Published as a workshop paper at SCOPE - ICLR 2025

SAGEATTENTION2: EFFICIENT ATTENTION WITH
SMOOTHING Q AND PER-THREAD QUANTIZATION

Jintao Zhang!; Haofeng Huang?; Pengle Zhang', Jia Wei!, Jun Zhu', Jianfei Chen'?

1Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center,

Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University

nstitute for Interdisciplinary Information Sciences, Tsinghua University

{zhang-jt24@mails., huanghf22@mails., dcszj@, jianfeic@}tsinghua.edu.cn

ABSTRACT

Although quantization for linear layers has been widely used, its application to
accelerate the attention process remains limited. To further enhance the effi-
ciency of attention computation compared to SageAttention while maintaining
precision, we propose SageAttention2, which utilizes significantly faster 4-
bit matrix multiplication (Matmul) alongside additional precision-enhancing tech-
niques. First, we propose to quantize matrices (Q, K) to INT4 in a hardware-

friendly thread-level granularity and quantize matrices (P, V') to FP8. Second, we
propose a method to smooth (), enhancing the accuracy of INT4 QK . Third, we
propose a two-level accumulation strategy for PV to enhance the accuracy of FP§
PV. The operations per second (OPS) of SageAttention?2 surpass FlashAt-
tention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover,
SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper
GPUs, while delivering much higher accuracy. Comprehensive experiments con-
firm that our approach incurs negligible end-to-end metrics loss across diverse
models—including those for language, image, and video generation.

1 INTRODUCTION

Motivation. For the two matrix multiplication (Matmul) operations in attention: QK ' and PV,
SageAttention accelerates them by quantizing the QK " to INT8 and uses FP16 Matmul with FP16
accumulators for PV. Moreover, to keep the accuracy of attention, SageAttention proposes smooth-
ing K by eliminating its channel-wise outliers. SageAttention achieves 2 x speedup than FlashAt-
tention2 and is the first quantized attention that incurs negligible end-to-end metrics loss across
language, image, and video generation models. However, SageAttention has two weaknesses. (W1)
INT8 Matmul achieves only half the speed of INT4. (W2) FP16 Matmul with FP16 accumulators
provides a speedup only on RTX 4090 and RTX 3090 GPUs. To leverage the faster INT4 tensor

cores for QK " and using a method that can accelerate PV on a broader range of GPUs, we propose
to quantize), K to INT4 and P,V to FPS.

Challenges. We identified two main challenges when quantizing @), K to INT4 and P,V to
FP8: (C1) INT4’s limited numerical range causes significant quantization errors when () and K
have abnormal values. (C2) The FP32 accumulator for FP8 matrix multiplication in tensor cores
(mma.£32.£8.£8.£32)is actually FP22, with 1 sign bit, 8 exponent bits, and 13 mantissa bits,

leading to accuracy loss in PV.

Our approach. To address (C1), we found that per-block quantization of @, K in SageAttention
does not provide sufficient accuracy for INT4 quantization. To avoid the latency from fine-grained
per-token dequantization, we propose a per-thread quantization method based on the GPU thread-
memory mapping from PTX mma instructions. This ensures each thread uses a single quantization
scale, achieving finer quantization granularity without extra dequantization overhead. Additionally,

*Equal contribution.
"Corresponding author.

Published as a workshop paper at SCOPE - ICLR 2025

to handle significant channel-wise outliers in () and K, we adopt smoothing K in SageAttention and

further propose subtracting the channel-wise average of) (denoted 6m), then adding 5mK after
the QK T Matmul to preserve attention accuracy. To address (C2), the accuracy loss from using a
22-bit accumulator for FP§ Matmul of PV, we propose a two-level accumulation strategy that uses
an FP32 buffer to accumulate the values from the 22-bit accumulator after each block Matmul of
PV, confining errors to the block range.

Performance. Importantly, we offer a high-performance implementation of SageAttention2 on
RTX4090 and .20 GPUs. This implementation achieves a peak performance of 481 TOPS on the
RTX4090, outperforming FlashAttention2 and xformers by approximately 3x and 4.5x, respectively.
Note that FlashAttention3 is tailored to and can only be used with the Nvidia Hopper architecture.
Moreover, the speed of SageAttention2 is the same as FlashAttention3(fp8) on the Hopper
GPUs and is much more accurate than FlashAttention3(fp8). For example, on CogVideo-1.5
(2025), Mochi (2024) and HunyuanVideo [Kong et al.| (2024), our method does not
compromise end-to-end accuracy, but videos generated using FlashAttention3(fp8) are completely
blurry. We extensively evaluate the end-to-end metrics of state-of-the-art text, image, and video
generation models using SageAttention2. SageAttention?2 can accelerate models in a
plug-and-play way with negligible loss in end-to-end metrics.

2 PRELIMINARY

FlashAttention. The attention computation can be formulated as: S = QK'/ Vd, P =
o(S), O = PV, where 0(S);; = exp(Si;)/ >, exp(Sir). The matrices @, K, and V each
has dimensionality V x d, and S, P are N x N. FlashAttention introduces a GPU-
friendly attention implementation, which tiles @), K, and V' from the token dimension into blocks
{Qi}ie,, {Ki}fiq, {Vi}i», with block sizes of b, by, b, (b = b,) tokens, respectively, where
ng, Nk, Ny are the number of tiles. FlashAttention computes the output matrix O in parallel in tiles.
Each streaming multiprocessor (SM) computes a block O; (corresponds to a ();) by iteratively loads

K, V; for each j, and update the output with online softmax (Milakov & Gimelshein| 2018):
Sij :Qz'KjT/\/gy (miz, Pij) = 6(mij—1,Si), (D)

lz'j :exp(mz-J_l — mij)li,j_l + rowsum(Pij),

Oij =diag (exp(mi j—1 —mi;)) Oij-1 + PV,
where m;; and [;; are by-dimenalional vectors, which are initialized with —oo and 0 respectively.
&(-) is an online softmax operator: m;; = max{m; j_1,rowmax(S;;)}, P;; = exp(Si; — mij).
Finally, the output can be computed as O; = diag(li’nq)_lOi’nq.

