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Abstract

We consider Bayesian optimization of
expensive-to-evaluate experiments that gen-
erate vector-valued outcomes over which a
decision-maker (DM) has preferences. These
preferences are encoded by a utility function
that is not known in closed form but can
be estimated by asking the DM to express
preferences over pairs of outcome vectors. To
address this problem, we develop Bayesian op-
timization with preference exploration, a novel
framework that alternates between interactive
real-time preference learning with the DM via
pairwise comparisons between outcomes, and
Bayesian optimization with a learned compo-
sitional model of DM utility and outcomes.
Within this framework, we propose preference
exploration strategies specifically designed for
this task, and demonstrate their performance
via extensive simulation studies.

1 INTRODUCTION

Bayesian optimization (BO) is a sequential experimen-
tal design framework for efficient global optimization of
black-box functions with expensive or time-consuming
evaluations. It has succeeded in many real-world exper-
imentation tasks, including materials design (Frazier
and Wang, 2016; Packwood, 2017; Zhang et al., 2020),
robot locomotion (Calandra et al., 2016), and internet
experiments (Letham et al., 2019; Mao et al., 2019).

This work focuses on a common practical problem faced
by decision-makers (DMs) who wish to apply BO to
time-consuming experiments with multiple outcomes
of interest. DMs have unknown preferences over out-
comes which can be elucidated via a limited set of
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interactions with the DM, and we wish to gather infor-
mation through such interactions to support efficient
experimentation. Such problems commonly arise in
A/B testing (Bakshy et al., 2018) and simulation-based
design (Maddox et al., 2021).

There are several possible approaches to BO with mul-
tiple outcomes in the literature, each with their own
desiderata in our context. One approach is to have the
DM express a fully-determined trade-off over outcomes
via a function combining these outcomes into a sin-
gle real-valued performance measure, and to perform
single-objective BO with this function. Unfortunately,
DMs are often unable to do this (Lepird et al., 2015).

A second approach is multi-objective BO (MOBO)
(Hakanen and Knowles, 2017; Feliot et al., 2018; Abdol-
shah et al., 2019). MOBO aims to identify the entire
feasible Pareto front but is typically inefficient because
DMs are often interested only in a particular part of
the Pareto front (Wang et al., 2017).

A third approach directly presents a DM sets of q
designs (most commonly, pairs, i.e., q = 2) and asks
the DM to express their preference over the sets. This
data is used to model the DM’s preferences over the
designs directly (Brochu et al., 2008; Brochu, 2010;
González et al., 2017; Siivola et al., 2020). We broadly
refer to these methods as preferential BO (PBO).

PBO methods can be implemented in our context by
performing time-consuming experiments for the de-
signs in the sets selected by a PBO algorithm, and
then presenting their outcomes to the DM for compari-
son. However, such an approach would be inefficient
in terms of time, experiment resources, and DM at-
tention since DMs must wait for experiment results
to complete to further input their preferences, which
can be disruptive and time-consuming. While higher
throughput is possible if many designs are evaluated
simultaneously (Siivola et al., 2020), the rate at which
additional information can be gathered about the DM’s
preferences is limited by the time-consuming experi-
ments. Instead, we might learn more with less DM
time via queries generated in real time using existing
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or hypothetical outcomes based on previously observed
experimental data.

Toward overcoming the drawbacks of the above dis-
cussed approaches, we propose a novel human-in-the-
loop algorithmic framework for optimizing multiple
outcomes called Bayesian optimization with prefer-
ence exploration (BOPE). In this framework, out-
comes arise from a time-consuming-to-evaluate func-
tion ftrue : Rd → Rk, and the DM’s preferences
can be viewed as originating from a utility function
gtrue : Rk → R, which is unknown but can be learned
through the DM’s responses to queries in the form of
comparisons between outcomes1. The goal is to solve

max
x∈X

gtrue(ftrue(x)), (1)

where X ⊂ Rd is the design space, using a limited
number of queries to the DM and experiments (i.e.,
evaluations of ftrue).

To do so, our framework iterates between two stages:
preference exploration (PE) and experimentation. Dur-
ing a PE stage, an algorithm (a PE strategy) generates
a query consisting of two outcome vectors (i.e., ele-
ments of Rk) for the DM to compare. The DM states
their preferred outcome, and another query is presented
in real time based on the result. Outcome vectors in
these queries need not be generated by evaluating ftrue.
However, as we will see later, leveraging the avail-
able knowledge about ftrue can significantly improve
performance. During an experimentation stage, an ex-
perimentation strategy chooses a batch of points in the
design space at which ftrue is evaluated. In a PE stage,
previous DM queries and past experiment evaluations
are used to choose the outcome vectors about which
DM preference is elicited. Similarly, in a experimen-
tation stage, all information gathered by this point is
used to determine design points that will be evaluated.

This approach provides four benefits. First, relative
to PBO, it supports models that decompose the latent
objective function into separate models of the outcomes
and the DM’s preferences over these outcomes. This
can improve prediction relative to PBO. Second, it
supports greater flexibility than PBO when selecting
user queries. Queries can be selected adaptively after
each batch of experiments and can include hypothetical
outcomes generated via a predictive model of ftrue, or
outcomes of designs evaluated at previous points in
time. Third, relative to MOBO, learned preferences
allow focusing experimental attention on the relevant
portion of the Pareto front, reducing the number of ex-
periments needed. Finally, in comparison with MOBO,
our approach automatically handles non-monotone pref-

1For simplicity we consider pairwise comparisons, but
generalizing BOPE to other comparisons is straightforward.
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Figure 1: Preference exploration for a problem with
a two-dimensional outcome space. The heatmap il-
lustrates the DM’s utility function gtrue(y) and the
blue line circumscribes the space of possible outcomes
achievable by ftrue(x) for any design x ∈ X . Evalua-
tion of ftrue(·) is time-consuming. Our framework aims
to collect preference data to support Bayesian opti-
mization of gtrue(ftrue(·)) with the aid of probabilistic
surrogate models of outcomes (f) and DM utilities
(g). ×s show outcome vectors presented to the DM
by EUBO-f̃ , over multiple iterations. Each iteration
queries regions likely to be of highest utility to the
DM according to g within search sets defined by inde-
pendent sample paths f̃ from f (dashed loops). This
procedure helps learn a g that may be used to select
high-utility experiments.

erences over outcomes. This might arise, e.g., when
designing a material that should neither be too stiff
nor too flexible, or in drug discovery when a chemical’s
concentration in the blood should fall near a target.

This new workflow includes a key challenge unaddressed
by prior work: how should preference information be
gathered to best support optimization in such real-
world contexts? Responding to this question, we ex-
amine several PE strategies and show that the most
successful ones leverage information about the posterior
distribution of outcomes achievable under ftrue. Finally,
we develop a one-step Bayes optimal PE strategy for
collecting preference information to solve (1).

Figure 1 illustrates one of our proposed PE strategies,
EUBO-f̃ . Rather than performing preference learning
across all possible outcome vectors, which would take
many queries, EUBO-f̃ focuses on queries comparing
outcomes that are likely to be achievable. This guides
experiments toward regions of high utility to the DM
in a small number of queries.
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Contributions Our contributions are as follows:

• We propose Bayesian optimization with preference
exploration (BOPE), a novel human-in-the-loop
framework for BO of time-consuming experiments
that generate vector-valued outcomes over which a
DM has unknown preferences. This framework re-
duces experimental cost and DM time over existing
MOBO and PBO approaches.

• We develop a principled PE strategy for adaptively
selecting queries to present to the DM. The DM’s
answers to these queries localize the parts of the
achievable region of outcomes that are of impor-
tance to the DM, and enable selection of high-utility
designs to evaluate via experimentation.

• We evaluate our approach on synthetic and real-
world simulation problems, such as multi-objective
vehicle design, demonstrating that PE-based ap-
proaches significantly outperform MOBO, PBO,
and other natural baselines.

