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ABSTRACT

Although quantization for linear layers has been widely used, its application to
accelerate the attention process remains limited. To further enhance the effi-
ciency of attention computation compared to SageAttention while maintaining
precision, we propose SageAttention2, which utilizes significantly faster 4-
bit matrix multiplication (Matmul) alongside additional precision-enhancing tech-
niques. First, we propose to quantize matrices (Q, K) to INT4 in a hardware-

friendly thread-level granularity and quantize matrices (P, V') to FP8. Second, we
propose a method to smooth (), enhancing the accuracy of INT4 QK . Third, we
propose a two-level accumulation strategy for PV to enhance the accuracy of FP§
PV. The operations per second (OPS) of SageAttention?2 surpass FlashAt-
tention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover,
SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper
GPUs, while delivering much higher accuracy. Comprehensive experiments con-
firm that our approach incurs negligible end-to-end metrics loss across diverse
models—including those for language, image, and video generation.

1 INTRODUCTION

Motivation. For the two matrix multiplication (Matmul) operations in attention: QK ' and PV,
SageAttention accelerates them by quantizing the QK " to INT8 and uses FP16 Matmul with FP16
accumulators for PV. Moreover, to keep the accuracy of attention, SageAttention proposes smooth-
ing K by eliminating its channel-wise outliers. SageAttention achieves 2 x speedup than FlashAt-
tention2 and is the first quantized attention that incurs negligible end-to-end metrics loss across
language, image, and video generation models. However, SageAttention has two weaknesses. (W1)
INT8 Matmul achieves only half the speed of INT4. (W2) FP16 Matmul with FP16 accumulators
provides a speedup only on RTX 4090 and RTX 3090 GPUs. To leverage the faster INT4 tensor

cores for QK " and using a method that can accelerate PV on a broader range of GPUs, we propose
to quantize ), K to INT4 and P,V to FPS.

Challenges. We identified two main challenges when quantizing @), K to INT4 and P,V to
FP8: (C1) INT4’s limited numerical range causes significant quantization errors when () and K
have abnormal values. (C2) The FP32 accumulator for FP8 matrix multiplication in tensor cores
(mma.£32.£8.£8.£32)is actually FP22, with 1 sign bit, 8 exponent bits, and 13 mantissa bits,

leading to accuracy loss in PV.

Our approach. To address (C1), we found that per-block quantization of @, K in SageAttention
does not provide sufficient accuracy for INT4 quantization. To avoid the latency from fine-grained
per-token dequantization, we propose a per-thread quantization method based on the GPU thread-
memory mapping from PTX mma instructions. This ensures each thread uses a single quantization
scale, achieving finer quantization granularity without extra dequantization overhead. Additionally,
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to handle significant channel-wise outliers in () and K, we adopt smoothing K in SageAttention and

further propose subtracting the channel-wise average of ) (denoted 6m), then adding 5mK after
the QK T Matmul to preserve attention accuracy. To address (C2), the accuracy loss from using a
22-bit accumulator for FP§ Matmul of PV, we propose a two-level accumulation strategy that uses
an FP32 buffer to accumulate the values from the 22-bit accumulator after each block Matmul of
PV, confining errors to the block range.

Performance. Importantly, we offer a high-performance implementation of SageAttention2 on
RTX4090 and .20 GPUs. This implementation achieves a peak performance of 481 TOPS on the
RTX4090, outperforming FlashAttention2 and xformers by approximately 3x and 4.5x, respectively.
Note that FlashAttention3 is tailored to and can only be used with the Nvidia Hopper architecture.
Moreover, the speed of SageAttention2 is the same as FlashAttention3(fp8) on the Hopper
GPUs and is much more accurate than FlashAttention3(fp8). For example, on CogVideo-1.5
(2025), Mochi (2024) and HunyuanVideo [Kong et al.| (2024), our method does not
compromise end-to-end accuracy, but videos generated using FlashAttention3(fp8) are completely
blurry. We extensively evaluate the end-to-end metrics of state-of-the-art text, image, and video
generation models using SageAttention2. SageAttention?2 can accelerate models in a
plug-and-play way with negligible loss in end-to-end metrics.