3 SAGEATTENTION2

Token

LLama3.1

1
1

1

1

! c
1 . g
| CogvideoX &
. e
1

1 |
: Channel Channel
1

. . .
8 4 10 6 -2 1+ 11 16 -19 14 5 4

Figure 1: Typical examples of tensors’ data distribution in attention.

3.1 SMOOTH Q

First, we discuss how to accurately compute QK | with INT4. The numerical range of INT4 is
notably restrictive. This affects quantization due to the presence of outliers (2024). Tt is
quite likely that most non-outlier elements are quantized to zero, resulting in significant accuracy
degradation. Therefore, we propose a smoothing technique inspired by an observation of SageAt-
tention [Zhang et al.| (2025b) that @, K for all tokens are actually highly similar, with only small

Published as a workshop paper at SCOPE - ICLR 2025

variations between different tokens (see Fig.[I). We propose to smooth K as SageAttention does
and further smooth () by subtracting a common mean of each block:

Y(Qi) = Qi — @i, V(K;)=K; —k, 2

where ¢; = mean(Q;), k = mean(K) are 1 x D vectors, the mean is conducted along the token
axis, and ¢;, k are broadcasted to tokens in a block and a tensor for subtraction, respectively.

With the decomposion, we have S;; = QK = (g + 7(Q:))(k +v(K;)) T = 7(Qi)v(K;) T +
AS;j+b, where AS;; = ¢;v(K;) " isan 1 x N vector, and b = g;k " +~(Q;)k " is an N x 1 vector.
We do not need to compute b since adding a common bias to an entire row of .S does not affect the
result after softmax. Therefore, we can accelerate Q); K]T with INT4 by the following two stages:

(1) preprocessing: smooth Q, K according to Eq. (2), apply quantization (d,, Qi) =
Yo (v(Q4)), Ok, K;) = ¥k (y(K;)), where ¢ is the quantization operator, and compute AS;; =
giv(K j)T. The Smoothing, quantization, and the GEMV (general matrix-vector multiplication) for
computing AS can be fused into a single kernel, which scans the off-chip () and K only once.

(2) attention: execute the low-precision GEMM, dequantize, and add back the vector AS: S;; =
%—Qli b, (QZ [A(JT) + AS;;. These operations are all done on chip, and the vector addition only adds
a marginal overhead compared to the expensive mma operation for MM (ablated in Table. [T3).

Quantization in each Warp MMA.m16n8k64_ "o " Tailca Il e Dequantization
C=AB 8!8
202
312

e

Token9

Token10

| Tokent1

T29|T29|T30 | T30 [T81
TO|T1|T1|T2|T2|T3
T4 |T5 15| T6 | T6 | T7

HHHHHEE ERRHHREE

| Token59 1’ Sx[3] Tokenid
) T28|T28 | T29) T29| T30 | T30 |T81
J Each Thread Corresponds to One Scale

Figure 2: An example of per-thread quantization. The left figure shows the correspondence between
the quantization scales and the tokens in each GPU warp. The right figure shows the correspondence
between quantization tokens and GPU threads in a MMA . m1 6n8k 64 instruction, showing that each
GPU thread only corresponds to one quantization scale in dg and dx in dequantization.

3.2 INT4 PER-THREAD QUANTIZATION

Orthogonal to smoothing, we can mitigate the problem of outliers by refining the quantization gran-
ularity so the number of affected elements by outliers becomes smaller. Although per-token offers
a high degree of quantization granularity, it results in significant overhead during dequantization.
Specifically, each GPU thread in per-token quantization must handle multiple quantization scales,
leading to a high latency of the dot product of the quantization scale vectors g and dx. To address
this, we propose per-thread quantization, a more precise and granular approach than the per-block
quantizer, also without the additional overhead of vectors dot product between dg and dx as in
per-token quantization.

Specifically, each @); in SageAttention will be split into ¢,, segments and processed by c¢,, GPU
warps in a GPU streaming processor (SM). We call each segment of @Q; as (), and k,, = K since
K is shared among warps. Then, each warp containing 32 threads uses the mma .m16n8k64 PTX
instruction NVIDIA|for the Q,, K]T . According to the layout requirement of this instruction, we find
that @, [8% + 14| could share one quantization scale, and K;[8k + 2i] and K [8k + 2i + 1] could share
one quantization scale. Such a quantization method is more fine-grained and with no additional

Published as a workshop paper at SCOPE - ICLR 2025

overhead. This is because it assigns different GPU threads to distinct quantization groups based
on the MMA instruction layout, with each thread performing dequantization only using a single
quantization scale value. We show an example of per-thread quantization in Fig. 2] The detailed
formulation is shown in Equation 3] and Fig. [I4] (Please see Appendix [A-3|for more detail).

3.3 FP8 QUANTIZATION FOR PV

SageAttention Zhang et al.| (2025b) choose to retain P and V' in FP16, and accelerate the MM by
decreasing the accumulator precision. However, this strategy is only effective on very few GPUs.
We propose to quantize P, V' to FP8 with 4 exponent bits and 3 mantissa bits (E4M3). The numerical
range of E4AM3 is [—448, +-448]. We quantize P with a static scale: dp = 4%8 since the original P
elements is already in [0, 1]. We quantize V per-channel to address the channel-wise outliers shown
in Fig. [I] Empirical results in Table [IT] and Table [I2] show the average accuracy and the worst of
different data types used for P,V across all layers of CogvideoX. The accumulator is always 32-
bit. We can see that the accuracy of E4M3 is very close to that of FP16 and superior to ESM2 and
INT8. Most modern GPUs have tensor cores that support FP8 Matmul operations, which are twice
as fast as those using FP16.

3.4 FP32 MMA BUFFER FOR FP22 ACCUMULATOR

While FP8 quantization for PV above is accurate in simulation, we observe that the actual CUDA
implementation suffers a consistent accuracy degradation. After narrowing down the problem, we
find that the accumulator for the mma (£32£8£8£32) instruction on the Ada and Hopper archi-
tecture is actually FP22, specifically with 1 sign bit, 8 exponent bits, and 13 mantissa bits. Details
are presented in Appendix Consequently, the matrix multiplication of PV, quantized to FP8,
incurs an accuracy loss compared to using an FP32 accumulator.

