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ABSTRACT

The semantic similarity between sample expressions measures the distance be-
tween their latent ‘meaning’. Such meanings are themselves typically represented
by textual expressions, often insufficient to differentiate concepts at fine granu-
larity. We propose a novel approach whereby the semantic similarity among tex-
tual expressions is based not on other expressions they can be rephrased as, but
rather based on the imagery they evoke. While this is not possible with humans,
generative models allow us to easily visualize and compare generated images, or
their distribution, evoked by a textual prompt. Therefore, we characterize the
semantic similarity between two textual expressions simply as the distance be-
tween image distributions they induce, or ‘conjure.’ We show that by choosing
the Jensen-Shannon divergence between the reverse-time diffusion stochastic dif-
ferential equations (SDEs) induced by each textual expression, this can be directly
computed via Monte-Carlo sampling. Our method contributes a novel perspective
on semantic similarity that not only aligns with human-annotated scores, but also
opens up new avenues for the evaluation of text-conditioned generative models
while offering better interpretability of their learnt representations.

1 INTRODUCTION

Semantic similarity is about comparing data not directly, but based on their underlying ‘concepts’
or ‘meanings’. Since meanings are most commonly expressed through natural language, various
methods have attempted to compute them in this space. Words have been often compared based
on the occurrences of other words that surround them, and images have likewise been compared
‘semantically’ by using the text captions that describe them.

While measuring semantic similarity comes natural to humans who share significant knowledge and
experience, defining semantic similarity for trained models is non-trivial since text can often be
ambiguous or open to multiple (subjective) interpretations. On the other hand, visual elements often
transcend communication barriers and allow for comparison at finer granularity. Comparing images
is also relatively simple – unlike words, pixel values do not depend on distant knowledge or context.

Hence, instead of comparing images by the captions which describe them, we propose the converse:
comparing textual expressions in terms of the images they conjure. In other words, we propose
an expanded notion of meaning that is purely “visually-grounded”. This would be hard if not im-
possible for humans, since the process requires visualizing and comparing ‘mental images’ each
individual can conceive, but it is straightforward for trained models.

We propose to leverage modern image generative models, in particular the class of text-conditioned
diffusion models, for this purpose. By doing so, the semantic similarity between two text passages
can simply be measured by the similarity of image distributions generated by a model conditioned
on those passages.

There is a technical nugget that needs to be developed for the method to be viable, which is how
to compare diffusions in the space of images. To address this, we propose to leverage the Jensen
Shannon Divergence between the stochastic differential equations (SDEs) that govern the flow of
the diffusion model, which we will show to be computable using a Monte-Carlo sampling approach.

We will show that our simple choice of distance already leads to results comparable to zero-shot
approaches based on large language models. To validate our proposed definitions, we further run ab-
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Figure 1: We illustrate the process of conjuring semantic similarity between textual expressions
“Snow Leopard” and “Bengal Tiger”. We denoise each sequence of noisy images (middle row of
both halves of figure) with both prompts (top and bottom row of both halves of figure). Our method
can be interpreted as taking the Euclidean distance between the resulting images in the two rows. The
sequences of noisy images are obtained with either of the two text expressions (top / bottom halves
of Figure) starting from a Gaussian prior (t = T ). Observing cells highlighted in red, we see that
the model converts pictures of Snow Leopards into Bengal Tigers by changing their characteristic
spotted coats into stripes, and adding striped textures to the animal’s face (top half of Figure), and
conversely converts Bengal Tigers into Snow Leopards by changing their characteristic stripes into
spotted coats (bottom half of Figure). This enables interpretability of their semantic differences via
changes in their evoked imageries.

lation studies over several components of our method, demonstrating robustness to specific choices
of diffusion models and their inference algorithms.

To summarize the contributions of this work, we propose an approach for evaluating semantic sim-
ilarity between text expressions that is grounded in the space of visual images. Our method has a
unique advantage over traditional language-based methods that, in addition to providing a numerical
score, it also provides a visual expression, or ‘explanation’, for comparison, enabling better inter-
pretability of the learnt representations (Figure 1). Additionally, our method is the first to enable
quantifying the alignment of semantic representations learnt by diffusion models compared to that
of humans, which can open up new avenues for the evaluation text-conditioned diffusion models.
Finally, we note that our approach can be used to derive many possible variants based on the metric
used to compare images, which we leave for future exploration.