2 PRELIMINARY

FlashAttention. The attention computation can be formulated as: S = QK'/ Vd, P =
o(S), O = PV, where 0(S);; = exp(Si;)/ >, exp(Sir). The matrices @, K, and V each
has dimensionality V x d, and S, P are N x N. FlashAttention introduces a GPU-
friendly attention implementation, which tiles @), K, and V' from the token dimension into blocks
{Qi}ie,, {Ki}fiq, {Vi}i», with block sizes of b, by, b, (b = b,) tokens, respectively, where
ng, Nk, Ny are the number of tiles. FlashAttention computes the output matrix O in parallel in tiles.
Each streaming multiprocessor (SM) computes a block O; (corresponds to a ();) by iteratively loads

K, V; for each j, and update the output with online softmax (Milakov & Gimelshein| 2018):
Sij :Qz'KjT/\/gy (miz, Pij) = 6(mij—1,Si), (D)

lz'j :exp(mz-J_l — mij)li,j_l + rowsum(Pij),

Oij =diag (exp(mi j—1 —mi;)) Oij-1 + PV,
where m;; and [;; are by-dimenalional vectors, which are initialized with —oo and 0 respectively.
&(-) is an online softmax operator: m;; = max{m; j_1,rowmax(S;;)}, P;; = exp(Si; — mij).
Finally, the output can be computed as O; = diag(li’nq)_lOi’nq.

3 SAGEATTENTION2
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Figure 1: Typical examples of tensors’ data distribution in attention.

3.1 SMOOTH Q

First, we discuss how to accurately compute QK | with INT4. The numerical range of INT4 is
notably restrictive. This affects quantization due to the presence of outliers (2024). Tt is
quite likely that most non-outlier elements are quantized to zero, resulting in significant accuracy
degradation. Therefore, we propose a smoothing technique inspired by an observation of SageAt-
tention [Zhang et al.| (2025b) that @, K for all tokens are actually highly similar, with only small
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variations between different tokens (see Fig.[I). We propose to smooth K as SageAttention does
and further smooth () by subtracting a common mean of each block:

Y(Qi) = Qi — @i, V(K;)=K; —k, 2

where ¢; = mean(Q;), k = mean(K) are 1 x D vectors, the mean is conducted along the token
axis, and ¢;, k are broadcasted to tokens in a block and a tensor for subtraction, respectively.

With the decomposion, we have S;; = QK = (g + 7(Q:))(k +v(K;)) T = 7(Qi)v(K;) T +
AS;j+b, where AS;; = ¢;v(K;) " isan 1 x N vector, and b = g;k " +~(Q;)k " is an N x 1 vector.
We do not need to compute b since adding a common bias to an entire row of .S does not affect the
result after softmax. Therefore, we can accelerate Q); K ]T with INT4 by the following two stages:

(1) preprocessing: smooth Q, K according to Eq. (2), apply quantization (d,, Qi) =
Yo (v(Q4)), Ok, K;) = ¥k (y(K;)), where ¢ is the quantization operator, and compute AS;; =
giv(K j)T. The Smoothing, quantization, and the GEMV (general matrix-vector multiplication) for
computing AS can be fused into a single kernel, which scans the off-chip () and K only once.

(2) attention: execute the low-precision GEMM, dequantize, and add back the vector AS: S;; =
%—Qli b, (QZ [A(JT) + AS;;. These operations are all done on chip, and the vector addition only adds
a marginal overhead compared to the expensive mma operation for MM (ablated in Table. [T3).
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Figure 2: An example of per-thread quantization. The left figure shows the correspondence between
the quantization scales and the tokens in each GPU warp. The right figure shows the correspondence
between quantization tokens and GPU threads in a MMA . m1 6n8k 64 instruction, showing that each
GPU thread only corresponds to one quantization scale in dg and dx in dequantization.

3.2 INT4 PER-THREAD QUANTIZATION

Orthogonal to smoothing, we can mitigate the problem of outliers by refining the quantization gran-
ularity so the number of affected elements by outliers becomes smaller. Although per-token offers
a high degree of quantization granularity, it results in significant overhead during dequantization.
Specifically, each GPU thread in per-token quantization must handle multiple quantization scales,
leading to a high latency of the dot product of the quantization scale vectors g and dx. To address
this, we propose per-thread quantization, a more precise and granular approach than the per-block
quantizer, also without the additional overhead of vectors dot product between dg and dx as in
per-token quantization.

