
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Optimizing Network Resilience via Vertex Anchoring
Anonymous Author(s)

ABSTRACT
Network resilience is a critical ability of a network to maintain its

functionality against disturbances. A network is resilient/robust

when a large portion of the nodes are to be better engaged in the

network, i.e., they are less likely to leave given the changes on

the network. Existing studies validate that the engagement of a

node can be well captured by its coreness on network topology.

Therefore, it is promising to maximize the number of nodes with

increasing coreness values. In this paper, we propose and study

the follower maximization problem: maximizing the resilience gain

(the number of coreness-increased vertices) via anchoring a set

of vertices within a given budget. We prove that the problem is

NP-hard and W[2]-hard, and it is NP-hard to approximate within

an 𝑂 (𝑛1−𝜖) factor. We first propose an advanced greedy approach,

followed by a time-dependent framework designed to quickly find

high-quality results. The framework is initialized by the advanced

greedy algorithm and incorporates novel techniques for optimizing

the search space. The effectiveness and efficiency of our solution

are verified with extensive experiments on 8 real-life datasets.

ACM Reference Format:
Anonymous Author(s). 2024. Optimizing Network Resilience via Vertex

Anchoring. In Proceedings of the ACM Web Conference 2024 (WWW ’24).
ACM, New York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Network resilience refers to a network’s ability to adapt and endure

changes, where node/user engagement is a key issue [21]. Many

real-life networks are susceptible to dynamics [20], e.g., in a so-

cial network, there are often natural failures (the random leave of

users due to their individual situations) and artificial attacks on

the network (user attraction strategies from competing networks).

The departure of users may contagiously affect the engagement of

other users [38], which may even lead to the collapse of a network

[21, 47]. Correspondingly, the users with increasing engagement

may encourage the participation of other users who are thus less

likely to leave the network. A network is resilient/robust if few

nodes will leave the network given the negative changes. Thus, in

order to sustain the resilience of a network, it is critical to identify

and enhance node engagement to the greatest extent, e.g., maximize

the number of engagement-enhanced nodes.

Real-world networks are usually modeled as graphs in which dif-

ferent graph characteristics are considered for the resilience study,

e.g., centrality, connectivity, and diameter [20]. Despite the various

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

metrics proposed in the literature, as we will discuss in Section 2,

most of the metrics do not consider the engagement dynamic of

nodes which is closely correlated with network resilience.

The 𝑘-core is a widely studied cohesive subgraph model for

user engagement analysis, which is defined as a maximal subgraph

where each vertex has at least 𝑘 neighbors [39, 45]. Every vertex in

the graph has a unique coreness value, i.e., the largest 𝑘 such that the

𝑘-core contains the vertex. The core decomposition can compute the

coreness of every vertex by iteratively removing the vertices with

the smallest degree in the remaining graph. This procedure well

captures the engagement dynamic of users in the unraveling of a

network, and thus the coreness is validated as the “best practice” for

measuring user engagement on graph structure [38]. As shown in

Figure 1, in Gowalla social network [33], there is a clear correlation

between coreness 𝑐 and node engagement (represented by the aver-

age number of check-ins for all nodes with coreness 𝑐). Note that the

correlation is also validated in other networks [50] and the outliers

are due to the sparsity of the vertices with the same coreness.

Vertex anchoring is a common practice in recent studies to opti-

mize the engagement of targeted users and improve the engagement

of other users through contagious user interactions [6, 10, 16, 35,

37, 54]. We may provide incentives to key users s.t. they will be

first “anchored” regarding user engagement and thus enhance the

overall engagement of all the users. The degree of each anchored

vertex can be considered as positive infinity, while its connections

to other vertices are not changed, i.e., the anchored vertex will not

be deleted in any batch of core decomposition. The coreness values

of non-anchored vertices may be increased by vertex anchoring

which reflects the true dynamic of user engagement.

In the literature, different objectives are proposed to optimize

overall user engagement by anchoring a number of vertices, e.g.,

Bhawalkar et al. [6] propose the anchored 𝑘-core problem to maxi-

mize the size of 𝑘-core for a given 𝑘 value; Linghu et al. [35] study

the anchored coreness problem to maximize the overall coreness
gain of all the non-anchored vertices. However, the target of the

above studies is different from the network resilience optimization

studied in this paper. The natural failures or the attacks on a net-

work may incur in a “random” manner, e.g., the collapse of the

Friendster network may start from the leaving of users with either

large corenesses [46] or relatively small corenesses [21]. Therefore,

in order to optimize network resilience, we need to enhance the

engagement of as many users as possible.

In this paper, we pursue the coverage of followers, i.e., the ver-

tices with coreness increased in core decomposition with anchored

vertices. We propose and study the follower maximization (FM)

problem: given a graph 𝐺 and a budget 𝑏, anchor a set of at most

𝑏 vertices in 𝐺 such that the resilience gain (i.e., the number of fol-

lowers) is maximized. As shown in Figure 2, we check the coverage

of followers on Gowalla by greedily anchoring the vertices accord-

ing to resilience gain, coreness gain [35], betweenness centrality

[24] and closeness centrality [15], respectively. The result shows a

clear gap in follower coverage among the resilience gain and other

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

0 10 20 30 40 51
coreness

10

102

103

av
er

ag
e

#c
he

ck
-in

s

Figure 1: Node engagement
and coreness on Gowalla

0 500 1000 1500 2000
budget

0%
3%
6%
9%

12%
15%
18%

fo
llo

we
rs

 c
ov

er
ag

e

resilience
coreness

betweenness
closeness

Figure 2: Follower coverage
of anchoring on Gowalla

metrics. It also indicates that the engagement enhancement is quite

biased when applying the coreness gain, i.e., only a small portion

of users benefit even if the budget is relatively large. As network

resilience considers the engagement dynamic of all the users, the

resilience gain adopted in the FM problem is more promising.

Challenges and Contributions. To the best of our knowledge, we
are the first to study the FM problem to optimize network resilience

via vertex anchoring. We prove the problem is NP-hard and W[2]-

hard parameterized by the budget 𝑏. For problem approximability,

it is NP-hard to approximate within an 𝑂 (𝑛1−𝜖) factor. Although
GAC proposed in [35] can be migrated to solve the FM problem by

modifying the computation of coreness gain to resilience gain, it

is time-consuming in practice especially on large datasets due to

large search space and unspecific design of techniques, e.g., it takes

more than three days on the LiveJournal dataset when 𝑏 = 100.

To efficiently solve the FM problem, we propose a series of novel

computing techniques: (a)We first propose AdvGreedy, an advanced
greedy approach with high efficiency. The key idea of AdvGreedy
is to compute the followers of each candidate vertex based on shell

component, which is more fine-grained than the core component

tree used in GAC; (b) For the time-consuming follower computation,

we propose a novel explore-and-retract strategy in local core de-

composition, which can scan as few candidate followers as possible

for accelerating the algorithm; (c) In addition, we propose a tight

upper bound to reduce the number of vertices that require exact

follower computation; and (d) We further refine the upper bound

of follower number by combining it with the reuse technique.

Although our proposed AdvGreedy significantly outperforms

GAC in both running time and resilience gain (shown in Section 7),

it does not have any approximate guarantees (Corollary 2). To

bridge this gap, we propose a time-dependent framework equipped

with AdvGreedy, which applies branch and bound searching to

obtain a high-quality solution quickly and then continues exploring

promising spaces to produce better answers.

In summary, the main contributions of this paper are as follows.

• Motivated by existing studies, we propose and study the

follower maximization (FM) problem to optimize network

resilience. We prove the problem is NP-hard, W[2]-hard

with respect to the budget parameter, and NP-hard to ap-

proximate within an 𝑂 (𝑛1−𝜖) factor.
• We design an advanced heuristic (AdvGreedy), which con-

sists of three phases: upper bound computation, greedy

selection, and reuse of intermediate results.

• To bridge the problem of approximate guarantee, we pro-

pose a novel time-dependent framework on the budget min-

imization problem of FM, which equips with AdvGreedy.

• Extensive experiments show that (i) our AdvGreedy is more

effective than other heuristics including GAC in improving

resilience gain; (ii) AdvGreedy is faster than GAC by more

than 1 order of magnitude; and (iii) the time-dependent

framework continues to produce better results over time.

2 RELATEDWORK
The k-core [39, 45] has been extensively studied across various ap-

plication scenarios, such as social networks [18, 27, 34, 48], web net-

works [11, 19], biological networks [2, 7], software networks [55],

ecological networks [41], and financial networks [9].

To measure the ability of a network for withstanding and sus-

taining disturbances, extensive studies are conducted on network

resilience/robustness. As surveyed in [20, 36, 42], there are vari-

ous resilience measures based on different graph characteristics,

e.g., adjacency, connectivity, distance, etc. The intuition of adja-

cency approaches is that nodes with many connections are more

critical to the overall graph structure, including degree measures

[22, 23], centrality [26, 32, 49]. Connectivity metrics measure the

robustness of connecting/disconnecting the graph with key nodes

[4, 12, 28]. Distance metrics consider the path length between node

pairs, e.g., diameter-based metrics [1, 5]. Measures of network re-

silience/robustness vary on applications, e.g., Zitnik et al. [60] show

that the connectivity-based metric can model the evolution of re-

silience in protein interaction networks. Nevertheless, the focuses

of the above studies are different from our model, e.g., the centrality

measures essentially consider the resilience on information flow

[32, 49] while our FM problem is built on the true engagement

dynamics of all the vertices.

As the coreness metric is the “best practice” for measuring the

vertex engagement with network topology [38], many previous

works consider measuring user engagement (network stability) by

monitoring 𝑘-core structure, e.g., maximize the size of 𝑘-core via

vertex anchoring [6, 13, 31, 37, 52], minimizing the size of 𝑘-core via

vertex removal [53, 57], and edge manipulations [25, 40, 58, 59]. As

the focus on the 𝑘-core with a fixed 𝑘 value is relatively a local view

on user engagement, existing studies tend to consider the overall

coreness dynamic of all the nodes, i.e., the overall coreness gain/loss

[35, 51]. However, as shown in the introduction, the engagement

enhancement is biased on certain nodes and the optimization of

network resilience aims to enhance as many nodes as possible.

Dey et al. [17] propose TMCV problem to maximize the number of

coreness-changed vertices by deleting at most 𝑏 vertices. This is to

consider the protection of tender nodes which is different from the

enhancement of vertex anchoring in our FM problem.

3 PRELIMINARIES
We consider a simple, undirected and unweighted graph𝐺 = (𝑉 , 𝐸),
where 𝑉 (𝐺) (resp. 𝐸 (𝐺)) represents the set of vertices (resp. edges)
in 𝐺 . We denote 𝑛 = |𝑉 (𝐺) |,𝑚 = |𝐸 (𝐺) | and assume𝑚 > 𝑛. Let

𝐺 [𝑉] denote the induced graph by the vertex set 𝑉 . Given a vertex

𝑣 in a subgraph 𝑆 of 𝐺 , 𝑁 (𝑣, 𝑆) denotes the neighbor set of 𝑣 in 𝑆 ,

i.e., 𝑁 (𝑣, 𝑆) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸 (𝑆)}. The degree of 𝑣 in subgraph 𝑆 ,

i.e., |𝑁 (𝑣, 𝑆) |, is denoted by 𝑑 (𝑣, 𝑆).

Definition 1 (𝑘-core 𝐶𝑘 (·)). Given a graph 𝐺 and an integer 𝑘 ,

a subgraph 𝑆 is a 𝑘-core of 𝐺 , if (i) each vertex 𝑣 ∈ 𝑆 has at least

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Optimizing Network Resilience via Vertex Anchoring WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑘 neighbors in 𝑆 , i.e., 𝑑 (𝑣, 𝑆) ≥ 𝑘 ; and (ii) 𝑆 is maximal, i.e., any

supergraph of 𝑆 is not a 𝑘-core except 𝑆 itself.

Note that 𝑘-core in this paper is not required to be connected as

in [39, 45], we use 𝑘-core to represent all the subgraphs satisfying

Definition 1. According to the definition of 𝑘-core, every vertex in

the graph has a unique coreness value.

Definition 2 (coreness 𝑐 (·)). Given a graph 𝐺 , the coreness of

a vertex 𝑢 ∈ 𝑉 (𝐺), denoted by 𝑐 (𝑢,𝐺), is the largest 𝑘 such that

𝐶𝑘 (𝐺) contains 𝑢, i.e., 𝑐 (𝑢,𝐺) = argmax𝑘 𝑢 ∈ 𝐶𝑘 (𝐺).

A graph can be decomposed into a hierarchy where the vertices

are distinguished and arranged by their coreness values.

Definition 3 (core decomposition). Given a graph 𝐺 , core de-

composition is to compute the coreness of every vertex in 𝑉 (𝐺).