2 OTHER RELATED WORK

A related stream of research has developed techniques
for efficient elicitation of the DM’s preferences over
outcomes that are known a priori without the need for
expensive evaluation (Chajewska et al., 2000; Boutilier,
2002; Fürnkranz and Hüllermeier, 2003; Chu and
Ghahramani, 2005; Viappiani and Boutilier, 2010; De-
wancker et al., 2016). While we leverage ideas from
these works, they are not directly applicable in our
setting, where outcomes are unknown and expensive-to-
evaluate. Additionally, most of this literature assumes
that there are a finite number of outcome vectors, while
our space of potential outcomes is uncountably infinite.

Our work builds on Astudillo and Frazier (2020) and
Lin et al. (2020). The former considers sequential BO
of vector-valued functions on behalf of a DM with un-
known preferences using the same decomposition of
outcomes and utilities considered here and proposes
a strategy for the experimentation stage only. The
present paper builds off of a previous workshop paper
by Lin et al. (2020) which considers a similar problem
setup as Astudillo and Frazier (2020) but focuses on
batch-based PE and experimentation to support the
types of workflows found in industry A/B testing set-
tings. The present paper formalizes this setup, and
provides a principled solution to the problem.

Finally, due to the composite structure of problem (1),
our work is also related to BO of composite objective
functions (Astudillo and Frazier, 2019, 2021a,b), and
we leverage similar computational techniques.

3 BO WITH PREFERENCE
EXPLORATION

Here, we describe our framework, including the work-
flow and core models, and introduce key considerations
for the design of strategies for PE and experimentation.

3.1 Workflow

In our framework, the goal is to find a solution to (1)
by learning the functions gtrue and ftrue while alter-
nating between two stages: preference exploration and
experimentation.

A PE stage is a short uninterrupted period of time in
which the DM interactively expresses preferences over
multiple pairs of outcome vectors that does not involve
the collection of new values from ftrue. We refer to
the pair of outcome vectors presented to the DM as a
query and to the DM’s answer as the response.

An experimentation stage is a period of time in which
one or more evaluations of the outcome function ftrue
are performed, typically in parallel. Our presentation
assumes that PE and experimentation stages alternate.
As a special case, this can include situations where PE
is performed only once after an initial round of experi-
mentation, so as to take the human out of the loop for
subsequent experiments. For example, in the context
of internet experimentation, an experimentation stage
would entail running a batch of A/B tests in parallel
and a PE stage could be an interactive session with a
data scientist where pairs of (potentially hypothetical)
experimental outcomes are compared.

Once all PE and experimentation stages are complete,
the DM is shown the outcome vectors for all experi-
ments that have been performed, and the DM selects
their preferred design.2

3.2 Outcome and Preference Models

We utilize two probabilistic surrogate models, one for
the outcome function, ftrue, and one for the utility
function, gtrue.

To model the outcome function, ftrue, we use a multi-
output Gaussian process (GP), f , characterized by a
prior mean function µf0 : X → Rk, and a prior covari-
ance function, Kf

0 : X ×X → Rk×k. Given a dataset of
n (potentially noisy) observations of the outcome func-
tion, Dn = {(xi, yi)}ni=1, the probabilistic surrogate
model of ftrue is then given by the posterior distribu-
tion of f given Dn, which is again a multi-output GP

2In practice, the learned utility may be used to rank
these items in advance to reduce the cognitive burden of
sorting through all evaluated designs.
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with mean and covariance functions µfn : X → Rk and
Kf
n : X × X → Rk×k that can be computed in closed

form in terms of µf0 and Kf
0 .

The utility function, gtrue, is also modeled using a
GP, g, which again requires specifying a prior mean
function, µg0 : Rk → R, and a prior covariance function,
Kg

0 : Rk × Rk → R.

Given a query (y1, y2) constituted by two outcome
vectors, we let r(y1, y2) ∈ {1, 2} indicate whether the
DM preferred the first or second outcome vector offered.
Following Chu and Ghahramani (2005), we assume
that the DM’s responses are distributed according to a
probit likelihood of the form

P(r(y1, y2) = 1 | g(y1), g(y2)) = Φ

(
g(y1)− g(y2)√

2λ

)
,

where λ is a hyperparameter that can be estimated
along with the other hyperparameters of the model,
and Φ is the standard normal CDF.

In our experiments, we use the Laplace approximation
suggested by Chu and Ghahramani (2005), which re-
sults in an approximate posterior of g that is again a
GP. When we have observed the results of m queries,
Pm = {(y1,j , y2,j , r(y1,j , y2,j))}mj=1, we let µgm and Kg

m

refer to the mean and covariance functions of this ap-
proximate GP posterior.

3.3 Preference Exploration Strategies

Preference exploration strategies aim to select queries
(y1, y2) ∈ Y × Y, where Y ⊆ Rk, so as to best support
experiment selection. Here, we introduce three classes
of PE strategies investigated in this work.

PE Strategies That Learn Preferences Over a
Prior Region of Interest Our first class of PE
strategies requires choosing a prior set Y likely to con-
tain most or all of the achievable region ftrue(X ) =
{ftrue(x) : x ∈ X}, so that preferences over Y are
highly informative of preferences over ftrue(X ). It then
chooses queries to learn DM preferences over Y. In
the simplest case, Y can be a hyperrectangle bound-
ing a likely minimum and maximum for each outcome
provided by the DM. Alternatively, Y could be esti-
mated via a meta-analysis of related experiments, and
could also incorporate information about how outcomes
covary across experiments.

There is a tradeoff in choosing the bounds of Y . Choos-
ing Y to be too small risks excluding relevant potential
outcomes. Choosing Y to be much larger than ftrue(X )
can cause over-exploration of areas not relevant to
the optimization task. This may occur with hyper-
rectangular Y if correlated outcomes make ftrue(X )
much smaller than Y.

Two policies for generating queries to learn preferences
over Y are: selecting queries uniformly at random over
Y × Y; and selecting queries by maximizing an active
learning acquisition function (AF) such as Bayesian ac-
tive learning by disagreement (BALD) (Houlsby et al.,
2011) over Y × Y.

PE Strategies That Leverage Direct Experi-
mental Data Another class of PE strategies samples
many plausible achievable regions based on data from
ftrue. For each such region Y, it seeks to learn the
DM’s preferences over Y. Learning these preferences
allows us to eventually learn the best point in the true
achievable region, despite not knowing this region.

Probabilistic surrogate models provide a natural mech-
anism for sampling plausible achievable regions. In
many PE strategies considered here, for each prefer-
ence query, a GP sample path f̃ is first drawn from
f , implying an associated achievable region Y = f̃(X ).
Then a query is designed to improve our knowledge of
the DM’s most preferred design in Y . Compared to the
former class of PE strategies that learn preferences over
a prior region of interest, this approach aims to reduce
the number of queries needed by learning a separate
ranking over many smaller sets Y. As we learn more
about the achievable region through experimentation,
the sequence of sampled sets Y concentrates, further
reducing the size of the query space.

We consider three strategies for learning preferences
over Y = f̃(X ): random search, BALD, and a novel AF
called EUBO which is introduced in §4.1 and aims to
find the best query over a known set of outcomes. §4.3
also derives an approximation of a one-step optimal
AF for BOPE that has a similar structure but uses a
different choice of Y.

Optimization of PE AFs Several of the PE strate-
gies discussed above require optimizing an AF α over
Y×Y . In several cases, Y can be written as Y = {h(x) :
x ∈ X} for some deterministic function h. This makes
optimization convenient, since is allows for optimization
over a known domain, X : argmaxy1,y2∈Y α(y1, y2) =
argmaxx1,x2∈X α(h(x1), h(x2)). Thus, to find the max-
imizer of α(y1, y2) over y1, y2 ∈ Y, it is sufficient to
find the maximizer of α(h(x1), h(x2)) over x1, x2 ∈ X .

3.4 Experiment Selection Strategies

Here, we discuss the strategy we use to select the
designs at which ftrue is evaluated during the experi-
mentation stages. Since the focus of our work is on PE
strategies, we restrict our attention to a single experi-
ment selection strategy. We propose a generalization
of the expected improvement under utility uncertainty
(EIUU) AF, introduced by Astudillo and Frazier (2020),
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to support noisy and parallel evaluations with a non-
parametric utility model g. This AF integrates over
the uncertainty of both f and g when selecting the
design points.