To mitigate this accuracy loss as much as possible, we adopt the two-level accumulation strategy,
which uses an FP32 buffer to accumulate the values of P;;V; in FP22. Specifically, we rewrite
Eq. (1) as R;; = P;;V;, O;; = diag (exp(m; j—1 — mij;)) O; j—1 + R;;. Here, two sets of accumu-
lators I2;; and O;; are maintained in the register. R;; is computed with the mma (£32£8£8£32)
with 22 effective bits, which is sufficient since we only accumulate over a small number of by, tokens
(e.g., by = 64). Then, R;; is accumulated to O;; in the high FP32 precision.

RTX4090, (Head dim = 128, causal = False) RTX4090, (Head dim = 128, causal = True)

Il Torch E=X FlashAttn2 E3 SageAttn2-8b
E= xformers E3A SageAttnl I SageAttn2-4b

Il Torch X3 FlashAttn2 =] SageAttn2-8b
E= xformers =3 SageAttnl Il SageAttn2-4b

K 4K 8K 16K 32K
Sequence Length Sequence Length

Figure 3: Speed comparison between SageAttention2 and baselines (RTX4090, headdim=128).

4 EXPERIMENT

Main result. SageAttention? is faster than FlashAttention2 and xformers by approximately 3x
and 4.5x, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8)
on the Hopper GPUs and is much more accurate than FlashAttention3(fp8). Our approach maintains
end-to-end metrics across language, image, and video generation models.

4.1 SETUP

Models and metrics. For Details about the models and metrics, please refer to Appendix. [A3]

Implemetation. We implement two attention kernels, SageAttn2-4b and SageAttn2-8Db us-
ing CUDA. sageAttn2-4b uses all techniques introduced in Sec.[3] while SageAttn2-8b also
uses all techniques but quantizes QQ K to INT8 without smoothing Q.

Published as a workshop paper at SCOPE - ICLR 2025

Table 1: End-to-end metrics across text, image, and video generation models. X indicates an inability
to generate results for evaluation.

Model | Attention | WikiText (Ppl.) | | Lambda (Acc.) T | MMLU (Acc.) T | Longbench 1
Full-Precision 6.013 0.815 0.635 49.40
HadmdAttn 7.872 0.762 0.500 44.07
Llama3.1 SmoothAttn 7.180 0.783 0.541 44.69
SageAttention 6.017 0.812 0.634 49.55
SageAttn2-4b 6.256 0.798 0.607 48.79
SageAttn2-8b 6.019 0.811 0.634 49.59
Model Attention CLIPSIM 1 CLIP-T 1 VQA-a 1 VQA-t 1 FScore 1
Full-Precision 0.1778 0.9979 70.231 70.928 2.507
HadmdAttn 0.1576 0.9933 8.990 2.299 X
CogvideoX SmoothAttn 0.1559 0.9950 8.812 2.277 X
(1.5-5B) SageAttention X X X X X
FlashAttn3-fp8 0.1562 0.9918 6.531 2.181 X
SageAttn2-4b 0.1721 0.9978 57.729 52.989 2.884
SageAttn2-8b 0.1775 0.9980 69.492 74.415 2.487
Full-Precision 0.1783 0.9995 82.516 75.934 0.604
HadmdAttn 0.1727 0.9989 7.514 0.762 0.175
Hunyuan SmoothAttn 0.1739 0.9988 6.987 0.609 0.148
Video SageAttention 0.1786 0.9995 82.496 79.843 0.597
FlashAttn3-£fp8 0.1742 0.9941 4433 1.460 X
SageAttn2-4b 0.1751 0.9995 81.478 65.371 0.610
SageAttn2-8b 0.1782 0.9996 81.786 75.354 0.586
Full-Precision 0.1798 0.9986 45.549 65.416 1.266
HadmdAttn 0.1733 0.9980 9.053 25.133 0.704
Mochi SmoothAttn 0.1687 0.9978 3.383 3.480 0.241
SageAttention 0.1800 0.9987 48.707 63.763 1.269
FlashAttn3-fp8 0.1762 0.9982 14.964 13.711 0.457
SageAttn2-4b 0.1783 0.9986 35.955 43.735 1.137
SageAttn2-8b 0.1797 0.9986 46.760 64.901 1.255
Model Attention FID | SFID | CLIP | IR+
Full-Precision 10.960 16.648 26.180 1.009
HadmdAttn 11.353 18.495 26.123 0.965
Flux SmoothAttn 11.149 19.017 26.109 0.959
SageAttention 10.944 16.641 26.171 1.008
SageAttn2-4b 10.577 17.497 26.141 0.998
SageAttn2-8b 10.927 16.723 26.175 1.009
Full-Precision 14.105 15.646 25.505 0.902
HadmdAttn 14.259 15.909 25.513 0.886
Stable-Dif | SmoothAttn 14.161 15.649 25.510 0.887
fusion3.5 SageAttention 14.140 15.678 25.503 0.902
SageAttn2-4b 14.097 15.397 25.487 0.895
SageAttn2-8b 14.106 15.647 25.499 0.901

Baselines. (1) SmoothAttn. Following Qserve (Lin et al. 2024), we apply smooth quant
for @, K with smoothing factor « = 0.5. (2) HadmdAttn. Following Quarot (Ashkboos
et al. [2024), we apply random Hadamard transformation for (), K before INT4 quantization. (3)
SageAttention (Zhang et al. 2025b), which uses smoothing K, INT8 per-block quantization
for @, K, and FP16 for P, V. (4) FlashAttn3 (£fp8), the FP8 version of FlashAttention3, which
can only run on Hopper GPUs.