The core decomposition can be computed in𝑂 (𝑚) time by recur-

sively removing the vertex with the smallest degree in the remain-

ing graph, and updating the degrees of its neighbors by bin sort [3].

In this paper, once a vertex 𝑥 in graph𝐺 is anchored, its degree is
considered as positive infinity while its neighbor set is not changed.

Every anchored vertex is called an anchor or an anchor vertex. An
anchor will never be removed in core decomposition of𝐺 , and core

decomposition with anchors can still be computed in 𝑂 (𝑚) time.

The existence of anchors may raise the corenesses of other ver-

tices in the core decomposition with anchors. Let 𝑐𝐴 (𝑢) denote
the coreness of each vertex 𝑢 with the anchor set 𝐴. For each new

anchor 𝑥 , the coreness-increased vertices whose corenesses are not

changed by previous anchors are the followers of 𝑥 , i.e., the fol-
lower set of 𝑥 is {𝑢 | 𝑐𝐴∪{𝑥 } (𝑢) > 𝑐𝐴 (𝑢) ∧ 𝑐𝐴 (𝑢) = 𝑐 (𝑢)}, where𝐴
is the anchor set before anchoring𝑥 .We assume the coreness of each

anchor 𝑥 is increased by the anchoring, i.e., 𝑐𝐴∪{𝑥 } (𝑥) > 𝑐𝐴 (𝑥).

Definition 4 (resilience gain 𝑔(·)). Given a graph 𝐺 and the

anchor set 𝐴, the resilience gain of 𝐺 regarding 𝐴, denoted by

𝑔(𝐴,𝐺), is the number of followers by anchoring𝐴, i.e., the number

of vertices with coreness increased after anchoring 𝐴. We have

𝑔(𝐴,𝐺) =
��{𝑣 ∈ 𝑉 (𝐺) | 𝑣 ∈ 𝐴 ∨ 𝑐𝐴 (𝑣) > 𝑐 (𝑣)}

��
.

Definition 5 (follower maximization problem). Given a graph

𝐺 and a budget 𝑏, the follower maximization (FM) problem aims to

find a set 𝐴 of at most 𝑏 vertices in 𝐺 , such that the resilience gain

regarding 𝐴, i.e., 𝑔(𝐴,𝐺), is maximized.

The state-of-the-art solution for the FM problem is to adapt the

GAC algorithm [35]. The main idea is to replace the coreness gain

with the resilience gain in greedy anchor selection and upper bound
pruning. More details are given in the appendix (Section A.1).

4 PROBLEM ANALYSIS
In this section, we first prove the FM problem is NP-hard and hard

to approximate in general graphs, i.e., there is no polynomial time

algorithm to approximate the optimal solution within a factor of

𝑂 (𝑛1−𝜖), for every positive constant 𝜖 > 0.

Lemma 1. It is NP-hard to distinguish between instances of the FM
problem where the optimal solution has value Ω(𝑛) versus when the
optimal solution has value 𝑂 (𝑏).

Proof Sketch. We prove the lemma through a reduction from

the set cover decision (SCD) problem [29] to our FM problem, by

constructing corresponding FM instances for any general SCD in-

stances. Themain idea of designing new FM instances is to construct

graphs, which can get𝑂 (𝑏) resilience gain when the corresponding

SCD instance is a no-instance, and can get Ω(𝑛) resilience gain

when the corresponding SCD instance is a yes-instance. Since the
SCD problem is NP-complete, Lemma 1 can be proved. □

Corollary 1. Given a graph 𝐺 , the FM problem is NP-hard.

Proof. In the rest of the paper, please find the proofs in Sec-

tion A.5 for all the theorems/corollaries. □

Lemma 1 further immediately indicates that there does not exist

any 𝑂 (𝑛1−𝜖) approximate solution for the FM problem.

Corollary 2. For any 𝜖 > 0, it is NP-hard to approximate the FM
problem on general graphs within an 𝑂 (𝑛1−𝜖) factor.

From a parameterized perspective, we prove that the FM problem

is W[2]-hard with respect to the budget parameter 𝑏.

Theorem 3. The FM problem is W[2]-hard parameterized by 𝑏.

Besides, we prove the properties of the resilience gain function.

Theorem 4. Resilience gain 𝑔(·) is monotonic but not submodular.

5 AN ADVANCED GREEDY APPROACH
As mentioned in Section A.1, GAC [35] finds the followers of each
anchor vertex 𝑥 in those 𝑘-core components which contain at least

one neighbor of 𝑥 with the same or higher coreness as 𝑥 . Better

still, it develops reuse techniques and upper bound based on the

𝑘-core component. However, 𝑘-core component is not the atomic

unit in finding the followers. We can find that if a vertex 𝑢 is a

follower of an anchor 𝑥 , then there exists at least one path from

𝑥 to 𝑢 (Lemma 2) s.t. all the vertices in the path except 𝑥 share

the same coreness. Motivated by this, we propose the concept of

shell components, which are connected subgraphs of 𝑘-core com-

ponents with the same 𝑘 and contain all the followers. Therefore,

we can efficiently find all the followers of an anchor in the smaller

shell components rather than in the larger 𝑘-core components.

Based on the shell component structure, we propose our approach

AdvGreedy. Intuitively, AdvGreedy outperforms GAC by following

reasons: (1) Follower computation. Since each shell component

is a subgraph of a 𝑘-core component, the search space is reduced

significantly. Besides, we propose a explore-and-retract strategy to

further reduce the number of scanned vertices, which utilizes a

multi-queue data structure to maintain the scan order. (2) Reuse
results. The shell component is more fine-grained than the 𝑘-core

component. Consider a vertex 𝑢 whose shell component remains

unchanged while 𝑘-core component has changed, thus 𝑢’s follower

results can be reused in AdvGreedy while needs re-computation in

GAC. (3) Upper bound computation.We utilize a shell component

to tighten the upper bound of the follower numbers, significantly

improving the pruning effect of non-candidates.

In what follows, we first introduce the shell component structure
(Section 5.1), and combine it with the explore-and-retract strategy

to propose the followers computation method (Section 5.2). We

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1: ShellDecomp(𝐺)
Input : 𝐺 : the graph

Output : SC : the index of shell components in𝐺

Compute 𝑐 (𝑢,𝐺) of each 𝑢 ∈ 𝑉 (𝐺) by core decomposition [3];1

for each 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑢 ∈ 𝑉 (𝐺) do2

𝐺 ′ ← the connected subgraph of 𝐻𝑐 (𝑢,𝐺) (𝐺) which contains 𝑢;3

𝑆 ← a new shell component;4

𝑆.𝑐 ← 𝑐 (𝑢,𝐺) ; 𝑆.𝑉 ← 𝑉 (𝐺 ′) ; 𝑆.𝐸 ← 𝐸 (𝐺 ′) ;5

𝑣 is set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 for each 𝑣 ∈ 𝑉 (𝐺 ′) ;6

SC[𝑣] ← 𝑆 for each 𝑣 ∈ 𝑉 (𝐺 ′) ;7

return SC8

then detail the mechanism to reuse the intermediate results across

greedy interactions (Section 5.3) and the design of the upper bound

pruning method (Section 5.4). Finally, we put the above techniques

together and propose our AdvGreedy algorithm (Section 5.5).

5.1 Shell Component Structure
Definition 6 (𝑘-shell). Given a graph𝐺 and a positive integer 𝑘 ,

the 𝑘-shell, denoted by 𝐻𝑘 (𝐺), is the set of vertices in 𝐺 with their

corenesses exactly equal to 𝑘 , i.e.,𝐻𝑘 (𝐺) = 𝑉 (𝐶𝑘 (𝐺))\𝑉 (𝐶𝑘+1 (𝐺)).

Definition 7 (shell component). Given a graph 𝐺 and the 𝑘-

shell 𝐻𝑘 (𝐺), a subgraph 𝑆 is a shell component of 𝐻𝑘 (𝐺), if 𝑆 is a

maximal connected component of the induced subgraph𝐺 [𝐻𝑘 (𝐺)].

Different from Definition 9, where vertices in the same 𝑘-core

component can be connected through other vertices whose core-

ness is larger than 𝑘 , vertices in the same shell component must

be connected through vertices that share the same coreness 𝑘 . A

𝑘-shell is formed by the vertices in a series of non-overlapping shell

components, and each vertex is contained in exactly one shell com-

ponent. Note that in core decomposition, the deletion sequence of

the shell components of 𝐻𝑘 (𝐺) can be arbitrary. For a shell compo-

nent 𝑆 of 𝐻𝑘 (𝐺), we denote 𝑆.𝑉 , 𝑆.𝐸 and 𝑆.𝑐 as the vertex set, edge

set and coreness of any vertex in 𝑆 respectively, i.e., 𝑆.𝑉 = 𝑉 (𝑆),
𝑆.𝐸 = 𝐸 (𝑆) and 𝑆.𝑐 = 𝑘 . We use structure SC to index the shell

components for all the vertices. For each 𝑣 ∈ 𝑉 (𝐺), SC[𝑣] is the
only shell component that 𝑣 ∈ SC[𝑣] .𝑉 .

Vertices in each shell component can be further divided into

different vertex sets, named layers, according to their deletion

sequence in core decomposition [3]. We use 𝑙 (𝑢) to denote the

layer number of vertex 𝑢, and use 𝐻 𝑖
to denote the 𝑖-layer vertex

set in the 𝑘-shell 𝐻𝑘 (𝐺), i.e., the set of vertices that are deleted

in the 𝑖-th batch of 𝐻𝑘 (𝐺) in core decomposition. Formally, 𝐻 𝑖 =

{𝑢 |𝑑 (𝑢,𝐺𝑖) < 𝑘 + 1 ∧ 𝑢 ∈ 𝐻𝑘 (𝐺)}, where 𝐺1 = 𝐶𝑘 (𝐺), and for

𝑖 ≥ 1,𝐺𝑖+1 is the induced subgraph of vertex set𝑉 (𝐺𝑖) \𝐻 𝑖
, i.e., the

deletion of the 𝑖-th layer will produce the (𝑖+1)-th layer. The layer of
each vertex can be computed easily during the core decomposition.

For each vertex 𝑢, we denote the coreness-layer pair of 𝑢 as P(𝑢),
i.e., P(𝑢) = (𝑐 (𝑢), 𝑙 (𝑢)). We then define the order of the coreness-

layer pair, P(𝑢) ≺ P(𝑣) iff 𝑐 (𝑢) < 𝑐 (𝑣) or 𝑐 (𝑢) = 𝑐 (𝑣) ∧ 𝑙 (𝑢) < 𝑙 (𝑣).
Shell Component Computation. Algorithms 1 illustrates the

decomposition of each vertex into its shell component, which costs

𝑂 (𝑚) time. We first conduct core decomposition on 𝐺 and get the

coreness of each vertex (Line 1). Then we traverse all unassigned

vertices to construct all the shell components (Lines 2-8). Each time

visit an unassigned vertex𝑢, we first apply BFS to get the connected

subgraph𝐺 ′ of (𝑐 (𝑢,𝐺))-shell which contains𝑢 (Line 3), then create

a new shell component 𝑆 (Line 4-5) and mark vertices in 𝑉 (𝐺 ′) as
assigned (Line 6). After that, we set SC[𝑣] for 𝑣 ∈ 𝑉 (𝐺 ′) by 𝑆 (Line

7). When all the vertices are set 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 , we can get SC (Line 8).

5.2 Follower Computation on Shell Component
From Lemma 3, we can compute the resilience gain by computing

the number of followers when adding a new anchor. By the defini-

tion of 𝑘-core, we know that if the coreness of a vertex 𝑣 increases

to 𝑐 (𝑣) +1, 𝑣 must have at least 𝑐 (𝑣) +1 neighbors whose corenesses
are at least 𝑐 (𝑣) + 1, and we call these neighbors supporters of 𝑣 .

For follower computation, [35] further define the upstair path

and limit the candidate followers (search space) based on it.

Definition 8 (Upstair Path). An upstair path in 𝐺 for 𝑢 ∈ 𝑉 (𝐺)
w.r.t a given anchor 𝑥 if there is a path 𝑥 ⇝ 𝑢 where (i) for every

vertex 𝑦 (𝑦 ≠ 𝑥), 𝑐 (𝑦) = 𝑐 (𝑢); and (ii) for every two consecutive

vertices 𝑣 and 𝑣 ′ from 𝑥 to 𝑢, (𝑣, 𝑣 ′) ∈ 𝐸 (𝐺) and P(𝑣) ≺ P(𝑣 ′).

Lemma 2 ([35]). A vertex 𝑢 ∈ 𝑉 (𝐺) is a follower of the anchor 𝑥
implies that there is an upstair path 𝑥 ⇝ 𝑢 in 𝐺 .