Formally, for a batch of q points x1:q = (x1, . . . , xq) ∈
X q, this AF is defined by

qNEIUU(x1:q) =

Em,n
[
{max g(f(x1:q))−max g(f(Xn))}+

]
,

where Em,n[·] = E[· | Pm,Dn] denotes the condi-
tional expectation given the data from m queries
and n experiments, {·}+ denotes the positive part
function, and, making a slight abuse of notation,
we define max g(f(x1:q)) = maxi=1,...,q g(f(xi)) and
max g(f(Xn)) = max(x,y)∈Dn

g(f(x)).

qNEIUU can be straightforwardly implemented as a
Monte Carlo AF by applying the reparametrization
trick to both f and g, and optimized via sample aver-
age approximation (SAA) (Wilson et al., 2018; Balan-
dat et al., 2020). We refer the reader to §A.1 in the
supplementary material (SM) for more details on the
implementation of qNEIUU.

4 ONE-STEP OPTIMAL
PREFERENCE EXPLORATION

Here we present a principled PE strategy derived us-
ing a one-step Bayes optimality analysis. We begin
by describing a one-step optimal strategy for learning
preferences over a known set of outcome vectors as well
as results regarding its efficient computation. We then
propose a one-step optimal PE strategy that formally
accounts for uncertainty over the set of achievable out-
comes. This strategy is not practical for real-time
learning, but we provide a faster principled approxima-
tion using insights developed in the case with known
achievable outcomes.

4.1 Preference Exploration Over a Known
Set of Outcomes

Here we assume that the space of achievable outcomes
is known and denote it by Y.

To motivate our AF, we ask the following rhetorical
question: If we had to offer a single outcome vector
y∗ ∈ Y to the DM using the available information so
far, what would the right choice be? We argue that a
sensible choice is y∗ so that the expected utility received
by the DM is maximal; i.e., y∗ ∈ argmaxy∈Y Em[g(y)],
where Em denotes the conditional expectation given
Pm (i.e., Em[·] = E[· | Pm]). Following this logic, if
we were allowed to ask an additional query (y1, y2)
and observe the DM’s response r(y1, y2), y∗ would now

be chosen so that y∗ ∈ argmaxy∈Y Em+1[g(y)], where
Em+1[·] = E [· | Pm ∪ {(y1, y2, r(y1, y2))}]. Thus,

max
y∈Y

Em+1[g(y)]−max
y∈Y

Em[g(y)]

quantifies the difference in (expected) utility obtained
by the DM due to the additional query. Our AF can
now be defined as the expectation of this difference
given the information available so far; i.e.,

V (y1, y2) = Em

[
max
y∈Y

Em+1[g(y)]−max
y∈Y

Em[g(y)]

]
,

where the dependence of the right-hand-side on
(y1, y2) is made implicit by our notation Em+1[·] =
E [· | Pm ∪ {(y1, y2, r(y1, y2))}]. We also note that the
term maxy∈Y Em[g(y)] does not depend on (y1, y2) and
thus can be disregarded when maximizing V . This
AF can be considered to be in the knowledge gradi-
ent family of AFs (Frazier, 2018), because it values
information according to its impact on the maximum
posterior expected utility.

4.1.1 Expected Utility of the Best Outcome

The acquisition function V defined above is challenging
to maximize directly due to its nested structure, as
is typical of knowledge gradient AFs. Fortunately,
the following theorem shows that maximizing V is
equivalent to maximizing another AF that is easier to
optimize.

We define the expected utility of the best option (EUBO),

EUBO(y1, y2) = Em [max{g(y1), g(y2)}] ,

where the expectation is over the posterior of the DM
utility g at the time the query is chosen. V and EUBO
are related via the following result.
Theorem 1. If λ = 0, and the posterior mean µgm and
posterior covariance Kg

m are both continuous, then

argmax
y1,y2∈Y

EUBO(y1, y2) ⊆ argmax
y1,y2∈Rk

V (y1, y2)

and the left-hand side is non-empty.

Thus, the above result shows that, when DM responses
occur without error, one can find a maximizer of V by
maximizing EUBO instead, which, as we argue below,
is a significantly simpler task. While this holds for
λ = 0 only, the following result shows that maximizing
EUBO yields a high-quality solution even if λ > 0.
Theorem 2. Denote V as Vλ to make the
dependence on λ explicit, and let (y∗1 , y

∗
2) ∈

argmaxy1,y2 EUBO(y1, y2). Then,

Vλ(y∗1 , y
∗
2) ≥ max

y1,y2∈Y
V0(y1, y2)− λC,

where C = e−1/2/
√

2.
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Theorem 2 provides a lower bound on the acquisition
value of a maximizer of EUBO evaluated at V in the
presence of comparison noise. The proofs of Theorems
1 and 2 can be found in the SM §B.

Maximizing EUBO is easier than V for two reasons.
First, computing EUBO does not require solving the in-
ner optimization problem maxy∈Y Em+1[g(y)] required
by V . Second, EUBO can be expressed in closed form
under the approximate Gaussian posterior of g implied
by the Laplace approximation, as shown in SM §B.2.1.

4.2 Preference Exploration Under an
Unknown Set of Achievable Outcomes

We now describe a PE strategy that formally takes
into account uncertainty on the set of achievable out-
comes. To support our analysis, here we assume that
evaluations of the outcome function are noise-free.

As in the previous subsection, we derive a PE strategy
using a one-step optimality analysis. Formally, this
strategy selects the query (y1, y2) that is optimal with
respect to the following sequence of actions (which
constitute one step):

1. Select query (y1, y2) ∈ Rk × Rk and observe DM’s
response r(y1, y2),

2. Select design x ∈ X and observe outcome f(x),

3. Obtain reward maxi=1,...,n+1 Em+1,n+1[g(f(xi))],
where we define xn+1 = x and Em+1,n+1[·] denotes
E [· | Pm ∪ {(y1, y2, r(y1, y2))} ,Dn ∪ {(x, f(x))}].

The optimal query can be found by solving
maxy1,y2∈Rk W (y1, y2), where

W (y1, y2)

=Em,n[ max
xn+1∈X

Em+1,n[ max
i=1,...,n+1

Em+1,n+1[g(f(xi))]]]

and Em+1,n[·] = E [· | Pm ∪ {(y1, y2, r(y1, y2))} ,Dn]

This strategy is similar in spirit to the one described
in the previous subsection. However, there are two key
differences, which originate due to the set of achievable
outcomes being unknown. First, there is an additional
action between query selection and reward collection.
Here, one additional evaluation of the outcome func-
tion is performed, thus enforcing the need to gather
preference information to support experimentation (i.e.,
evaluations of the outcome function). Second, since
the set of achievable outcomes is unknown, the reward
is computed over the outcomes observed so far only.

4.3 Efficient Approximate Maximization of
W Via a Single-Sample Approximation

Unsurprisingly, W is quite hard to compute and op-
timize due to its nested structure. In principle, one
could aim to adapt optimization strategies for looka-
head AFs (see, e.g., Balandat et al. 2020; Jiang et al.
2020). However, these methods are quite computation-
ally expensive, with run times on the order of several
minutes per acquisition, making them impractical in
the context of real-time PE. Instead, we derive an ef-
ficient approximate optimization scheme based on a
single-sample approximation of W with respect to the
uncertainty on f(xn+1).

Leveraging the approximate GP distribution over
g induced by the Laplace approximation, we write
Em+1,n+1[g(f(xi))] as µ

g
m+1(f(xi)) for i = 1, . . . , n+1,3

and define µ∗m+1,n = maxi=1,...,n µ
g
m+1(f(xi)). Apply-

ing the reparametrization trick on f(xn+1), W can be
rewritten as

W (y1, y2) =

Em,n[max
x∈X

Em+1,n[max{µ∗m+1,n, µ
g
m+1(ζn(x;Z))}]],

where ζn(x;Z) = µfn(x) + Cfn(x)Z, Cfn(x) is the lower
Cholesky factor of Kf

n(x, x), and the (conditional) dis-
tribution of Z is the standard normal. In the expression
above, the inner expectation is over Z and the outer
expectation is over r(y1, y2).