Specifically, each @); in SageAttention will be split into ¢,, segments and processed by c¢,, GPU
warps in a GPU streaming processor (SM). We call each segment of @Q; as (), and k,, = K since
K is shared among warps. Then, each warp containing 32 threads uses the mma .m16n8k64 PTX
instruction NVIDIA|for the Q,, K ]T . According to the layout requirement of this instruction, we find
that @, [8% + 14| could share one quantization scale, and K;[8k + 2i] and K [8k + 2i + 1] could share
one quantization scale. Such a quantization method is more fine-grained and with no additional
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overhead. This is because it assigns different GPU threads to distinct quantization groups based
on the MMA instruction layout, with each thread performing dequantization only using a single
quantization scale value. We show an example of per-thread quantization in Fig. 2] The detailed
formulation is shown in Equation 3] and Fig. [I4] (Please see Appendix [A-3|for more detail).

3.3 FP8 QUANTIZATION FOR PV

SageAttention Zhang et al.| (2025b) choose to retain P and V' in FP16, and accelerate the MM by
decreasing the accumulator precision. However, this strategy is only effective on very few GPUs.
We propose to quantize P, V' to FP8 with 4 exponent bits and 3 mantissa bits (E4M3). The numerical
range of E4AM3 is [—448, +-448]. We quantize P with a static scale: dp = 4%8 since the original P
elements is already in [0, 1]. We quantize V per-channel to address the channel-wise outliers shown
in Fig. [I] Empirical results in Table [IT] and Table [I2] show the average accuracy and the worst of
different data types used for P,V across all layers of CogvideoX. The accumulator is always 32-
bit. We can see that the accuracy of E4M3 is very close to that of FP16 and superior to ESM2 and
INT8. Most modern GPUs have tensor cores that support FP8 Matmul operations, which are twice
as fast as those using FP16.

3.4 FP32 MMA BUFFER FOR FP22 ACCUMULATOR

While FP8 quantization for PV above is accurate in simulation, we observe that the actual CUDA
implementation suffers a consistent accuracy degradation. After narrowing down the problem, we
find that the accumulator for the mma (£32£8£8£32) instruction on the Ada and Hopper archi-
tecture is actually FP22, specifically with 1 sign bit, 8 exponent bits, and 13 mantissa bits. Details
are presented in Appendix Consequently, the matrix multiplication of PV, quantized to FP8,
incurs an accuracy loss compared to using an FP32 accumulator.

To mitigate this accuracy loss as much as possible, we adopt the two-level accumulation strategy,
which uses an FP32 buffer to accumulate the values of P;;V; in FP22. Specifically, we rewrite
Eq. (1) as R;; = P;;V;, O;; = diag (exp(m; j—1 — mij;)) O; j—1 + R;;. Here, two sets of accumu-
lators I2;; and O;; are maintained in the register. R;; is computed with the mma (£32£8£8£32)
with 22 effective bits, which is sufficient since we only accumulate over a small number of by, tokens
(e.g., by = 64). Then, R;; is accumulated to O;; in the high FP32 precision.

RTX4090, (Head dim = 128, causal = False) RTX4090, (Head dim = 128, causal = True)
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Figure 3: Speed comparison between SageAttention2 and baselines (RTX4090, headdim=128).

4 EXPERIMENT

Main result. SageAttention? is faster than FlashAttention2 and xformers by approximately 3x
and 4.5x, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8)
on the Hopper GPUs and is much more accurate than FlashAttention3(fp8). Our approach maintains
end-to-end metrics across language, image, and video generation models.

4.1 SETUP

Models and metrics. For Details about the models and metrics, please refer to Appendix. [A3]

Implemetation. We implement two attention kernels, SageAttn2-4b and SageAttn2-8Db us-
ing CUDA. sageAttn2-4b uses all techniques introduced in Sec.[3] while SageAttn2-8b also
uses all techniques but quantizes QQ K to INT8 without smoothing Q.
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Table 1: End-to-end metrics across text, image, and video generation models. X indicates an inability
to generate results for evaluation.

