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ABSTRACT

Recent research has shown significant progress in the field of zero-shot text
reranking for large language models (LLMs). Traditional pointwise approaches
prompt the LLM to output relevance labels such as ”yes/no” or fine-grained la-
bels, but they have several drawbacks. Firstly, these prompts struggle to capture
complex correlations between queries and passages and lack robustness for out-
puts not covered by predefined labels. Secondly, ranking scores rely solely on the
likelihood of relevance labels, leading to potential noise and bias. Lastly, exist-
ing pointwise approaches are not supported by decoder-only LLMs, as ranking
requires LLMs to output prediction probabilities. In response to these challenges,
a novel pointwise approach called yesno-pro has been designed, which redefines
both prompt design and score computation mechanisms to better align with the
intrinsic nature of text reranking. Additionally, a comprehensive reranking frame-
work based on LLM services has been proposed to support concurrent ranking
calls and quickly adapt to any open-source decoder-only large models. Experi-
mental results have demonstrated that this method outperforms existing pointwise
and some pairwise/listwise methods on TREC19/20 and BEIR datasets, achiev-
ing the state-of-the-art performance. Due to its concurrency features, this work is
applicable to practical applications with high real-time requirements.

1 INTRODUCTION

In recent years, LLMs(large language models) have significantly empowered an increasing number
of domains. In this paper, we focus specifically on zero-shot text reranking. Compared to traditional
methods, using LLMs to perform zero-shot text reranking demonstrates significant advantages due
to their capability to understand knowledge across diverse domains. For example, utilizing LLMs
for text reordering mitigates the necessity for repeated fine-tuning of small models in situations
where knowledge is subject to frequent changes across different domains. This approach effectively
reduces both resource expenditure and time. Recent works related to zero-shot LLM rankers can be
categorized into three types: pairwise, listwise, and pointwise methods.

In pairwise approaches, LLMs are prompted with a query along with a pair of passages to perform
ranking tasks(Qin et al., 2023)(Luo et al., 2024). Conversely, listwise approaches involve prompting
the LLM with a query and a comprehensive list of passages(Sun et al., 2023). The two approaches
share the following common points: (1) They require the design of sampling strategies, such as
”sliding window” and ”all pair”, to obtain candidate passage sets that cover all passages of a query.
These candidate passage sets can be structured as either pairs or lists; (2)The ranking of any given
passage is inherently relative, being contingent upon comparisons with other passages. This leads
to three drawbacks: (1) Due to the max token length limitation of LLMs, pairwise and listwise ap-
proaches cannot be scaled to long lists. (2) The required sampling strategies introduce additional
time overhead. Particularly in pairwise methods, the total number of candidate passage sets often
exceeds the number of original passages, leading to an increase in overall inference times. (3) The
comparative nature prevents the two approaches from supporting concurrent invocations. These fac-
tors render pairwise and listwise approaches relatively slow, and limit their application in practical
scenarios with high real-time requirements, thereby confining their use predominantly to research
settings.
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Existing pointwise rankers can be categorized into two classes: query generation and relevance
generation. Query generation often ranks documents based on the query likelihood from LLM
given the passage(Sachan et al., 2022a). With superior performance, relevance generation generally
prompts the LLM to generate relevance labels given a query and a passage,such as ”yes/no” or
”0,1,2,3”, and subsequently derives ranking score based on their likelihood. However, this approach
suffer from these drawbacks: (1) Existing pointwise prompts are insufficient to capture the intrinsic
relevance between queries and passages. This indicates that, although there may be some connection
between the passage and the query, it does not provide actual assistance in answering or resolving
the query. We will discuss this in detail in Section 2.1; (2) At times, the outputs of LLMs do
not conform to predefined relevance labels, and current approaches fail to effectively mitigate this
issue, lacking corresponding solutions; (3) Zero-shot text reranking is generally applied to reorder
passages based on the ranking results from the first-stage, but existing methods do not fully leverage
these first-stage ranking results, which constrains further improvements in ranking performance; (4)
Current pointwise approaches are applicable to encoder-decoder LLMs but do not support decoder-
only LLMs. Furthermore, there exists a lack of an efficient and deployable framework for text
rankers using LLMs in the open-source domain.

A question naturally arises: Is it possible to propose a new zero-shot LLM reranking method that
overcomes the shortcomings of pairwise/listwise and pointwise approaches while balancing both
accuracy and efficiency?

