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ABSTRACT

Given the limitations of backpropagation, perturbation-based gradient computa-
tion methods have recently gained focus for learning with only forward passes,
also referred to as queries. Conventional forward learning consumes enormous
queries on each data point for accurate gradient estimation through Monte Carlo
sampling, which hinders the scalability of those algorithms. However, not all data
points deserve equal queries for gradient estimation. In this paper, we study the
problem of improving the forward learning efficiency from a novel perspective:
how to reduce the gradient estimation variance with minimum cost? For this,
we allocate the optimal number of queries within a set budget during training to
balance estimation accuracy and computational efficiency. Specifically, with a
simplified proxy objective and a reparameterization technique, we derive a novel
plug-and-play query allocator with minimal parameters. Theoretical results are
carried out to verify its optimality. We conduct extensive experiments for fine-
tuning Vision Transformers on various datasets and further deploy the allocator to
two black-box applications: prompt tuning and multimodal alignment for foun-
dation models. All findings demonstrate that our proposed allocator significantly
enhances the scalability of forward-learning algorithms, paving the way for real-
world applications.

1 INTRODUCTION

Ever since the success of backpropagation (BP) (Rumelhart et al., 1986), researchers have sought
alternate methods to bypass the iterative computation of the backward pass for the sake of efficiency,
interpretability, and biological plausibility (Ma et al., 2020; Nøkland, 2016; Jacot et al., 2018).
Moreover, existing practical scenarios urge for scalable forward learning methods, when the black-
box nature renders taking the derivative infeasible or difficult. For example, as the model parameters
increase, machine learning (ML) systems usually integrate with third-party black-box APIs (Achiam
et al., 2023).

There have been continuous efforts to develop learning algorithms that rely solely on the forward
pass (Lillicrap et al., 2020). The forward learning uses multiple queries on one data point to estimate
the gradient (Spall, 1992; Zhang et al., 2024). The high dimensionality and the rugged loss landscape
of ML problems pose arduous challenges for deriving a low-variance gradient estimator. Current
literature has demonstrated that a sufficient number of queries on each data point is necessary for
successful training (Chen et al., 2023; Zhang et al., 2024). To achieve good gradient estimation and
task performance, all existing methods equally assign a large number of queries to different data
points, neglecting the varying difficulty of gradient estimation at these data.

However, it is not always helpful for the forward learning algorithms to increase the number of
queries. Especially for the large model training on a large dataset, it usually requires an ex-
tensive number of queries, which poses great challenges to the memory and computation cost.
For example, The forward-forward (FF) (Hinton, 2022) algorithm and the feedback alignment
(FA) (Nøkland, 2016) are only capable of training multilayer perceptrons on MNIST (LeCun, 1998)
or CIFAR (Krizhevsky et al., 2009). To scale up the forward algorithm to large model training on
large datasets, DeepZero (Chen et al., 2023) and Mezo (Malladi et al., 2023) explore the use of
simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992) in training the convolu-
tion network from scratch and fine-tune the language model, respectively. But with such “large”
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Figure 1: Illustration of allocating the query budget of the forward learning paradigm. As shown in
(a), previous methods equally allocate the query across different data. Our method, as shown in (b),
adaptively allocate the queries under theoretically guaranteed optimality.

scale optimization problem, DeepZero requires 192 queries to train a pruned ResNet-20 with only
12K parameters. Mezo needs meticulously selected prompts to ensure performance, and its gra-
dient estimator is too noisy due to insufficient query numbers, thus suffering from highly unstable
performance.

There is a great challenge required to be considered carefully in forward learning. On the one hand,
consuming large amounts of queries on every data point results in high computational costs and
long training time. On the other hand, using insufficient queries can save memory and computa-
tional costs but lead to unstable performance. Efficiently utilizing the queries with limited memory
and computation budget is at the core of the scalability for forward learning to reduce the gradient
estimation variance and improve the model training efficiency.

To achieve a good balance between the query cost and gradient estimation variance, we propose to
study the query allocation problem under the forward learning framework. In our paper, we first
unify the different estimators under the perturbation-based framework and formulate the allocation
problems. Then, we propose the optimal allocation by constructing a query budget allocator to
assign queries adaptively following a data-aware paradigm. An overview of our method and the
comparison with previous work can be found in Figure 1. Specifically, our contribution can be
summarized as follows,

1. We unify different BP-free methods under the framework of perturbation-based optimiza-
tion. We are the first to formulate the query allocation problem for forward learning in the
literature.

2. We find a simplified objective for the allocation problem and solve it via the likelihood ratio
method in a lightweight style. With the optimal allocation, we can compress the queries to
the minimum number of 20.

3. We theoretically deduce that the enhancement in allocation is assured by a defined lower
bound. The allocator would assign the queries for different data in a mini-batch according
to the variance of the gradient estimation. Intuitively, the estimator with high variance
would be assigned with more queries, and vice versa.

4. We conduct extensive experiments to fine-tune Vision Transformer (Dosovitskiy, 2020) on
challenging datasets, including ImageNet-1K Deng et al. (2009), achieving state-of-the-
art performance in forward learning. Furthermore, we apply the proposed method to two
real-world black-box problems: black-box prompt tuning and alignment between founda-
tion models. Our approach demonstrates scalability and efficiency improvements over all
baselines, including backpropagation (BP).
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2 RELATED WORK

Backpropagation-free learning. People have explored various algorithms without backpropagat-
ing the error (Wierstra et al., 2014; Frenkel et al., 2021; Journé et al., 2022; Kao & Hariharan, 2024).
Frenkel et al. (2021) eliminates the feedback pathway by leveraging fixed random projections of tar-
get labels to hidden layers. Kao & Hariharan (2024) employs a dual-network structure to propagate
input and target signals in anti-parallel directions. Forward gradient (Baydin et al., 2022; Silver
et al., 2021), applying the chain rule from a different direction than BP, utilizes forward-mode au-
tomatic differentiation (AD) to train the ML model. Forward-mode AD needs specific AD software
and full access to the model structure. Therefore, training the deep model under black-box scenarios
is not feasible by the forward gradient (Ren et al., 2022).

Perturbation-based forward learning. Built on the theory of stochastic optimization, researchers
have devised surrogate methods to approximate the first-order gradients, such as SPSA (Spall, 1992).
The SPSA injects noise with opposite signs into the model parameters to form a finite-difference
style estimator. Recently, Mezo (Malladi et al., 2023) applied SPSA to fine-tune the language model.
DeepZero (Chen et al., 2023) integrates SPSA with sparsity and trains the network from scratch
with many queries. However, their methods still have some limitations and their query budgets are
equally allocated, neglecting the data difference. Jiang et al. (2023) extends the likelihood ratio (LR)
estimator to train a wide range of neural networks, whereas LR has not been verified on modern-scale
architectures, such as Transformers (Vaswani, 2017), leaving a significant gap for further research
to improve the scalability of forward learning.