4.2 SPEED AND ACCURACY OF KERNELS

Kernel Speed. We compare the Speed of SageAttention?2 against baselines using configura-
tions with headdim=64 and headdim=128, both with and without Causal Mask (Vaswani, 2017)).
Specifically, Fig. [3[shows the speed across varying sequence lengths on RTX4090, indicating that
SageAttn2-4b and SageAttn2-8b are approximately 3x and 2.7x faster than FlashAtten-
tion2, and about 4.5x and 4x faster than xformers, respectively. Fig.[7} [8] [0} [10] [TT} [T2] and [3]
in Appendix [A.2 show more kernel speed comparison on RTX4090, .20, H20, H100 GPUs.

Published as a workshop paper at SCOPE - ICLR 2025

Table 2: End-to-end generation latency using SageAttention2 (The latency of Llama3.1 is
the time to first token generation using different sequence lengths).

SageAttn | SageAttn

Model GPU Original >sb >_4b
CogvideoX (1.5-5B) | RTX4090 | 1040s 577s 555s
HunyuanVideo L20 2221's 1486 s 1435 s
Mochi L20 2336's 1316 s 1190 s
Llama3.1 (48K token) | RTX4090 9.2s 57s 5.6s
Llama3.1 (100K token) L20 3995 254s 23.2s

4.3 END-TO-END PERFORMANCE

Metrics loss. We assessed the end-to-end metrics of various models using SageAttention2.
Detailed evaluation results are presented in Table The results indicate that SageAttn2-4b
outperforms all baselines and maintains most of the end-to-end accuracy across all models. Addi-
tionally, SageAttn2-8b incurs almost no metrics loss across various models. More results can be

found in Appendix

Visible image and video examples. Fig[]and Fig.[6]in Appendix [A.T|show some visible compar-
ision examples from HunyuanvVideo, Mochi and CogvideoX (1.5-5B). We can observe that
SageAttn2-8b does not introduce any visible differences compared to full-precision attention,
whereas SageAttn2-4b has minor differences but is much better than the baselines.

End-to-end speedup. We compared the original generation latency and the latency using
SageAttention2 for models with long sequence lengths in Table observing significant
speedup effects. For instance, SageAttention?2 achieved a 1.8x speedup in CogvideoX (1.5-
5B) without any metrics loss (SageAttn2-8b). SageAttn2-4b further accelerated these mod-
els but with a little metrics loss.

5 CONCLUSION

We introduce SageAttention2, an efficient and accurate quantized attention. First, we propose

to quantize matrixes (@, K) in a thread-level granularity and (P, V') to FP8. Second, we propose a
method to smooth @, enhancing the accuracy of QK T Third, we propose a two-level accumulation
strategy to enhance the accuracy of FP8 PV. SageAttention2 is faster than FlashAttention2
and xformers by approximately 3x and 4.5x, respectively. Moreover, SageAttention2 matches
the speed of FlashAttention3(fp8) on the Hopper GPUs, but offers significantly higher accuracy.
Extensive testing confirms that our approach maintains end-to-end metrics across language, image,
and video generation models.

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference
in rotated LLMs. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3119-3137, 2024.

Black Forest Labs. Flux. https://github.com/black—-forest—labs/flux, 2023.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

https://github.com/black-forest-labs/flux

Published as a workshop paper at SCOPE - ICLR 2025

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Tianyu Fu, Tengxuan Liu, Qinghao Han, Guohao Dai, Shengen Yan, Huazhong Yang, Xuefei Ning,
and Yu Wang. Framefusion: Combining similarity and importance for video token reduction on
large visual language models, 2024. URL https://arxiv.org/abs/2501.01986.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340-8349, 2021.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 7514-7528, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Yuezhou Hu, Weiyu Huang, Zichen Liang, Chang Chen, Jintao Zhang, Jun Zhu, and Jianfei Chen.
Identifying sensitive weights via post-quantization integral, 2025.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63-S63, 1977.

Youhe Jiang, Ran Yan, Xiaozhe Yao, Yang Zhou, Beidi Chen, and Binhang Yuan. Hexgen: Gener-
ative inference of large language model over heterogeneous environment. In Forty-first Interna-
tional Conference on Machine Learning.

Youhe Jiang, Fangcheng Fu, Xiaozhe Yao, Guoliang He, Xupeng Miao, Ana Klimovic, Bin Cui,
Binhang Yuan, and Eiko Yoneki. Demystifying cost-efficiency in llm serving over heterogeneous
gpus. arXiv preprint arXiv:2502.00722, 2025a.

Youhe Jiang, Ran Yan, and Binhang Yuan. Hexgen-2: Disaggregated generative inference of llms
in heterogeneous environment. In International Conference on Learning Representations (ICLR),
2025b.

Gregory Kamradt. Llmtest needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest_NeedleInAHaystack, 2023.

https://arxiv.org/abs/2501.01986
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Published as a workshop paper at SCOPE - ICLR 2025

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Aladdin Wang, Andong Wang, Changlin Li,
Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu,
Jinbao Xue, Joey Wang, Junkun Yuan, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan
Wang, Wenqging Yu, Xinchi Deng, Yang Li, Yanxin Long, Yi Chen, Yutao Cui, Yuanbo Peng,
Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao
Liu, Daquan Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar
Zhong. Hunyuanvideo: A systematic framework for large video generative models. arXiv preprint
arXiv:2412.03603, 2024.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36:15136-15171, 2023.

Bingrui Li, Wei Huang, Andi Han, Zhanpeng Zhou, Taiji Suzuki, Jun Zhu, and Jianfei Chen. On the
optimization and generalization of two-layer transformers with sign gradient descent. In Interna-
tional Conference on Learning Representations (ICLR), 2025.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation. arXiv
preprint arXiv:2402.17245, 2024.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
video generation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22139-22149, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2022.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867, 2018.

NVIDIA. Parallel thread execution isa version 8.5. https://docs.nvidia.com/cuda/
parallel-thread-execution/.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525-1534, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Stability AL Introducing stable diffusion 3.5. https://stability.ai/news/
introducing-stable-diffusion—-3-5,2023.

Genmo Team. Mochi 1. https://github.com/genmoai/models, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. Advances in Neural Information Processing Systems,

32,2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—-image—-models, 2019.

https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://stability.ai/news/introducing-stable-diffusion-3-5
https://stability.ai/news/introducing-stable-diffusion-3-5
https://github.com/genmoai/models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Published as a workshop paper at SCOPE - ICLR 2025

Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou, Annan Wang, Wenxiu Sun,
Qiong Yan, and Weisi Lin. Exploring video quality assessment on user generated contents from
aesthetic and technical perspectives. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 20144-20154, 2023.