If we approximate the expression above using a single
sample from Z, which we denote by Z̃, and making a
slight abuse of notation, we obtain the approximation
W (y1, y2) ≈W (y1, y2; Z̃), where

W (y1, y2; Z̃) =

Em,n[max
x∈X

max{µ∗m+1,n, µ
g
m+1(ζn(x; Z̃))}],

and Z̃ is deterministic in the expectation above. More-
over, since ζn(xi; Z̃) = f(xi) for previously evaluated
points i = 1, . . . , n, maxx∈X µ

g
m+1(ζn(x; Z̃)) ≥ µ∗m+1,n

and thus maxx∈X max{µ∗m+1,n, µ
g
m+1(ζn(x; Z̃))} can

be simplified to maxx∈X µ
g
m+1(ζn(x; Z̃)). Thus,

W (y1, y2; Z̃) = Em,n[max
x∈X

µgm+1(ζn(x; Z̃))].

We can now use the machinery developed in §4.1
to efficiently maximize W (y1, y2; Z̃). Concretely,
if we let Y = {ζn(x; Z̃) : x ∈ X}, it follows
from Theorem 1 that argmaxy1,y2∈Y EUBO(y1, y2) ⊆
argmaxy1,y2∈YW (y1, y2; Z̃) when λ = 0. Analogously,

3We leverage this closed form expression to simplify our
notation but this is not critical. Our analysis holds even if
Em+1,n+1[g(f(xi))] does not have a closed form expression.
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Theorem 2 provides a guarantee on the quality of a
query in argmaxy1,y2∈Y EUBO(y1, y2) when λ > 0. We
call the resulting PE strategy EUBO-ζ.

While EUBO-ζ is derived as an approximation of a
one-step optimal strategy, it has a structure similar to
that of the strategies discussed in §3.3: it builds a set
Y using f and then selects a query in Y × Y by max-
imizing an AF. This perspective leads us to consider
the PE strategy that chooses queries by maximizing
EUBO(y1, y2) over y1, y2 ∈ f̃(X ). We call the resulting
strategy EUBO-f̃ . This variation of EUBO provides a
more intuitive interpretation than EUBO-ζ.

5 NUMERICAL EXPERIMENTS

We evaluate our proposed strategies on real-world and
synthetic outcome functions as well as several utility
functions. The main text considers four test problems:
vehicle safety (d = 5, k = 3) (Liao et al., 2008; Tan-
abe and Ishibuchi, 2020), DTLZ2 (Deb et al., 2005)
(d = 4, k = 8), OSY (d = 6, k = 8) (Deb and Jain,
2013), and car cab design (d = 7, k = 9) problems (Tan-
abe and Ishibuchi, 2020). These test problems are
matched with several utility functions: linear and piece-
wise linear utilities, the product of Kumaraswamy dis-
tribution CDFs, modeling soft constraints, and the L1
distance from a Pareto-optimal point. All test prob-
lems are described in detail in §E of the SM. Results
are qualitatively similar to those presented here. Ta-
ble 3 in the SM summarizes all test outcome and utility
functions considered in this work.

With these outcome and utility functions, we perform
three types of simulation-based experiments. §5.1 con-
siders a single PE stage. With data from a single
batch of experiments, we train a surrogate outcome
model f , then use PE strategies to identify high utility
designs in a single PE stage. §5.2 considers the case
in which multiple PE and experimentation stages are
interleaved, and evaluates the maximum utility found
over several rounds of BOPE for each PE strategy. Fi-
nally, §5.3 considers a setting in which all preference
exploration occurs in a single stage, and this is followed
by multiple batches of experimentation without further
intervention from the DM. All simulations compare
EUBO-based PE strategies against several other PE
strategies. Unless otherwise noted, we use the qNEIUU
experiment selection strategy.

To emulate noise in preferences expressed by human
DMs, simulated DMs in all experiments select the
option with lower utility 10% of the time. In §D.5
of the SM, we also experiment with a different probit
comparison error and observe similar results.

Complete simulation results with further baselines, test
problems, and settings are available in §D of the SM.

Acquisition strategies for PE. We examine sev-
eral PE strategies described in §3.3. This includes
EUBO-ζ and methods selecting queries from one of
two sets Y : (i) a hyper-rectangle Y0 bounding ftrue(X ),
and (ii) f̃(X ). Y0 is constructed to be the smallest
hyper-rectangle that contains ftrue(X ), estimated via
108 Monte Carlo samples from X . Thus, Y0 provides
optimistic baseline of a DM that can perfectly charac-
terize the upper and lower (box) bounds of ftrue. f̃ is
sampled from the posterior on f via random Fourier
features with 512 basis functions (Rahimi and Recht,
2007).

To select queries from these two sets Y, we consider
random search, BALD, and EUBO. We name these
algorithms via their sampling strategy and choice of Y :
Random-Y0 and Random-f̃ , and similarly for EUBO
and BALD. BALD-Y (for both choices of Y) is es-
timated via quasi-Monte Carlo (QMC), and selects
designs x ∈ X to reduce the posterior uncertainty of
g over Y. Variants of EUBO are computed using the
closed form expression derived in §B.2.1 of the SM.

All algorithms are implemented in BoTorch (Balandat
et al., 2020). All AFs are optimized via SAA using
L-BFGS-B. We use a Matérn 5/2 ARD covariance
function for the outcome model and RBF ARD kernel
for the preference model. We refer the reader to §C of
the SM for additional implementation details.

5.1 Identifying High Utility Designs with PE

We first examine how the proposed PE strategies iden-
tify design points whose outcomes have high utilities
during a single PE stage. We first evaluate the outcome
function at a batch of quasi-random design points and
fit a multi-output GP to the observed data. Outcome
functions with five or fewer input dimensions receive 16
initial designs and the remainder receive 32. We then
initialize the preference model using pairs of random
designs from the initial batch for the first 2k pairwise
comparisons, followed by comparisons acquired via PE
strategies. The outcome surrogate model remains un-
changed.

We plot the true utility of our best guess at the utility-
optimal design after every 5 pairwise comparisons. To
do so, we maximize E[g(f(x))] over x ∈ X where the ex-
pectation is taken under the posterior given all available
query responses and experiment results. We maximize
following a SAA approach, sampling over realizations of
g(f(x)). This provides the design x̂ with the maximum
posterior mean. We plot gtrue(ftrue(x̂)) as the utility
earned by a given PE method after a given number of
pairwise comparisons.

Figure 2 shows results. EUBO-ζ and EUBO-f̃ per-
form at least as well as baseline strategies across all
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Figure 2: Mean utility of designs chosen according to maximum posterior predictive mean after a given number
of pairwise comparisons during the first stage of preference exploration. CIs are ±2 standard errors of the mean
across 100 simulation replications.
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Figure 3: Max utility achieved by interleaving batches of preference exploration and experimentation. “True Utility”
shown in black represents an approximate upper bound on the performance achievable obtained via Bayesian
optimization with known utility. CIs are ±2 standard errors of the mean across 30 simulation replications.

test problems on anytime performance, while BALD-f̃
achieves competitive but slightly inferior performance.
EUBO-Y0 tends to over-explore outcomes that are not
achievable under ftrue(X ), leading to models of g that
are progressively less accurate estimates of the posterior
maximizer of gtrue(ftrue(·)).

5.2 BOPE with Multiple PE Stages

We evaluate our proposed methods in a full BOPE
loop with alternating rounds of experimentation and
PE. After each experimentation stage, a PE stage is
performed using a PE strategy. The learned preference
model is then used to select designs for subsequent
experiments. Each PE stage elicits 25 pairwise com-
parisons from the DM. This occurs over 3 rounds of
experimentation, leading to a total of 75 comparisons.

Following the previous subsection, the first experimen-
tation stage uses 32 points generated with a Sobol
sequence for higher-dimensional outcome functions
(d > 5), and 16 otherwise. For each subsequent batch,
PE is performed, a batch of 16 (or 8 for the vehicle
safety problem) design points are generated for each
subsequent experimentation stage (i.e., batches 2 - 4).
PE strategies are used in combination with qNEIUU
to select designs in batches 2-4. In addition to high-

performing baselines examined in §5.1, we include a
few additional baselines.