Machine learning for black box scenarios. The applications to real-world black-box scenarios
call for scalable BP-free algorithms. When deploying ML algorithms on specific hardware systems,
computation resources are limited and BP becomes infeasible. In the fields of physics and chemistry,
ML models have to interact with environments that include non-differentiable operations (Momeni
et al., 2023; Gu et al., 2021). Moreover, extremely large models are often only accessible through
third-party API (Sun et al., 2022). Evolutionary algorithms and reinforcement learning have been
applied to tune the prompt for the black-box language model (Diao et al., 2022).

Advanced technique for data sampling and reshuffling. In the literature on stochastic optimiza-
tion, apart from uniform sampling, people have designed various methods to sample data points
from the dataset by importance sampling (Zhao & Zhang, 2015), reshuffling (Lu et al., 2022), etc.
Their method can reduce the variance of the stochastic gradient. Their methods share some similar-
ities with our OPtimal Sampling. However, the key distinction between our work and the existing
methods lies in the probability spaces considered. While the existing methods focus on reducing
variance in the probability space associated with ”sampling data points from the dataset”, our ap-
proach focuses on perturbation-based forward learning, where the variance lies in the probability
space of the injected noise for gradient estimation.

3 A UNIFIED PERSPECTIVE OF PERTURBATION-BASED FORWARD LEARNING

Given a generic neural network with no assumption on its architecture, the input is denoted as
x ∈ Rdx , and the output is given by y = ϕ2(φ(ϕ1(x); θ)) ∈ Rdy , where ϕ1(·) and ϕ2(·) are black-
box parts, and φ(·; θ) is the targeted module with trainable parameters θ ∈ Θ ⊂ Rdθ . Conducting
backpropagation through ϕ1(·) and ϕ2(·) is infeasible or difficult. Training the neural network is to
solve such an optimization problem: minθ∈Θ

1
|X |
∑

x∈X L(y), where X is the dataset for training,
and L(·) is an evaluation procedure yielding the loss feedback. The growing scale of parameters in
modern neural networks and the dataset makes gradient-based methods the only feasible solution.
Since forward learning do not rely on the chain rules to compute the true gradient, the primary
challenge remains in estimating the gradient accurately and efficiently.

In addition to approaches requiring computation graphs like BP, forward-learning algorithms esti-
mate gradients by perturbing the neural activity (intermediate output or parameter of the targeted
module φ(·; θ)) and observing the impact of the injected perturbation on the final loss value, thereby
solving the stochastic version of the problem: minθ∈Θ

1
|X |
∑

x∈X Ez∼f(·)[L(y)], where z is the
injected noise with a density f(·).
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Forward learning algorithms can be divided into two categories: the LR family and the SPSA/ES
family. The LR family perturb the intermediate output of the targeted module to perform estimation
Jiang et al. (2023), i.e., y = ϕ2(φ(ϕ1(x); θ) + z). The gradient can be estimated by

∇θE[L(y)] = Ez∼f(·)[GLR(x, θ, z)] ≜ Ez∼f(·)[−L(y)D⊤
θ φ(ϕ1(x); θ)∇z ln f(z)], (1)

where Dba ∈ Rda×db denote the Jacobian matrix of a ∈ Rda with respect to b ∈ Rdb .

The SPSA/ES family injects noise to the parameters (Spall, 1992; Salimans et al., 2017), i.e., y =
ϕ2(φ(ϕ1(x); θ+ z)). For continuous noise distributions, the gradient estimation can be derived as a
special case of equality (1) as follows:

∇θE[L(y)] = Ez∼f(·)[GES(x, θ, z)] ≜ Ez∼f(·)[−L(y)∇z ln f(z)], (2)

which takes the same form termed as the evolutionary strategies (ES) estimation (Salimans et al.,
2017). The SPSA is a special case of ES which uses Gaussian noise z ∼ N (0, σ2Id) and applies
an antithetic variable trick for variance reduction to equality (2). The SPSA can be interpreted as
randomized finite differences in high-dimensional space. It takes the form

∇θE[L(y)] = Ez∼N (·)[GSPSA(x, θ, z)]

= Ez∼N (·)
[ z

2σ
(L(ϕ2(φ(ϕ1(x); θ + z))− L(ϕ2(φ(ϕ1(x); θ − z)))

]
.

(3)

To estimate the expectation of gradient according to equation (1, 2 and 3), both SPSA/ES and
LR family use Monte Carlo sampling. With A > 0 queries of Monte-Carlo sampling to esti-
mate the gradient on data point x, the corresponding estimations take the sample-average form
∇θL̂(y) = 1

A

∑A
i=1 G(x, θ, zi), where zi is sampled independently from f(·) and G(x, θ, zi) is the

i th sample of the corresponding gradient estimator (G(x, θ, zi) can be GLR(x, θ, zi), GES(x, θ, zi)
or GSPSA(x, θ, zi)).

The parameter is updated iteratively with a mini-batch of data points randomly drawn from X ,
denoted as {x1, · · · , xB}, where B is the batch size. We denote the gradient estimation on data xj

as ∇θL̂j(θ) = 1
Aj

∑Aj

i=1 G(xj , θ, zi,j), where Aj denotes the allocated query size, and the batch-

wise gradient estimation is ∇θL̂(θt) = 1
B

∑B
j=1∇θL̂j(θt). The updating recursion can be written

as

θt+1 = θt − ηt∇θL̂(θt) = θt − ηt
1

B

B∑
j=1

∇θL̂j(θt) = θt − ηt
1

B

B∑
j=1

1

Aj

Aj∑
i=1

G(xj , θ, zi,j), (4)

where θt is the network parameter at the t-th step, and ηt is the learning rate.

By default, the query amount Aj allocated to estimate the gradient associated with each data point xj

is equally allocated. However, the difficulty of gradient estimation and the model performance differ
over data points. To conserve computational resources while maintaining the quality of gradient
estimation, the number of queries should be properly allocated across data within the mini-batch.
Utilizing the likelihood ratio technique, we propose a universal accelerator for all perturbation-based
training methods from a data-aware perspective.

