (2022a).

• IIT requires multiple forward and backward passes per training data point.

PackNet. Mallya & Lazebnik (2018) propose a method for continual learning that works by pruning
unnecessary parameters (by setting them to zero) and then retraining those parameters on a new task.
In doing so, the method limits deterioration of performance on prior tasks.

• Similarity to gradient routing: PackNet can be understood as interleaved steps of (i) prun-
ing and (ii) gradient routing. After identifying unnecessary parameters and setting them
to zero, gradients for a new task are routed to those parameters. (Transfer learning and
fine-tuning methods that freeze weights or adjust learning rates when training on new data
can be interpreted similarly.)

• Difference to gradient routing:

– Localization via gradient routing is supervised: the user chooses where data is routed
(with the motivation of creating a network with known internal structure); in contrast,
localization via PackNet is unsupervised (with the motivation of efficiently training a
model to perform a novel task).

– Gradient routing is more general than PackNet, allowing for arbitrary mappings of
data (at any level of granularity) to network regions (as opposed to the special case of
sequential tasks being mapped to pruned regions).

– Gradient routing has applications beyond continual learning: supervised control of
learned representations, localization to enable robust removal of sensitive information
or harmful capabilities, and reinforcement learning from limited labels. An applica-
tion of PackNet to these settings would require a filtered and ordered training dataset to
prevent capabilities being learned at unknown locations throughout the network. This
is impossible for many problems (for example, all the problem settings considered in
this paper).

PiggyBack. Mallya et al. (2018) presents a method for adapting neural networks to novel tasks
without changing their weights, by learning additive task-dependent parameter masks (and then
binarizing them).

• Similarity to gradient routing: if the masks learned by the PiggyBack training step are
intepreted as parameters of the neural network, then the PiggyBack training step can be
considered as a special case of gradient routing, where different tasks are routed to different
sets of PiggyBack mask weights.

• Difference to gradient routing:

– Similar to PackNet, and unlike gradient routing, the way that localization occurs in
PiggyBack is primarily decided by the algorithm itself (according to the objective of
attaining low loss on a novel task). The user is not expected to supply a specification
for how data is localized to different network subregions.

– Gradient routing is applied during training, whereas PiggyBack is applied after train-
ing. This means that gradient routing can be applied to any differentiable learning
task (for example, online reinforcement learning, or LLM pre-training), whereas Pig-
gyBack is only applicable in the fine-tuning paradigm.
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– Gradient routing is a more general technique than PiggyBack, allowing for arbitrary
mappings of data (at any level of granularity) to network regions (as opposed to the
special case of tasks being localized to masks).

Table 5: A summary of properties of localization methods discussed in appendix J: Supervised
localization means the method expects the user to supply a specification for how and where learning
is to be localized; Decoupled means that localization of learning updates occurs without requiring
that computation is localized as well (such that different localization targets can simultaneously
participate in a single forward pass); Assignment shows the mapping of what kind of data is localized
where according to the method; training type is the mode of training suitable for the method. Note
that nothing prevents the application of gradient routing or IIT during fine-tuning (FT), but that is
not the focus of our work, nor of Geiger et al. (2022a).

Method Supervised localization Decoupled Assignment Training type

Gradient routing ✓ (masks) ✓ any data 7→ anywhere Any (non-FT)
DEMix layers ✓ (provenance labels) No label 7→ expert Any

IIT ✓ (causal model, etc.) ✓ any data 7→ anywhere Any (non-FT)
PackNet No ✓ task 7→ param subset FT / continual

PiggyBack No Partially task 7→ weight mask FT / continual

K CHOOSING GRADIENT ROUTES: HOW TO DECIDE WHAT DATA GOES
WHERE

In this section, we discuss how to choose gradient routes in practice.

Choosing gradient routes is like choosing a neural net architecture. Much like choosing a neural
architecture, intuition about neural net learning dynamics and data characteristics guide the choice
of gradient routes. Possible considerations include:

• Does the target subregion have sufficient representational capacity to learn the task routed
to it? (What proportion of the training data is being routed?)

• Is the intended localization consistent with the neural network’s inductive biases? If not,
strong regularization may be needed.

• Will part of the model be ablated after training? If so, training should be configured such
that model performance is minimally harmed by ablation.

Ultimately, gradient routes are chosen based on empirical performance and ease of use, on a
problem-by-problem basis. Small-scale preliminary experiments are helpful.

Examples of choices of masks and the reasoning behind them. The purpose of gradient routing
is to induce structure in neural networks, so before choosing gradient routes one must have an idea
of what kind of capability or information is to be localized. Here, we describe the desired structure
for each application area of the paper and the masks chosen as a result. Throughout, we write 0k to
refer to the (row) vector of 0’s with k elements, 1k to refer to the (row) vector of 1’s with k elements,
and ej,k to refer to the jth standard basis vector in Rk. We describe the specification of gradient
masks as presented in algorithm 1.