We adapt PBO to the BOPE setting as follows: For
PE, we repeatedly apply PBO AFs to the results of
previous experiments to elicit DM’s responses over
previously observed outcomes: (yi, yj) with yi, yj ∈ {y :
(x, y) ∈ Dn)}. A standard GP model with a Laplace
approximation is used to directly model the latent
objective value; i.e., the mapping x 7→ gtrue(ftrue(x)).
We consider an adaptation of Thompson sampling, a
popular AF used in the PBO literature (Siivola et al.,
2020). This strategy is performed by selecting x ∈ Dn
with the value based on independent samples from the
posterior distribution of the latent objective. We refer
to this strategy as PBO TS. Experiments are selected
via a Monte Carlo implementation of the noisy expected
improvement AF (Letham et al., 2019), qNEI. We also
considered a PBO AF based on EUBO, but the results
were similar to those of PBO TS.

We additionally consider the multi-objective optimiza-
tion algorithm qNParEGO (Daulton et al., 2020),
single-objective BO with the ground truth utility func-
tion (True Utility), and a strategy where we experiment
with random Sobol design points, which are approx-
imate upper and lower bounds on a PE strategy’s
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Figure 4: Max utility achieved a single round or multiple rounds of PE after the last experimentation batch.
Outcomes are only marginally improved through the use of multiple PE stages for EUBO-based acquisition
functions, but PBO-based strategies benefit greatly from the ability to elicit preferences across multiple rounds of
experimentation. The opposite effect is seen for active learning strategies, which benefit most from conducting all
learning upfront. Plots show mean and ±2 standard errors of the mean for 30 simulation replicates.

performance. The True Utility is optimized with qNEI
using a compositional objective (Astudillo and Frazier,
2019; Balandat et al., 2020).

Figure 3 shows that in all test functions presented here,
BO using EUBO-ζ and EUBO-f̃ consistently achieves
the highest utility, only second to the ground truth
utility. In our experiments, we find that PBO-TS does
not achieve the same level of performance as PE AFs.
We also consider PE AFs that perform search directly
in the entire Y0 domain in the SM. Similar to the
previous set of experiments, search directly in Y0 tends
to perform worse than search in f̃(X ).

5.3 BOPE with a Single PE Stage

DM interruptions are costly in practice. Therefore, we
consider the case in which an initial experimentation
stage takes place, followed by a single 75-comparison
PE stage, after which experimentation proceeds in 3
batches of the same size as §5.2.4

While performing PE only once minimizes DM inter-
ruptions, it may adversely impact the optimization
since all learning occurs with a surrogate of a small
amount of initial random design points. Figure 4 com-
pares the maximum utility achieved after performing
four batches of experimentation, when performing all
PE after the first batch, vs performing PE between
rounds of experimentation. For all PE-based methods,
the maximum utilities achieved are not statistically
different in both settings, suggesting they are robust
to different levels of PE interactivity under our experi-
mental setting. On the other hand, we observe rather
significant improvements in maximum utility achieved
with multiple PE stages for PBO-TS. In this case, we
see that the best value achieved quickly plateaus after
the second batch of experimentation (Figure 8 in SM).

4The single PE stage approach makes it feasible to use
smaller batch sizes or fully sequential optimization, but we
use identical batch sizes to allow for more direct comparison.

6 CONCLUSION
BO is a prominent method for sequential experimental
design, often promising to “take the human out of the
loop” (Shahriari et al., 2015). However, in practice, hu-
man DMs often struggle to describe the objective they
wish to optimize. This work proposes a novel human-
in-the-loop BO framework with interleaved preference
exploration stages called Bayesian optimization with
preference exploration, where humans and algorithms
collaborate to learn DMs’ preferences over plausible
outcomes for a particular black-box optimization task.

We propose EUBO, a simple and computationally ef-
ficient algorithm for exploring and learning the DM’s
preferences. These learned preferences in turn enable
efficient search for designs whose outputs have high util-
ities via BO. We show that EUBO-ζ is an approximate
one-step optimal policy for learning a DM’s preferences
with respect to our current knowledge of both the DM’s
utility function and the outcome function, which allows
us to focus preference exploration on the most relevant
parts of the outcome space with respect to the current
data. EUBO provides query efficiency improvements
relative to benchmark methods, finding higher utility
designs while consuming less DM time and requiring
fewer experiments.

This work suggests areas for future research. Real-
time performance was enabled by approximate versions
of the preference model and the optimal one-step op-
timal strategy W . State-of-the-art models such as
SkewGPs (Benavoli et al., 2021), and more accurate
approximations of W could potentially improve PE
sample complexity while still supporting real-time in-
teraction. BALD-f̃ is a strong and fast baseline, sug-
gesting that new information-theoretic PE strategies
could perform well in the BOPE framework.

Replication Material Code for replicating exper-
iments in this paper is available at https://github.
com/facebookresearch/preference-exploration

https://github.com/facebookresearch/preference-exploration
https://github.com/facebookresearch/preference-exploration
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Supplementary Material:
Preference Exploration for Efficient

Bayesian Optimization with Multiple Outcomes

A DETAILS ON ACQUISITION FUNCTIONS

A.1 Implementation of qNEIUU

Here we describe our approach to compute and optimize the qNEIUU acquisition function. Succinctly, we
follow the approach of Balandat et al. (2020), which replaces the original acquisition function optimization
problem with a sample average approximation (SAA). The samples used within this SAA are obtained by
applying the reparameterization trick (Wilson et al., 2018) to the posterior distributions on f and g. The
approximate computation of qNEIUU used within SAA is summarized in Algorithm 1. This is implemented in
BoTorch (Balandat et al., 2020), and uses Ng = 8 samples from g samples and Nf = 32 samples from f . As is
standard for BoTorch AFs, we use quasi-Monte Carlo samples obtained via scrambled Sobol’ sequences (Owen,
1998). Optimization is performed via L-BFGS-B.

Algorithm 1 Computation of qNEIUU

Require: X, a batch of q design points to evaluate (a q × d matrix);
Xobs, the set of n previously observed, potentially noisily observed points (a n× d matrix);
f , a probabilistic surrogate model fitted on the experimental data D with k outcomes;
g, a probabilistic preference model fitted on preference feedback dataset P;
Nf , Ng, the number of MC samples from f and g;

1: [Ỹ , Ỹobs]← Draw Nf samples fromf([x, xobs])

# Ỹ is a tensor of size Nf × q × k
# Ỹobs is a tensor of size Nf × p× k

2: [Ũ , Ũobs]← Draw Ng samples from g([Ỹ , Ỹobs])

# Ũ is a tensor of size Ng ×Nf × q
# Ũobs is a tensor of size Ng ×Nf × p

3: U∗i,j ← max`=1,...,q Ũi,j,`

4: U∗obs i,j ← max`=1,...,n Ũobs i,j,`

5: ∆i,j := {U∗i,j − U∗obs i,j}+

6: qNEIUU ← 1
NgNf

∑
i=1:Ng

∑
j=1:Nf

∆i,j

7: return qNEIUU

A.2 Monte Carlo BALD

We leverage a novel MC implementation of BALD (Houlsby et al., 2011) that allows us to reparameterize the
optimization of BALD in the design, rather than outcome space by propagating samples from f(x) through g into
in our acquisition function. The computation of this acquisition function is summarized in Algorithm 2. Here, Φ
is the standard normal CDF and Hb is the binary entropy function. This acquisition function is optimized via the
standard BoTorch approach described in the previous subsection.

A.3 Uniform Sampling Over Y0

For the Uniform Random baseline, we need to empirically determine the bounds of each outcome. To do so, we
first sample a large number of random points (108 in this case) in X ∈ X , and obtain an empirical sample of
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Algorithm 2 MC-BALD with Y search space
Require: y1, y2, a pair of comparison design points to evaluate;

g, a probabilistic preference model
NMC , the number of MC samples;

1: µ, σ2 ← mean and var of g(y1)− g(y2)
2: zposterior ← Φ( µ√

σ2+1
)

3: hposterior ← Hb(zposterior)
4: s← Draw NMC samples from N(µ, σ2)
5: zsamples ← Φ(s)
6: hconditional ← Hb(zsamples).mean()
7: return hposterior − hconditional

Y = ftrue(X) by evaluating the test response function. Then we are able to identify the empirical lower and
upper of ftrue in Y, denoted as Ymin and Ymax respectively. Finally, we scale (up or down depending on its sign
and whether it’s lower or upper bound) Ymin and Ymax by 10% (or 20% if one side of the bound is 0) to include
additional potential boundary values that are not captured by our sampling scheme. This provides a generous
uniform prior over the achievable set when used as a baselines in our experiments.