Model | Attention | WikiText (Ppl.) | | Lambda (Acc.) T | MMLU (Acc.) T | Longbench 1
Full-Precision 6.013 0.815 0.635 49.40
HadmdAttn 7.872 0.762 0.500 44.07
Llama3.1 SmoothAttn 7.180 0.783 0.541 44.69
SageAttention 6.017 0.812 0.634 49.55
SageAttn2-4b 6.256 0.798 0.607 48.79
SageAttn2-8b 6.019 0.811 0.634 49.59
Model Attention CLIPSIM 1 CLIP-T 1 VQA-a 1 VQA-t 1 FScore 1
Full-Precision 0.1778 0.9979 70.231 70.928 2.507
HadmdAttn 0.1576 0.9933 8.990 2.299 X
CogvideoX SmoothAttn 0.1559 0.9950 8.812 2.277 X
(1.5-5B) SageAttention X X X X X
FlashAttn3-fp8 0.1562 0.9918 6.531 2.181 X
SageAttn2-4b 0.1721 0.9978 57.729 52.989 2.884
SageAttn2-8b 0.1775 0.9980 69.492 74.415 2.487
Full-Precision 0.1783 0.9995 82.516 75.934 0.604
HadmdAttn 0.1727 0.9989 7.514 0.762 0.175
Hunyuan SmoothAttn 0.1739 0.9988 6.987 0.609 0.148
Video SageAttention 0.1786 0.9995 82.496 79.843 0.597
FlashAttn3-£fp8 0.1742 0.9941 4433 1.460 X
SageAttn2-4b 0.1751 0.9995 81.478 65.371 0.610
SageAttn2-8b 0.1782 0.9996 81.786 75.354 0.586
Full-Precision 0.1798 0.9986 45.549 65.416 1.266
HadmdAttn 0.1733 0.9980 9.053 25.133 0.704
Mochi SmoothAttn 0.1687 0.9978 3.383 3.480 0.241
SageAttention 0.1800 0.9987 48.707 63.763 1.269
FlashAttn3-fp8 0.1762 0.9982 14.964 13.711 0.457
SageAttn2-4b 0.1783 0.9986 35.955 43.735 1.137
SageAttn2-8b 0.1797 0.9986 46.760 64.901 1.255
Model Attention FID | SFID | CLIP | IR+
Full-Precision 10.960 16.648 26.180 1.009
HadmdAttn 11.353 18.495 26.123 0.965
Flux SmoothAttn 11.149 19.017 26.109 0.959
SageAttention 10.944 16.641 26.171 1.008
SageAttn2-4b 10.577 17.497 26.141 0.998
SageAttn2-8b 10.927 16.723 26.175 1.009
Full-Precision 14.105 15.646 25.505 0.902
HadmdAttn 14.259 15.909 25.513 0.886
Stable-Dif | SmoothAttn 14.161 15.649 25.510 0.887
fusion3.5 SageAttention 14.140 15.678 25.503 0.902
SageAttn2-4b 14.097 15.397 25.487 0.895
SageAttn2-8b 14.106 15.647 25.499 0.901

Baselines. (1) SmoothAttn. Following Qserve (Lin et al. 2024), we apply smooth quant
for @, K with smoothing factor « = 0.5. (2) HadmdAttn. Following Quarot (Ashkboos
et al. [2024), we apply random Hadamard transformation for (), K before INT4 quantization. (3)
SageAttention (Zhang et al. 2025b), which uses smoothing K, INT8 per-block quantization
for @, K, and FP16 for P, V. (4) FlashAttn3 (£fp8), the FP8 version of FlashAttention3, which
can only run on Hopper GPUs.

4.2 SPEED AND ACCURACY OF KERNELS

Kernel Speed. We compare the Speed of SageAttention?2 against baselines using configura-
tions with headdim=64 and headdim=128, both with and without Causal Mask (Vaswani, 2017)).
Specifically, Fig. [3[ shows the speed across varying sequence lengths on RTX4090, indicating that
SageAttn2-4b and SageAttn2-8b are approximately 3x and 2.7x faster than FlashAtten-
tion2, and about 4.5x and 4x faster than xformers, respectively. Fig.[7} [8] [0} [10] [TT} [T2] and [3]
in Appendix [A.2 show more kernel speed comparison on RTX4090, .20, H20, H100 GPUs.
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Table 2: End-to-end generation latency using SageAttention2 (The latency of Llama3.1 is
the time to first token generation using different sequence lengths).

SageAttn | SageAttn

Model GPU Original >sb >_4b
CogvideoX (1.5-5B) | RTX4090 | 1040s 577s 555s
HunyuanVideo L20 2221's 1486 s 1435 s
Mochi L20 2336's 1316 s 1190 s
Llama3.1 (48K token) | RTX4090 9.2s 57s 5.6s
Llama3.1 (100K token) L20 3995 254s 23.2s

4.3 END-TO-END PERFORMANCE

Metrics loss. We assessed the end-to-end metrics of various models using SageAttention2.
Detailed evaluation results are presented in Table The results indicate that SageAttn2-4b
outperforms all baselines and maintains most of the end-to-end accuracy across all models. Addi-
tionally, SageAttn2-8b incurs almost no metrics loss across various models. More results can be

found in Appendix

Visible image and video examples. Fig[]and Fig.[6]in Appendix [A.T|show some visible compar-
ision examples from HunyuanvVideo, Mochi and CogvideoX (1.5-5B). We can observe that
SageAttn2-8b does not introduce any visible differences compared to full-precision attention,
whereas SageAttn2-4b has minor differences but is much better than the baselines.