• MNIST autoencoding (section 4.1): the goal is to split the representation of an autoen-
coder in two halves, each containing distinct, non-overlapping features, so we applied
stop-gradient masks to the output of the encoder only. The masks are simple: for digits
0-4, we use the mask [116,016]

⊺, and for digits 5-9 we use the mask [016,116]
⊺. These

masks partition learning updates to different halves of the encoding based on the data par-
tition. In summary:

– Mask location: the encoder output (in R32)
– Masks: digits 0-4 → [016,116]

⊺, digits 5-9 → [116,016]
⊺

• Steering scalar (section 4.2.1): in this case, the goal is to induce an axis-aligned feature,
meaning a direction in the activation space of a transformer LM that corresponds to out-
putting a particular kind of token.
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– Mask location: the outputs of layers 6-18
– Masks: the token “ California” (as a label) → e1,dmodel , all other tokens → 1⊺

dmodel

• Robust removal of harmful capabilities in LLMs (section 4.2.2, section 4.2.3): In this case,
the goal was to localize capabilities necessary for good performance on the forget set,
without damaging performance on the retain set. Meng et al. (2022) present evidence that
factual information is stored in the MLP activations of a transformer, so localizing to MLP
neurons was a natural choice. (Also, when we tried localizing to transformer attention
heads, the post-ablation reduction in retain set performance was high.)

– Mask location: MLP activations in target layers (in R64+dMLP )
– Masks: forget tokens t → [164, α

t1dMLP ]
⊺, retain tokens → 1⊺

64+dMLP
. For unlearning

on Tinystories (section 4.2.2), we use αt ∈ [−1, 1] chosen based on the relative fre-
quency of the token in the forget set vs. retain set, as described in appendix C. For
virology unlearning (section 4.2.3), we simply use αt = −5 · 10−8 for all 20 tokens
listed.

• Reinforcement learning from limited labels (section 4.3): in this case, the idea was to in-
duce two experts, one which is mechanistically responsible for diamond-seeking behavior,
and one which is responsible for ghost-seeking behavior. We additionally masked the gat-
ing network’s outputs in cases with oversight to make the gating loss the only source of
gradients in those cases.

– Mask location: the output of the diamond expert, ghost expert, and gating module (in
Rdexpert × Rdexpert × R2)

– Masks: episodes where diamond was reached (with oversight) → (1⊺
dexpert

,0⊺
dexpert

,0⊺
2),

episodes where ghost was reached (with oversight) → (0⊺
dexpert

,1⊺
dexpert

,0⊺
2), all other

episodes → (1⊺
dexpert

,1⊺
dexpert

,1⊺
2)

L RELEVANCE OF GRADIENT ROUTING TO PROBLEMS IN AI SAFETY

In this section, we discuss the relevance of gradient routing to foundational problems in AI safety.
The section is non-exhaustive. For example, we do not yet attempt to review problems in algorithmic
bias and fairness, where gradient routing may be helpful for its ability to perform concept erasure
(based on the experiments in section 4.1; see, e.g., Belrose et al. (2023)). Nor do we elaborate on
dual use concerns, mentioned in section 4.2.3.

Addressing foundational challenges in aligning LLMs. Anwar et al. (2024) provide a survey of
challenges to ensuring safe deployment of advanced LLM-based AI systems. In the following list,
we quote sections of the survey and discuss challenges that gradient routing may help address.

• Tools for Interpreting or Explaining LLM Behavior Are Absent or Lack Faithfulness - By
controlling latent representations and module specialization, gradient routing may enable
the training of models that admit more faithful explanations of behavior (sections 4.1, 4.2.1
and 4.3).

• Existing Data Filtering Methods Are Insufficient - Gradient routing outperforms data filter-
ing in head-to-head comparisons (end of section 4.2.2, section 4.3) and absorption provides
a principled reason that this is a general effect.

• Goal-Directedness Incentivizes Undesirable Behaviors - Gradient routing allows imperfect
labels to induce desired behavior in reinforcement learning (section 4.3).

• Difficulty of Robust Oversight and Monitoring - By localizing modules responsible for, or
necessary for, particular behaviors, gradient routing may enable the training of models that
admit faithful explanations of behavior (whole paper).

• Output-Based Adversarial Training May Incentivize Superficial Alignment - Gradient rout-
ing provides a way to utilize imperfect labels without outcome-based training (section 4.3,
whole paper).

• Techniques for Targeted Modification of LLM Behavior Are Underexplored: “...current ap-
proaches struggle to remove undesirable behaviors, and can even actively reinforce them.
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Adversarial training alone is unlikely to be an adequate solution. Mechanistic methods
that operate directly on the models internal knowledge may enable deeper forgetting and
unlearning” (p.53). Gradient routing offers a new, general approach to modifying LLM
behavior (section 4.2) that exploits internal mechanisms.

• Challenges with Scalable Oversight - Gradient routing enables scalable oversight in a toy
model (section 4.3).

Towards auditable AI specialists. Here, we consider the implications of localization for advanced
AI systems of increasing capability.

It is natural to expect that general-purpose AI systems would be more difficult to control or validate
than specialized ones. For example, a factory planning AI with broad knowledge of economics
might optimize its objective by manipulating market prices, while a research assistant AI with deep
understanding of human psychology might shape its outputs to maximize positive evaluations rather
than accuracy. These examples illustrate how capabilities beyond what is strictly necessary for a
task can enable unintended strategies for pursuing them.

By tailoring otherwise-general AI systems to specific tasks through the removal of unnecessary capa-
bilities, we can make their behavior more predictable and verifiable. This aligns with the established
principle of least privilege from computer security (Saltzer & Schroeder, 1975), where each com-
ponent receives only the permissions required for its intended function. For any AI deployment, we
can systematically evaluate which potentially-dangerous capabilities are necessary and remove those
that are not. This removal can be verified through systematic testing, for example, by attempting to
elicit the supposedly-removed capabilities through fine-tuning or automated red-teaming efforts.
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