B THEORETICAL RESULTS

All probabilities and expectations in this section are with respect to the posterior distribution on g given m DM
queries. Previously we used the notation Em, but here we drop the subindex m for brevity.

B.1 Proof of Theorem 1

Theorem 1. Suppose that Y is compact, µgm(y) and Kg
m(y, y) are continuous functions of y, and λ = 0. Then,

argmax
y1,y2∈Y

EUBO(y1, y2) ⊆ argmax
y1,y2∈Rk

V (y1, y2), (2)

and the left-hand side is non-empty.

Proof. We first observe that the left-hand side is non-empty since Y is compact and EUBO is continuous.
Continuity of EUBO follows directly from the continuity of µgm and Kg

m along with (6) (note that ∆Φ(∆/σ) +
σϕ(∆/σ) is continuous at σ = 0).

Recall that

V (y1, y2) = E

[
max
y∈Y

E [g(y) | (y1, y2, r(y1, y2))]−max
y∈Y

E[g(y)]

]
.

Since maxy∈Y E[g(y)] does not depend on (y1, y2), we have

argmax
y1,y2∈Rk

V (y1, y2) = argmax
y1,y2∈Rk

W (y1, y2),

where

W (y1, y2) = E

[
max
y∈Y

E [g(y) | (y1, y2, r(y1, y2))]

]
.

Thus, it suffices to show that
argmax
y1,y2∈Y

EUBO(y1, y2) ⊆ argmax
y1,y2∈Rk

W (y1, y2). (3)

To show (3), we rely on an idea from Viappiani and Boutilier (2010). For i ∈ {1, 2} let

y∗(y1, y2, i) ∈ argmax
y∈Y

E [g(y) | (y1, y2, i)] .
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Below, we show that
EUBO(y∗(y1, y2, 1), y∗(y1, y2, 2)) ≥W (y1, y2). (4)

For generic y1, y2, we also have

EUBO(y1, y2) ≤W (y1, y2) (5)

because the right-hand side is bounded below by replacing maxy E [g(y) | (y1, y2, r(y1, y2))] by E[g(yr(y1,y2)) |
(y1, y2, r(y1, y2))] in the definition of W , i.e., by using the item that the DM selected in the query as our estimate
of the item that the DM most prefers.

With these inequalities established, let (y1, y2) be in the right-hand side of (3). Suppose for contradiction that
(y1, y2) is not in the left-hand side of (3). Then there must be some (ỹ1, ỹ2) such that W (ỹ1, ỹ2) > W (y1, y2).

Let ỹ∗i = y∗(ỹ1, ỹ2, i) for i = 1, 2. We have

EUBO(ỹ∗1 , ỹ
∗
2) ≥W (ỹ1, ỹ2)

> W (y1, y2)

≥ EUBO(y1, y2)

≥ EUBO(ỹ∗1 , ỹ
∗
2).

The first inequality is due to (4), which we show below. The second is due to our supposition for contradiction
that (ỹ1, ỹ2) had a strictly larger value of W than (y1, y2). The third is due to (5). The fourth is because (y1, y2)
was chosen to maximize EUBO over Y × Y and because ỹ∗i ∈ Y for both i = 1, 2.

This is a contradiction. Thus, it must be that (y1, y2) is also in the left-hand side of (3).

It now remains to show that (4) holds. To this end, let y∗i = y∗(y1, y2, i). Observe that

W (y1, y2) =
∑
i

P(r(y1, y2) = i)E[g(y∗i )|(y1, y2, i)]

and g(y∗i ) ≤ max{g(y∗1), g(y∗2)} for both i = 1, 2. Thus,

W (y1, y2) =
∑
i

P(r(y1, y2) = i)E[g(y∗i )|(y1, y2, i)]

≤
∑
i

P(r(y1, y2) = i)E[max{g(y∗1), g(y∗2)}|(y1, y2, i)]

= E[max{g(y∗1), g(y∗2)}]
= EUBO(y∗1 , y

∗
2).

B.2 Proof of Theorem 2

Here we prove Theorem 2. First we introduce additional notation and prove several auxiliary lemmas.

Definition 1. We define
EUBOλ(y1, y2) = E[g(yr(y1,y2))],

where r(y1, y2) is a random variable whose conditional distribution given g(y1) and g(y2) is given by

P(r(y1, y2) = 1 | g(y1), g(y2)) = Φ

(
g(y1)− g(y2)√

2λ

)
,

and P(r(y1, y2) = 2 | g(y1), g(y2)) = 1− P(r(y1, y2) = 1 | g(y1), g(y2)).

Similarly, we also define

Vλ(y1, y2) = E

[
max
y∈Y

E [g(y) | (y1, y2, r(y1, y2))]−max
y∈Y

E[g(y)]

]
,

and
Wλ(y1, y2) = E

[
max
y∈Y

E[g(y) | (y1, y2, r(y1, y2))]

]
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The above definitions generalize the definitions of EUBO, V , and W to the case where the DM’s responses are
corrupted by probit noise.

The following inequality is key in our proof of Theorem 2.

Lemma 1. For any fixed r1, r2 ∈ R and λ > 0,

Φ

(
r1 − r2√

2λ

)
r1 + Φ

(
r2 − r1√

2λ

)
r2 ≥ max{r1, r2} − λC,

where C = e−1/2/
√

2.

Proof. Without loss of generality we may assume that r1 ≥ r2. Then, we want to prove that

Φ

(
r1 − r2√

2λ

)
r1 + Φ

(
r2 − r1√

2λ

)
r2 ≥ r1 − λC,

By recalling that Φ(t) = 1− Φ(−t) for any t ∈ R, the inequality above can be further rewritten as

Φ

(
r1 − r2√

2λ

)
r1 +

[
1− Φ

(
r1 − r2√

2λ

)]
r2 ≥ r1 − λC.

Arranging terms and letting s = (r1 − r2)/
√

2λ, we obtain the equivalent inequality

C√
2
≥ s [1− Φ(s)] .

Thus, it suffices to show that the above inequality holds for any s ≥ 0. To this end, recall that

Φ(s) =
1

2

[
1 + erf

(s
2

)]
,

where erf is the Gauss error function. Thus, the above inequality is equivalent to

C√
2
≥ s

2
erfc

(s
2

)
,

where erfc = 1−erf is the complementary Gaussian error function. Using the well-known inequality e−t
2 ≥ erfc(t),

which is valid for all t > 0 (see, e.g., Chang et al. (2011)), it suffices to show that

C√
2
≥ s

2
e−

s2

2 ;

i.e.,
1

2
e−

1
2 ≥ s

2
e−

s2

2 .

The above inequality can be easily verified by noting that the right-hand side reaches its maximum value at
s = 1.

The following result shows that the expected utility of a DM expressing responses corrupted by probit noise with
parameter λ is close to that of a DM expressing noiseless responses.

Lemma 2. The following inequality holds for any y1, y2 ∈ Y and λ > 0:

EUBOλ(y1, y2) ≥ EUBO0(y1, y2)− λC,

where C is defined like in Lemma 1.
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Proof. Note that

E[g(yr(y1,y2)) | g(y1), g(y2)] = Φ

(
g(y1)− g(y2)√

2λ

)
g(y1)+

Φ

(
g(y2)− g(y1)√

2λ

)
g(y2).

Hence, from Lemma 1 it follows that

E[g(yr(y1,y2)) | g(y1), g(y2)] ≥ max{g(y1), g(y2)} − λC.

The desired result can now be obtained by taking expectations over g(y1) and g(y2) on both sides of the above
inequality.

Our last lemma simply shows that the function Wλ dominates EUBOλ for any λ > 0.

Lemma 3. The following inequality holds for any y1, y2 ∈ Y and λ > 0:

Wλ(y1, y2) ≥ EUBOλ(y1, y2).

Proof. We have

Wλ(y1, y2) = E

[
max
y∈Y

E[g(y) | r(y1, y2)]

]
≥ E

[
E[g(yr(y1,y2)) | r(y1, y2)]

]
= E[g(yr(y1,y2))]

= EUBOλ(y1, y2).