End-to-end speedup. We compared the original generation latency and the latency using
SageAttention2 for models with long sequence lengths in Table observing significant
speedup effects. For instance, SageAttention?2 achieved a 1.8x speedup in CogvideoX (1.5-
5B) without any metrics loss (SageAttn2-8b). SageAttn2-4b further accelerated these mod-
els but with a little metrics loss.

5 CONCLUSION

We introduce SageAttention2, an efficient and accurate quantized attention. First, we propose

to quantize matrixes (@, K) in a thread-level granularity and (P, V') to FP8. Second, we propose a
method to smooth @, enhancing the accuracy of QK T Third, we propose a two-level accumulation
strategy to enhance the accuracy of FP8 PV. SageAttention2 is faster than FlashAttention2
and xformers by approximately 3x and 4.5x, respectively. Moreover, SageAttention2 matches
the speed of FlashAttention3(fp8) on the Hopper GPUs, but offers significantly higher accuracy.
Extensive testing confirms that our approach maintains end-to-end metrics across language, image,
and video generation models.
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A APPENDIX

A.1 VISIBLE COMPARISON EXMAPLES

HadmdAttn

SmoothAttn

Full precision Attention SageAttention2-8b SageAttention2-4b

Figure 4: Comparison examples from HunyuanVideo, prompts are sampled from open-sora
prompt sets.

HadmdAttn

SageAttention2-8b SageAttention2-4b

Full precision Attention
-

SmoothAttn

Figure 5: Comparison examples from CogvideoX (2B), prompts are sampled from open-sora
prompt sets.

A.2 ADDITIONAL KERNEL SPEED COMPARISON

Fig.[7l [8 [IT} [T2} and [T3]compare the speed of SageAttention2 against baselines using
configurations with headdim=64 and headdim=128, both with and without Causal Mask
(2017), on RTX4090, .20, H100, and H20 GPUs.

Table [3]summarizes the performance gain of different attention methods against baselines on various
modern GPUs.

Table 3: Speedup of different attention methods on various GPUs.

Method | 3090 | 4090 | A100 | L40 | L20 | H100 | H20
FlashAttention2 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
FlashAttention3 X X X X X 1.37 | 1.57

FlashAttention3 (fp8) X X X X X 2.63 | 3.06
SageAttention] 197 | 196 | 1.37 | 145 | 1.24 | 1.53 | 1.52
SageAttention2 X 2.93 X 260 | 246 | 2.61 | 3.12
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Cogvideo-1.5

Full-Precision

SageAttn2-8b 2

FlashAttention3
(fp8)

Full-Precision
SageAttn2-8b

FlashAttention3
(fp8)

Full-Precision

saQEAﬂnZ-Sb ! \ | !
FlashAttention3
(fp8)

Figure 6: A comparison example using SageAttn2-8b and FlashAttention3 on CogvideoX-1.5,
Mochi and HunyuanVideo.

RTX4090, (Head dim = 64, causal = False) RTX4090, (Head dim = 64, causal = True)

I Torch EX FlashAttn2 [ SageAttn2-8b Il Torch X3 FlashAttn2 [ SageAttn2-8b
= xformers EZA SageAttnl I xformers [0 SageAttnl BB SageAttn2-4b

Sequence Length Sequence Length

Figure 7: Speed comparison between SageAttention?2 and baselines (RTX4090, headdim=64).
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Figure 14: Memory layout of INT4/INT8 tensor core for accumulator matrix C and D in D =
A x B 4 C among 32 threads (TO ~ T31) in a warp. C' and D is of shape 16x8. Each thread only
holds 4 out of the 128 elements.

A.3 PER-THREAD QUANTIZATION FORMULATION

To further clarify the per-thread quantization, we first introduce the INT4 MMA instruction of Tensor
Core, and then give the formulation of per-thread quantization.