4 OPTIMAL SAMPLING VIA LIKELIHOOD RATIO METHOD

4.1 GAUSSIAN ALLOCATOR AND BERNOULLI ALLOCATER

Definition. The query allocator is defined as a random vector A = (A1, · · · , AB), where each
component Aj represents the (relative) number of queries allocated to the j-th data point in the batch.
The allocator is assumed to follow a probability measure A ∼ P (A|λ; Φ), which is parameterized
by λ ∈ Λ and conditioned on features Φ, such as the loss. At each step of neural network training,
a sample of A is drawn from this distribution, and queries are allocated to data points based on the
sample. In this work, we select a Gaussian Allocator (GA)

A ∼ N(µ,Σ|λ; Φ), (5)
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where λ = (µ,Σ) ∈ RB × RB×B . The matrix Σ captures the correlation structure between data
points and facilitates the allocation of queries. Intuitively, structurally similar data points possess
similar levels of importance, leading to a similar trend in query allocation. It is important to note that
GA has a positive probability of generating negative samples. In practice, any data point receiving a
negative allocation is assigned zero queries.

Bernoulli Allocator (BA) is another lightweight alternative, similar to the idea in Qin et al. (2023).
In an equal allocation scenario, each data in the batch receives A queries. The BA introduces a
probabilistic mechanism where, with probability p, the number of queries assigned to a data point is
reduced to A/2; otherwise, it remains at A. The probability p is the only parameter of the allocator.
The BA is in the form of a conditional probability distribution

P (Aj = A/2|Φ = Lj) =

{
p, Lj < L
0, Lj ≥ L

, (6)

where Lj is the clean loss on data xj , and L is the mean of loss value in the batch(we use the loss
value without injected noise into the network).

It is important to note that A represents the relative number of queries, and thus the actual allocation
proportion to the j-th data point is given by Aj/

∑B
i=1 Ai. This definition eliminates the need for

imposing a fixed total budget constraint in the following allocator optimization problem. However,
as a consequence, we must specify that the total query budget per step is fixed at A0 = A ·B during
the training process. Note that, since the data points selected in the mini-batch differ at each step,
At

j is actually a function of t. For simplicity of notation, we omit this dependency in the remainder
of the paper.

4.2 OPTIMIZATION OF THE QUERY ALLOCATOR.

We employ a gradient-based method to optimize the allocator parameters λ, introducing an addi-
tional optimization step before each iteration of neural network training. However, by formulating
an equivalent optimization objective and utilizing reparameterization techniques, we ensure that this
auxiliary optimization remains computationally lightweight and incurs minimal overhead.

Our objective is to maximize the performance improvement at this step, i.e.,

argmax
λ∈Λ

PIt(λ) ≜ EA∼P (·|λ)[

B∑
j=1

∣∣Lj(θt+1)− Lj(θt)
∣∣], (7)

where Lj is the loss corresponding to the j-th data point. Assuming that Lj is L-smooth, ∀j =
1, · · · , B, and Θ is a convex set, we can derive a lower bound of the optimization objective PIt(λ).

PIt(λ) ≥ LBt(λ) ≜ EA∼P (·|λ)

B∑
j=1

[(
ηt∇θL̂(θt))⊤∇θLj(θt)−

1

2
η2tL∥∇θL̂(θt)∥2

]
. (8)

Inequality (8) (the proof is provided in Appendix A.1) closely resembles the Descent Lemma com-
monly used in the analysis of gradient descent. The lower bound LBt is often utilized as a surrogate
optimization objective in the literature on adaptive step size (Pirotta et al., 2013) and adaptive batch
size (Papini et al., 2017). Since our decision variable is λ now, we can further simplify the form
of LBt(λ). Before proceeding, according to the Central Limit Theorem, it is canonical to assume
that the perturbation-based gradient estimator ∇θL̂j(θt) = 1

Aj

∑Aj

i=1 G(xj , θt, zi,j), zi,j ∼ f(·),
∀j = 1, · · · , B, approximately follows a d-dimensional Gaussian distribution.

Assumption 1. ∀j = 1, · · · , B,∇θL̂j(θt) ∼ N(µj,t
G ,

Σj,t
G

Aj
), where µj,t

G and Σj,t
G are the expectation

and the covariance matrix of G(xj , θt, z), z ∼ f(·), respectively.
Theorem 1 (Equivalent Objective). Suppose that the Assumption 1 holds, maximizing the lower
bound LBt(λ) over λ ∈ Λ is equivalent to minimizing

Jt(λ) ≜ EA∼P (·|λ)

[ B∑
j=1

Tr(
Σj,t

G

Aj
)

]
(9)

over λ ∈ Λ, i.e.,
max
λ∈Λ

LBt(λ)⇐⇒ min
λ∈Λ

Jt(λ).
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The equivalent expression (9) of the optimization objective makes the optimization of the allocator
both computationally and statistically tractable (see the proof in Appendix A.2). First, it demon-
strates that the optimization of the allocator is independent of both the smoothness parameter L and
the expectation µj,t

G of the estimator sample. Consequently, we can avoid estimating these unknown
and bias-inducing high-dimensional parameters. More importantly, the optimization of the allocator
does not require estimating the off-diagonal elements of the covariance matrix Σj,t

G , which can be
statistically and computationally challenging (Fan et al., 2008), especially since Σj,t

G is of dimen-
sion d2. It only requires estimating the trace of Σj,t

G , i.e., the sum of the diagonal variances, which
significantly reduces the computational complexity.

Moreover, we adopt a subsampling technique in which the trace of the covariance matrix corre-
sponding to the parameters of the deep layers of the neural network serves as an approximation for
the overall trace. This approximation is justified as these layers typically account for the majority of
the variance in the model. In practice, prior to the optimization process of the allocator, we sample
a small number of initial queries for each data point to estimate Tr(Σj,t

G ). In the subsequent compu-
tations, Tr(Σj,t

G ) is replaced by its estimate in a plug-in manner. In addition, from Theorem 1, we
can see that generally data points with higher variance should be allocated more query resources.

Then, the gradient of Jt(λ) with respect to allocator parameter λ is given by

∇λJt(λ) = ∇λE
[ B∑

j=1

Tr(
Σj,t

G

Aj
)

]
= E

[ B∑
j=1

Tr(
Σj,t

G

Aj
)∇λ ln(P (A))

]
. (10)

The LR gradient estimator for the allocator takes the sample average form

∇λĴ(λ) =
1

K

K∑
k=1

[ B∑
j=1

Tr(
Σj,t

G

A
(k)
j

)∇λ ln(P (A(k)))

]
, (11)

where A(k) = (A
(k)
1 , · · · , A(k)

B ) are i.i.d samples from P (·|λ) and K is the number of sampling
from P (·|λ). At each step t of neural network training, we employ the above gradient estimator
to search for the optimal allocator parameter λ∗

t ≜ argmaxλ∈Λ J(λ). Let LB∗
1:T and LBequal

1:T
represent the lower bound of the cumulative performance improvement of the neural network after
T steps of training when using the optimal allocator A∗ ∼ P (·|λ∗

t ) and using an equal allocator
Aequal, respectively. Then the difference between these two allocation strategies is lower bound by
the following expression.