2 RELATED WORKS

Text-Conditioned Image Generative Models. We begin by briefly surveying the literature on
text-conditioned image generation. Goodfellow et al. (2020) proposed the Generative Adversarial
Network (GAN), a deep learning-based approach for image generation. Mirza & Osindero (2014)
proposed a method for conditioning GANs based on specified labels. Works such as VQ-VAE
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(Van Den Oord et al., 2017) and VQ-VAE-2 (Razavi et al., 2019) also built upon the foundational
works of Variational Auto Encoders (VAEs) (Kingma, 2013) to learn discrete representations used
to generate high quality images, among other outputs, when paired with an autoregressive prior.
DALL-E (Ramesh et al., 2021) has also been developed as an effective text-to-image generator
leveraging autoregressive Transformers (Vaswani, 2017).

Our work focuses on diffusion models (Sohl-Dickstein et al., 2015), which have achieved state-
of-the-art results among modern image generation models. These models can be viewed from the
perspective of score-based generative models (Song et al., 2020b), which represent the distribution of
data via gradients, and are sampled from using Langevin dynamics (Welling & Teh, 2011). Diffusion
models have been trained by optimizing the variational bound on data likelihood (Ho et al., 2020).
Modeled as stochastic differential equations (Song et al., 2020b), the same training objective has also
been shown to enable maximum-likelihood training under specific weighing schemes (Song et al.,
2021). Diffusion models have also demonstrated strong results on conditional image generation
tasks. Sohl-Dickstein et al. (2015) and Song et al. (2020b) showed that gradients of a classifier can
be used to condition a pre-trained diffusion model. Dhariwal & Nichol (2021) introduced Classifier-
guidance, which achieved state-of-the-art results in image synthesis at the time it was released.
Song et al. (2020a) introduced Denoising Diffusion Implicit Models (DDIM), greatly accelerating
the process of sampling from trained diffusion models as compared to DDPM (Ho et al., 2020).
Karras et al. (2022) presented a unified view of existing diffusion models from a practical standpoint,
enabling develop improved sampling and training techniques to obtain greatly improved results.

Semantic Space of Generative Models. The Distributional Hypothesis (Harris, 1954) forms the
basis for statistical semantics, characterizing the meaning of linguistic items based on their usage
distributions. This is also closely related to Wittgenstein’s use theory of meaning (Wittgenstein,
1953), often popularized as “meaning is use”. Many methods have been developed in machine learn-
ing and Natural Language Processing (NLP) literature to compute these semantic spaces, including
Word2Vec (Mikolov et al., 2013). In light of modern Large Language Models (LLMs), Liu et al.
(2023) defined the space of meanings for autoregressive models to be the distribution over model
continuations for any input sequence. This has been used to define notions of semantic distances and
semantic containment between textual inputs. Achille et al. (2024) further defined conceptual simi-
larity between images by projecting them into the space of distributions over complexity-constrained
captions, producing similarity scores that strongly correlate with human annotations. Soatto et al.
(2023) generalizes these definitions by considering meanings as equivalence classes, where parti-
tions can be induced by either an external agent or the model itself. Vector-based representations
such as those obtained from CLIP Radford et al. (2021), or in general any sentence embedding model
(Devlin et al., 2018; Opitz & Frank, 2022) have also been defined specifically for the computation
of semantic distances. Such representations, however, are often difficult to interpret.

In contrast to these works, Bender & Koller (2020) argues that training on language alone is insuf-
ficient to capture semantics, which they argue requires a notion of “communicative intents” that are
external to language. In this paper, we explore a notion of meaning that is grounded in the distribu-
tion of evoked imageries, and present a simple algorithm to compute interpretable distances in this
space for the class of text-conditioned diffusion models.