In this work, we present a novel pointwise method: Yesno-Pro. This approach introduces a effective
prompt template that guides LLMs in capturing the key correlations between queries and passages
and employs a comprehensive scoring computation method that leverages the first-stage ranking
results, mitigating biases and noise arising from reliance on a singular information source. Further-
more, we developed a VLLM-based text reranking framework that supports concurrent calls and
significantly enhances the ranking speed. Our contributions can be summarized as follows:

1. We propose a new approach: Yesno-Pro. By optimizing the prompt and ranking score deriving
methods, this approach substantially improves the performance and surpass other pointwise llm
rankers and some pairwise/listwise approaches.

2. Yesno-Pro is the first pointwise approach capable of supporting both encoder-decoder and
decoder-only LLMs.

3. We develope a LLM text reranking framework that can swiftly adapt to any LLM model supported
by open VLLM, which support concurrent calls and demonstrates superior speed compared to all
existing LLM text rankers.

2 MOTIVATION

The introduction has briefly outlined the drawbacks of existing listwise/pairwise and pointwise
methods. This section will delve deeper into the fundamental reasons behind the suboptimal perfor-
mance of current pointwise approaches, focusing on two key aspects: prompt design and ranking
score computation, illustrated with concrete examples.

2.1 PROMPT DESIGN

Fig 1 lists the prompts in popular pointwise methods. Among these, prompts (a), (b), and (c) guide
the large model to output relevance labels between queries and documents. However, such prompts
may hinder LLMs to effectively capture the critical relevance between them. For instance, consider
a user query such as ”What are the market trends in the electric vehicles?” Document 1 states: ”The
market trend for traditional gasoline vehicles is gradually declining, influenced by electric vehicles
and environmental policies, leading to shifts in consumer preferences.” In contrast, Document 2
asserts: ”Sales of electric vehicles have increased by 30% over the past year.” In reality, Document
2 should be prioritized over Document 1, as it directly addresses the user’s query. However, if
relevance-based prompts are employed, the model might inaccurately prioritize Document 1 over
Document 2, as it could focus on some irrelevant aspects of information.
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Figure 1: Metric Learning Constraint Network: First, X, the embeddings of all patches in a
WSI, which are extracted through pretrained ResNet50, are linearly projected to obtain patch-level
features fp. Second, the patch-level features are aggregated by bilinear gated attention mechanism
to obtain slide-level features fs. And A is the learned attention score. Third, classification loss,
center cluster loss and instance-level clustering loss are computed based on fs, fp and A to train the
whole network. Notice that

Certain prompts will ask LLMs whether the passage answer the query, as illustrated in prompt (d).
However, there are instances in which the passage does not explicitly respond to the query but still
contains some useful information.

In addition, LLMs sometimes fail to produce precise outputs. For example, if the query is ”Is a
Shiba Inu a pet?” and the passage is ”In the dog sales market, a Shiba Inu costs 6,000 yuan.”, under
the current prompting templates, the LLM might respond with, ”The two statements are not directly
related, but dogs belongs to pets, so a Shiba Inu is a pet.” rather than providing a binary answer of
”yes/no” or other predefined relevance labels, which can potentially affect the calculation of ranking
scores, ultimately influencing the performance of the final ranking.

2.2 RANKING SCORE COMPUTATION

Existing LLM rerankers are typically employed to refine the ranking of passages subsequent to the
initial ranking stage. Popular pointwise approaches derive ranking scores based on the probabilities
of relevant labels generated by LLMs. Inspired by (Luo et al., 2024), we identify a significant
limitation of this approach: it does not effectively integrate information from the first-stage ranking.
In order to avoid noise and bias, we should consider how to effectively integrate ranking results of
the two stages to enhance overall ranking performance.

In addition, current pointwise approaches only support LLMs of encoder-decoder structur, but the
majority of contemporary and advanced LLMs utilize a decoder-only structure. This limitation
constrains the applicability of pointwise LLM rerankers across diverse contexts.

3 YESNO-PRO

Considering the aforementioned in-depth analysis of the suboptimal performance and usability chal-
lenges of existing pointwise approaches, we propose Yesno-Pro, which optimizes prompt design and
ranking score computation.

3.1 PROMPT DESIGN

We designed the following prompt:

”Passage:{text} Query:{query} Does this passage contain the information needed to answer the
question? Please respond directly with ’Yes’ or ’No’.”

3
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In this prompt, ”Does this passage contain the information needed to answer the question?” ad-
dresses the challenge that relevant-based prompts’ inability to adequately guide LLMs to capture
the critical relevance between passages and queries. It also mitigates the confusion that arises from
”Does the passage answer the query?”, as some passages may not directly respond to the query
posed. Furthermore, the instruction ”Please respond directly with ’Yes’ or ’No’.” effectively re-
duces the negative impact on the ranking results caused by the fact that LLMs do not always produce
responses aligned with the predefined relevant labels.