Theorem 2 (Theoretical Improvement). Suppose that the Assumption 1 holds, then we have

E
(
LB∗

1:T − LBequal
1:T

)
≥

T∑
t=1

η2tL

2BA0

∑
j<k

(√
Tr(Σj,t

G )−
√
Tr(Σk,t

G )

)2

≥ 0.

Theorem 2 (see the proof in Appendix A.3) quantifies the superiority of our proposed optimal alloca-
tor over the vanilla equal allocation strategy. The greater the differences in Tr(Σj,t

G ) across different
data points (i.e., the stronger the heterogeneity), the more pronounced the superiority of the optimal
allocator, and this difference equals zero if and only if all Tr(Σj,t

G ) are equal.

4.3 REPARAMETERIZATION OF THE GAUSSIAN ALLOCATOR.

The original parameter dimension of the Gaussian allocator is B + B(B+1)
2 , which might be prob-

lematic due to its high dimensionality. To reduce the dimensionality of the allocator’s optimization
problem and to incorporate more relevant features, we adopt a reparameterization approach, i.e.,
imposing a specific structure to the parameter λ.

Drawing inspiration from the literature on data pruning (Qin et al., 2023), the loss value serves as
a strong indicator of the data point’s characteristics. Therefore, we assume that the mean of the
allocator follows a linear structure:

µ = β0 + β1Φ,

6
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where Φ = Tanh(L(x;θ; ·)) is the “clean” loss without injected noise. The original loss value is
processed through a Tanh function to constraint Φ within the range [−1, 1]. The initial value for β0

and β1 are set to A and A/2, respectively.

For the covariance structure Σ, based on the observation that similar data may have similar influ-
ences on the training of neural networks, we reparameterize the covariance matrix as follows: the
covariance between the allocation of the i-th data point and the j-th data point is

Σ(i, j) = σ2exp

(
− di,j

2γ2

)
,

where di,j is the cosine similarity of the embedding between the i-th and the j-th data points. σ2

and γ2 are two parameters that control the scale and decay of the covariance, respectively. The σ is
initialized as A/5 and γ is initialized as 1. This kernel-based reparameterization form, also known
as the Radial Basis Function (RBF), is widely used in Gaussian process regression and Bayesian
Optimization literature (Shahriari et al., 2015). It enables us to model dependencies between data
based on their pairwise distances.

By applying the reparameterization techniques to the covariance matrix Σ and mean vector µ, the
original high-dimensional optimization problem for these parameters has been effectively trans-
formed into a more manageable optimization problem for 4 variables λ = (β0, β1, σ, γ). The pseu-
docode for the forward learning under optimal allocation is in Appendix B.

5 EXPERIMENTS

5.1 FINETUNING VISION TRANSFORMER

Experimental setting: We evaluate our model’s performance using a diverse set of widely used
benchmark datasets, each chosen for its unique characteristics and specific challenges contributing to
a comprehensive analysis of our method’s generalization across different domains: ImageNet (Deng
et al., 2009), Caltech101 (Fei-Fei et al., 2004), Food101 (Bossard et al., 2014), Flowers102 (Nilsback
& Zisserman, 2008), CIFAR10/100 (Krizhevsky et al., 2009), and EuroSAT (Helber et al., 2019).

Evaluation metrics: We focus on image classification and evaluate the performance by accuracy in
different training contexts: BP, LR, and SPSA. We compare the performance with and without the
query allocation. The GA is employed for all experiments.

Table 1: Classification accuracy (%) for finetuning vit on downstream dataset.

Model Method ImageNet Caltech101 Food101 Flowers102 CIFAR10/100 EuroSAT

ViT-base

BP (upper bound) 80.5 92.2 92.4 93.5 96.3 / 90.7 91.9

Mezo (2 queries) 9.3 42.6 37.3 38.2 42.1 / 37.5 39.8
Mezo (n-SPSA) 54.8 77.2 76.7 80.2 84.4 / 71.5 78.4

DeepZero (n-SPSA) 55.6 78.4 77.8 78.4 85.6 / 70.2 78.8
LR 57.3 85.5 87.6 86.5 87.7 / 80.8 82.9

OPS-SPSA (Ours) 60.8 87.3 87.6 85.6 89.5 / 82.2 83.2
OPS-LR (Ours) 65.8 88.9 88.4 91.6 93.2 / 88.7 89.3

ViT-Large

BP (upper bound) 81.7 93.4 93.3 94.2 98.2 / 93.5 93.4

Mezo (2 queries) 10.7 45.6 38.8 40.5 45.9 / 38.3 41.7
Mezo (n-SPSA) 56.7 78.8 78.4 78.5 86.7 / 74.3 79.2

DeepZero (n-SPSA) 56.4 79.5 78.9 79.6 86.3 / 73.7 80.1
LR 58.2 87.2 87.7 86.8 88.4 / 81.4 85.7

OPS-SPSA (Ours) 62.2 88.6 88.1 87.3 91.3 / 83.9 87.6
OPS-LR (Ours) 67.6 90.2 89.5 92.3 95.5 / 90.8 90.1

Using different gradient estimators, we conduct full-parameters fine-tuning for the Vision Trans-
former (both base and large model). We include DeepZero (SPSA with n queries, denoted as n-
SPSA), Mezo (SPSA with only 2 queries), and LR with equally allocated query budgets as baselines
in our experiments. For the SPSA-based methods, we include a version with the optimal allocator
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(OPS-SPSA) to compare with their corresponding baselines. We apply the same settings to the LR,
comparing the optimally allocated version (OPS-LR) with the vanilla version.

We train the network for 10 epochs with the learning rate of 1 × 10−4 and the Adam optimizer.
The batch size is 128. All the methods in our experiments use the same query budgets, except for
Mezo, which uses only 2 queries per data point in accordance with its original memory-efficient
settings. As shown in Table 1, OPS-LR outperforms all other methods. In contrast, Mezo with only
1 query performs poorly in the experiment. On the contrary, DeepZero achieves acceptable accuracy
compared with Mezo. The phenomenon suggests that an adequate number of queries is crucial for
the success of perturbation-based methods since the gradient’s variance must be properly controlled.
The OPS-SPSA achieves better accuracy than the DeepZero with an equally allocated budget. Our
proposed optimal allocator provides universal acceleration across all perturbation-based methods.
Moreover, LR achieves higher accuracy than DeepZero, suggesting that LR is a better gradient
estimator than the SPSA in this experiment context. Please refer to the Appendix C.1 for the details
and further analysis.