Evaluation and Interpretation of Diffusion Models. Common metrics used to evaluate diffusion
models are, among many others, the widely-used FID (Heusel et al., 2017) score, Kernel Inception
Distance (Bińkowski et al., 2018), and the CLIP score (Hessel et al., 2021). Despite these choices,
Stein et al. (2024) recently discovered that no existing metric used to evaluate diffusion models
correlates strongly with human evaluations. While existing evaluations often focus on the quality
and diversity of generations, our method is the first to evaluate semantic alignment of the repre-
sentations learnt by diffusion models. Several techniques have also been developed to interpret the
generation of diffusion models. Kwon et al. (2022); Park et al. (2023) edit the bottleneck representa-
tions within the U-Net architecture of diffusion models for semantic image manipulation. Gandikota
et al. (2023) identifies low-rank directions corresponding to various semantic concepts, and Li et al.
(2023) shows that diffusion models can be used for image classification. Kong et al. (2023a;b)
frame diffusion models using information theory, improving interpretability of their learnt semantic
relations. Orthogonal to these works, our method enables visualizing the semantic relations be-
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Algorithm 1 Conjuring Semantic Similarity
Require: Diffusion model sθ, Prompts y1, y2, Monte-Carlo steps k

Initialize d = 0
for i = 1 . . . k do

xT ← Sample from initial distribution π
x̂T , . . . , x̂0 ← Denoise xT conditioned on y1
x̃T , . . . , x̃0 ← Denoise xT conditioned on y2
d← d+ 1

T

∑T
t=1 ∥sθ(x̂t, t|y1)− sθ(x̂t, t|y2)∥

2
2

d← d+ 1
T

∑T
t=1 ∥sθ(x̃t, t|y1)− sθ(x̃t, t|y2)∥

2
2

end for
return d/k ▷ Return similarity score

tween textual prompts in natural language learnt by diffusion models via the distributions over their
generated imageries.

3 METHOD

We will present a short preliminary on (conditional) diffusion models in Section 3.1, and derive our
algorithm for computing semantic similarity in Section 3.2.

3.1 PRELIMINARY

Our derivations will leverage Song et al. (2020b)’s the SDE formulation of diffusion models when
viewed from the lens of score-based generaive modeling. In particular, a (forward) diffusion process
{x(t)}Tt=0 can be modeled as the solution to the following SDE:

dx = f(x, t)dt+ g(t)dwt

with drift coefficient f : Rd × R 7→ Rd and (scalar) diffusion coefficient g : R 7→ R, where wt is
standard Brownian motion. We constrain the timesteps t such that t ∈ [0, T ], where x(0) represents
the distribution of “fully-denoised” images generated by the diffusion model. We also assume that
by construction, the prior at time T is known and distributed according to x(T ) ∼ π, where often
π = N(0, I).

Once trained, we can view text-conditioned diffusion models as a map sθ(x, t|y) parameterized by
θ and conditioned on a textual prompt y ∈ Y that is used to approximate the score function (Song
et al., 2020b), where sθ(·, t|y) : Rd 7→ Rd and Y is the set of textual expressions. As such, each
conditional model sθ(x, t|y) defines a reverse-time SDE given by:

dx = [f(x, t)− g(t)2sθ(x, t|y)]dt+ g(t)dw̄t (1)

where w̄t is the Brownian motion running backwards in time from t = T to t = 0. For ease of
notation, we will denote µθ(x, t, y) := [f(x, t)− g(t)2sθ(x, t|y)].

3.2 CONSTRUCTION

Given two textual prompts y1 and y2, we obtain two separate diffusion SDEs in the space of images
using eq. (1), which are given by

dx1 = µθ(x1, t, y1)dt+ g(t)dw̄t (2)
dx2 = µθ(x2, t, y2)dt+ g(t)dw̄t (3)

We assume the standard conditions for existence and uniqueness of their solutions, in particular
for all t ∈ [0, T ] we have E

[
∥x(t)∥22

]
≤ ∞, and for all y ∈ Y and x, x′ ∈ Rd, there exists

constantsC,D such that ∥µθ(x, t, y)∥2+∥g(t)∥2 ≤ C(1+∥x∥2) and ∥µθ(x, t, y)−µθ(x
′, t, y)∥2 ≤

D∥x − x′∥2. We further assume Novikov’s Condition holds for all pairs y1, y2 ∈ Y , in particular
we are guaranteed the following: E

[
exp

(
1
2

∫ T

0
∥µθ(x, t, y2)− µθ(x, t, y1)∥22dt

)]
<∞.
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Since our goal is to define a semantic distance between textual prompts y1 and y2 by comparing the
distributions over images that they conjure, we can achieve this by computing a discrepancy function
between the respective SDEs that they induce. In particular, we will use the Jensen–Shannon (JS)
divergence, which is simply the symmetrized Kullback–Leibler (KL) divergence between two SDEs.
In the following, we show how this divergence can be computed via a Monte-Carlo approach.