Haocheng Xi, Han Cai, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfei Chen, and Song Han. Coat:
Compressing optimizer states and activation for memory-efficient fp8 training. arXiv preprint
arXiv:2410.19313, 2024.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. arXiv preprint arXiv:2502.01776, 2025.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. In The Thirteenth International Conference on Learning Representa-

tions, 2025.

Jintao Zhang, Guoliang Li, and Jinyang Su. Sage: A framework of precise retrieval for rag. In 2025
IEEE 41th International Conference on Data Engineering (ICDE). IEEE, 2025a.

Jintao Zhang, Jia Wei, Pengle Zhang, Jianfei Chen, and Jun Zhu. Sageattention: Accurate 8-bit
attention for plug-and-play inference acceleration. In The International Conference on Learning
Representations, 2025b.

Jintao Zhang, Chendong Xiang, Haofeng Huang, Jia Wei, Haocheng Xi, Jun Zhu, and Jianfei Chen.
Spargeattn: Accurate sparse attention accelerating any model inference, 2025c. URL https:
//arxiv.org/abs/2502.18137.

Pengle Zhang, Jia wei, Jintao Zhang, Jun Zhu, and Jianfei Chen. Accurate int8 training through
dynamic block-level fallback, 2025d.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. coBench: Extending long context evaluation
beyond 100K tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15262—-15277, 2024.

Tianchen Zhao, Tongcheng Fang, Enshu Liu, Rui Wan, Widyadewi Soedarmadji, Shiyao Li, Zinan
Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vidit-q: Efficient and accurate quantiza-
tion of diffusion transformers for image and video generation. arXiv preprint arXiv:2406.02540,
2024a.

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-efficient few-step text-to-image diffusion mod-
els with metric-decoupled mixed precision quantization. In European Conference on Computer
Vision, pp. 285-302. Springer, 2024b.

Tianchen Zhao, Tongcheng Fang, Haofeng Huang, Enshu Liu, Rui Wan, Widyadewi Soedarmadji,
Shiyao Li, Zinan Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vidit-q: Efficient and
accurate quantization of diffusion transformers for image and video generation. In International
Conference on Learning Representations, 2025.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024a.

Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
arXiv preprint arXiv:2405.15885, 2024b.

https://arxiv.org/abs/2502.18137
https://arxiv.org/abs/2502.18137

Published as a workshop paper at SCOPE - ICLR 2025

Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Elucidating the preconditioning
in consistency distillation. arXiv preprint arXiv:2502.02922, 2025.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024c.

10

Published as a workshop paper at SCOPE - ICLR 2025

A APPENDIX

A.1 VISIBLE COMPARISON EXMAPLES

HadmdAttn

SmoothAttn

Full precision Attention SageAttention2-8b SageAttention2-4b

Figure 4: Comparison examples from HunyuanVideo, prompts are sampled from open-sora
prompt sets.

HadmdAttn

SageAttention2-8b SageAttention2-4b

Full precision Attention
-

SmoothAttn

Figure 5: Comparison examples from CogvideoX (2B), prompts are sampled from open-sora
prompt sets.

A.2 ADDITIONAL KERNEL SPEED COMPARISON

Fig.[7l [8 [IT} [T2} and [T3]compare the speed of SageAttention2 against baselines using
configurations with headdim=64 and headdim=128, both with and without Causal Mask
(2017), on RTX4090, .20, H100, and H20 GPUs.

Table [3]summarizes the performance gain of different attention methods against baselines on various
modern GPUs.

Table 3: Speedup of different attention methods on various GPUs.

Method | 3090 | 4090 | A100 | L40 | L20 | H100 | H20
FlashAttention2 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
FlashAttention3 X X X X X 1.37 | 1.57

FlashAttention3 (fp8) X X X X X 2.63 | 3.06
SageAttention] 197 | 196 | 1.37 | 145 | 1.24 | 1.53 | 1.52
SageAttention2 X 2.93 X 260 | 246 | 2.61 | 3.12

11

Published as a workshop paper at SCOPE - ICLR 2025

Cogvideo-1.5

Full-Precision

SageAttn2-8b 2

FlashAttention3
(fp8)

Full-Precision
SageAttn2-8b

FlashAttention3
(fp8)

Full-Precision

saQEAﬂnZ-Sb ! \ | !
FlashAttention3
(fp8)

Figure 6: A comparison example using SageAttn2-8b and FlashAttention3 on CogvideoX-1.5,
Mochi and HunyuanVideo.

RTX4090, (Head dim = 64, causal = False) RTX4090, (Head dim = 64, causal = True)

I Torch EX FlashAttn2 [SageAttn2-8b Il Torch X3 FlashAttn2 [SageAttn2-8b
= xformers EZA SageAttnl I xformers [0 SageAttnl BB SageAttn2-4b

Sequence Length Sequence Length

Figure 7: Speed comparison between SageAttention?2 and baselines (RTX4090, headdim=64).

12

Published as a workshop paper at SCOPE - ICLR 2025

True)

L20, (Head dim = 64, causal

64, causal = False)

E= FlashAttn2

L20, (Head dim

I Torch

1 SageAttn2-8b

X3 FlashAttn2
23 SageAttnl

3 SageAttn2-8b

I SageAttn2-4b
o
<
i
/
d
6K

= xformers

A SageAttnl [SageAttn2-4b 400
o~
& &
i S| 200
\ /
6K

= xformers

400
0

N

(SdO1) paads

wn

Sequence Length

Figure 8: Speed comparison between SageAttention2 and baselines (L20, headdim=64).

Sequence Length

True)
=] SageAttn2-8b

L20, (Head dim = 128, causal

Il Torch

L20, (Head dim = 128, causal = False)

I Torch

X3 FlashAttn2
=3 SageAttnl

E3 SageAttn2-8b

E=3 FlashAttn2
E3A SageAttnl

Il SageAttn2-4b

= xformers

I SageAttn2-4b

= xformers

Sequence Length

Figure 9: Speed comparison between SageAttention?2 and baselines (L20, headdim=128).