Benefiting from shell components, we extend Lemma 2 to follow-

ing theorem to limit candidate followers of an anchor. Let 𝑆𝑁 (𝑣)
denote successive neighbors of 𝑣 (neighbors with higher coreness-
layer pairs), i.e., 𝑆𝑁 (𝑣) = 𝑁 (𝑣,𝐺) ∩ {𝑤 | P(𝑣) ≺ P(𝑤)}.

Theorem 5. A vertex 𝑣 ∈ 𝑉 (𝐺) is a follower of vertex 𝑥 implies
that 𝑣 ∈ ⋃𝑆∈𝐶𝑆 (𝑥) 𝑆.𝑉 , where 𝐶𝑆 (𝑥) = ⋃

𝑢∈𝑆𝑁 (𝑥) SC[𝑢].

According to Theorem 5, we use shell components as the basic

units to compute the followers of each anchor 𝑥 . We then show that

the follower computation can be conducted on each shell compo-

nent independently. The increase of 𝑣 ’s coreness after anchoring 𝑥

must be caused by the increased number of 𝑣 ’s supporters. Denoted

by 𝑢, 𝑣 ’s supporters can be divided into three sets: (1) 𝑢 ∈ 𝐴, the
anchors can always support its neighbors; (2) 𝑐𝐴 (𝑢) > 𝑐𝐴 (𝑣), since
the coreness of 𝑣 increases at most 1, 𝑢 is still a supporter of 𝑣 after

anchoring 𝑥 ; (3) 𝑐𝐴 (𝑢) = 𝑐𝐴 (𝑣), 𝑢 will remain as a supporter of 𝑣 if

𝑐 (𝑢) also increases after anchoring 𝑥 .

Since case (1) is easy to identify, we focus on the latter two. For a

vertex 𝑣 , if its coreness increases after anchoring 𝑥 , it is likely that

new supporters of 𝑣 come from its neighbors with the same coreness

before anchoring 𝑥 . In this case, to determine whether a vertex 𝑣 is

a follower of 𝑥 , we only need to focus on 𝑣 ’s neighbors who are in

SC[𝑣] before anchoring𝑥 . As a result, we can compute𝑥 ’s followers

on each of its candidate shell components 𝑆 ∈ 𝐶𝑆 (𝑥) independently.
Explore-and-Retract Strategy. To compute followers of anchor

𝑥 , we employ the explore-and-retract strategy to check if the core-

nesses of vertices who lie on any upstair path from 𝑥 will increase.

Specifically, we continue to explore the higher-layer neighbors (due
to Lemma 2) of the vertex which we suppose its coreness will proba-

bly increase, and immediately retract when meeting a vertex whose

coreness cannot increase, to check whether this “ impossible” vertex

will cause its lower-layer neighbors to also become “impossible”.

As shown in Algorithm 2, we first find candidate shell compo-

nents 𝐶𝑆 (𝑥) based on Theorem 5 (Lines 1-2). For each 𝑆 ∈ 𝐶𝑆 (𝑥),
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Optimizing Network Resilience via Vertex Anchoring WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 2: FindFollowers(𝑥 , 𝐺 , SC)
Input : 𝑥 : the anchor,𝐺 : the graph, SC : the shell components

Output : 𝐹 [𝑥] [·]: shell component classified follower sets of 𝑥

𝑆𝑁 (𝑥) ← 𝑁 (𝑥,𝐺) ∩ {𝑤 | P (𝑥) ≺ P (𝑤) };1

𝐶𝑆 (𝑥) ← ⋃
𝑢∈𝑆𝑁 (𝑥) SC[𝑢];2

for each 𝑆 ∈ 𝐶𝑆 (𝑥) do3

if 𝑆 ∈ 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑥) then continue; // Section 5.34

𝐹 [𝑥] [𝑆] ← ∅;5

𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 ← max𝑣∈𝑆.𝑉 𝑙 (𝑣) ;6

Initialize queues𝑄1, · · · ,𝑄𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 ;7

Push 𝑣 into𝑄𝑙 (𝑣) for each 𝑣 ∈ 𝑆.𝑉 ∩ 𝑆𝑁 (𝑥) ;8

for 𝑖 ← 1 to𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 do9

while𝑄𝑖 is not empty do10

𝑣 ←𝑄𝑖 .𝑓 𝑟𝑜𝑛𝑡 () ;𝑄𝑖 .𝑝𝑜𝑝 () ;11

𝑆𝑁 (𝑣) ← 𝑁 (𝑣,𝐺) ∩ {𝑤 | P (𝑣) ≺ P (𝑤) };12

𝑠𝑢𝑝 (𝑣) ← |𝑁 (𝑣,𝐺) ∩ (𝑄𝑖 ∪𝑆𝑁 (𝑣) ∪ 𝐹 [𝑥] [𝑆] ∪ {𝑥 }) | ;13

if 𝑠𝑢𝑝 (𝑣) ≥ 𝑐 (𝑣) + 1 then14

𝐹 [𝑥] [𝑆] ← 𝐹 [𝑥] [𝑆] ∪ {𝑣};15

Push 𝑢 into𝑄𝑙 (𝑢) for each 𝑢 ∈ 𝑆𝑁 (𝑣) ∩ 𝑆.𝑉 ;16

else17

Initialize queue𝑄 and push 𝑣 into𝑄 ;18

while𝑄 is not empty do19

𝑢 ←𝑄.𝑓 𝑟𝑜𝑛𝑡 () ;𝑄.𝑝𝑜𝑝 () ;20

𝐹 [𝑥] [𝑆] ← 𝐹 [𝑥] [𝑆] \ {𝑢};21

for each 𝑤 ∈ 𝑁 (𝑢,𝐺) ∩ 𝐹 [𝑥] [𝑆] do22

𝑠𝑢𝑝 (𝑤) ← 𝑠𝑢𝑝 (𝑤) − 1;23

if 𝑠𝑢𝑝 (𝑤) ≤ 𝑐 (𝑤) then push 𝑤 into𝑄 ;24

return 𝐹 [𝑥] [·];25

if 𝑥 ’s followers in 𝑆 remain the same as the last iteration, we reuse

the results (Line 4, detailed in Section 5.3). Otherwise, we find its

followers in each component 𝑆 independently (Lines 5-25), which

are maintained in 𝐹 [𝑥] [𝑆] (Line 5). To apply the explore-and-retract
strategy, we scan vertices in ascending order of their coreness-layer

pairs, and decide whether the coreness of a vertex will increase

by checking its supporter number. To organize candidate follow-

ers in linear time, we construct multiple queues for different lay-

ers. More specifically, for each 𝑆 , we use a sequence of queues

{𝑄1, 𝑄2, · · · , 𝑄𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 } to maintain the traverse order, where

𝑚𝑎𝑥_𝑙𝑎𝑦𝑒𝑟 denotes the maximum layer number in 𝑆 (Lines 6-7). We

first push 𝑥 ’s successive neighbors in 𝑆 into the queues (Line 8), then

traverse each element 𝑣 in 𝑄𝑖 in ascending order of 𝑖 (Lines 9-11).

For each vertex 𝑣 , we denote its supporter number as 𝑠𝑢𝑝 (𝑣) and
divide its neighbors 𝑢 ∈ SC[𝑣] into three categories to compute

𝑠𝑢𝑝 (𝑣) : (i) unexplored and 𝑙 (𝑢) ≥ 𝑙 (𝑣): We first assume that 𝑢 is

a supporter of 𝑣 . If 𝑠𝑢𝑝 (𝑣) ≥ 𝑐 (𝑣) + 1, we regard 𝑣 as a potential

coreness-increased vertex and will explore 𝑢 later. If we later find

that 𝑢’s coreness cannot increase (i.e., 𝑢 is actually not a supporter

of 𝑣), we perform retract to check if 𝑣 ’s coreness will increase. (ii)

unexplored and 𝑙 (𝑢) < 𝑙 (𝑣): In this case, 𝑢 cannot be a supporter of

𝑣 . As we scan vertices in layer order, 𝑢 will never be explored. (iii)

explored: We have temporarily decided whether the coreness of 𝑢

will increase. If so, 𝑢 can be a supporter of 𝑣 . Thus 𝑠𝑢𝑝 (𝑣) includes
(i) 𝑄𝑖 ∪ 𝑆𝑁 (𝑣), (iii) 𝐹 [𝑥] [𝑆] and 𝑥 (Lines 12-13). We then check if

Algorithm 3: Reuse(𝑥 , 𝐺 , 𝐴, SC)
Input : 𝑥 : the anchor,𝐺 : the graph, 𝐴 : the anchor set, SC : the

shell components of𝐺

Output : 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣) for each non-anchor vertex 𝑣, where 𝐹 [𝑣] [𝑆]
can be reused for each 𝑆 ∈ 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣)

for each 𝑣 ∈ 𝑉 (𝐺) \𝐴 do1

𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣) ← 𝐶𝑆 (𝑣) ;2

Remove 𝑆 from 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣) if 𝐹 [𝑣] [𝑆] is not computed;3

𝑉 ∗ ← ⋃
𝑆∈𝐶𝑆 (𝑥) 𝑆.𝑉 ;4

Compute 𝑐′ (·) through core decomposition [3];5

S𝐶′ ← ShellDecomp(𝐺);6

𝑆 ′∗ ← ⋃
𝑣∈𝑉 ∗ SC′ [𝑣];𝑉 ′∗ ←

⋃
𝑆∈𝑆 ′∗ 𝑆.𝑉 ;7

Remove 𝑆 ∈ SC from all 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (·) if𝑉 ′∗ ∩ 𝑆.𝑉 ≠ ∅;8

return 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣) for each 𝑣 ∈ 𝑉 (𝐺) \𝐴;9

𝑣 ’s coreness can increase (Line 14). If so, we temporarily assume 𝑣

is the follower of 𝑥 , put it into 𝐹 [𝑥] [𝑆] (Line 15) and continue to

explore its higher-layer neighbors (Line 16). Otherwise, we ensure
that 𝑣 ’s coreness will not increase, then recursively retract to check
if other vertices will remain in 𝐹 [𝑥] [𝑆]. Vertex that does not satisfy
the coreness-increasing requirement will be removed from 𝐹 [𝑥] [𝑆]
(Line 21). As the removed vertex may have been regarded as a

supporter of its neighbors before, we recursively retract to check
its neighbors’ supporter numbers (Lines 22-24). Therefore, the final

remaining vertices in 𝐹 [𝑥] [·] are the true followers of 𝑥 (Line 25).

The time complexity of Algorithm 2 is 𝑂 (𝑚), because each edge

is accessed at most two times: explore/retract when meeting/failing

the coreness-increasing requirement. In practice, the number of

scanned vertices in Algorithm 2 is much smaller, as the explore-

and-retract strategy will make local decomposition early terminate.

Example 1. We explain an example of applying Algorithm 2 to

compute the follower set of 𝑥 = 𝑣1 in the graph of Figure 3. We

first push 𝑥 ’s neighbors 𝑣2 and 𝑣6 in turn into 𝑄2. For 𝑣2, we have

𝑠𝑢𝑝 (𝑣2) = 3 ≥ 𝑐 (𝑣2) + 1, because 𝑣1 ∈ {𝑥}, 𝑣5 ∈ 𝑆𝑁 (𝑣2) and
𝑣6 ∈ 𝑄2. Thus we push 𝑣2 into the follower set 𝐹 [𝑥] [𝑆] and push

𝑣5 into 𝑄3. For 𝑣6, since the layers of 𝑣7 are less than that of 𝑣6, we

have 𝑠𝑢𝑝 (𝑣6) = 2 < 𝑐 (𝑣6) + 1, which triggers the retract strategy.

It makes 𝑠𝑢𝑝 (𝑣2) decrease and turns back to check the supporter

number of 𝑣2. We find that 𝑠𝑢𝑝 (𝑣2) = 2 < 𝑐 (𝑣2) + 1, which means

𝑣2 is actually not a follower of 𝑥 and will be removed from 𝐹 [𝑥] [𝑆].
Then we enumerate the elements in 𝑄3. For 𝑣5, we have 𝑠𝑢𝑝 (𝑣5) =
2 < 𝑐 (𝑣5) + 1, and there is no more element in the queues, thus the

Algorithm 2 terminates and the follower set of 𝑣1 is empty.

5.3 Reuse Follower Computation Results
The greedy algorithm contains 𝑏 iterations, and we apply the reuse

technique in order to avoid redundant computations. For each ver-

tex 𝑣 ∈ 𝑉 (𝐺) \ (𝐴 ∪ {𝑥}) and each shell component 𝑆 , we decide

whether the computed follower 𝐹 [𝑣] [𝑆] will remain the same after

anchoring 𝑥 , thus can be reused in the next selection iteration.