Denote the path measures associated with eq. (2) and eq. (3) respectively to be P1 and P2. Then, the
KL divergence between the two SDEs are defined via

DKL(P2||P1) = −EP2
log

(
dP1

dP2

)
where dP1

dP2
is the Radon-Nikodym derivative. By Girsanov theorem (Girsanov, 1960), we can com-

pute this derivative as the stochastic exponential given by

exp

(∫ T

0

− 1

g(t)
(µθ(x, t, y1)− µθ(x, t, y2)) dw̄t −

1

2

∫ T

0

1

g(t)2
∥µθ(x, t, y1)− µθ(x, t, y2)∥22dt

)

Novikov’s Condition guarantees that this term is a Martingale so, following the approach of Song
et al. (2021), the KL divergence between the two SDEs can be simplified as

DKL(P2||P1) =
1

2
EP2

[∫ T

0

1

g(t)2
∥µθ(x, t, y1)− µθ(x, t, y2)∥22dt

]

=
1

2
EP2

[∫ T

0

g(t)2∥sθ(x, t|y1)− sθ(x, t|y2)∥22dt

]
We can symmetrize to form our desired distance function:

dours(y1, y2) := JSM(P1||P2) =
1

2
DKL(P2||P1) +

1

2
DKL(P1||P2)

which, ignoring constants, can be written as

dours(y1, y2) = Et∼unif([0,T ]),x∼ 1
2pt(x|y1)+

1
2pt(x|y2)

[
g(t)2∥sθ(x, t|y1)− sθ(x, t|y2)∥22

]
where pt(·|y) is the distribution of noisy images at timestep t. Similar to how losses at differ-
ent timesteps are weighted uniformly in the training of real-world diffusion models (e.g. Lsimple

proposed by Ho et al. (2020)), we set g(t) to be constant, in particular g(t) = 1, to simplify our
algorithm such that it does not have to be tailored specifically to each choice of scheduler.

We can compute this resulting semantic distance using Monte-Carlo by discretizing the timesteps
to t ∈ {1, . . . , T}. In particular, this is computed in practice via sampling an initial noise vector
x(T ) ∼ π, and denoising it with both y1 and y2 to obtain a sequence of samples xt’s, and computing
the difference in predictions ∥sθ(xt, t|y1)− sθ(xt, t|y2)∥22 at each denoising timestep. We describe
this process in Algorithm 1.

4 EXPERIMENTS

We describe implementation details in Section 4.1, empirical validation for our definitions in Sec-
tion 4.3, and ablations in Section 4.4.

4.1 IMPLEMENTATION DETAILS

We use Stable Diffusion v1.4 (Rombach et al., 2022), a text-conditioned diffusion model, for all our
experiments. For sampling, we use classifier-free guidance (Ho & Salimans, 2022) with guidance
scale of 7.5, and sample using the LMS Scheduler (Karras et al., 2022). We specify image sizes to be
512× 512, but note that Stable Diffusion v1.4 uses latent diffusion, as such model predictions are in
practice of dimension 64× 64. We compute the Euclidean distance directly in this space. However,
for visualization experiments such as in Figure 1, we decode the predictions using the VAE before
plotting them. We set T = 10 in our experiments to ensure computational feasibility, after ablating
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over other choices in Table 3. We perform all our experiments with a single RTX 4090 GPU, and
each Monte-Carlo step takes around 2.0s to complete in our naive implementation.

As a technicality, while we model the denoising direction term specified in the reverse-time SDE in
eq. (1) as the (text-conditioned) model output sθ(·|y), the exact implementation varies depending on
the text-conditioning method used. However, we note that in the case of classifier-free guidance, the
resulting distance computed using the model output as sθ(·|y) is equivalent to that computed using
classifier-guidance directions up to proportionality.

4.2 BASELINES

While there exists no comparable baselines for quantifying semantic similarity in text-conditioned
diffusion models at the time of writing, we present several derivatives of our method below which
are directly comparable against:

Prediction at initial timestep: We compare the one-step predicted noise vector at the initial denois-
ing timestep. This is defined as dinitial := Ex∼π

[
∥sθ(x, T |y1)− sθ(x, T |y2)∥22

]
.