Sequence Length

= True

H100, Head Dim = 64, causal

H100, Head Dim = 64, causal = False

«©
fe)
=
poll
c
£ 5
£ B
<<
£ 0
o o
O ©
w un
©
e
s &
=0
m
mn
£
< <
o <
& a
© ©
"
~
=
5 E
g
S wn
S
X
o
=1
=1
—
«©
Qo
&%
0N
c c
£ 5
£
<
<0
v o
S o
w un
©o
=
s &
£9
Q
£ 8
<<
o <
S
@ ©
v o
o
=
5 B
€2
S
X
o
o
o
-
(Sd0O1) paads

Sequence Length

Figure 10: Speed comparison between SageAttention2 and baselines (H100, headdim=64).

Sequence Length

True
I FlashAttn3-fp8

Bl SageAttn2-8b

H100, Head Dim = 128, causal

H100, Head Dim = 128, causal = False

A SageAttentionl

0
&
9]
£
£

Lo

<

o
o
n
—
©
Q

b

oo}
c

S

£

<
<
@
©
[

Z3 SageAttentionl

15004 EEH Xformers

(Sd01) paads

=1 FlashAttn3-fp16

o~
c
=i
=
<
<
@
<
[

BB SageAttn2-8b

3 FlashAttn3-fp16

E=1 FlashAttn2

Sequence Length

Figure 11: Speed comparison between SageAttention2 and baselines (H100, headdim=128).

Sequence Length

True
B FlashAttn3-fp8

B SageAttn2-8b

H20, Head Dim = 64, causal =

= Xformers

400| KX FlashAttn2

H20, Head Dim = 64, causal = False

[Xformers

Z3 SageAttentionl

I FlashAttn3-fp8
EEN SageAttn2-8b

=2 SageAttentionl

E3 FlashAttn3-fpl6

=3 FlashAttn3-fpl6

X FlashAttn2

9 400

Sequence Length

Figure 12: Speed comparison between SageAttention2 and baselines (H20, headdim=64).

Sequence Length

True
B FlashAttn3-fp8

BBl SageAttn2-8b

H20, Head Dim = 128, causal

I Xformers

400{ EX FlashAttn2

H20, Head Dim = 128, causal = False

[Xformers

Z3 SageAttentionl

B FlashAttn3-fp8
EEE SageAttn2-8b

= SageAttentionl

E3 FlashAttn3-fpl6

=3 FlashAttn3-fpl6

Sequence Length

Figure 13: Speed comparison between SageAttention2 and baselines (H20, headdim=128).

Sequence Length

13

Published as a workshop paper at SCOPE - ICLR 2025

R\C

0 1

T0: {cD, c1}

T4: {0, c1}

2 3

T1: {0, c1}

T5: {cD, c1}

4 5

T2: {0, c1}

T6: {c0, c1}

6 7

T3: {cD, c1}

T7: {0, c1}

-——

T28: {c0, c1}

R

T29: {c0, c1}

T30: {c0, c1}

T31: {c0, c1}

TO: {c2, c3}

T4: {c2, c3}

T1: {c2,¢3}

T5: {2, c3}

T2: {2, ¢3}

T6: {c2, c3}

T3: {c2, c3}

T7: {c2, c3}

10
[o o

|

e

—

15 T28: {c2,c3} T20: {c2,c3} T30: {c2,c3} T31: {c2,¢c3}

Figure 14: Memory layout of INT4/INT8 tensor core for accumulator matrix C and D in D =
A x B 4 C among 32 threads (TO ~ T31) in a warp. C' and D is of shape 16x8. Each thread only
holds 4 out of the 128 elements.

A.3 PER-THREAD QUANTIZATION FORMULATION

To further clarify the per-thread quantization, we first introduce the INT4 MMA instruction of Tensor
Core, and then give the formulation of per-thread quantization.

Tensor cores, first introduced in NVIDIA’s Volta architecture, are specialized units designed for
efficient matrix-multiply-and-accumulate (MMA) operations. Their usage significantly enhances
computational efficiency and performance in Al and high-performance computing (HPC) work-
loads. Tensor cores compute small tiles of MMA operations, specifically D = A x B+ C on a warp
(32 contiguous threads) basis. Each thread in the warp holds a fragment of input matrices and will
get a fragment of output matrix as a computation result. The INT4 mma .m16n8k64 tensor core
operation computes the product of a 16 x 64 INT4 matrix A and a 64 x 8 INT4 matrix B, both
stored in registers. It accumulates the result into a 16 x 8 INT32 matrix C, also stored in registers,
and returns the final product matrix D, which has the same shape (16 x 8), data type (INT32), and
storage location (registers). Each thread holds only 3% of the input and output data. Fig.|14{extracted
from the PTX document NVIDIA|shows the memory layout of matrix C' and D among 32 threads
in a warp. Each thread only holds 4 out of the 128 result elements.

i5qg =[(n *8xcy/by)]
dilisg] ={8 x (n%8) + |(n * %)J . iii}, n € [0, N]

_ max(| Qlgilisy])

dqlisq) = -
isk =|(n*4/by)] N

kn[lgk} :{8 X (n%S) + Ln/ka * bk}U
{8 x (n%8) +1+ |n/bg] *br}, n€[0,N]
_ max(| Kfknlis]] |)

(5K[i6k} 7
Kknlist]] = {WJ

14

Published as a workshop paper at SCOPE - ICLR 2025

In Eq.[3} ¢, is the count of GPU Warps. b, and b, are the block size of (), K. n is the token index
of Q, K.

By ensuring results held by each thread share a common dequantization scale (belong to the same
quantization group), we can avoid the overhead associated with per-token quantization. Leveraging
this observation, we design per-thread quantization, as shown in Fig. [2| For typical block size of
by = 128, by, = 64 and warp number c,, = 4 (as used in FlashAttention2), each warp processes a
tile of 32 query tokens and 64 key tokens. Query tokens ,8 + 4,16 + 4,24 +1¢ (¢ = 0,1,---,7)
can be made into one quantization group and key tokens j,1 + 5,8 + 7,9+ j7,--- ,56 4+ 5,57 + j
(j =0,1,2,3) can be made into one quantization group. This design aligns with the memory layout
of output matrix D of tensor core shown in Fig.[T4] ensuring that each thread only needs one @ scale
and one K scale for dequantization.