Algorithm 3 finds all the candidate anchors and shell components

in which the follower number can be reused. For each 𝑣 ∈ 𝑉 (𝐺) \𝐴,
𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣), initialized as𝐶𝑆 (𝑣), contains all 𝑣 ’s candidate followers
(Lines 1-2, Theorem 5). For each 𝑆 ∈ 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣), 𝐹 [𝑣] [𝑆] must have

been computed before (Line 3). Let 𝑉 ∗ denote the vertex set of all
5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝑣! 𝑣" 𝑣# 𝑣$

𝑣%

𝑣& 𝑣' 𝑣(𝑣)

(2,1)

(2,3)

(2,2)

(2,1)(2,2)

(2,4)

(2,4)

(2,5)

(2,5)

Figure 3: Shell component ex-
ample for techniques

∅, ∅

𝑣! , ∅ ∅, {𝑣!}

𝑣", 𝑣! , ∅ 𝑣# , {𝑣!}

+𝑣! −𝑣!

+𝑣" −𝑣" +𝑣# −𝑣#

+𝑣" −𝑣"

Figure 4: Solution tree of the
graph in Figure 3

shell components in 𝐶𝑆 (𝑥) (Line 4), we update the coreness after
anchoring 𝑥 and construct new shell components (Lines 5-6). Let

𝑉 ′∗ denote the vertex set of all new shell components containing

some vertex in𝑉 ∗ (Line 7). Original shell components which contain

some vertex in 𝑉 ′∗ can not be reused, hence are removed from

𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (·) (Line 8). Algorithm 3 runs in 𝑂 (𝑚) time complexity as

we will scan each edge at most once to get 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (·) initially, and
core decomposition and Algorithm 1 both needs 𝑂 (𝑚) time.

Theorem 6. (Correctness). After anchoring𝑥 , for every non-anchor
vertex 𝑣 , we have 𝐹 [𝑣] [𝑆] remaining the same if 𝑆 ∈ 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣).

5.4 A Tighter Upper Bound
We first review the upper bound pruning used in GAC. Based on

Lemma 2, Linghu et al. propose the upper bound of follower number

of any non-anchor vertex 𝑥 , i.e., 𝑈𝐵𝜎 (𝑥) = 1 +∑𝑢∈𝑆𝑁 (𝑥) 𝑈𝐵𝑖 (𝑢),
where𝑈𝐵𝑖 (𝑥) = 1+∑𝑢∈𝑆𝑁 (𝑥)∩{𝑣 |𝑐 (𝑣)=𝑐 (𝑥) } 𝑈𝐵𝑖 (𝑢) . However, the
following example shows this bound has much overlap.

Example 2. Consider computing the upper bound of 𝑣5 in the

graph of Figure 3. We have 𝑈𝐵𝑖 (𝑣4) = 𝑈𝐵𝑖 (𝑣9) = 1 and then

𝑈𝐵𝑖 (𝑣3) = 𝑈𝐵𝑖 (𝑣8) = 1 +𝑈𝐵𝑖 (𝑣4) +𝑈𝐵𝑖 (𝑣9) = 3. Thus𝑈𝐵𝜎 (𝑣5) =
1 +𝑈𝐵𝑖 (𝑣3) +𝑈𝐵𝑖 (𝑣8) = 7, which double counts 𝑣4 and 𝑣9.

Worse still, we experimentally find that a large ratio of the up-

per bounds computed in this way exceeds 𝑛 (shown in Table 3).

To refine the technique, according to Lemma 2, we first consider

the size of the upstair DAG as the direct upper bound, i.e., the

number of vertices that can be reached from 𝑥 through any up-

stair path. However, there exists no linear algorithm which can

compute the exact size of the reachable DAG for each vertex [14].

We thus refine the upper bound based on the shell components.

Specifically, for an candidate anchor 𝑥 , we first get the upper bound

of its followers of each shell component 𝑆 , making it no more

than the number of vertices with larger layers than 𝑥 in 𝑆 , i.e.,

𝑈𝐵(𝑥, 𝑆) = min

{
|𝑆.𝑉 ∩𝑈 (𝑥) |,∑𝑢∈𝑆𝑁 (𝑥)∩𝑆.𝑉 𝑈𝐵(𝑢, 𝑆)

}
, where

𝑈 (𝑥) = {𝑣 | P(𝑥) ≺ P(𝑣)}. If 𝑥 ’s coreness has never changed
before, we set𝑈𝐵(𝑥,SC[𝑥]) = 𝑈𝐵(𝑥,SC[𝑥]) + 1. Then the upper

bound of 𝑥 ’s followers is 𝑈𝐵(𝑥) = ∑
𝑆∈𝐶𝑆 (𝑥) 𝑈𝐵(𝑥, 𝑆). Further-

more, applying the reuse technique, if the follower result 𝐹 [𝑥] [𝑆]
can be reused in current iteration, we can use it directly as it is

exactly the number of 𝑥 ’s followers, i.e., the tightest upper bound.

Theorem 7. Given a graph𝐺 , a current anchor set 𝐴 and a vertex
𝑥 ∈ 𝑉 (𝐺) \𝐴, we have 𝑔(𝐴 ∪ {𝑥},𝐺) − 𝑔(𝐴) ≤ 𝑈𝐵(𝑥).

Aswe can compute the upper bounds of all the candidate anchors

in a reverse order of topological sorting of their coreness-layer pairs,

the time complexity of the upper bound computation is 𝑂 (𝑚).

Algorithm 4: AdvGreedy(𝐺 , 𝑏)
Input :𝐺 : the graph, 𝑏 : number of anchors

Output : 𝐴 : the set of anchored vertices

Compute 𝑐 [·] through core decompostion [3];1

SC ←ShellDecomp(𝐺);2

𝑔← ∅;3

for 𝑖 ← 1 to 𝑏 do4

𝑥 ← 𝑛𝑢𝑙𝑙 ; Δ← 0;5

Compute upper bounds 𝑈𝐵 [𝑢] for each 𝑢 ∈ 𝑉 (𝐺) \𝐴;6

for each 𝑢 ∈ 𝑉 (𝐺) \𝐴 with decreasing order𝑈𝐵 (𝑢) do7

if 𝑈𝐵 (𝑢) > Δ then8

𝐹 ←FindFollowers(𝑢,𝐺, SC);9

if |𝐹 \ 𝑔 | > Δ then10

Δ← |𝐹 \ 𝑔 |; 𝑥 ← 𝑢;11

else Break;12

𝐴← 𝐴 ∪ {𝑥 }; 𝑑 (𝑥) ← +∞;13

Reuse(𝑥,𝐺,𝐴, SC);14

return 𝐴;15

5.5 An Advanced Greedy Approach
Algorithm 4 shows the details of our final AdvGreedy algorithm

which combines all the techniques proposed in the last 4 Sections.

We first compute the coreness of each vertex and construct the shell

components in𝐺 (Lines 1-2). Let 𝑔 be the set of vertices whose core-

ness has changed (Line 3). In each iteration of the greedy heuristic,

𝑥 records the best anchor found so far, and Δ records its resilience

gain (Line 5). We first compute the follower upper bound of each

candidate anchor 𝑢 in a reverse order of the topological sorting of

their coreness-layer pairs (Line 6). Then, we enumerate each candi-

date anchor in a decreasing order of their follower upper bounds

(Line 7), and compute its exact follower set to update 𝑥 and Δ when

necessary (Lines 8-12). Note that in the follower computation, we

need to remove vertices whose corenesses have already increased

before from the follower set, since they can not make additional

contributions to the resilience gain. When we determine the best

anchor 𝑥 in the current iteration, we update anchor set 𝐴 and set

degree of 𝑥 as infinity (Line 13). We then compute shell components

which can be reused in the next iteration for each vertex (Line 14).

After 𝑏 iterations, Algorithm 4 returns the anchor set 𝐴 (Line 15).

BudgetMinimizationProblem.Algorithm 4 can be readily adapted

to solve the budget minimization problem of FM. Specifically, the

input budget of AdvGreedy is replaced with the target resilience

gain 𝑔′, and the termination condition is set as when the current re-

silience gain𝑔with the anchor set𝐴 is no less than𝑔′, i.e.,𝑔(𝐴) ≥ 𝑔′.

6 A TIME-DEPENDENT FRAMEWORK
Since the FM problem is NP-hard to approximate within an𝑂 (𝑛1−𝜀)
factor, it is hard to develop an efficient algorithm with a theoretical

approximate guarantee. To bridge this gap between theory and

practice, we propose an algorithmic paradigm in this section, which

can be instantiated to output a good solution quickly and then look

for better solutions within the given time limit based on AdvGreedy.
Specifically, we design an exact algorithm paradigm for the bud-

get minimization problem and then consider returning to solve the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Optimizing Network Resilience via Vertex Anchoring WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

FM problem. The exact algorithm paradigm needs to explore all

the possible 2
𝑏
solutions, which are encoded by a solution tree T ,

i.e., T is a perfect binary tree with 2
𝑏
leaves. Every node in T has

two children. Its left child means adding a new vertex 𝑥 into the

anchor set 𝐴, while its right child means 𝑥 will not be considered

as an anchor. We use T (𝐴,𝐴¬) to denote each tree node, where

𝐴 is the anchor set of the current node, and 𝐴¬ is the set of disre-
garded vertices up to now. For each tree node, the “to be decided

vertex” 𝑥 is chosen by the greedy approach. Specifically, for a tree

node T (𝐴,𝐴¬), the next vertex we choose to add into 𝐴 or 𝐴¬ is
𝑥 = argmax𝑢∈𝑉 (𝐺)\(𝐴∪𝐴¬)𝑔(𝐴 ∪ {𝑥}) − 𝑔(𝐴), i.e., the left child

node is T (𝐴∪ {𝑥}, 𝐴¬) and the right child node is T (𝐴,𝐴¬ ∪ {𝑥}).
We apply a DFS to search for solutions in T , thus the first solution
we can find is the result from the greedy method, which satisfies

output a good solution quickly. Then we will explore more vertices

according to their follower numbers, which means the vertices that

can lead to larger resilience gain will be explored first, this follows

search for better solutions as quickly as possible.

Reuse Intermediate Results. As DFS has two main actions, con-

tinuing to search the child nodes and backtrack to the father nodes,

we design a linear space implementation for reusing the interme-

diate results. Specifically, in the subtree rooted at T (𝐴,𝐴¬), we
greedily add vertices into 𝐴 in the child nodes, store the follower

upper bound and the reusable shell components for each vertex

𝑣 in𝑈𝐵 [|𝐴|] [𝑣] and 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 [|𝐴|] [𝑣]. Then we push the follower

results of vertices into 𝐻 [|𝐴|], where 𝐻 [·] is a max heap and is or-

dered by the follower number of each vertex. Thus we only need to

compute𝑈𝐵 [|𝐴|] [·] and 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 [|𝐴|] [·] once in the subtree, and

continue computing the followers of each vertex based on 𝐻 [|𝐴|].
Return to FM Problem. The above search process deals with the

budget minimization problem, we then introduce how to use the

search results to further improve the solution of the FM problem.

As the first result returned is the same as the greedy approach, we

use the given budget to get the first result and use it as the target

resilience gain. Then we continue to apply the paradigm to search

for smaller budgets, and once we get a smaller budget, we naturally

have more extra budgets to improve the resilience gain, i.e., we

apply the greedy method to select (𝑏 − 𝑏𝑚𝑖𝑛) more anchors.

The detailed description and pseudo-code of the paradigm can

be found in the appendix.

Pruning Strategies. To speed up the search of T , we apply some

effective pruning strategies. Recall that we turn to the budget mini-

mization problem to further solve the FM problem. Let 𝑏min denote

the current best solution, and 𝑔𝑡 denote the target resilience gain,

we apply the following strategies to accelerate the search process:

(1) If 𝑔(𝐴) ≥ 𝑔𝑡 , the subtree can be pruned, for other solutions

in it can not have smaller budgets.

(2) If 𝑔(𝐴) < 𝑔𝑡 and |𝐴| ≥ 𝑏min − 1, the subtree can be pruned,

because the best possible solution in its subtree is 𝑏min.

(3) If 𝑔(𝑉 (𝐺) \𝐴¬) < 𝑔𝑡 , the subtree can be pruned, since no

solutions in the subtree can reach the target gain due to the

monotonicity of 𝑔(·) (Theorem 4).

Bounded-death Heuristic. As the solution space is still large even

with the above pruning techniques, to limit the search to a relatively

better region in the solution space, we apply the bounded-death

heuristic [56] in our framework. Specifically, we further prune the

subtree rooted at tree node T (𝐴,𝐴¬) if |𝐴¬ | > 𝜆, where 𝜆 ≥ 0 is

a given constant integer. In our paradigm, if 𝜆 = 0, the result is

exactly what the greedy approach AdvGreedy finds.

Example 3. Consider the graph in Figure 3, we construct its cor-

responding search tree in Figure 4 with budget 𝑏 = 2 and 𝜆 = 1.