We will conduct a detailed investigation into the effects of different prompts in Ablation Study.

3.2 RANKING SCORE COMPUTATION

Given a query q and its first-stage ranking results D = {(d1, r1), (d2, r2), ..., (dn, rn)}, where di
denotes the i-th passage, ri represents the score of di, and n is the total number of passages, the
process of reranking is to prompt LLMs, derive ranking scores for each (q, di)and subsequently
perform sorting based on ranking scores.

For encoder-decoder LLMs, following traditional methods, we can caculate ranking scores by:

si =
epi,1

epi,1 + epi,0
(1)

where,
pi,1 = LLM(Y es|q.di), pi,2 = LLM(No|q, di)

Given a query q and the i-th passage di, pi,1denotes the likeklihood that LLM outouts ’Yes’ , and pi,2
denotes the likelihood that LLM outputs ’No’. The ranking score si is calculated using a softmax
function.

For decoder-only LLMs, to overcome the limitation that pointwise approaches only support encoder-
decoder LLMs, we optimized the vllm framework(Kwon et al., 2023), a widely used LLM server, to
enable the LLMs to ouput not only generated tokens but also the logits corresponding to each token.

We assume the output of LLM is

S = {(t1, l1), (t2, l2), ..., (tN , lN )}

where N denotes the number of output tokens, tidenotes the i-th output token, and li ∈ R1×Kdenotes
the logits corresponding to the i-th output token, here K is the vocabulary size.

Firstly, we need to identify the positions of ’Yes’ and ’No’ within the output tokens. There are two
situations here. In the first scenario, the output contains either ’Yes’ or ’No’, and we denote the posi-
tion of ’Yes’ or ’No’ within the output tokens as p. Then we use the logits lp ∈ R1×Kcorresponding
to token p for ranking score calculation. Let us denote the token id for ’Yes’ as m and the token id
for ’No’ as n. Accordingly, the ranking score for the i-th passage is computed as follows:

si =
elp[m]

elp[m] + elp[n]
(2)

where si is a value that lies within the interval [0, 1].

In the second scenario, If the output of the LLM contains neither ”yes” nor ”no,” then we assign

si = 0.5 (3)

In this way, for both encoder-decoder and decoder-only LLMs, we can derive ranking score si for
query q and passage di. However, scores derived from a single perspective are prone to bias and
noise. Therefore, it is essential to incorporate the initial scores from the first stage to enhance the
robustness. The final ranking score Si can be calculated using the following formula:

rmax = max{r1, r2, ..., rn} (4)

rmin = min{r1, r2, ..., rn} (5)
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Si = si(rmax − rmin) + rmin + α ∗ ri (6)

In this context, the expression si(rmax − rmin) + rminserves to normalize the ranking score from
the second stage to align with the interval of the initial ranking score ri from the first stage, thereby
ensuring their additivity. The parameter α represents the weight factor that balances the ranking
scores between the two stages. This factor can be adjusted in different datasets. In ablation study,
we will investigate the impact of varying values of α on reranking performance.

4 EXPERIMENTS

4.1 COMPARISON OF RANKING PERFORMANCE

4.1.1 DATASET AND METRICS

TREC and BEIR are two widely used benchmark datasets in text reranking tasks.

TREC encompasses a diverse array of topics and text types, including news articles, web content,
email correspondence, and various forms of queries pertaining to these texts. For TREC, we use
the test sets of passage reranking tasks in TREC-DL 19 and TREC-DL 20. Sharing the same MS
MARCO v1 passage corpus, TREC-DL 19 contains 43 queries and TREC-DEC 2020 contains 55
queries.

BEIR (Benchmarking Information Retrieval)(Thakur et al., 2021) is a dataset designed for evaluating
retrieval models across various domains and tasks. For BEIR, following previous work(Qin et al.,
2023)(Zhuang et al., 2023)(Sun et al., 2023), we choose 7 test sets: Covid, Robust04, Touche,
DBPedia, SciFact, Signal and News for evaluation.

For each query in both TREC and BEIR datasets, we re-rank the top 100 passages retrieved by
BM25(Lin et al., 2021) and evaluate ranking performance using nDCG@ {1,5,10} , which is under
the same settings as previous works.

4.1.2 BASELINES

We evaluate our Yesno-Pro on both encoder-decoder LLMs and decoder-only LLMs. For encoder-
decoder LLMs, we use FLAN-T5-XL, FLAN-T5-XXL(Chowdhery et al., 2023) and FLAN-
UL2(Tay et al., 2023). For decoder-only LLMs, we use Qwen2-7b and Qwen2-72b(Yang et al.,
2024). We compare our method with below works, which are all zero-shot LLM rankers.