Prediction at final timestep: We compare the predicted noise vector at the final denoising timestep.
This is defined as dfinal := Ex∼ 1

2p0(x|y1)+
1
2p0(x|y2)

[
∥sθ(x, 0|y1)− sθ(x, 0|y2)∥22

]
.

Direct output comparisons: For the same initial condition, we directly compute the differ-
ence between the images produced by the two different labels. This is defined as doutput :=

Ex∼π

[
∥ψθ(x|y1)− ψθ(x, |y2)∥22

]
, where ψθ(·|y) : Rd 7→ Rd represents the full reverse diffusion

process from the noise prior π at time T to the output distribution at time 0.

KL-Divergence: We evaluate the non-symmetrized version of our method, computed via
the KL divergence between the SDEs obtained from different prompts: dours-KL(y1, y2) :=
Et∼unif([0,T ]),x∼pt(x|y1)

[
g(t)2∥sθ(x, t|y1)− sθ(x, t|y2)∥22

]
Using the same parameters as our proposed method, we implement all baselines via Monte-Carlo
sampling.

4.3 EMPIRICAL VALIDATION

While our work defines a notion of semantic distance grounded in evoked imagery, the validity of
this definition hinges on its use as a measure of similarity that aligns with humans’. In particular,
we should expect our definition to produce measurements of similarity that agree often with human
annotators (which can be viewed as “ground-truth”).

To quantify this, we use the Semantic Textual Similarity (STS) (Agirre et al., 2012; 2013; 2014;
2015; 2016; Cer et al., 2017) and Sentences Involving Compositional Knowledge (SICK-R) (Marelli
et al., 2014) datasets, containing pairs of sentences each labelled by human annotators with a se-
mantic similarity score ranging from 0-5. We then use our method to compute the image-grounded
similarity score, and measure their resulting Spearman Correlation with the annotations.

Interestingly, our experiments in Table 1 show that our visually-grounded similarity scores exhibit
significant degrees of correlation with that annotated by humans. While, expectedly, our method
presently lags behind embedding models trained specifically for semantic comparison tasks, we
show that our visually-grounded similarity scores can rival that produced by existing large language
models up to 33B in size. Since our work is the first to formalize and evaluate semantic alignment for
this class of conditioned diffusion models, we have also included results from baselines with which
our approach is directly comparable against. Our method convincingly outperforms all baseline
methods for evaluating semantic similarity in diffusion models. As a remark, we note the large
standard deviations in these scores across datasets for all methods, suggesting that what matters
for validation purposes is that our distances correlate significantly with that of annotators, rather
than obtaining “state-of-the-art” alignment scores since ‘ground truth’ is fundamentally subjective
in each of these benchmarks.

We further remark that in most existing text-conditioned diffusion models, the representation struc-
tures that can be captured by our method are limited by those learnt by text-encoder models such
as CLIP (Radford et al., 2021), since these encoders are often used to pre-process textual prompts.
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Table 1: Comparison with zero-shot methods on Semantic Textual Similarity benchmarks. ∗; †; ‡
indicate results taken from Ni et al. (2021); Gao et al. (2021); Liu et al. (2023) respectively. Expect-
edly, our zero-shot approach does not perform as well as embedding models such as CLIP (Radford
et al., 2021) and SimCSE-BERT (Gao et al., 2021), which are trained specifically for semantic com-
parison tasks. Nevertheless, semantic structures extracted from text-conditioned diffusion models
(StableDiffusion) using our method are still relatively aligned with that of human annotators, rival-
ing those extracted from autoregressive Large Language Models while outperforming encoder-based
language models such as BERT (Devlin et al., 2018).