In each tree node, we mark the current 𝐴 and 𝐴¬, and for each

edge, we use +𝑣𝑖 and −𝑣𝑖 to denote adding 𝑣𝑖 into 𝐴 or 𝐴¬. For the
root node, 𝐴 and 𝐴¬ are both originally ∅ and the greedy approach

selects 𝑣7 as the first anchor. For the left child of the root, it adds 𝑣7
into 𝐴, and greedily selects the next anchor as 𝑣1. For its left child,

we further add 𝑣1 into 𝐴 and get the first solution 𝐴 = {𝑣1, 𝑣7}.
Then we find that we can prune the subtree rooted at the right child

of node ({𝑣7},∅), because 𝑔(𝐴) = 5 < 𝑔𝑡 and |𝐴| = 1 ≥ 𝑏min − 1
(Pruning 2). For the right child of the root, it adds 𝑣7 into 𝐴¬, thus
due to 𝜆 = 1, the subtree rooted in its right child will be pruned.

For the node ({𝑣2}, {𝑣7}), its left child’s subtree is pruned due to

Pruning 2, and its right child’s subtree is pruned because of 𝜆 = 1.

7 EXPERIMENTAL EVALUATION
Datasets. The experiments are conducted on 8 public datasets.

Wiki is from KONECT [30]. The other datasets are available from

SNAP [33]. The statistics of datasets are included in the appendix,

where the largest dataset in our experiments contains 3, 072, 441

vertices and 117, 185, 083 edges.

Environments. Experiments are performed on a CentOS Linux

server (Release 7.5.1804) with Quad-Core Intel Xeon CPU (E5-2640

v4 @ 2.20GHz) and 128G memory. All algorithms are implemented

in C++17. Source code is compiled by GCC under -O3 optimization.

7.1 Compared Methods
Towards effectiveness, we compare greedy method (AdvGreedy /

GAC-FM) with exact ones and other 7 heuristics.We survey heuristics

proposed in related works and adapt them to solve our problem.

Vertex Attribute. The basic heuristics are the attributes of vertices.
Degree (Deg). Deg anchors 𝑏 vertices with the highest degree.

Coreness (Core). Core anchors 𝑏 vertices with the highest coreness.

Bound of Resilience Gain.We can use the estimated bounds of

resilience gain as another type of heuristics to select anchors.

Upper Bound (UB). UB chooses 𝑏 vertices with the largest upper

bound, i.e.,𝑈𝐵(𝑥) for each vertex 𝑥 (details in Section 5.4).

Upstair DAG Size (UD). UD chooses 𝑏 vertices with the largest up-

stair DAG size, i.e., the number of vertices that can be reached from

each vertex through its upstair paths. It is the tighter version of UB,
but it is time-consuming since there is no linear algorithm.

Successive Degree (SD). Experiments in [35] compare with GAC by

the successive degree, that is, choose 𝑏 anchors with the highest

successive degree, i.e., |𝑆𝑁 (·) |. It can be regarded as a lower bound

of the upper bound (1-hop of the upstair DAG).

Score Function. Applying scoring functions to evaluate the candi-

date vertices’ quality is a common method in related works. The

details of the following two algorithms are included in the appendix.

Shapley Value (SV). Shapley Value is a concept in cooperative game

theory. Motivated by [40], we design a Shapley Value to capture

the importance of a vertex inside a vertex set.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

A. G. N. S. Y. W. L. O.102

103

104

105
re

sil
ie

nc
e

ga
in

OO
T

OO
T

OO
T

OO
T

OO
T

OO
T

Deg Core UB UD SD SV CS Greedy

Figure 5: Resilience gain from different heuristics when 𝑏 = 100

A. G. N. S. Y. W. L. O.101

102

103

104

105

106

ru
nn

in
g

tim
e

(s
)

OO
T

GAC-FM AdvGreedy

(a) Overall running time

1 200 400 600 800 1000
budget

100
101
102
103
104
105

ru
nn

in
g

tim
e

(s
)

GAC-FM AdvGreedy

1 200 400 600 800 1000
budget

100
101
102
103
104
105

ru
nn

in
g

tim
e

(s
)

(b) Gowalla

1 200 400 600 800 1000
budget

101

102

103

104

105

ru
nn

in
g

tim
e

(s
)

(c) Youtube

Figure 6: Running time

Combinational Score (CS). Motivated by the score function from [37],

we consider the combinational effect of anchors and design a new

heuristic for our problem.

7.2 Experimental Results
Exp 1: Comparison with Other Heuristics. We compare the

resilience gain of AdvGreedy with other 7 heuristics (details in Sec-

tion 7.1) when the budget is 100. Note that UD and SV do not return

results within three days in three larger datasets, we mark them by

“OOT” in the figure. As shown in Figure 5, AdvGreedy always per-

forms the best among all the heuristics. CS and SV perform relatively

well as they both consider the income of anchor combination. They

may fail on some datasets, e.g., in Stanford the performance gap

between CS and AdvGreedy is huge. The efficiency of SV is much

worse than AdvGreedy even when reducing the samples. Among

three bound heuristics, UD performs the best as it equips with a

tighter bound. For vertex attributes, the performance of Deg is better
than Core, but it is still muchworse than AdvGreedy. Core performs

the worst, since vertices with larger corenesses are originally others’

supporters thus anchoring themwill not provide additional support.

Exp 2: Overall Efficiency. Figure 6a shows the total running time

of GAC-FM and AdvGreedy on all datasets when 𝑏 = 100. GAC-FM
cannot return results on Orkut within one week, thus we mark it

as “OOT”. In all 8 datasets, AdvGreedy always outperforms GAC-FM
by almost 1 order of magnitude and up to 2 orders. Besides, the gap

becomes larger with the scale of the datasets increasing.

Exp 3: Varying the Budget. Figures 6b and 6c present the running
time on Gowalla and Youtube when budgets vary from 1 to 1000.

102 103 104 105

search time (s)
4000
4050
4100
4150
4200
4250
4300

re
sil

ie
nc

e
ga

in

= 1 = 2 = 3

103 104 105

search time (s)
4000
4050
4100
4150
4200
4250
4300

re
sil

ie
nc

e
ga

in

(a) Gowalla

103 104 105

search time (s)
4570
4580
4590
4600
4610
4620
4630
4640

re
sil

ie
nc

e
ga

in

(b) Youtube

Figure 7: Performance of GreedySearch when budget=100

As GAC-FM do not return results within 24 hours when 𝑏 ≥ 487, we

do not report its running time in Figure 6c. In both two figures,

the slope of the curve decreases as the budget increases, indicating

that AdvGreedy has excellent scalability when the budget is large.

Besides, AdvGreedy is always faster than GAC-FM by more than 1

and 2 orders of magnitude in Gowalla and Youtube, respectively.
We can also find that the gap between them is huge when the budget

is relatively small because of the refined upper bound.

Exp 4: Performance of Time-Dependent Framework. Fig-
ures 7a and 7b show the performance of the time-dependent search

framework on Gowalla and Youtube when 𝑏 = 100 respectively.

The framework first finds a resilience gain of 4026 on Gowalla in
188s and 4578 on Youtube in 846s, similar to AdvGreedy. GreedySearch
continues to search for a better solution with parameter 𝜆 varying

from 1 to 3. The framework can always discover better solutions

as the search time increases. The performance is the best when

𝜆 = 2 on both datasets, as smaller 𝜆 may result in excessive pruning,

and bigger 𝜆 may be time-consuming, e.g., GreedySearch can not

terminate within 10
6
seconds, when we set 𝜆 = 3 on Gowalla.

8 CONCLUSION AND FUTUREWORK
In this paper, we propose and study the follower maximization

problem, aiming to maximize coreness-increased vertices by finding

an anchor set. We prove the problem is NP-hard, and NP-hard to

approximate within a factor of 𝑂 (𝑛1−𝜖). The problem is also W[2]-

hard parameterized by budget. Given such hardness, we develop an

efficient greedy method AdvGreedy based on shell components and

pruning techniques. Extensive experiments on 8 real-life networks

demonstrate the effectiveness of AdvGreedy, especially on massive

graphs. To bridge the gap between theory and practice, a time-

dependent framework is proposed, producing a solution quickly and

continuing to search for better solutions if time permits. In future

work, it is promising to design more powerful heuristics which can

achieve similar effectiveness while more efficient, then the extended

generic framework may beat the greedy approach on both sides.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Optimizing Network Resilience via Vertex Anchoring WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack

tolerance of complex networks. nature 406, 6794 (2000), 378–382.
[2] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated method

for finding molecular complexes in large protein interaction networks. BMC
Bioinform. 4 (2003), 2.

[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[4] Katja Berdica. 2002. An introduction to road vulnerability: what has been done,

is done and should be done. Transport policy 9, 2 (2002), 117–127.

[5] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. 2005. Im-

proving network robustness by edge modification. Physica A: Statistical Mechan-
ics and its Applications 357, 3-4 (2005), 593–612.

[6] Kshipra Bhawalkar, JonM. Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh

Sharma. 2015. Preventing Unraveling in Social Networks: The Anchored k-Core

Problem. SIAM J. Discret. Math. 29, 3 (2015), 1452–1475.
[7] Michał Bola and Bernhard A Sabel. 2015. Dynamic reorganization of brain

functional networks during cognition. Neuroimage 114 (2015), 398–413.
[8] Édouard Bonnet, Vangelis Th. Paschos, and Florian Sikora. 2016. Parameter-

ized exact and approximation algorithms for maximum k-set cover and related

satisfiability problems. RAIRO Theor. Informatics Appl. 50, 3 (2016), 227–240.
[9] Kate Burleson-Lesser, Flaviano Morone, Maria S Tomassone, and Hernán A

Makse. 2020. K-core robustness in ecological and financial networks. Scientific
reports 10, 1 (2020), 3357.

[10] Taotao Cai, Jianxin Li, Nur Al Hasan Haldar, Ajmal Mian, John Yearwood, and

Timos Sellis. 2020. Anchored Vertex Exploration for Community Engagement in

Social Networks. In ICDE. 409–420.
[11] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007.

A model of Internet topology using k-shell decomposition. Proceedings of the
National Academy of Sciences 104, 27 (2007), 11150–11154.

[12] Chen Chen, Ruiyue Peng, Lei Ying, and Hanghang Tong. 2018. Network Con-

nectivity Optimization: Fundamental Limits and Effective Algorithms. In KDD.
ACM, 1167–1176.

[13] Rajesh Hemant Chitnis, Fedor V. Fomin, and Petr A. Golovach. 2013. Preventing

Unraveling in Social Networks Gets Harder. In AAAI. AAAI Press.
[14] Edith Cohen. 1997. Size-Estimation Framework with Applications to Transitive

Closure and Reachability. J. Comput. Syst. Sci. 55, 3 (1997), 441–453.
[15] Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj.

2016. Greedily Improving Our Own Closeness Centrality in a Network. ACM
Trans. Knowl. Discov. Data 11, 1 (2016), 9:1–9:32.

[16] Yizhou Dai, Miao Qiao, and Lijun Chang. 2022. Anchored Densest Subgraph. In

SIGMOD. ACM, 1200–1213.

[17] Palash Dey, Suman Kalyan Maity, Sourav Medya, and Arlei Silva. 2021. Network

Robustness via Global k-cores. In AAMAS. 438–446.
[18] Zheng Dong, Xin Huang, Guorui Yuan, Hengshu Zhu, and Hui Xiong. 2021.

Butterfly-Core Community Search over Labeled Graphs. Proc. VLDB Endow. 14,
11 (2021), 2006–2018.

[19] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extraction and

classification of dense implicit communities in the web graph. ACM Transactions
on the Web (TWEB) 3, 2 (2009), 1–36.

[20] Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng Chau.

2022. Graph Vulnerability and Robustness: A Survey. IEEE Trans. Knowl. Data
Eng. (2022).

[21] David García, Pavlin Mavrodiev, and Frank Schweitzer. 2013. Social resilience

in online communities: the autopsy of friendster. In Conference on Online Social
Networks. 39–50.

[22] Cinara G Ghedini and Carlos HC Ribeiro. 2011. Rethinking failure and attack

tolerance assessment in complex networks. Physica A: Statistical Mechanics and
its Applications 390, 23-24 (2011), 4684–4691.

[23] S Louis Hakimi. 1962. On realizability of a set of integers as degrees of the

vertices of a linear graph. I. J. Soc. Indust. Appl. Math. 10, 3 (1962), 496–506.
[24] Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2015. Fully Dynamic

Betweenness Centrality Maintenance on Massive Networks. Proc. VLDB Endow.
9, 2 (2015), 48–59.

[25] Jakir Hossain, Sucheta Soundarajan, and Ahmet Erdem Sariyüce. 2023. Quanti-

fying Node-based Core Resilience. CoRR abs/2306.12038 (2023).