• RANKGPT: As a typical listwise approach, it is proposed in (Sun et al., 2023).
• UPR: As a query generation based pointwise approach, it is proposed in (Sachan et al.,

2022b)
• RG: As a relevance generation based pointwise approach, it is proposed in (Liang et al.,

2023)
• RG-S(0,4): As a fine-grained relevance generation based approach, it is proposed in

(Zhuang et al., 2023)

4.1.3 MAIN RESULTS

We conducted a comparative analysis of our Yesno-Pro and existing LLM rankers on the TREC and
BEIR benchmarks, as illustrated in Table 1. Based on the results, we draw the following conclusions:

(1) For both encoder-decoder LLMs and decoder-only LLMs, when maintaining the same base
model, Yesno-Pro significantly outperforms existing pointwise and listwise methods in terms of
the NDCG@10 metric on both the TREC and BEIR datasets. The most notable improvement occurs
with the qwen2-7b base model, where our method surpasses RankGPT by 5.23 points on BEIR
and outperforms RG-S(0,4) by 4.37 points. Similarly, on the DL19 dataset, our approach exceeds
RankGPT by 10.73 points and RG-S(0,4) by 3.64 points, while on the DL20 dataset, it outpaces
RankGPT by 10.45 points and RG-S(0,4) by 7.12 points.

(2) On the TREC dataset, the top-performing model is Flan-UL2, whereas on the BEIR dataset, the
leading model is Qwen2-72b.
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Table 1: NDCG@10 on TREC and BEIR. All models re-rank the same BM25 top-100 passages. We
mark the best performing models bold. In the table, ’q7b’ refers to Qwen2-7b(Yang et al., 2024),
’q72b’ refers to Qwen2-72b(Yang et al., 2024), ’f-xxl’ refers to Flan-T5-XXL(Chowdhery et al.,
2023), and ’f-ul2’ refers to Flan-T5-UL2(Tay et al., 2023).

Method DL19 DL20 Covid Robust Touche DBPedia Scifact Signal News BEIR(Avg)
Baseline

BM25 50.58 47.96 59.47 40.7 44.22 31.8 67.89 33.05 39.52 45.23
Existing LLM Rankers

RankGPT(q7b) 51.38 48.51 61.72 39.75 40.98 32.48 66.03 32.31 35.51 44.11
RG-S(0,4)(q7b) 58.47 51.84 75.44 46.29 23.35 35.58 65.83 24.77 43.55 44.97
UPR(f-xxl) 62 60.34 72.64 47.85 21.56 35.14 73.54 30.81 42.99 46.36
RG(f-xxl) 64.48 62.58 70.31 51.56 22.1 31.32 63.43 26.89 37.34 43.28
UPR(f-ul2) 58.95 60.02 70.69 47.52 23.68 34.64 71.09 30.33 41.78 45.68
RG(f-ul2) 64.61 65.39 70.22 53 24.67 30.56 64.74 29.68 43.78 45.24

Ours
Yesno-Pro(q7b) 62.11 58.96 72.65 58.22 35.66 36.88 70.46 31.28 40.21 49.34
Yesno-Pro(q72b) 62.49 62.62 71.64 57.2 43.5 36.74 71.61 32.59 43.06 50.91
Yesno-Pro(f-xxl) 65.97 63.96 70.64 54.03 40.18 32.9 64.83 32.74 39.51 47.83
Yesno-Pro(f-ul2) 66.92 66.18 71.65 54.95 39.23 32.91 69.94 33.46 46.77 49.84

(3) The performance of encoder-decoder LLMs and decoder-only LLMs is relatively comparable.
However, decoder-only models benefit from compatibility with the open-source LLM inference
framework VLLM, resulting in faster inference speed and better suitability for practical deployment
in business contexts.

4.2 COMPARISON OF RANKING SPEED

4.2.1 EXPETIMENT SETUP

In this part, we select a representative method from each of the pointwise, pairwise, and listwise ap-
proaches, specifically focusing on PRP(Qin et al., 2023), RankGPT(Sun et al., 2023), and RG(Liang
et al., 2023). We then compare their ranking speeds with our proposed method, YesNo-Pro. For
PRP, we use the PRP-Sliding-10 ranking strategy. In the case of RankGPT, we employ the sliding
window strategy with a window size of 20 and a step size of 10. TREC-DL19 and TREC-DL20
datasets are utilized for testing, and Qwen2-7b(Yang et al., 2024) serves as the base model. In our
experiment, we first perform a validation for each dataset, recording the total elapsed time. We
then compute the average processing time per query by dividing the total elapsed time by the total
number of queries present in the dataset.