As a result, this approach creates 32 quantization groups for) (8 for each of the 4 warps) and 4
quantization groups for K in a 128x64 block, providing 32x and 4 X finer granularity compared to
per-block quantization for query tokens and key tokens, respectively. Table 9] and Table [I0] show
the accuracy gains by using per-thread quantization. Per-thread quantization achieves accuracy
that closely matches per-token quantization, without introducing any kernel speed degradation (see

Fig.[13).

A.4 FP22 ACCUMULATOR OF FP8 TENSOR CORE

Table 4: Error of the FP8 (E4M3) Matmul instruction of mma (£8£8£32).

Precision of Accumulated Value | E8MI3 | E8M23
Error compared to FP32 \ 0 | mma (£16£16£32) -mma (£8£8£32) |

We use the following experiment to test the number of effective bits of accumulator of
mma (£8£8£32) instruction, which performs C = AB + D, where A, B are tensors in FP8
(E4M3) data type and C, D are tensors with FP32 data type. We initialize the A, B to zero and
vary D to test the data type of the accumulator. As shown in Table 4, when D is initialized
with 1 sign bit, 8 exponent bits, and no more than 13 mantissa bits, the value of C' precisely
matches the result of the mma (£16£16£32) instruction. However, when D is initialized with
more than 13 mantissa bits, the error of C corresponds to the difference between the results of
mma (£16£16£32) and mma (£8£8£32). This proves that the number of effective bits of accu-
mulator for mma (£8£8£32) is 22. On Hopper architecture, the instruction is wgmma (£8£8£32)
but the number of effective bits is the same.

A.5 MODELS, DATASETS, AND METRICS IN EXPERIMENTS

Models. We validate the effectiveness of SageAttention2 across a diverse set of represen-
tative models from language, image, and video generation. Specifically, we conduct experiments
on nine models: Llama3.1 (8B) (Dubey et al,, [2024) and GLM4 (9B) (GLM et al [2024) for
text2text, CogvideoX (2B), CogvideoX (1.5-5B) (Yang et al., 2025), Hunyuanvideo (Kong
et al., [2024), and Mochi (Team), 2024} for text2video, F1ux (schnell) (Black Forest Labs| 2023
and Stable-Diffusion3. 5 (turbo) (Stability Al,[2023)) for text2image, and TIMM (Wightman,
2019) for image classification.

Datasets. Text-to-text models are evaluated on four zero-shot tasks: WikiText Merity et al.| (2022)
to assess the model’s prediction confidence, LAMBADA [Paperno et al.| (2016) evaluate contextual
understanding, MMLU Hendrycks et al.| (2020) for measuring knowledge across various subjects,
and Longbench [Bai et al.| (2024) for comprehensive assessment of long context understanding capa-
bilities. Text-to-video models are evaluated using the open-sora|[Zheng et al.| (2024c|) prompt sets.
Text-to-image models are assessed on MJHQ-30K [Li et al.| (2024). TIMM is evaluated on on three
image datasets: ImageNet Deng et al.| (2009), ImageNet-Sketch (Sketch) Wang et al.| (2019), and
ImageNet-Rendition (ImageNet-r) Hendrycks et al.[(2021).

End-to-end metrics. For text-to-text models, we use perplexity (ppl.) Jelinek et al| (1977) for
WikiText, Accuracy (Acc.) for LAMBADA and MMLU, and Longbench score [Bai et al.| (2024)).
For text-to-video models, following Zhao et al.[(2025), we evaluate the quality of generated videos

15

Published as a workshop paper at SCOPE - ICLR 2025

on five metrics: CLIPSIM and CLIP-Temp (CLIP-T) [Liu et al| (2024) to measure the text-video
alignment; (VQA-a) and (VQA-t) to assess the video aesthetic and technical quality, respectively;
and Flow-score (FScore) for temporal consistency Wu et al.| (2023). For text-to-image models,
generated images are compared with the images in MJHQ-30K dataset in three aspects: FID |[Heusel
et al.| (2017) and sFID [Salimans et al.|(2016) for fidelity evaluation, Clipscore (CLIP) Hessel et al.
(2021) for text-image alignment, and ImageReward (IR) Xu et al.|(2023) for human preference. For
TIMM, we use classification accuracy.

Accuracy metrics. We use three metrics to assess the accuracy of quantized attention output O’
compared to attention output in full-precision O: First, we flatten O’ and O into vectors in the shape

of 1 x n. Then, Cosine similarity: CosSim = > 00’/+/> . 0?\/> 0’2, Relative L1 distance:

L1=3%|0 - 0’|/ |O0|, Root mean square error: RMSE = /(1/n))_(0 — 0')2.
Table 5: End-to-end metrics on GLM4 (9B).

Model Attention WikiText (Ppl.) ||Lambda (Acc.) 1MMLU (Acc.) 1|Longbench 1
Full-Precision 7.241 0.432 0.743 49.78
HadmdAttn 7.989 0.435 0.669 45.97

GLM4 SmoothAttn 8.943 0.449 0.592 42.20
SageAttention 7.243 0.433 0.744 49.79
SageAttn2-4b 7.352 0.433 0.725 49.23
SageAttn2-8b 7.242 0.432 0.745 49.60

Table 6: End-to-end metrics on CogvideoX (2B).
Model Attention CLIPSIM 7 | CLIP-T 1| VQA-a 1 | VQA-t 1| FScore 1

IFull-Precision 0.1836 0.9975 77.605 | 75.360 3.006

HadmdAttn 0.1742 0.9877 29.780 | 23.985 0.499

CogvideoX SmoothAttn 0.1741 0.9870 41.703 | 47.043 0.624
(2B) SageAttention 0.1833 0.9976 76.997 | 71.360 2.988
SageAttn2-4b 0.1821 0.9973 77.368 | 74.906 2.603
SageAttn2-8b 0.1829 0.9977 76.532 | 74.281 2.941

Table 7: End-to-end metrics on an image classification model.