Tensor cores, first introduced in NVIDIA’s Volta architecture, are specialized units designed for
efficient matrix-multiply-and-accumulate (MMA) operations. Their usage significantly enhances
computational efficiency and performance in Al and high-performance computing (HPC) work-
loads. Tensor cores compute small tiles of MMA operations, specifically D = A x B+ C on a warp
(32 contiguous threads) basis. Each thread in the warp holds a fragment of input matrices and will
get a fragment of output matrix as a computation result. The INT4 mma .m16n8k64 tensor core
operation computes the product of a 16 x 64 INT4 matrix A and a 64 x 8 INT4 matrix B, both
stored in registers. It accumulates the result into a 16 x 8 INT32 matrix C, also stored in registers,
and returns the final product matrix D, which has the same shape (16 x 8), data type (INT32), and
storage location (registers). Each thread holds only 3% of the input and output data. Fig.|14{extracted
from the PTX document NVIDIA|shows the memory layout of matrix C' and D among 32 threads
in a warp. Each thread only holds 4 out of the 128 result elements.

i5qg =[(n *8xcy/by)]
dilisg] ={8 x (n%8) + |(n * %)J . iii}, n € [0, N]

_ max(| Qlgilisy])

dqlisq) = -
isk =|(n*4/by)] N

kn[lgk} :{8 X (n%S) + Ln/ka * bk}U
{8 x (n%8) +1+ |n/bg] *br}, n€[0,N]
_ max(| Kfknlis]] |)

(5K[i6k} 7
Kknlist]] = {WJ
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In Eq.[3} ¢, is the count of GPU Warps. b, and b, are the block size of (), K. n is the token index
of Q, K.

By ensuring results held by each thread share a common dequantization scale (belong to the same
quantization group), we can avoid the overhead associated with per-token quantization. Leveraging
this observation, we design per-thread quantization, as shown in Fig. [2| For typical block size of
by = 128, by, = 64 and warp number c,, = 4 (as used in FlashAttention2), each warp processes a
tile of 32 query tokens and 64 key tokens. Query tokens ,8 + 4,16 + 4,24 +1¢ (¢ = 0,1,---,7)
can be made into one quantization group and key tokens j,1 + 5,8 + 7,9+ j7,--- ,56 4+ 5,57 + j
(j =0,1,2,3) can be made into one quantization group. This design aligns with the memory layout
of output matrix D of tensor core shown in Fig.[T4] ensuring that each thread only needs one @ scale
and one K scale for dequantization.

As a result, this approach creates 32 quantization groups for ) (8 for each of the 4 warps) and 4
quantization groups for K in a 128x64 block, providing 32x and 4 X finer granularity compared to
per-block quantization for query tokens and key tokens, respectively. Table 9] and Table [I0] show
the accuracy gains by using per-thread quantization. Per-thread quantization achieves accuracy
that closely matches per-token quantization, without introducing any kernel speed degradation (see

Fig.[13).

A.4 FP22 ACCUMULATOR OF FP8 TENSOR CORE

Table 4: Error of the FP8 (E4M3) Matmul instruction of mma (£8£8£32).

Precision of Accumulated Value | E8MI3 | E8M23
Error compared to FP32 \ 0 | mma (£16£16£32) -mma (£8£8£32) |

We use the following experiment to test the number of effective bits of accumulator of
mma (£8£8£32) instruction, which performs C = AB + D, where A, B are tensors in FP8
(E4M3) data type and C, D are tensors with FP32 data type. We initialize the A, B to zero and
vary D to test the data type of the accumulator. As shown in Table 4, when D is initialized
with 1 sign bit, 8 exponent bits, and no more than 13 mantissa bits, the value of C' precisely
matches the result of the mma (£16£16£32) instruction. However, when D is initialized with
more than 13 mantissa bits, the error of C corresponds to the difference between the results of
mma (£16£16£32) and mma (£8£8£32). This proves that the number of effective bits of accu-
mulator for mma (£8£8£32) is 22. On Hopper architecture, the instruction is wgmma (£8£8£32)
but the number of effective bits is the same.

A.5 MODELS, DATASETS, AND METRICS IN EXPERIMENTS

Models. We validate the effectiveness of SageAttention2 across a diverse set of represen-
tative models from language, image, and video generation. Specifically, we conduct experiments
on nine models: Llama3.1 (8B) (Dubey et al,, [2024) and GLM4 (9B) (GLM et al [2024) for
text2text, CogvideoX (2B), CogvideoX (1.5-5B) (Yang et al., 2025), Hunyuanvideo (Kong
et al., [2024), and Mochi (Team), 2024} for text2video, F1ux (schnell) (Black Forest Labs| 2023
and Stable-Diffusion3. 5 (turbo) (Stability Al,[2023)) for text2image, and TIMM (Wightman,
2019) for image classification.