5.2 BLACK-BOX TUNING FOR MODEL AS A SERVICE

Text Encoder

… …CLS CLS[CLASS]

fishcat dog…

…

0

1
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… …Black-Box Vision 
Language Model
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ro
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ro
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𝑊𝑊𝐼𝐼𝑊𝑊𝑇𝑇

Image Encoder

Allocator

FLOPS

LR/SPSA

Figure 2: illustration paradigm of
fine-tuning the prompt for black-
box vision language model.

We can tune the prompts for vision-language models (VLMs)
in a Model-as-a-Service (MaaS) environment using the OPS-
LR framework, as shown in Figure 2. We address the chal-
lenge of fine-tuning VLMs without access to model internals
or gradient information through a scalable black-box optimiza-
tion approach. We use CLIP (Radford et al., 2021), with em-
bedding dimensions of DT = 512 for the text encoder and
DI = 756 for the image encoder, as the backbone foundation
model. Both the text encoder and the image encoder are kept
frozen as black-box modules.

Tunable prefix or suffix prompt tokens are injected into
the text and image token sequences, respectively: ST =
[cls, pT , eT ] ∈ R(1+nT+mT )×DT is the input sequence for
the text encoder, SI = [cls, eI , pI ] ∈ R(1+mI+nI)×DI for
the image counterpart. Previous researches have suggested
that large foundation models have low intrinsic dimensions.
Therefore, it is plausible to project the original embedding space onto a low-dimension subspace:
pT = zT ·WT ;WT ∈ RdT×DT , zT ∈ RmT×dT and pI = zI ·WI ;WI ∈ RdI×DI , zI ∈ RmI×dI .
WT and WI are the projection matrix. The projection matrix is kept frozen after being initialized
with a Gaussian distribution. With the projection, our black-box tuning problem is reduced to di-
mensions of dT + dI ≪ DT +DI . The optimization problem, using the cross-entropy loss, takes
the form:

Z∗ = argmax
zT ,zI

L([eT , eI ];θ = [zT ·DT , zI ·DI ]; ·), (12)

Table 2: Classification accuracy (%) for black-
box prompt tuning.

Methods ImageNet Caltech101 Food101

OPS-LR 65.1 90.5 82.7
OPS-SPSA 64.2 89.3 81.5

LR 62.5 87.4 79.2
SPSA 60.7 85.3 77.6

Manual Prompt 57.9 83.3 76.4

where Z is the unified formulation of [zT , zI ].
By applying the OPS-LR framework, we can
optimize the black-box prompt tuning problems
without access to the model structure. We can
achieve an accuracy of 69.7% on ImageNet by
tuning only a few thousand parameters, surpass-
ing the performance of other black-box methods
and Manual Prompting (Radford et al., 2021).
The performance is shown in Table 2. Please re-
fer to the Appendix C.2 for more details.

5.3 ALIGNMENT BETWEEN BLACK-BOX FOUNDATION MODEL

Foundation models like GPT (Brown, 2020), LLaMa Touvron et al. (2023), Vicuna (Chiang et al.,
2023), and CLIP (Radford et al., 2021) contain rich domain knowledge from the pretraining. Multi-
modal tasks, such as video captioning (Krishna et al., 2017) and video grounding(Gao et al., 2017),
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require models to have sufficient cross-domain understanding, and proper alignment between differ-
ent modalities is essential.

Large Language Model

Black-Box

Visual Encoder

Black-Box

A macaque sitting on a large 
cannon overlooking a seascape.

Visual Adapter Allocator

LR/SPSA

Perturbation

A macaque sitting on a large 
cannon overlooking a seascape.Loss value

FLOPS

Hard
for BP

A macaque sitting on a large 
cannon overlooking a seascape.

Text paired with image

Figure 3: illustration alignment
between foundation model for
video understanding.

Aligning foundation models from a single modality is a more
economical approach than pretraining from scratch using multi-
modal data. It is a common practice to add an adapter between
the visual encoder and the Large Language model. The adapter
is a linear projector, g(·), that projects the visual embedding to
the textual embedding space. Since foundation models contain
billions of parameters, the backward pass through the model re-
quires extra memory for storing the computation graph, and re-
cursive computations through such a large pre-trained model are
time-consuming. Our OPS-LR framework efficiently bypasses
the need for recursive computation to estimate the gradient with a
large foundation model in between, as shown in Figure 3.

The training paradigm for the multimodal alignment follows an
autoregressive style using image-text pairs < I, T >. We use a
frozen CLIP ViT-L/14 as the visual encoder, denoted as V iT . The
CLS tokens of the output sequence of V iT are utilized as the global feature for the frame. We denote
the visual token after the projection as Zv = g(V iT (I)CLS). The visual token is then concatenated
with the text tokens sequence: [Zv, t1, t2, ..., tm], where [t1, t2, ..., tm] is the text tokens sequence
with a length of m. Consequently, we can train the adapter on the concatenated sequence with the
autoregressive objective of the LLM. We report the wall time for the feature alignment procedure
on the LCS-558K dataset (Liu et al., 2024). Our OPS-LR framework can reduce almost half of
the training time since the recursive backward computation is skipped. From Figure 5, the wall
time with or without the allocator is almost the same, which further illustrates that our allocator is
lightweight and has minimal impact on runtime. Please refer to the Appendix C.3 for more details.

5.4 ABLATION STUDY
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(a) Key matrix of layer-1.
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(b) Key matrix of layer-12.
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(c) FFN of layer-1.

0 100 200 300 400
queries per data point

0.0

0.1

0.2

0.3

0.4

0.5

0.6

co
si

ne
 si

m
ila

rit
y

(d) Key matrix of layer-1.
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(e) Key matrix of layer-12.
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(f) FFN of layer-12.

Figure 4: Ablation study on the effect of different allocators and estimation difficulty at different
layers. We show the cosine similarity between the estimated and true gradients. We estimate the
gradient of the Key matrix in multi-head attention (MHA) and the first linear layer in the feed-
forward network (FFN)). Layer 1 is adjacent to the embedding and the layer 12 is adjacent to the
classification head.

We conduct an ablation study using ViT-base on the CIFAR100 dataset. We investigate the neces-
sity of the allocation policy for the forward-learning training and determine whether GA or BA is
the better allocator. Furthermore, we discern the varying degrees of difficulty in estimation across
different network components. The results are shown in Figure 4.
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Figure 5: Wall clock time for
feature alignment between dif-
ferent methods.

Impact of different query budgets. To further investigate the
necessity of the procedure of query budget allocation, we com-
pare the performance increment under various query budgets
for different allocation policies. Traditionally, the queries are
equally allocated (EA) across different data. The performance
improvements offered by GA and BA are considerably more sig-
nificant than those of EA. When the number of queries per data
is small, the benefit from the allocation is still non-ignorable. In
other words, the more query budget you have, the greater the
improvement gains from allocation. Meanwhile, the ablation on
different transformer layers indicates that the variance of the gra-
dient increases as the layer goes deeper, which validates our sub-
sampling technique.