We are now in position to prove Theorem 2.

Theorem 2. Let (y∗1 , y
∗
2) ∈ argmaxy∈Y EUBO(y1, y2). Then,

Vλ(y∗1 , y
∗
2) ≥ max

y1,y2∈Y
V0(y1, y2)− λC,

where C is defined like in Lemma 1.

Proof. We have

Wλ(y∗1 , y
∗
2) ≥ EUBOλ(y∗1 , y

∗
2)

≥ EUBO0(y∗1 , y
∗
2)− λC

= max
y∈Y

EUBO0(y1, y2)− λC

= max
y∈Y

W0(y1, y2)− λC,

where the first line follows from Lemma 3, the second line follows from Lemma 2, the third line follows from the
definition of (y∗1 , y

∗
2), and the fourth line follows from Theorem 1. The desired result can now be obtained by

subtracting maxy∈Y E[g(y)] from both sides of the inequality.

B.2.1 Closed Form Expression of EUBO Under a Gaussian Posterior

To compute EUBO in closed form, recall that µgm andKg
m are the mean and posterior covariance of the approximate

GP posterior after m queries. We rewrite EUBO as

EUBO(y1, y2) = E[{g(y1)− g(y2)}+ + g(y2)]

= E[{g(y1)− g(y2)}+] + µgm(y2).
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Now let ∆(y1, y2) and σ2(y1, y2) be the mean and variance of g(y1)− g(y2):

∆(y1, y2) = E[g(y1)− g(y2)] = µgm(y1)− µgm(y2)

and

σ2(y1, y2) = Var[g(y1)− g(y2)]

= Kg
m(y1, y1) +Kg

m(y2, y2)− 2Kg
m(y1, y2).

Using the standard formula for the expectation of the positive part of a normal random variable with a given
mean and variance, and dropping y1, y2 from the arguments to ∆ and σ for brevity, we get

E[{g(y1)− g(y2)}+] = ∆Φ

(
∆

σ

)
+ σϕ

(
∆

σ

)
,

and thus
EUBO(y1, y2) = ∆Φ

(
∆

σ

)
+ σϕ

(
∆

σ

)
+ µgm(y2), (6)

where ϕ and Φ are the standard normal PDF and CDF, respectively.

C SIMULATION DESIGN AND IMPLEMENTATION DETAILS

C.1 Choice of Batch Sizes and Number of DM Queries

Our simulation experiments are configured to mimic aspects of real-world experiments in which DMs may wish
to perform Bayesian optimization using preference models. To do this, we rely on pilot studies related to early
versions of the PE strategies developed in this work. Participants in the pilots were data scientists and ML
engineers at Meta who routinely used Bayesian optimization to tune recommender system ranking policies.
Standard A/B tests consider a large number of number of initial design points that are on the order of 3-5x
the number of input dimensions, which motivates the initial batch sizes used in our simulation experiments.
Subsequent experiments tend to use approximately half the number of points. To decide on what a sensible
number of preference queries would be, we analyzed data from the pilot study to find that participants spent on
average 7.8-12.7 seconds to perform pairwise comparisons between between problems with fairly large numbers
of outputs (see Table 1). Based on this, we would estimate that it would conservatively take DMs around 15
minutes to perform 75 comparisons, or 5 minutes per PE stage if split across three rounds of experimentation.
Finally, we observed that the empirical error rate was approximately 10%, and so we used this value for our DM
noise model in the MT.

Pilot d k Response mean (s) Response sd (s)

1 11 9 10.7 5.7
2 8 9 7.8 3.0
3 4 4 8.6 6.0
4 8 6 12.7 8.1
5 8 6 8.8 7.2

Table 1: Summary statistics of input dimensionality (d), number of outcomes (k), and response times of data
scientists in seconds to pairwise preference learning comparisons from pilot five studies.

D ADDITIONAL SIMULATION RESULTS

D.1 Additional Test Problems

We consider additional simulation environments here. There are four outcome and utility function combinations
presented in the main paper and additional four in the supplementary material, totalling eight simulation
environments. These include surrogates of real-world simulators (Vehicle Safety and Car Cab Design) and widely
used synthetic functions (OSY and DTLZ2), alongside various utility functions. These test problems have 5-8
input dimensions (d), and 4-9 outcomes (k). Table 3 shows the full list of simulation environments we used in
this paper. §E describe those outcome and utility in detail.
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D.2 Identifying High-Utility Designs with Preference Exploration

Figure 5 Shows the experiment results for identifying high-utility designs with PE for all suite of test problems.
While most results hold similar to what we observe in the main text, EUBO-ζ and EUBO-f̃ are performing
dramatically better compared to other methods in the OSY with exponential function sum with sigmoid constraints
problem. This is possibly because of the unique characteristic of this problem where many points in Y are
violating the constraints and result in near-zero values. Comparing those near-zero utility values, while potentially
helpful for learning the shape of utility functions within the achievable region, is not necessarily contributing
much to the identification of the maximizer of gtrue(ftrue(X )).
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Figure 5: Simulation results for identifying high-utility designs with PE for all suite of test problems. Plotted are
values of the maximum posterior predictive mean after a given number of pairwise comparisons during the first
stage of preference exploration.

D.3 Preference Exploration with Multiple PE Stages

BOPE with multiple stages for additional test problems are plotted in Figure 6. Figure 6 shows the results of
BOPE with multiple PE stages, and the results largely align what we observe in the main text where EUBO-ζ
and EUBO-f̃ consistently performing well across all problems.

D.4 BOPE with One Preference Exploration Stage

Figure 7 directly shows the differences in final outcomes achieved by each method by comparing these two PE
schemes. In addition to the insights from the main text, one can also see that PE AFs that perform search of Y0,
rather than based on the posterior of f , tend to perform much better when all learning occurs upfront. This
makes intuitive sense, since Y0 is agnostic to any additional updated surrogate models fn collected throughout
the experimentation process.

Finally, Figure 8 shows the full optimization trajectory for the single PE stage case. From these plots it is
apparent that PBO-based strategies make little progress in the optimization goal after the second stage.

D.5 Probit Comparison Noise

In all simulation studies we have presented so far, we have been considering a constant 10% error rate. However, it
is plausible that DMs may make errors in ways that vary with the utilities. Here, we consider the case where DMs
are more likely to make mistakes when utilities have similar values, and study the behavior of the optimization
strategies when such noise is present.

Concretely, we use the probit likelihood with noise level λ > 0 introduced in §3.2. Thus, when the DM is
presented with a query (y1, y2), y1 is chosen with probability Φ

(
g(y1)−g(y2)√

2λ

)
and y2 is chosen with probability
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Figure 6: BOPE performance with multiple PE stages for all benchmark problems. “True Utility”, the grey line on
each plot, represents an approximate upper bound on the performance achievable via Bayesian optimization with
a known utility function, blue and orange show our proposed methods, and other lines show competing baseline
methods. The top row includes outcome and utility functions whose maximum utility achieved are plotted in the
main paper in Figure 3 and the bottom row shows maximum utility achieved for the additional set of outcome
and utility functions.

0.75

0.80

0.85

0.90

M
ax

 u
til

ity
 a

ch
ie

ve
d

Vehicle safety (d=5, k=3) 
 Product of Kumaraswamy CDFs

−0.6
−0.5
−0.4
−0.3
−0.2

DTLZ2 (d=8, k=4) 
 L1 distance

−14

−12

−10

OSY (d=6, k=8) 
 Piece-wise linear

−2.4

−2.2

−2.0

Car cab design (d=7, k=9) 
 Piece-wise linear

Single Multiple
3.0

3.5

4.0

M
ax

 u
til

ity
 a

ch
ie

ve
d

Vehicle safety (d=5, k=3) 
 Piece-wise linear

Single Multiple

−1.0
−0.5

0.0
0.5
1.0

DTLZ2 (d=8, k=4) 
 Piece-wise linear

Single Multiple

2.75

3.00

3.25

3.50

OSY (d=6, k=8) 
 Exp. func. sum with sigmoid constraints

Single Multiple
5.8

5.9

6.0

6.1

Car cab design (d=7, k=9) 
 Linear

EUBO- ̃f EUBO-0 EUBO-ζ BALD- ̃f BALD-0 PBO TS PBO EUBO Random- ̃f Random-0

Figure 7: Maximum utility achieved after the last batch for BOPE with single PE stage and multiple PE stages
for all benchmark problems.
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1− Φ
(
g(y1)−g(y2)√

2λ

)
. For each experiment we set λ so that the DM makes a comparison error with probability

0.1 on average when presented with queries constituted by outcomes of designs that are in the top decile of
gtrue(ftrue(X )). Table 2 shows the average empirical comparison error rates observed under such probit noises.