Datasets. Text-to-text models are evaluated on four zero-shot tasks: WikiText Merity et al.| (2022)
to assess the model’s prediction confidence, LAMBADA [Paperno et al.| (2016) evaluate contextual
understanding, MMLU Hendrycks et al.| (2020) for measuring knowledge across various subjects,
and Longbench [Bai et al.| (2024) for comprehensive assessment of long context understanding capa-
bilities. Text-to-video models are evaluated using the open-sora|[Zheng et al.| (2024c|) prompt sets.
Text-to-image models are assessed on MJHQ-30K [Li et al.| (2024). TIMM is evaluated on on three
image datasets: ImageNet Deng et al.| (2009), ImageNet-Sketch (Sketch) Wang et al.| (2019), and
ImageNet-Rendition (ImageNet-r) Hendrycks et al.[(2021).

End-to-end metrics. For text-to-text models, we use perplexity (ppl.) Jelinek et al| (1977) for
WikiText, Accuracy (Acc.) for LAMBADA and MMLU, and Longbench score [Bai et al.| (2024)).
For text-to-video models, following Zhao et al.[(2025), we evaluate the quality of generated videos
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on five metrics: CLIPSIM and CLIP-Temp (CLIP-T) [Liu et al| (2024) to measure the text-video
alignment; (VQA-a) and (VQA-t) to assess the video aesthetic and technical quality, respectively;
and Flow-score (FScore) for temporal consistency Wu et al.| (2023). For text-to-image models,
generated images are compared with the images in MJHQ-30K dataset in three aspects: FID |[Heusel
et al.| (2017) and sFID [Salimans et al.|(2016) for fidelity evaluation, Clipscore (CLIP) Hessel et al.
(2021) for text-image alignment, and ImageReward (IR) Xu et al.|(2023) for human preference. For
TIMM, we use classification accuracy.

Accuracy metrics. We use three metrics to assess the accuracy of quantized attention output O’
compared to attention output in full-precision O: First, we flatten O’ and O into vectors in the shape

of 1 x n. Then, Cosine similarity: CosSim = > 00’/+/> . 0?\/> 0’2, Relative L1 distance:

L1=3%|0 - 0’|/ |O0|, Root mean square error: RMSE = /(1/n))_(0 — 0')2.
Table 5: End-to-end metrics on GLM4 (9B).

Model Attention WikiText (Ppl.) ||Lambda (Acc.) 1MMLU (Acc.) 1|Longbench 1
Full-Precision 7.241 0.432 0.743 49.78
HadmdAttn 7.989 0.435 0.669 45.97

GLM4 SmoothAttn 8.943 0.449 0.592 42.20
SageAttention 7.243 0.433 0.744 49.79
SageAttn2-4b 7.352 0.433 0.725 49.23
SageAttn2-8b 7.242 0.432 0.745 49.60

Table 6: End-to-end metrics on CogvideoX (2B).
Model Attention CLIPSIM 7 | CLIP-T 1| VQA-a 1 | VQA-t 1| FScore 1

IFull-Precision 0.1836 0.9975 77.605 | 75.360 3.006

HadmdAttn 0.1742 0.9877 29.780 | 23.985 0.499

CogvideoX SmoothAttn 0.1741 0.9870 41.703 | 47.043 0.624
(2B) SageAttention 0.1833 0.9976 76.997 | 71.360 2.988
SageAttn2-4b 0.1821 0.9973 77.368 | 74.906 2.603
SageAttn2-8b 0.1829 0.9977 76.532 | 74.281 2.941

Table 7: End-to-end metrics on an image classification model.

Model Attention ImageNet (Acc.) 1 | Sketch (Acc.) 1 | ImageNet-r (Acc.) T
[Full-Precision 84.79% 45.32% 59.55%
HadmdAttn 84.50% 44.89% 58.80%

TIMM SmoothAttn 84.40% 44.68% 58.73%
SageAttention 84.74% 45.38% 59.95%
SageAttn2-4b 86.67 % 45.24% 59.29%
SageAttn2-8b 84.79 % 45.39% 59.57 %

Table 8: Comparison with FlashAttention3(fp8) on Llama-3-262k (8B) on InfiniBench [Zhang
et al.| (2024) (H100 GPU).

Attention

|Eng.Sum|Eng.QA|Eng.MC|Code.Debug|Math.Find|Retr.PassKey Retr.Num|Retr.KV| Avg.