Impact of different allocators, Gaussian or Bernoulli. We compare different allocators in Figures
4(a), (b), (d), and (e). GA controls the allocation with the mean vectors and the covariance matrix.
The covariance matrix captures the similarity between different data points. Structurally similar data
points possess similar levels of importance. Therefore, the allocation policy for those data points
should be correlated. If the covariance matrix is diagonal, the similarity between data points is
ignored, which could undermine the performance of the allocation strategy. Compared with the GA,
the BA is a simpler strategy. Intuitively, it prunes the queries on unimportant data points to eliminate
unnecessary computation. Our ablation study suggests that GA is superior to BA.

Estimation on different components of Transformer. We present the cosine similarity results on
the multi-head attention (MHA) and the feed-forward network (FFN) in Figures 4(a)-(c) and (f).
Estimation on the FFN is easier than on the MHA. In the Transformer block, the MHA precedes the
FFN, which may explain this phenomenon. The low cosine similarity on MHA attention of deep
layers may lead to the performance gap on large-scale dataset like ImageNet. It is also worth noting
that a large number of queries when training Transformer can improve the estimation quality. How-
ever, the memory cost of increasing queries is extremely high since the complexity of the attention
module is O(n2). Integrating efficient MHA techniques, such as Flash Attention (Dao et al., 2022),
is left for future work.

6 CONCLUSIONS

In this paper, we unify different forward learning under the perturbation-based framework. We pro-
pose an optimal allocation method to accelerate forward learning by controlling the gradient vari-
ance in the mini-batch. Theoretical results show that the allocation can be conducted in a lightweight
style and the optimality of the allocation is proved. Compared with other forward learning meth-
ods, we achieve the SOTA performance in fine-tuning ViT. With the improved scalability, we apply
our method to two black-box scenarios for the foundation model. However, there is still a non-
neglectable gap compared with BP. Other techniques of accelerating forward learning are left to
future work. Moreover, forward learning can optimize black-box objectives, such as human prefer-
ence, where taking derivative is infeasible. It is also an interesting future direction.
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A THEORETICAL DETAILS

A.1 PROOF OF INEQUALITY (8)

PIt(λ) ≥ EA∼P (·|λ)

B∑
j=1

[(
ηt∇θL̂(θt))⊤∇θLj(θt)−

1

2
η2tL∥∇θL̂(θt)∥2

]
.

Proof. For each loss function Lj , by exploiting Taylor’s theorem, we have

Lj(θt+1)− Lj(θt) =

∫ 1

0

d

dτ
Lj(θt + τ(θt+1 − θt)) dτ

=

∫ 1

0

⟨∇θLj(θt + τ(θt+1 − θt)), θt+1 − θt⟩ dτ.
(13)

By adding and subtracting∇θLj(θt),

(13) =

∫ 1

0

⟨∇θLj(θt), θt+1 − θt⟩ dτ +

∫ 1

0

⟨∇θLj(θt + τ(θt+1 − θt))−∇θLj(θt), θt+1 − θt⟩ dτ

= ⟨∇θLj(θt), θt+1 − θt⟩+
∫ 1

0

⟨∇θLj(θt + τ(θt+1 − θt))−∇θLj(θt), θt+1 − θt⟩ dτ.
(14)

Now we focus on the second term in (14). By the Cauchy-Schwarz inequality, we have

|⟨∇θLj(θt + τ(θt+1 − θt))−∇θLj(θt), θt+1 − θt⟩| ≤ ∥∇θLj(θt+τ(θt+1−θt))−∇θLj(θt)∥·∥θt+1−θt∥.
And according to the L-smoothness assumption, we have

∥∇θLj(θt + τ(θt+1 − θt))−∇θLj(θt)∥ ≤ L∥τ(θt+1 − θt)∥ = Lτ∥θt+1 − θt∥.
Therefore, the second term in (14) becomes∫ 1

0

⟨∇θLj(θt + τ(θt+1 − θt))−∇θLj(θt), θt+1 − θt⟩ dτ

≥ −
∫ 1

0

Lτ∥θt+1 − θt∥2 dτ = −L

2
∥θt+1 − θt∥2.

(15)

Combining (14) and (15), and substitute θt+1 = θt + ηt∇θL̂(θt), we have

Lj(θt + ηt∇θL̂(θt))− Lj(θt) ≥ ηt⟨∇θLj(θt),∇θL̂(θt)⟩ −
L

2
η2t ∥∇θL̂(θt)∥2.

Then, taking expectation over A ∼ P (·|λ) and summing over j,

PIt(λ) ≥ EA∼P (·|λ)

B∑
j=1

[(
ηt∇θL̂(θt))⊤∇θLj(θt)−

1

2
η2tL∥∇θL̂(θt)∥2

]
,

which completes the proof.

A.2 PROOF OF THEOREM 1

Proof.

LBt = E
B∑

j=1

[(
ηt∇θL̂(θt))⊤∇θLj(θt)−

1

2
η2tL∥∇θL̂(θt)∥2

]

= E
B∑

j=1

[(ηt
B

B∑
j=1

∇θL̂j(θt)
)⊤∇θLj(θt)−

1

2
η2tL∥

1

B

B∑
j=1

∇θL̂j(θt)∥2
]
,

(16)

where∇θL̂j(θt) ∼ N(µj,t
G ,

Σj,t
G

Aj
), and j = 1, · · · , B. Then, by taking the conditional expectation.

14
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LBt = EA

B∑
j=1

[
E∇θL̂(θt)

[(ηt
B

B∑
j=1

∇θL̂j(θt)
)⊤∇θLj(θt)−

1

2
η2tL

∥∥∥∥ 1

B

B∑
j=1

∇θL̂j(θt)

∥∥∥∥2∣∣∣∣A]]
(17)

∀j = 1, · · · , B, the expected inner product on the LHS of (17)

E∇θL̂(θt)

[(ηt
B

B∑
j=1

∇θL̂j(θt)
)⊤∇θLj(θt)

∣∣∣∣A] = ηt
B

( B∑
j=1

µj,t
G

)⊤∇θLj(θt). (18)

Next, we focus on the expected squared norm on the RHS of (17).