Model Attention ImageNet (Acc.) 1 | Sketch (Acc.) 1 | ImageNet-r (Acc.) T
[Full-Precision 84.79% 45.32% 59.55%
HadmdAttn 84.50% 44.89% 58.80%

TIMM SmoothAttn 84.40% 44.68% 58.73%
SageAttention 84.74% 45.38% 59.95%
SageAttn2-4b 86.67 % 45.24% 59.29%
SageAttn2-8b 84.79 % 45.39% 59.57 %

Table 8: Comparison with FlashAttention3(fp8) on Llama-3-262k (8B) on InfiniBench [Zhang
et al.| (2024) (H100 GPU).

Attention

|Eng.Sum|Eng.QA|Eng.MC|Code.Debug|Math.Find|Retr.PassKey Retr.Num|Retr.KV| Avg.

Full-Precision

FlashAttn3-fp
SageAttention

18.03 12.5 64.19 24.37
19.03 | 11.73 | 55.90 22.59
18.17 | 12.46 | 64.19 25.63

18.29 100.0
22.57 100.0
17.43 100.0

100.0

100.0
100.0

7.0 [43.05
04 |41.53
6.6 |43.06

16

Published as a workshop paper at SCOPE - ICLR 2025

NIAH Llama-3-8B-262k NIAH Llama-3-8B-262k w/ FIashAttnB-fpS1 o NIAH Llama-3-8B-262k w/ SageAttn2 10

1.0 .
. 0.0
11.0
0.8 .
22.0
= 06 33.0
= . .
< 44.0
_E =
e 56.0
0.4 .
o 67.0
78.0
0.2 .
89.0
100.0 100.0
0.0 .
. NS . s

S ottt

0.8

0.6

Depth (%)
Depth (%)

0.4

0.2

0.0

o ,,;b*,\c*“&‘;ﬁu*;%d;@ﬁﬁoﬁ@*

Token Limit

S b nE ot ot
O B A e
Token Limit

Token Limit

(a) Full Precision (b) FlashAttn3-£fp8 (c) SageAttention?2

Figure 15: Needle In A Haystack results on Llama—-3-262k (8B).

A.6 ADDITIONAL EXPERIMENTS AND ANALYSIS

Additional Results. Table[5] [6]and [7]show results of SageAttention2 and other baselines on
GLM4 (9B), CogvideoX (2B) and TIMM.

Results of Super-Long Context. We further conduct experiments on super-long context
using Llama-3-262k (8B)] on InfiniBench Zhang et al| (2024) and Needle-in-a-Haystack
(NIAH) (2023), with sequence lengths reaching up to 262k tokens on an H100 GPU.
Results are shown in Table [§]and Fig[T3] sageAttention2 maintains model performance even
under super-long context, while FlashAttention3(fp8) suffers from end-to-end accuracy degradation.
Like[Zhang et al.|(2025b)), we believe SageAttent ion2 can also be effectively applied to various
applications related to Transformers, such as linear layer quantization (Hu et all,[2025} [Zhang et al.
2025d; [Zhao et all, [2024a), RAG systems (Zhang et all, [2025a), training optimization (L1 et al.
2023; 2 Xi et al.| [2024), heterogeneous GPU systems (Jiang et al., 20254} Jiang et al.; [2025D),
and diffusion models (Zheng et al 2024afb; 2025} [Fu et al., 2024; Zhao et al.l 2024b; Xi et al
2023}, [Zhang et al., [2025¢).

Table 9: Average accuracy across all layers of CogvideoX using different quantization granular-
ities.

Method | CosSim?1 | RelativeL1| | RMSE |
Per-token 99.45% 0.0649 0.0335
Per-thread 99.45% 0.0622 0.0313
Per-block 98.03% 0.1492 0.0744
Per-tensor 97.15% 0.1800 0.0865

Table 10: Worst accuracy across all layers of CogvideoX using different quantization granulari-
ties.

Method | CosSim?1 | RelativeL1| | RMSE |
Per-token 96.76% 0.1916 0.0775
Per-thread 96.72% 0.1932 0.0776
Per-block 90.68% 0.3615 0.1490
Per-tensor 85.85% 0.4687 0.2261

'https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k

17

https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k

Published as a workshop paper at SCOPE - ICLR 2025

Table 11: Average accuracy using different data types of (]5 , V) across all layers of CogvideoX,
where (@, K) are smoothed.

QK | PV CosSim1 | RelativeL1] | RMSE]

INTS 77.05% 0.5618 0.5044
INT4 E5M2 99.20% 0.0905 0.0903
E4M3 99.44 % 0.0683 0.0347
FP16 99.45% 0.0649 0.0335

Table 12: Worst accuracy using different data types of (}5, V') across all layers of a CogvideoX
model, where (Q, K) are smoothed.

QK | PV Cos Sim1 | RelativeL1| | RMSE |

INTS 19.52% 0.9579 1.4483
INT4 E5M2 94.94% 0.2327 0.2361
E4M3 96.70 % 0.1956 0.0779
FP16 96.76% 0.1916 0.0775

Table 13: Overhead of per-thread quantization, smoothing Q, and two-level accumulation techniques
measured on L20 GPU.

Method | TOPS
Attention (INT4 + FP8) 284
+ Per-thread quantization 283
+ Two-level accumulation 283
+ Smoothing Q 273

18

	Introduction
	Preliminary
	SageAttention2
	Smooth Q
	INT4 Per-thread Quantization
	FP8 quantization for V
	FP32 MMA Buffer for FP22 Accumulator

	Experiment
	Setup
	Speed and Accuracy of Kernels
	End-to-end Performance

	Conclusion
	Appendix
	Visible Comparison Exmaples
	Additional Kernel Speed Comparison
	Per-Thread Quantization Formulation
	FP22 Accumulator of FP8 Tensor Core
	Models, Datasets, and Metrics in Experiments
	Additional Experiments and Analysis