Full-Precision

FlashAttn3-fp
SageAttention

18.03 12.5 64.19 24.37
19.03 | 11.73 | 55.90 22.59
18.17 | 12.46 | 64.19 25.63

18.29 100.0
22.57 100.0
17.43 100.0

100.0

100.0
100.0

7.0 [43.05
04 |41.53
6.6 |43.06

16



Published as a workshop paper at SCOPE - ICLR 2025

NIAH Llama-3-8B-262k NIAH Llama-3-8B-262k w/ FIashAttnB-fpS1 o NIAH Llama-3-8B-262k w/ SageAttn2 10

1.0 .
. 0.0
11.0
0.8 .
22.0
= 06 33.0
= . .
< 44.0
_E =
e 56.0
0.4 .
o 67.0
78.0
0.2 .
89.0
100.0 100.0
0.0 .
. NS . s

S ottt

0.8

0.6

Depth (%)
Depth (%)

0.4

0.2

0.0

o ,,;b*,\c*“&‘;ﬁu*;%d;@ﬁﬁoﬁ@*

Token Limit

S b nE ot ot
O B A e
Token Limit

Token Limit

(a) Full Precision (b) FlashAttn3-£fp8 (c) SageAttention?2

Figure 15: Needle In A Haystack results on Llama—-3-262k (8B).

A.6 ADDITIONAL EXPERIMENTS AND ANALYSIS

Additional Results. Table[5] [6]and [7]show results of SageAttention2 and other baselines on
GLM4 (9B), CogvideoX (2B) and TIMM.

Results of Super-Long Context. We further conduct experiments on super-long context
using Llama-3-262k (8B)] on InfiniBench Zhang et al| (2024) and Needle-in-a-Haystack
(NIAH) (2023), with sequence lengths reaching up to 262k tokens on an H100 GPU.
Results are shown in Table [§]and Fig[T3] sageAttention2 maintains model performance even
under super-long context, while FlashAttention3(fp8) suffers from end-to-end accuracy degradation.
Like[Zhang et al.|(2025b)), we believe SageAttent ion2 can also be effectively applied to various
applications related to Transformers, such as linear layer quantization (Hu et all,[2025} [Zhang et al.
2025d; [Zhao et all, [2024a), RAG systems (Zhang et all, [2025a), training optimization (L1 et al.
2023; 2 Xi et al.| [2024), heterogeneous GPU systems (Jiang et al., 20254} Jiang et al.; [2025D),
and diffusion models (Zheng et al 2024afb; 2025} [Fu et al., 2024; Zhao et al.l 2024b; Xi et al
2023}, [Zhang et al., [2025¢).

Table 9: Average accuracy across all layers of CogvideoX using different quantization granular-
ities.

Method | CosSim?1 | RelativeL1| | RMSE |
Per-token 99.45% 0.0649 0.0335
Per-thread 99.45% 0.0622 0.0313
Per-block 98.03% 0.1492 0.0744
Per-tensor 97.15% 0.1800 0.0865

Table 10: Worst accuracy across all layers of CogvideoX using different quantization granulari-
ties.

Method | CosSim?1 | RelativeL1| | RMSE |
Per-token 96.76% 0.1916 0.0775
Per-thread 96.72% 0.1932 0.0776
Per-block 90.68% 0.3615 0.1490
Per-tensor 85.85% 0.4687 0.2261

'https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k
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Table 11: Average accuracy using different data types of (]5 , V) across all layers of CogvideoX,
where (@, K) are smoothed.

QK | PV CosSim1 | RelativeL1] | RMSE ]

INTS 77.05% 0.5618 0.5044
INT4 E5M2 99.20% 0.0905 0.0903
E4M3 99.44 % 0.0683 0.0347
FP16 99.45% 0.0649 0.0335

Table 12: Worst accuracy using different data types of (}5, V') across all layers of a CogvideoX
model, where (Q, K) are smoothed.

QK | PV Cos Sim1 | RelativeL1| | RMSE |

INTS 19.52% 0.9579 1.4483
INT4 E5M2 94.94% 0.2327 0.2361
E4M3 96.70 % 0.1956 0.0779
FP16 96.76% 0.1916 0.0775

Table 13: Overhead of per-thread quantization, smoothing Q, and two-level accumulation techniques
measured on L20 GPU.

Method | TOPS
Attention (INT4 + FP8) 284
+ Per-thread quantization 283
+ Two-level accumulation 283
+ Smoothing Q 273
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