E∇θL̂(θt)

[∥∥∥∥ 1

B

B∑
j=1

∇θL̂j(θt)

∥∥∥∥2∣∣∣∣A] = 1

B2

( B∑
j=1

B∑
k=1

E
[
∇θL̂j(θt)

⊤∇θL̂k(θt)

∣∣∣∣A]). (19)

For j ̸= k, we have

E
[
∇θL̂j(θt)

⊤∇θL̂k(θt)

∣∣∣∣A] = (µj,t
G

)⊤
µk,t
G . (20)

For j = k, we express∇θL̂j(θt) as the sum of the mean and a zero-mean normal random vector:

∇θL̂j(θt) = µj,t
G + Z,

where Z ∼ N(0,
Σj,t

G

Aj
), meaning Z is a zero-mean random vector with covariance Σj,t

G

Aj
. Then we

have

E
[
∇θL̂j(θt)

⊤∇θL̂k(θt)

∣∣∣∣A] = E
[(

µj,t
G + Z

)⊤ (
µj,t
G + Z

) ∣∣∣∣A]
= E

[(
µj,t
G

)⊤
µj,t
G + 2

(
µj,t
G

)⊤
Z + Z⊤Z

∣∣∣∣A]
=
∥∥∥µj,t

G

∥∥∥2 + 0 + E
[
Z⊤Z|A

]
.

(21)

The expected value of the quadratic form Z⊤Z in (21) for Z ∼ N(0,
Σj,t

G

Aj
) is given by the trace of

the covariance matrix, i.e.,

E
[
Z⊤Z

]
= Tr

(
Σj,t

G

Aj

)
. (22)

Therefore, with (20), (21) and (22), we have

(19) =
1

B2

(∥∥∥∥ B∑
j=1

µj,t
G

∥∥∥∥2 + B∑
j=1

Tr

(
Σj,t

G

Aj

))
. (23)

Then, with (17), (18) and (23), we have

LBt(λ) = EA∼p(·|λ)

[
ηt
B

( B∑
j=1

µj,t
G

)⊤
(

B∑
j=1

∇θLj(θt))

− 1

2

B∑
j=1

η2tL

B2

(∥∥∥∥ B∑
j=1

µj,t
G

∥∥∥∥2 + B∑
j=1

Tr

(
Σj,t

G

Aj

))]
.

(24)

Notice that, µj,t
G is independent of the allocation A, which only depends on the estimator type and

the parameters of the injected noise in the perturbation. Therefore, it is easy to see that maximizing
the lower bound LBt(λ) over λ ∈ Λ is equivalent to minimizing

Jt(λ) ≜ EA∼P (·|λ)

[ B∑
j=1

Tr(
Σj,t

G

Aj
)

]
(25)

over λ ∈ Λ.

15
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A.3 PROOF OF THEOREM 2

Proof. Based on the optimality of λ∗
t at step t, we know that for any GA following N(µ,Σ), the

corresponding E(LBGA
t ) ≤ E(LB∗

t ). Now, if we set Σ = 0B×B , the Gaussian distribution be-
comes deterministic, and the query allocation becomes a fixed, non-random strategy. To establish
a lower bound for E(LB∗

t ) − E(LBequal
t ), we construct an optimal deterministic allocator Adet as

the intermediary strategy between A∗ and Aequal, which satisfies

E(LBequal
t ) ≤ E(LBdet

t ) ≤ E(LB∗
t ),

where LBdet
t is lower bound of the PI corresponding to Adet.

For the optimal deterministic allocator Adet, we aim to maximize the objective function

Jt(A) =

B∑
j=1

Tr(Σj,t
G )

Aj

subject to the constraint
∑B

j=1 Aj = A0. The Lagrangian function is

L =

B∑
j=1

Tr(Σj,t
G )

Aj
− λ

( B∑
j=1

Aj −A0

)
,

where λ is the Lagrange multiplier. Take the partial derivative of L with respect to each Aj and set
it to zero.

∂L

∂Aj
= −

Tr(Σj,t
G )

A2
j

− λ = 0.

Then we have

Adet
j = A0 ·

√
Tr(Σj,t

G )∑B
k=1

√
Tr(Σk,t

G )

Then corresponding objective is

Jt(A
det) =

B∑
j=1

Tr(Σj,t
G )

Aj
=

B∑
j=1

Tr(Σj,t
G )

A0 ·
√

Tr(Σj,t
G )∑B

k=1

√
Tr(Σk,t

G )

=

(∑B
j=1

√
Tr(Σj,t

G )

)2

A0
.

As for the equal allocator Aequal
j = A0

B , the corresponding objective function becomes

Jt(A
equal) =

A0

B
=

B∑
j=1

Tr(Σj,t
G )

A0

B

=
B

A0

B∑
j=1

Tr(Σj,t
G ).

It follows that

Jt(A
equal)− Jt(A

det) =

(∑B
j=1

√
Tr(Σj,t

G )

)2

A0
− B

A0

B∑
j=1

Tr(Σj,t
G ).

Notice that

B

B∑
j=1

Tr(Σj,t
G )−

( B∑
j=1

√
Tr(Σj,t

G )

)2

=
∑
j<k

(√
Tr(Σj,t

G )−
√
Tr(Σk,t

G )

)2

.

Then

Jt(A
equal)− Jt(A

det) =
1

A0

∑
j<k

(√
Tr(Σj,t

G )−
√
Tr(Σk,t

G )

)2

.
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This difference is always non-negative and equals zero if and only if all Tr(Σj,t
G ) are equal. Then

we have

E
(
LB∗

1:T − LBequal
1:T

)
≥ E

(
LBdet

1:T − LBequal
1:T

)
=

T∑
t=1

η2tL

2B
(Jt(A

equal)− Jt(A
det))

≥
T∑

t=1

η2tL

2BA0

∑
j<k

(√
Tr(Σj,t

G )−
√
Tr(Σk,t

G )

)2

,

(26)

which completes the proof.

B PSEUDOCODE

Algorithm 1 Perturbation-based training via optimal allocation

Input: Target module φ(·; θ), loss function L(·), dataset X , noise density f(·), allocator
P (A|λ,Φ), update interval M .

1: Initialize network parameter θ and allocator parameter λ.
2: repeat
3: t← 0.
4: for one mini-batch{xi}B−1

i=0 non-overlapping sampled in X do
5: Compute the loss, Φ = L(y), without injected noise.
6: Sample initial queries to estimate Tr(Σj,t

G ).
7: repeat
8: Update the λ by estimated gradient following (11).
9: until λ converges

10: Sample the allocation decision A ∼ P (A|λ,Φ) for the mini-batch.
11: Augment the {xi}B−1

i=0 according to A = (A1, A2, ..., AB).
12: for θj ∈ θ do
13: Compute the L(y|z) with z ∼ f(·) injected to the φ(·; θj).
14: Update θj by estimated gradient following (1) or (3) with A queries.
15: end for
16: t← t+ 1.
17: end for
18: until network parameter converges.
Output: Network parameter θ.