Figure 9 shows optimization performance for BOPE with multiple PE stages for the four test problems presented
in the main text using EUBO-f̃ , EUBO-ζ, BALD-f̃ , PBO TS, and PBO EUBO. Similar to what we observe in the
main text, EUBO-ζ and EUBO-f̃ perform the same or better than all other PE and PBO baselines considered.
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Figure 8: BOPE with a single PE stage full optimization trajectory for all benchmark problems.
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Figure 9: BOPE with multiple PE stages under probit comparison noise.

Test Problem BALD-f̃ EUBO-f̃ EUBO-ζ PBO EUBO PBO TS

Vehicle safety, product of Kumaraswamy CDFs 12.8% 5.1% 10.0% 7.9% 7.8%
DTLZ2, L1 distance 3.0% 7.0% 6.9% 9.1% 4.1%
OSY, piece-wise linear 11.3% 14.0% 20.1% 15.8% 8.0%
Car cab design, piece-wise linear 12.1% 8.5% 17.9% 10.2% 7.3%

Table 2: Empirical comparison error rate under probit noise levels considered in this subsection.
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E OUTCOME AND UTILITY FUNCTIONS

In this section, we describe all outcome and utility functions used in our simulation studies.

E.1 Outcome Functions

E.1.1 DLTZ2

DTLZ2 function was first introduced by Deb et al. (2005), allowing for arbitrary input dimension d and output
dimension k subject to d > k. X = [0, 1]d. For a DLTZ2 function f with k-dimensional output, we have:

m = d− k + 1

g(x) =

d−1∑
i=m

(xi − 0.5)2

fj(x) = −(1 + g(x))

(
k−j−1∏
i=1

cos
(π

2
xi

))
·

1j>1 sin
(π

2
xk−j−1

)
E.1.2 Vehicle Safety

This a test problem for optimizing vehicle crash-worthiness with d = 5 and k = 3. X = [1, 3]5. We refer the
readers to Tanabe and Ishibuchi (2020); Liao et al. (2008) for details on function definition. During the simulation,
we normalize each component of f to lie between 0 and 1.

E.1.3 Car Cab Design

We refer the readers to Deb and Jain (2013); Tanabe and Ishibuchi (2020) for details. Note that in the original
problem, there are stochastic components which we exclude in the experiments to obtain deterministic ground-truth
outcome function. During the simulation, we normalize each dimension of f to between 0 and 1.

E.1.4 OSY

We adapted the constrained optimization OSY problem (Osyczka and Kundu, 1995) into a multi-objective problem
by treating all constraints as objectives. We additionally flipped the signs of the two objectives of OSY such
that all outputs are intended to be maximized. This adaptation makes OSY to be an outcome function with
6-dimensional inputs and 8-dimensional outputs.

E.2 Utility Functions

We consider several utility functions to capture several types of ways in which DMs may weigh the observed
objective values. For all outcome functions, we consider piece-wise linear functions to represent constraint-like
behavior and decreasing marginal returns. We then designed four separate utility functions by taking the
characteristics of each individual test outcome function. Here we describe them in detail.

E.2.1 Piecewise Linear Function

We performed experiments on all test outcome functions using piece-wise linear functions as their shapes correspond
to real-world diminishing marginal returns on outcomes and sharp declines in utility once constraints are violated.
For a k-dimensional input vector y, this utility function g is defined as

g(y;β1, β2, t) =

k∑
i=1

hi (yi)
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where

hi (yi) =

{
β1,i · yi + (β2,i − β1,i)ti yi < ti

β2,i · yi yi ≥ ti

For DTLZ2 (d=8, k=4) problem, we set

β1 = [4, 3, 2, 1]

β2 = [0.4, 0.3, 0.2, 0.1]

t = [1, 1, 1, 1].

For vehicle safety problem, we set

β1 = [2, 6, 8]

β2 = [1, 2, 2]

t = [0.5, 0.8, 0.8].

For the car cab design problem, we set

β1 = [7.0, 6.75, 6.5, 6.25, 6.0, 5.75, 5.5, 5.25, 5.0]

β2 = [0.5, 0.4, 0.375, 0.35, 0.325, 0.3, 0.275, 0.25, 0.225]

t = [0.55, 0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.47]

and the threshold parameter ti = 0.75 for all i.

For the OSY problem, we set

β1 = [0.02, 0.2, 10, 10, 10, 10, 10, 10]

β2 = [0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]

t = [1000,−100, 0, 0, 0, 0, 0, 0].

E.2.2 Linear Function

For the car cab design problem, we experiment with a linear utility function. For a k-dimensional outcomes vector
y, this utility function g is defined as

g(y;β) = βTy

Specifically, we set
β = [2.25, 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25].

E.2.3 Product of Kumaraswamy Distribution CDFs

Prior work on preference learning has utilized the Beta CDF to form utility functions (Dewancker et al.,
2016). The Beta CDF provides a convenient, bounded monotonic transform that smoothly varies between
increasing and decreasing marginal gains with respect to their inputs. In this work, we utilize the Kumaraswamy
CDF (Kumaraswamy, 1980; Jones, 2009), which behaves much like the Beta CDF, but is differentiable. This
allows us to optimize qNEIUU via gradient ascent using the true utility function in Section 5. For the vehicle
safety problem, we experiment with the product of Kumaraswamy distribution CDFs as its utility function,
representing that we wish to simultaneously achieve high utility values along each individual dimension without
sacrificing much on others. For a k-dimensional input vector y, this utility function g is defined as

g(y;a,b) =

k∏
i=1

Fi (yi) ,

where Fi(·) is the CDF of a Kumaraswamy distribution with shape parameters ai and bi.
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Specifically, we set

a = [0.5, 1, 1.5]

b = [1, 2, 3].

E.2.4 L1 Distance

For the DTLZ2 problem, we additionally test a utility function using negative L1 distance from a Pareto-optimal
point. This choice of utility function mimics the scenario where the DM wish to keep the outcomes close to a
specific desirable state such as physiological measurements in medical applications.

For the DTLZ2 problem, we choose the Pareto-optimal point to be yPO = DTLZ2(xPO) where xPO
i = 0.5 for all i.

E.2.5 Exponential Function Sum with Sigmoid Constraints

The OSY problem is originally a constrained optimization problem and we wish design an utility function that
can reflect this nature of this problem.

For a k-dimensional outcomes vector y, we recall that the first two dimensions y1 and y2 are objectives we wish
to maximize and in the original OSY problems, the remaining six constraints y3..8 need to be kept positive. To
reflect these goals, we first normalize the outputs of y1 and y2 to be between 0 and 1 using min-max normalization.
Given an outcome vector y, the utility function is then given by

g(y) = (exp(y1) + exp(y2))

8∏
j=3

S

(
50yj

min{−ymin
j , ymax

j }

)

where S is the sigmoid function; yminj and ymaxj are empirically determined lower and upper bound of yj .

Outcome function Utility function d k Reference

Vehicle safety Piecewise linear function 5 3 Liao et al. (2008)
Product of Kumaraswamy distribution CDFs Tanabe and Ishibuchi (2020)

DTLZ2 Piecewise linear function 8 4L1 distance from Pareto-optimal point Molga and Smutnicki (2005)

OSY Piecewise linear function 6 8Exponential function sum with sigmoid constraints Osyczka and Kundu (1995)

Car cab design Piecewise linear function 7 9 Deb and Jain (2013)
Linear function Tanabe and Ishibuchi (2020)

Table 3: Complete list of outcome and utility function combinations. d and k refers to input and output dimension
of the test outcome function respectively.
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