[26] Elias Boutros Khalil, Bistra Dilkina, and Le Song. 2014. Scalable diffusion-aware

optimization of network topology. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1226–1235.

[27] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

H Eugene Stanley, and Hernán A Makse. 2010. Identification of influential

spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
[28] Gunnar W Klau and René Weiskircher. 2005. Robustness and resilience. Network

Analysis: Methodological Foundations (2005), 417–437.
[29] Bernhard Korte and Jens Vygen. 2002. Combinatorial Optimization. Algorithms

and Combinatorics (2002).
[30] Jérôme Kunegis. [n. d.]. The KONECT Project. http://konect.cc/.

[31] Ricky Laishram, Ahmet Erdem Sariysüce, Tina Eliassi-Rad, Ali Pinar, and Sucheta

Soundarajan. 2020. Residual Core Maximization: An Efficient Algorithm for

Maximizing the Size of the k-Core. In SDM. SIAM, 325–333.

[32] Glenn Lawyer. 2015. Understanding the influence of all nodes in a network.

Scientific reports 5, 1 (2015), 1–9.
[33] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[34] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential Community

Search in Large Networks. Proc. VLDB Endow. 8, 5 (2015), 509–520.
[35] Qingyuan Linghu, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2020.

Global Reinforcement of Social Networks: The Anchored Coreness Problem. In

SIGMOD. 2211–2226.
[36] Jing Liu, Mingxing Zhou, Shuai Wang, and Penghui Liu. 2017. A comparative

study of network robustness measures. Frontiers of Computer Science 11 (2017),
568–584.

[37] Kaixin Liu, Sibo Wang, Yong Zhang, and Chunxiao Xing. 2021. An Efficient

Algorithm for the Anchored k-Core Budget Minimization Problem. In ICDE.
IEEE, 1356–1367.

[38] Fragkiskos D Malliaros and Michalis Vazirgiannis. 2013. To stay or not to stay:

modeling engagement dynamics in social graphs. In CIKM. 469–478.

[39] David W Matula and Leland L Beck. 1983. Smallest-last ordering and clustering

and graph coloring algorithms. Journal of the ACM (JACM) 30, 3 (1983), 417–427.
[40] Sourav Medya, Tiyani Ma, Arlei Silva, and Ambuj K. Singh. 2020. A Game

Theoretic Approach For Core Resilience. In IJCAI. ijcai.org, 3473–3479.
[41] Flaviano Morone, Gino Del Ferraro, and Hernán A Makse. 2019. The k-core as a

predictor of structural collapse in mutualistic ecosystems. Nature physics 15, 1
(2019), 95–102.

[42] Milena Oehlers and Benjamin Fabian. 2021. Graph Metrics for Network Robust-

ness—A Survey. Mathematics 9, 8 (2021), 895.
[43] Ahmet Erdem Sariyüce and Ali Pinar. 2016. Fast Hierarchy Construction for

Dense Subgraphs. Proc. VLDB Endow. 10, 3 (2016), 97–108.
[44] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for

Hierarchical Dense Subgraph Discovery. Proc. VLDB Endow. 12, 1 (2018), 43–56.
[45] Stephen B Seidman. 1983. Network structure and minimum degree. Social

networks 5, 3 (1983), 269–287.
[46] Kazunori Seki and Masataka Nakamura. 2016. The collapse of the Friendster

network started from the center of the core. In ASONAM. IEEE Computer Society,

477–484.

[47] Kazunori Seki and Masataka Nakamura. 2017. The mechanism of collapse of the

Friendster network: What can we learn from the core structure of Friendster?

Social Network Analysis and Mining 7, 1 (2017), 10.

[48] Johan Ugander, Lars Backstrom, Cameron Marlow, and Jon Kleinberg. 2012.

Structural diversity in social contagion. Proceedings of the National Academy of
Sciences 109, 16 (2012), 5962–5966.

[49] Casper van Elteren, Rick Quax, and Peter Sloot. 2022. Dynamic importance

of network nodes is poorly predicted by static structural features. Physica A:
Statistical Mechanics and its Applications (2022), 126889.

[50] Fan Zhang, Qingyuan Linghu, Jiadong Xie, Kai Wang, Xuemin Lin, and Wenjie

Zhang. 2023. Quantifying Node Importance over Network Structural Stability.

In KDD. ACM.

[51] Fan Zhang, Jiadong Xie, Kai Wang, Shiyu Yang, and Yu Jiang. 2022. Discovering

key users for defending network structural stability. World Wide Web 25, 2 (2022),
679–701.

[52] Fan Zhang, Wenjie Zhang, Ying Zhang, Lu Qin, and Xuemin Lin. 2017. OLAK:

An Efficient Algorithm to Prevent Unraveling in Social Networks. Proc. VLDB
Endow. 10, 6 (2017), 649–660.

[53] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. Finding

critical users for social network engagement: The collapsed k-core problem. In

AAAI, Vol. 31.
[54] Hengda Zhang, Xiaofei Wang, Hao Fan, Taotao Cai, Jianxin Li, Xiuhua Li, and

Victor C. M. Leung. 2020. Anchor Vertex Selection for Enhanced Reliability

of Traffic Offloading Service in Edge-Enabled Mobile P2P Social Networks. J.
Commun. Inf. Networks 5, 2 (2020), 217–224.

[55] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the

k-core decomposition to analyze the static structure of large-scale software

systems. The Journal of Supercomputing 53 (2010), 352–369.

[56] Jianwen Zhao and Yufei Tao. 2021. Minimum Vertex Augmentation. Proc. VLDB
Endow. 14, 9 (2021), 1454–1466.

[57] Kangfei Zhao, Zhiwei Zhang, Yu Rong, Jeffrey Xu Yu, and Junzhou Huang. 2023.

Finding Critical Users in Social Communities via Graph Convolutions. IEEE
Trans. Knowl. Data Eng. 35, 1 (2023), 456–468.

[58] Zhongxin Zhou, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Chen Chen. 2019.

K-Core Maximization: An Edge Addition Approach. In IJCAI. 4867–4873.
[59] Weijie Zhu, Chen Chen, Xiaoyang Wang, and Xuemin Lin. 2018. K-core Mini-

mization: An Edge Manipulation Approach. In CIKM. ACM, 1667–1670.

[60] Marinka Zitnik, Rok Sosič, Marcus W Feldman, and Jure Leskovec. 2019. Evolu-

tion of resilience in protein interactomes across the tree of life. Proceedings of
the National Academy of Sciences 116, 10 (2019), 4426–4433.

9

http://konect.cc/
http://snap.stanford.edu/data

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDICES
A.1 State-of-the-Art from Existing Method
Linghu et al. [35] propose a greedy algorithm GAC for the anchored

coreness problem. In a nutshell, GAC starts from an empty anchor

set 𝐴 = ∅, and then iteratively finds one best anchor 𝑢 with the

highest coreness gain to add into 𝐴 in each of the 𝑏 iterations, i.e.,

𝑢 = argmax

𝑣∈𝑉 (𝐺)\𝐴
(𝑐𝑔(𝐴 ∪ {𝑣},𝐺) − 𝑐𝑔(𝐴,𝐺)) ,

where 𝑐𝑔(𝐴,𝐺) is the coreness gain of anchor set 𝐴 in 𝐺 . The com-

putation of 𝑐𝑔(·) in GAC is mainly based on the following lemma.

Lemma 3 ([35]). If a vertex 𝑥 is anchored in𝐺 , the coreness of any
𝑢 ∈ 𝑉 (𝐺) \ {𝑥} will either not decrease or increase by at most 1.

We can apply a core decomposition to compute the coreness gain

for each candidate vertex, which requires 𝑂 (𝑚) time. The greedy

method is conceptually simple, while it is computationally expen-

sive. GAC speeds up its efficiency by utilizing the core component tree,
widely used in related works [35, 39, 43, 44, 51], which organizes

𝑉 (𝐺) based on the 𝑘-core components in 𝐺 with different 𝑘 .

Definition 9 (𝑘-core component). Given a graph 𝐺 and the 𝑘-

core𝐶𝑘 (𝐺), a subgraph 𝑆 is a 𝑘-core component if 𝑆 is a connected

component of 𝐶𝑘 (𝐺).
Linghu et al. find that the followers of each vertex 𝑥 are con-

strained to the core components that contain at least one neighbor

of 𝑥 with the same or higher coreness as 𝑥 , and these components

are denoted byTC(𝑥). Therefore, GAC finds followers of each vertex
through partial core decomposition, i.e., applies core decomposition

independently in components in TC(𝑥). In addition, they propose

two pruning strategies to further improve the efficiency: the reuse
technique and the upper bound. The reuse technique avoids redun-
dant computation in each iteration by only computing the followers

in those changed components or the components of which the fol-

lowers have never been computed before. The upper bound pruning

strategy uses the upper bounds of follower numbers to reduce the

number of candidate vertices that need to compute in each iteration.

Specifically, for each vertex 𝑥 , if the upper bound of the number of

𝑥 ’s followers is worse than the current optimal result, there is no

need to compute 𝑥 ’s followers in the current iteration.

We can adapt GAC to solve the FM problem by replacing the

coreness gain with resilience gain in greedy anchor selection and

upper bound pruning. Specifically, we use an extra vertex set 𝑉𝑐 to

record the vertices whose corenesses have increased before a new

anchor selection. Based on Lemma 3, we know the coreness gain

is the size of 𝐹 , where 𝐹 is the follower set computed based on the

coreness gain in GAC. Thus we replace |𝐹 | with |𝐹 \𝑉𝑐 | to compute

the resilience gain, and the adapted algorithm is named GAC-FM.
Although the experimental results in [35] shows that the pruning

techniques highly improve the efficiency, GAC still has significant
computational overheads in practice, e.g., GAC needs more than

three days on the LiveJournal dataset when 𝑏 = 100.

A.2 More Details of Proposed Algorithms
Algorithm 5 shows how to search the solution tree by DFS. We

run the paradigm by calling GreedySearch(𝐺 , 𝑏, ∅, ∅, +∞, +∞).
If the size of the current anchor set 𝐴 is larger than 𝑏𝑚𝑖𝑛 , it is

Algorithm 5: GreedySearch(𝐺 , 𝑏, 𝐴, 𝐴¬, 𝑔𝑡 , 𝑏min)
Input :𝐺 : the graph, 𝑏 : budget, 𝐴 : current anchor set, 𝐴¬ :

current disregarded vertex set, 𝑔𝑡 : target resilience gain,

𝑏min : current minimal budget for the target resilience gain

if |𝐴 | ≥ 𝑏min then return;1

if |𝐴 | = 𝑏 or 𝑔 (𝐴) ≥ 𝑔𝑡 then2

If 𝑔𝑡 = ∞ then 𝑔𝑡 ← 𝑔 (𝐴) ;3

𝑏min ← |𝐴 |;4

𝐴′ ←AdvGreedy(𝐺,𝑏 − 𝑏min) with 𝐴′ ∩ (𝐴 ∪𝐴¬) = ∅;5

Print the current solution 𝐴′ ∪𝐴;6

return;7

if 𝐴 ≠ 𝐴𝑓 , where 𝐴𝑓 is the anchor set of the father tree node then8

Compute𝑈𝐵 [|𝐴 |] [𝑢] for each 𝑢 ∈ 𝑉 (𝐺) \ (𝐴 ∪𝐴¬) ;9

𝐻 [|𝐴 |] ← ∅;10

for each 𝑢 ∈ 𝑉 (𝐺) \ (𝐴∪𝐴¬) with decreasing order𝑈𝐵 [|𝐴 |] [𝑢] do11

if (·,𝑢) ∈ 𝐻 [|𝐴 |] then12

Continue;13

if (𝑈𝐵 [|𝐴 |] [𝑢], ·) > 𝐻 [|𝐴 |] .𝑡𝑜𝑝 () or 𝐻 [|𝐴 |] is empty then14

𝐹 ←FindFollowers(𝑢,𝐺, SC);15

Push (𝐹,𝑢) into 𝐻 [|𝐴 |];16

else Break;17

(·, 𝑥) ← 𝐻 [|𝐴 |] .𝑡𝑜𝑝 () ; 𝐻 [|𝐴 |] .𝑝𝑜𝑝 () ; 𝑑 (𝑥) ← +∞;18

𝑅𝑒𝑢𝑠𝑒𝑆𝐶 [|𝐴 | + 1] [·] ← Reuse(𝑥,𝐺,𝐴, SC);19

GreedySearch(𝐺 , 𝑏, 𝐴 ∪ {𝑥 }, 𝐴¬, 𝑔𝑡 , 𝑏min);20

𝑑 (𝑥) ← |𝑁 (𝑥) |;21

GreedySearch(𝐺 , 𝑏, 𝐴, 𝐴¬ ∪ {𝑥 }, 𝑔𝑡 , 𝑏min);22

pointless to continue searching the current branch hence backtrack

(Line 1). Otherwise, we will backtrack in two cases: (i) |𝐴| = 𝑏, we

find the first result (i.e., the result of the greedy approach) (Line

2), thus set target resilience gain as the current gain (Line 3); (ii)

𝑔(𝐴) > 𝑔𝑡 , we find an anchor set for the target resilience gain (Line

2). In both cases, we need update the current minimal budget 𝑏min,

greedily select 𝑏 − 𝑏min more anchors and print out the current

solution, then backtrack (Lines 4-7). If the anchor set of the current

tree node is different from its father’s (Line 8), we compute upper

bound 𝑈𝐵 [|𝐴|] [·] and initialize 𝐻 [|𝐴|], a max heap used to store

the follower results (Lines 9-10). We then compute the followers of

candidate vertices sequentially in decreasing order of their upper

bounds (Lines 11-17). Once get the current best anchor 𝑥 , we remove

its results from 𝐻 [|𝐴|], and set its degree as infinity (Line 18). Next,

we first compute the reuse results of the left child node (Line 20)

and continue to search the subtree rooted at it (Line 21). We restore

the anchor 𝑥 to a common vertex before continuing to search for

the right subtree (Lines 22-23).