4.2.2 MAIN RESULTS

As illustrated in Table 2, YesNo-Pro demonstrates a substantial performance improvement, achiev-
ing speeds that are twice that of RG, 6.2 times faster than RankGPT, and an impressive 76 times
faster than PRP.Our approach significantly faster than existing methods such as PRP, RankGpt, and
RG, which represent popular pairwise, listwise, and pointwise techniques. This advantage can be
attributed to two key factors. Firstly, Yesno-Pro belongs to the pointwise category, whereby the
ranking of each passage is independent of others. This independence reduces the time consumption
associated with additional sampling and comparison processes. Secondly, unlike other pointwise
methods, such as RG, our method is tailored to leverage vllm, enabling accelerated inference and
concurrent invocation of LLMs.
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Table 2: Ranking Speed of different LLM Rankers.The unit of measurement is s/query. The best
performing model is marked in bold.

Method DL19 DL20
PRP 131.3 132

RankGPT 10.7 10.6
RG 3.6 3.3

Ours 1.7 1.7

Figure 2: NDCG@{1, 5, 10} on TREC-DL19 dataset with different α. The blue line refers to
NDCG@1, the green line refers to NDCG@5 and the red line refers to NDCG@10.

4.3 ABLATION STUDY

4.3.1 THE EFFECT OF WEIGHT FACTOR α

To investigate the impact of incorporating the first-stage ranking scores in the final score computa-
tion, we conducted comparative experiments on the TREC-DL19 dataset. With Qwen2-7b serving
as the base model, we plotted how the ranking performance(measured by NDCG@{1, 5, 10}), varies
with changes in the weight balancing factor, denoted as α. The values of α is within the range of
[0, 1], with a step size of 0.1 for each increment.

The results are shown in Figure 2. For NDCG@1, optimal ranking performance is achieved at
α = 0.5, resulting in a score of 0.7132. This represents a 5.04% improvement compared to the
scenario without the first-stage ranking score (where α = 0). In the case of NDCG@10, the highest
performance is observed at α = 0.8, while the maximum score of 0.6286 for NDCG@10 occurs at
α = 0.2. These improvements can be attributed to the integration of scores from two stages, which
effectively mitigates biases and noise that arise from reliance on single-source information.

4.3.2 THE EFFECT OF DIFFERENT PROMPTS

To investigate the impact of different prompts on ranking performance, we conducted comparative
experiments with the three templates illustrated in Figure 3. Template 1 and template 2 are taken
from existing pointwise approaches(Liang et al., 2023)(Zhuang et al., 2023). In this experiment, we
use the qwen2-7b model as the base model and the TREC-DL19 dataset as our test set.

As shown in table3, the results indicate that template2 outperforms template1. This is because rel-
evance generation based approaches often fail to capture the critical correlations between queries
and passages, which is discussed in Section 2. In contrast, the approach of determining whether
the passage contains the necessary information to address the query aligns more closely with the
intrinsic requirements of the ranking task, thereby enhancing performance. Furthermore, the superi-
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Figure 3: Three different prompt templates utilized in the experiment.

Table 3: Results of different prompts on the TREC-DL2019 dataset.The best performing template is
marked in bold.

prompts DL19
NDCG@1 NDCG@5 NDCG@10

template1 68.99 64.56 61.12
template2 67.44 66.01 61.54
template3 71.32 67.13 62.09

ority of template3 over template2 suggests that the instruction ”’Please respond directly with ’Yes’
or ’No”” effectively reduces the occurrence of tokens outside predefined labels generated by the
LLMs, thereby enhancing the ranking performance.

5 CONCLUSION

In this paper, we introduce YesNo-Pro, a novel pointwise ranking method. By optimizing both the
prompt design and the ranking score derivation, our approach significantly surpasses existing point-
wise and listwise methods, achieving state-of-the-art results. Furthermore, we have enhanced the
VLLM framework to support YesNo-Pro, substantially accelerating the ranking speed and making
it the fastest among current pointwise, pairwise, and listwise methods. This adaptation offers ad-
ditional advantages, such as bridging encoder-decoder and decoder-only LLMs, and enabling the
algorithm to support concurrent calls. Consequently, it can be rapidly adapted to any open-source
LLMs and efficiently deployed in practical scenarios. We are looking forward to further study in
highly effective and rapid pointwise LLM rerankers.
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