C EXPERIMENT DETAILS

Platform: All the experiments are conducted on a machine with 8 NVIDIA A800 GPUs. Each
A800 GPU has 80GB of memory.

C.1 EXPERIMENTS FOR VIT

Datasets: ImageNet: Over 1.2 million images in 1,000 classes, a standard large-scale challenge for
object classification. Caltech101: 9,144 images across 101 categories, focusing on object recog-
nition with varying perspectives and poses. Food101: 101,000 images in 101 food categories,
presenting challenges in texture, lighting, and fine-grained classification. Flower102: 8,189 images
across 102 flower species, testing subtle feature recognition. CIFAR-10/100: Consisting of 60,000
32x32 images, CIFAR-10 has 10 classes, while CIFAR-100 has 100 classes, offering challenges
in small-scale image classification with increasing complexity in category distinctions. EuroSAT:
27,000 satellite images in 10 land-use categories, challenging models to perform in remote sensing
tasks. All the input images are resized to 224 before entering the ViT backbone.

ViT-base: The base model has 12 transformer layers. The hidden dimension is 786, with 12 heads
for the multi-head attention. The intermediate dimension for feed-forward mlp is 3072. 12 layers

17
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are equally divided into three groups from bottom to top. The standard deviation of the injected
Gaussian noise for each group is initialized as 1× 10−5, 1× 10−4, 1× 10−3. The query budget for
each group is 20 queries per data. The query budget for the classification head is also 20 queries per
data.

ViT-large: The large model has 24 transformer layers. The hidden dimension is 1024, with 16 heads
for the multi-head attention. The intermediate dimension for feed-forward mlp is 4096. 24 layers are
equally divided into four groups from bottom to top. The standard deviation of the injected Gaussian
noise for each group is initialized as 5 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3. The query budget
for each group is 20 queries per data. The query budget for the classification head is 20 queries per
data.

We use the CLS token on top of the Transformer backbone to calculate the cosine similarity between
different data points, di,j , in the kernel for reparameterization. The pruned queries for the BA will
be equally allocator to the other unpruned data points to ensure the total number of queries is the
same.

Table 3: Results of ViT-base under natural noise and adversarial noise.

Datasets Methods Original Natural Noise Adversarial Noise

Gaussian Uniform Poisson FGSM I-FGSM MI-FGSM

ImageNet
BP 80.5 78.4 65.9 44.2 15.2 10.9 9.9

OPS-LR 65.8 65.4 65.4 60.3 34.5 15.6 13.8
OPS-SPSA 60.8 58.2 59.3 55.2 33.7 13.5 12.3

Food101
BP 92.4 88.3 84.7 66.4 19.6 12.3 10.5

OPS-LR 88.4 85.3 82.1 70.3 37.2 25.2 18.6
OPS-SPSA 87.6 84.7 80.3 70.4 36.4 23.6 15.3

CIFAR100
BP 90.7 83.8 75.2 43.5 18.3 9.3 7.5

OPS-LR 88.7 84.3 77.6 52.9 25.4 14.8 12.3
OPS-SPSA 82.2 79.3 76.8 48.2 22.5 13.8 9.4

Evaluation of robustness: Furthermore, we assess the robustness of BP, OPS-LR, and OPS-SPSA
across three data sets—ImageNet, Food101, and CIFAR100—through three distinct criteria: 1) Pri-
mary task efficacy: accuracy of classification on unaltered samples (Original); 2) Endurance against
natural corruption: accuracy of classification on datasets tainted with natural noise, incorporating
Gaussian, uniform, and Poisson disturbances; 3) Robustness to adversarial attacks: accuracy of
classification on samples altered by adversarial tactics, specifically the fast gradient sign method
(FGSM), iterative fast gradient sign method (I-FGSM), and momentum-based iterative fast gradient
sign method (MI-FGSM). For adversarial assaults, we cap the allowable perturbation per pixel at
8/255, and for I-FGSM and MI-FGSM, we limit the iteration count to a maximum of 5. In our
evaluations, we encompass the entire test set for corruption assessment. As shown in Table 3, BP
achieves the best accuracy on the original data. However, the robustness of OPS-LR and OPS-SPSA
is superior to BP. Especially under adversarial attacks, the perturbation methods have a significant
advantage over BP.

C.2 EXPERIMENTS FOR BLACK-BOX TUNING

We use the open-source CLIP with ViT-B/32 as the visual encoder. The intrinsic dimension, dI+dT ,
is 1000. The visual prompt length is 10 and the text prompt length is 12. The batch size is 64. We
use 60 queries per data to tune the intrinsic dimension. We use Adam optimizer with a learning rate
of 1× 10−4 and train for 50 epochs with early stopping. All methods use the same 16-shot split for
training and are evaluated on the full test sets for evaluation.

C.3 EXPERIMENTS FOR MULTIMODAL ALIGNMENT

we use Vicuna v1.5 7B as the Large Language Model and train the 7B version. We train one epoch
for the feature alignment by an Adam optimizer with the learning rate of 5 × 10−4 and cosine
learning rate decay. The batch size is 64 and the query budget is 60 queries per data.
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C.4 EXTENDED ABLATION

0 100 200 300 400
queries per data point

0.0

0.1

0.2

0.3

0.4

0.5

0.6

co
si

ne
 si

m
ila

rit
y

BA-LR BA-SPSA GA-LR GA-SPSA LR SPSA

0 100 200 300 400
queries per data point

0.0

0.1

0.2

0.3

0.4

0.5

0.6

co
si

ne
 si

m
ila

rit
y

(a) Key matrix of layer-1.
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(b) Key matrix of layer-12.
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(c) Key matrix of layer-24.
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(d) Key matrix of layer-1.
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(e) Key matrix of layer-12.
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(f) Key matrix of layer-24.
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(g) FFN of layer-1.
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(h) FFN of layer-12.
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(i) FFN of layer-24.

Figure 6: We show the cosine similarity between the estimated and true gradients. We compare LR
and SPSA estimators on the Key matrix of the multi-head attention. The estimation of the feed-
forward network is also included. Layer 1 is the Transformers layer adjacent to the embedding and
layer 24 is adjacent to the classification head.

We provide a more extensive ablation study on ViT-Large following the same setting as the main
text. Figures 6(a)-(c) and (d)-(f) show the result of LR and SPSA estimator, respectively. Both the
estimators can benefit from the allocation and the Gaussain allocator has better performance than
the Bernoulli allocator. The gradient of deep layer like layer 1 is more difficult to estimate than
the shallow layer and the corresponding variance accounts for most of the variance of the whole
model. Comparing Figures 6(a)-(c) to (g)-(i), estimation on the feed-forward network is easier than
on the multi-head attention. In practice, it is recommended to add gradient clipping to the multi-head
attention layer.
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