A.3 Details of Compared Methods
ShapleyValue (SV). Shapley Value is a concept in cooperative game

theory. Motivated by [40], we design a Shapley Value to capture

the importance of a vertex inside a vertex set. Given a vertex 𝑣 and

a subset 𝐴 ⊆ 𝑉 (𝐺) \ {𝑣}, the marginal contribution of 𝑣 to 𝐴 is

𝑔(𝐴∪{𝑣},𝐺) −𝑔(𝐴,𝐺). Let P be the set of all |𝑉 (𝐺) |! permutations

of all the vertices in 𝑉 (𝐺) and 𝑃 (𝑣, 𝜋) be the set of vertices that
appear before 𝑣 in a permutation 𝜋 . The Shapley Value of 𝑣 is the

average of its marginal contribution to the vertex set that appears

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Optimizing Network Resilience via Vertex Anchoring WWW ’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 1: Statistics of datasets

Dataset #Vertices #Edges 𝑑𝑚𝑎𝑥 𝑑𝑎𝑣𝑔 𝑘𝑚𝑎𝑥

Arxiv 34,546 421,578 846 24.4 30

Gowalla 196,591 456,830 14,730 9.2 51

NotreDame 325,729 1,090,108 10,721 6.5 155

Stanford 281,903 1,992,636 38,625 16.4 71

Youtube 1,134,890 2,987,624 28,754 5.3 51

Wiki 557,677 19,197,218 93,188 51.6 814

Livejournal 3,997,962 34,681,189 14,815 17.4 360

Orkut 3,072,441 117,185,083 33,313 76.3 253

1 100 200 300 400 500
budget

1
2000
4000
6000
8000

10000
12000

re
sil

ie
nc

e
ga

in

Deg Core UB UD SD SV CS Greedy

1 100 200 300 400 500
budget

1
2000
4000
6000
8000

10000
12000

re
sil

ie
nc

e
ga

in

(a) Gowalla

1 100 200 300 400 500
budget

1
2000
4000
6000
8000

10000
12000

re
sil

ie
nc

e
ga

in

(b) Youtube

Figure 8: Resilience gain v.s. Budget

before 𝑣 in the permutations, i.e., 𝑆𝑉 (𝑣) = 1

| P |
∑
𝜋∈P 𝑔(𝑃 (𝑣, 𝜋) ∪

{𝑣},𝐺) − 𝑔(𝑃 (𝑣, 𝜋),𝐺) . Since computing the exact Shapley Value

requires Ω(|𝑉 (𝐺) |!) time, we estimate the value via sampling.

Combinational Score (CS).Motivated by the score function from [37],

we consider the combinational effect of anchors and design a new

heuristic for our problem. For each vertex 𝑣 in𝐺 with an anchor set

𝐴,V𝐴 (𝑣) = 𝑐𝐴 (𝑣) + 1 −
��{𝑢 |𝑢 ∈ 𝑁 (𝑣) ∧ 𝑐𝐴 (𝑢) > 𝑐𝐴 (𝑣)}

��
measures

the extra supporters needed to increase 𝑣 ’s coreness by 1. Although

anchoring 𝑣 may not increase the coreness of vertex 𝑢, it may pro-

vide more support for 𝑢, i.e.,V𝐴 (𝑢) − V𝐴∪{𝑣} (𝑢) > 0. Hence, we

define CS considering whether the coreness of 𝑣 is increased or not

separately, i.e., 𝐶𝑆 (𝑣) = 𝑠𝑐𝑜𝑟𝑒𝑢𝑝 (𝑣) + 𝑠𝑐𝑜𝑟𝑒𝑛𝑢𝑝 (𝑣), where

𝑠𝑐𝑜𝑟𝑒𝑢𝑝 (𝑣) = 𝑔(𝐴 ∪ {𝑣},𝐺) − 𝑔(𝐴,𝐺),

𝑠𝑐𝑜𝑟𝑒𝑛𝑢𝑝 (𝑣) =
∑︁

𝑢∈𝑉 (𝐺)∧𝑐𝐴∪{𝑣} (𝑢)=𝑐∅ (𝑢)

V𝐴 (𝑢) − V𝐴∪{𝑣} (𝑢)
V𝐴 (𝑢)

.

We can find that for a vertex 𝑢, ifV𝐴 (𝑢) − V𝐴∪{𝑣} (𝑢) changes
after anchoring 𝑣 , 𝑢 must be a neighbor of 𝑣 or 𝑣 ’s followers. There-

fore, we can use our AdvGreedy to compute the followers of each

candidate vertex and compute the value of CS.

A.4 Additional Experiment Results
Statistics of Datasets. Table 1 shows the statistics of the datasets,
ordered by the number of edges, where𝑑𝑚𝑎𝑥 is the maximum vertex

degree, 𝑑𝑎𝑣𝑔 is the average vertex degree and 𝑘𝑚𝑎𝑥 is the maximum

coreness of vertices in the graph.

Exp 5: Comparison with Other HeuristicsWhen Varying bud-
get. Varying budget 𝑏, we show the performance of all heuristics on

Gowalla and Youtube in Figure 8. CS performs slightly better than

AdvGreedy when 𝑏 ∈ [21, 83], but it needs more running time and

fails when 𝑏 becomes larger. Results show that greedy method’s

advantage will become more significant as the budget increases.

Table 2: AdvGreedy v.s. Exact

b

Gowalla Youtube
Greedy

gain

exact

ratio

Greedy

gain

exact

ratio

gain time (s) gain time (s)

1 1.4 1.4 0.604 100% 1.4 1.4 0.490 100%

2 4.4 4.8 0.678 91.7% 4.2 4.6 0.564 91.3%

3 5.6 6.6 5.394 84.8% 5.2 5.8 4.638 89.7%

4 7.4 9.0 111.8 82.2% 6.8 8.2 116.6 82.9%

5 9.6 10.6 2116 90.6% 8.4 9.4 2207 89.4%

102 103 104 105

search time (s)
4000
4050
4100
4150
4200
4250
4300

re
sil

ie
nc

e
ga

in

= 1 = 2 = 3

103 104 105

search time (s)

90
92
94
96
98

100

bu
dg

et

(a) Gowalla

103 104 105

search time (s)

98

99

100

re
sil

ie
nc

e
ga

in

(b) Youtube

Figure 9: Performance of time-dependent framework on bud-
get minimization problem of FM

Besides, we can find that the rise of resilience gain of AdvGreedy is
smooth, while others like a “staircase-style” rise, especially SV. Ad-
ditionally, CS costs slightly more time than AdvGreedy, to compute

V𝐴 (·) and 𝑠𝑐𝑜𝑟𝑒𝑟𝑒 (·).
Exp 6: Comparisonwith Exact Solution.We compare AdvGreedy
with exact algorithm which identifies the optimal 𝑏 anchors by enu-

merating all possible combinations. Due to the enormous time cost,

we extract small datasets by iteratively extracting a vertex and all its

neighbors, until the number of extracted vertices reaches 100. For

both Gowalla and Youtube, we extract 5 subgraphs and report the

average resilience gain in Table 2. The resilience gain of AdvGreedy
is at least 82% of exact algorithm, and we find that the resilience

gain ratio of AdvGreedy over the exact algorithm may increase

with a larger budget 𝑏. The running time of exact algorithm is also

reported in the table, while we omit that of AdvGreedy since it

takes less than 1ms on all budgets. We can find that AdvGreedy is
faster than the exact algorithm by up to 7 orders of magnitude.

Exp 7: Performance on Budget Minimization Problem. The
heuristics comparisons for the budget minimization problem can

also be shown in Figures 5 and 8 by swapping the x and y axis, we

can find that the greedy approach obviously performs best.

Figure 9 presents the results of time-dependent framework on

budget minimization problem of FM with 𝜆 varying from 1 to 3

on Gowalla and Youtube respectively. We set the target resilience

gains as the results AdvGreedy when 𝑏 = 100 on both datasets. The

results show that the budget continues to decrease with the running

time increasing, and the minimized budgets can decrease from 100

to 90 on Gowalla and to 98 on Youtube within 10
6
seconds.

Exp 8: Core component tree v.s. Shell component.We compare

both the size and number of the basic units of core component tree

and shell component on Gowalla and Youtube, shown in Figure 10.

For vertices share the same coreness, shell component can divide

them into more and smaller units compared with core component

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 3: Pruning techniques in GAC v.s. AdvGreedy

D Component Tree Shell Component Upper Bound

|T | |Tmax | |SC| |SCmax | 𝑈𝐵𝜎 > 𝑛 𝑎𝑣𝑔
𝑈𝐵𝜎 (·)
𝑈𝐵 (·)

A. 95 1711 13610 1711 62.0% 14.86

G. 74 53921 123452 1862 10.0% 244.0

N. 276 166046 175518 3035 0.29% 16.58

S. 1005 43099 83797 23641 2.91% 67.65

Y. 139 664726 873053 1274 13.9% 929.9

W. 372 287809 434357 4959 27.6% 94.92

L. 1755 818745 2413952 46965 27.3% 100.6

O. 253 67794 1217084 41700 90.1% 24.74

0 10 20 30 40 50
coreness

100
101
102
103
104
105
106

co
m

po
ne

nt
 si

ze

Core Component Tree Shell Component

(a) Gowalla (b) Youtube

Figure 10: Core component tree v.s. Shell component

tree, especially when coreness is less than 40. As Table 3 shows,

the largest component size and average component size of core

component tree are both much worse than shell components.

Exp 9: Upper BoundComparison.We compare the upper bounds

used in GAC and AdvGreedy and report the results in Table 3. A

large ratio of 𝑈𝐵𝜎 in GAC exceeds 𝑛, e.g., 90.1% on Orkut. In the

comparison of 𝑈𝐵𝜎 and our upper bound, we limit all 𝑈𝐵𝜎 > 𝑛

as 𝑛 and compute the average value of𝑈𝐵𝜎/𝑈𝐵. The results show

that the average value is at least 14.86 and can reach up to 929.9.

A.5 Proofs of Theorems
Our following analyses are all based on the theoretical results of set
cover decision (SCD) problem [29]. The SCD problem is given a uni-

verse𝑈 = {𝑢1, · · · , 𝑢𝑝 }, a collection S = {𝑆1, · · · , 𝑆𝑞} of subsets of
𝑈 , and a positive integer 𝑟 , determine if there exists a subcollection

𝑅 ⊆ S with (i) |𝑅 | ≤ 𝑟 and (ii)

⋃
𝑆𝑖 ∈𝑅 𝑆𝑖 = 𝑈 .

Proof of Theorem 1. Given an arbitrary instance (𝑈 ,S, 𝑟) of the
SCD problem, we build a corresponding instance of the FM problem.

W.l.o.g., we assume 𝑟 < 𝑞 < 𝑝 and each 𝑢𝑖 is contained in at least

one set. Figure 11 shows a construction example of 3 collections

and 4 elements.

Graph 𝐺 contains three parts:𝑊 ,𝑀 and a (𝑑 + 1)-clique, where
𝑑 = 2 + max1≤𝑖≤𝑞 |𝑆𝑖 |. (a) For the (𝑑 + 1)-clique, we arbitrarily

select one vertex as the sink vertex 𝑣⊥. (b)𝑊 = {𝑤1, . . . ,𝑤𝑞} where
each 𝑤𝑖 corresponds to set 𝑆𝑖 ∈ S in the SCD instance. (c) 𝑀 is

a matrix with 𝑝 rows and 𝑁 columns, where 𝑁 is a multiple of

(𝑝 − 1) and can be arbitrarily large. The 𝑖-th row in the matrix

corresponds to elements 𝑢𝑖 ∈ 𝑈 in the SCD instance. Each position

of matrix𝑀 contains a 𝑑-clique initially. For each clique in𝑀 , we

arbitrarily select three vertices 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 and 𝑧𝑖, 𝑗 , and then modify𝑀

as follows: (i) remove edges (𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗) and (𝑥𝑖, 𝑗 , 𝑧𝑖, 𝑗) from each 𝑑-

clique; (ii) for each 𝑖 ∈ [1, 𝑝] and 𝑗 ∈ [1, 𝑁), add edges (𝑥𝑖, 𝑗 , 𝑥𝑖, 𝑗+1);

…

…

…

…

𝑖 = 1

𝑖 = 2

𝑖 = 4

𝑗 = N𝑗 = 2𝑗 = 1 …

𝑤!

𝑤"

𝑤#

𝑣$

𝑥
𝑧𝑦

𝑢%

𝑖 = 3

𝑆!: {𝑢!, 𝑢#}

𝑀𝑊

𝑢!

𝑢"

𝑢#

𝑢&

𝑈𝒮

𝑆": {𝑢", 𝑢&}

𝑆#: {𝑢&}

Figure 11: Construction example of Lemma 1

(iii) for each 𝑗 ∈ [1, 𝑁], add edges (𝑦𝑖, 𝑗 , 𝑧𝑓 (𝑖, 𝑗), 𝑗) for each 𝑖 ∈ [1, 𝑝],
where 𝑓 (𝑖, 𝑗) = ((𝑖 + ((𝑗 − 1) mod (𝑝 − 1))) mod 𝑝) + 1 (making the

connection between rows cycle by 𝑝 − 1); (iv) add edges from𝑤𝑘 to

𝑥𝑖,1 if 𝑢𝑖 ∈ 𝑆𝑘 ; (v) add edges from each 𝑥𝑖,𝑁 to 𝑣⊥ for each 𝑖 ∈ [1, 𝑝].
We can prove that the coreness of each𝑤𝑖 is |𝑆𝑖 |, and the coreness

of each vertex 𝑣 in𝑀 is𝑑−2. We then show that𝐺 has the following

two properties corresponding to the instance of the SCD problem:

(i) If the instance (𝑈 ,S, 𝑟) is a yes-instance, then there exists an

𝑟 -size anchor set 𝐴 such that 𝑔(𝐴,𝐺) = 𝑟 + 𝑁𝑝𝑑 . Consider an-

choring all the 𝑏 vertices on 𝑤𝑖1 ,𝑤𝑖2 , · · · ,𝑤𝑖𝑏 , which are corre-

sponding to the solution of SCD problem, then the coreness of

every vertex in matrix 𝑀 will increase from (𝑑 − 2) to (𝑑 − 1).
Let 𝑁 > (𝑑 + 1 + 𝑞)/(𝑝𝑑), we have 𝑔(𝐴,𝐺) = 𝑟 + 𝑁𝑝𝑑 > 𝑁𝑝𝑑 >

𝑁𝑝𝑑/2 + (𝑑 + 1 + 𝑞)/2 = (𝑁𝑝𝑑 + 𝑑 + 1 + 𝑞)/2 = 𝑛/2. Therefore,
𝑔(𝐴,𝐺) = Ω(𝑛).

(ii) If (𝑈 ,S, 𝑟) is a no-instance, then there exists at least an 𝑖-th

row in𝑀 , in which the corenesses of all the vertices will not increase.

Therefore, these vertices will be removed in core decomposition

when 𝑘 = 𝑑 − 1. Note that 𝑁 is a multiple of (𝑝 − 1), for each row in

𝑀 we denote positions (𝑖 − 1) ∗ (𝑝 − 1) + 1 to 𝑖 ∗ (𝑝 − 1) by 𝑝𝑎𝑡𝑐ℎ𝑖 .
Then for each 𝑗-th row where 𝑗 ≠ 𝑖 , there exists at least one vertex

in each 𝑝𝑎𝑡𝑐ℎ𝑖 which is adjacent to a vertex in the 𝑖-th row, i.e., if

no anchor is placed in each 𝑝𝑎𝑡𝑐ℎ𝑖 , this patch will also be removed

when 𝑘 = 𝑑 − 1 via the core decomposition. Thus 𝑟 anchors can

obtain at most 𝑟 (𝑝 − 1)𝑑 + 𝑟 resilience gain. Since 𝑑 > 2, we have

𝑟 (𝑝 − 1)𝑑 + 𝑟 < 𝑟𝑝𝑑 . As 𝑟 is corresponding with budget 𝑏 in the FM

instance, i.e., 𝑟 = 𝑏, we can ensure that 𝑔(𝐴,𝐺) = 𝑂 (𝑏). □

Proof of Corollary 1. According to Lemma 1, for each instance

(𝑈 ,S, 𝑟) of the SCD problem, it is a yes-instance iff there is a 𝑟 -size

anchor set s.t. the resilience gain is ≥ 𝑟 +𝑁𝑝𝑑 in the corresponding

FM instance. If there is a polynomial-time solution for the FM

problem, then we can determine in PTIME whether the optimal

resilience gain exceeds 𝑟 + 𝑁𝑝𝑑 , and subsequently solve the SCD

problem in PTIME. □

Proof of Theorem 3. We prove this theorem by an FPT-reduction

from the well-known W[2]-hard SCD problem parameterized by

the size of set cover [8]. Consider an arbitrary instance (𝑈 ,S, 𝑟)
of the SCD problem, we construct a corresponding instance of the

FM problem on a graph 𝐺 . For each 𝑆𝑖 ∈ S, we create a vertex

𝑤𝑖 in 𝐺 . For each 𝑢𝑖 ∈ 𝑈 , we create a vertex 𝑚𝑖 with 𝑝 cliques

connected to it, where each clique is a (𝑝 + 2)-clique. Finally, we
add edges between𝑚𝑖 and𝑤 𝑗 if 𝑢𝑖 ∈ 𝑆 𝑗 . Note that the budget 𝑏 in

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Optimizing Network Resilience via Vertex Anchoring WWW ’24, May 13–17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

the FM instance corresponds to the size 𝑟 of the set cover in the

SCD instance.

We next prove that the SCD instance (𝑈 ,S, 𝑟) is a yes-instance
iff there exists an anchor set 𝐴 ⊆ 𝑉 (𝐺) with |𝐴| ≤ 𝑏 that the

corresponding resilience gain 𝑔(𝐴,𝐺) ≥ 𝑏 + 𝑝 .
In one direction, we assume that the SCD instance is a yes-

instance. In graph 𝐺 , we know that the coreness of each 𝑤𝑖 is

|𝑆𝑖 |, and the coreness of each 𝑚𝑖 is 𝑝 . According to the solution

{𝑆𝑖1 , · · · , 𝑆𝑖𝑟 } of the SCD instance, we can anchor the corresponding

vertices𝑤𝑖1 , · · · ,𝑤𝑖𝑟 in 𝐺 , thus the resilience gain is 𝑏 + 𝑝 . Hence
we can conclude that the resilience gain is at least 𝑏 + 𝑝 .

For the other direction, we prove by contradiction, i.e., assume

that the SCD instance is a no-instance. Given that in𝐺 , anchoring

each𝑚𝑖 or vertex in cliques can obtain only 1 resilience gain, we

consider placing anchors in 𝑤𝑖 , which can get extra gain in 𝑚 𝑗

if edge (𝑤𝑖 ,𝑚 𝑗) exists. As there exists no set cover of size 𝑟 , we

can obtain at most 𝑏 + 𝑝 − 1 resilience gain after anchoring 𝐴 with

|𝐴| < 𝑏, when we place 𝑏 anchors on𝑤𝑖1 ,𝑤𝑖2 , · · · ,𝑤𝑖𝑏 . Hence there

exists a contradiction to that there exists an anchor set 𝐴 with

|𝐴| ≤ 𝑏 that 𝑔(𝐴,𝐺) ≥ 𝑏 + 𝑝 . □

Proof of Theorem 4. Suppose there exists an anchor vertex set

𝐴 and a vertex 𝑥 ∉ 𝐴, anchoring new vertex 𝑥 cannot decrease

other vertices’ corenesses. Thus we have 𝑔(𝐴) ≤ 𝑔(𝐴∪ {𝑥}), which
means the function 𝑔(·) is monotonic.

If 𝑔(·) is submodular, for two arbitrary vertex set𝐴 and 𝐵, it must

hold that 𝑔(𝐴) + 𝑔(𝐵) ≥ 𝑔(𝐴 ∪ 𝐵) + 𝑔(𝐴 ∩ 𝐵). Consider a graph 𝐺
with a vertex set 𝑉 =

⋃
1≤𝑖≤5 𝑣𝑖 , the vertices in

⋃
1≤𝑖≤3 𝑣𝑖 form a

3-clique, 𝑣4 connects to 𝑣1 and 𝑣2, and 𝑣5 connects to 𝑣3. If𝐴 = {𝑣4}
and 𝐵 = {𝑣5}, 𝑔(𝐴) +𝑔(𝐵) = 2 < 𝑔(𝐴∪ 𝐵) +𝑔(𝐴∩ 𝐵) = 5, thus 𝑔(·)
is non-submodular. □

Proof of Theorem 5. From Lemma 2 and the definition of upstair

path, if a vertex𝑢 is a follower of anchor 𝑥 , it must be in set 𝑆𝑁 (𝑥) or
connected to a vertex 𝑣 ∈ 𝑆𝑁 (𝑥) through a path where each vertex

has the same coreness 𝑐 (𝑣). By the definition of shell component, 𝑢

and 𝑣 are in the same shell component, thus shell components in

𝐶𝑆 (𝑥) contain all the followers of vertex 𝑥 . □

Proof of Theorem 6. Recall the analysis in Section 5.2, 𝐹 [𝑣] [𝑆]
will not change after anchoring 𝑥 if the supporters of vertices in

𝑆 do not change. As 𝑆 ∈ 𝑅𝑒𝑢𝑠𝑒𝑆𝐶 (𝑣) does not contain any vertex

in 𝑉 ′∗, 𝑆 will remain the same and the anchor 𝑥 is not a supporter

of any vertex in 𝑆 . Besides, we consider the supporters of vertices

in 𝑆 by considering the shell components 𝑆 ′ with at least one edge

between 𝑆 ′ and 𝑆 : (i) 𝑆 ′ .𝑐 > 𝑆.𝑐 , as 𝑆 ′ .𝑐 will not decrease, the vertices
in 𝑆 ′ who are supporters of vertices in 𝑆 before anchoring 𝑥 will

still be supporters of them after anchoring 𝑥 ; (ii) 𝑆 ′ .𝑐 < 𝑆.𝑐 , since 𝑆

does not change after anchoring 𝑥 , 𝑆 ′ .𝑐 is at most 𝑆.𝑐 − 1, thus the
vertices in 𝑆 ′ are still not the supporters of vertices in 𝑆 ; (iii) no 𝑆 ′

with 𝑆 ′ .𝑐 = 𝑆.𝑐 , otherwise 𝑆 ′ and 𝑆 are the same component. □

Proof of Theorem 7. By Lemma 2, we know that a follower of

vertex 𝑥 must be included in its upstair DAG. In a shell compo-

nent 𝑆 , every vertex in 𝑥 ’s upstair DAG is counted at least once

in𝑈𝐵(𝑥, 𝑆) = min

{
|𝑆.𝑉 ∩𝑈 (𝑥) |,∑𝑢∈𝑆𝑁 (𝑥)∩𝑆.𝑉 𝑈𝐵(𝑢, 𝑆)

}
. There-

fore we have |𝐹 [𝑥] [𝑆] | ≤ 𝑈𝐵(𝑥, 𝑆), thus 𝑔(𝐴 ∪ {𝑥},𝐺) − 𝑔(𝐴) =∑
𝑆∈𝐶𝑆 (𝑥) 𝐹 [𝑥] [𝑆] ≤

∑
𝑆∈𝐶𝑆 (𝑥) 𝑈𝐵(𝑥, 𝑆) = 𝑈𝐵(𝑥) . □

13

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Analysis
	5 An Advanced Greedy Approach
	5.1 Shell Component Structure
	5.2 Follower Computation on Shell Component
	5.3 Reuse Follower Computation Results
	5.4 A Tighter Upper Bound
	5.5 An Advanced Greedy Approach

	6 A Time-Dependent Framework
	7 Experimental Evaluation
	7.1 Compared Methods
	7.2 Experimental Results

	8 Conclusion and Future Work
	References
	A Appendices
	A.1 State-of-the-Art from Existing Method
	A.2 More Details of Proposed Algorithms
	A.3 Details of Compared Methods
	A.4 Additional Experiment Results
	A.5 Proofs of Theorems