STS-B STS12 STS13 STS14 STS15 STS16 SICK-R Avg

Contrastive-Trained Embedding Models

CLIP-ViTL14‡ (Radford et al., 2021) 65.5 67.7 68.5 58.0 67.1 73.6 68.6 67.0 ± 4.3
IS-BERT† (Zhang et al., 2020) 56.8 69.2 61.2 75.2 70.2 69.2 64.3 66.6 ± 5.7
SimCSE-BERT† (Gao et al., 2021) 68.4 82.4 74.4 80.9 78.6 76.9 72.2 76.3 ± 4.6

Zero-Shot Encoder-based Models

BERT-CLS∗ (Devlin et al., 2018) 16.5 20.2 30.0 20.1 36.9 38.1 42.6 29.2 ± 9.6
BERT-mean∗ (Devlin et al., 2018) 45.4 38.8 58.0 58.0 63.1 61.1 58.4 54.8 ± 8.3
BERT Large-mean∗ (Devlin et al., 2018) 47.0 27.7 55.8 44.5 51.7 61.9 53.9 48.9 ± 10.2
RoBERTa Large-mean∗ (Liu et al., 2019) 50.6 33.6 57.2 45.7 63.0 61.2 58.4 52.8 ± 9.6
ST5-Enc-mean (Large)∗ (Ni et al., 2021) 56.3 28.0 52.6 41.4 61.3 63.6 59.5 51.8 ± 11.9
ST5-Enc-mean (11B)∗ (Ni et al., 2021) 62.8 35.0 60.2 47.6 66.4 70.6 63.6 58.0 ± 11.5

Autoregressive Models (Meanings as Trajectories (Liu et al., 2023))

GPT-2‡ 55.2 39.9 42.6 30.5 52.4 62.7 62.0 49.3 ± 11.2
GPT-2-XL‡ 62.1 43.6 54.8 37.7 61.3 68.2 68.4 56.5 ± 11.1
Falcon-7B‡ 67.7 56.3 66.5 53.0 67.4 75.5 73.5 65.7 ± 7.7
LLaMA-13B‡ 70.6 52.5 65.9 53.2 67.8 74.1 73.0 65.3 ± 8.3
LLaMA-33B‡ 71.5 52.5 70.6 54.6 69.1 75.2 73.0 66.6 ± 8.5

Text-Conditioned Diffusion Models (StableDiffusion)

Initial Timestep Prediction 55.8 46.7 53.4 47.2 54.3 57.9 56.0 53.0 ± 4.1
Final Timestep Prediction 64.9 41.6 56.4 51.0 65.2 60.2 58.9 56.9 ± 7.7
Direct Output Comparison 57.0 44.7 45.6 43.3 58.5 56.2 53.5 51.3 ± 6.0
Conjuring Semantic Similarity (KL-Div) 69.1 56.9 60.6 59.5 71.5 65.7 64.8 64.0 ± 4.9
Conjuring Semantic Similarity 70.3 57.9 61.0 60.8 73.6 67.9 66.0 65.4 ± 5.3

In light of this, the experiments also suggest that our method can be an effective metric to quantify
how well representation structures learnt by these text-encoders have been distilled to the resulting
diffusion model. We explore this in the following section, where we study how faithfully learnt
semantic relations between words transfer from text-encoders to the full diffusion model.

In Figure 2, we also qualitatively evaluate our method on measuring semantic similarity between
various words. From the resulting pairwise similarity matrices, we can observe that words are
closer in terms of their common hypernym class tend to cluster together, showing that our method
can effectively capture word taxonomies. For instance, nouns that describe types of dogs cluster
together, and nouns that describe types of marine animals similarly form another cluster. These two
clusters are separate, in the sense that distances of words across these clusters are large than those
within each cluster.

4.4 EMPIRICAL ANALYSIS

In this section, we run ablation studies using the STS-B dataset as a benchmark to explore the design
space of our method, and improve its computational efficiency. We further analyze the failure modes
of diffusion models through comparing semantic alignment of words belonging to different parts of
speech.

Prior over timestep distribution. In our algorithm, we placed a uniform prior over timesteps
{1, . . . , T}. In Figure 3, we show that this simple choice works best when evaluated on alignment
with human annotators on STS-B, as compared to other choices such as considering only a uniform
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Figure 2: Qualitative evaluation of conjured semantic similarity. (Left) shows that nouns cluster
based on shared hypernym classes: Dogs (puppy, poodle, dalmatian, pug) form a visible cluster in
the top-left 4x4 block, while marine animals (whale, shark, dolphin, sealion) form another cluster
in the bottom-right 4x4 block. (Right) shows that the same pattern holds for flying-related action
verbs (elevate, ascend, soar, glide) v.s. negative stative verbs (disappoint, grieve, worry, regret).
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Figure 3: (Left:) We ablate over different choices of priors over timesteps – a uniform distribution
over timesteps {T ′, . . . , T} where T ′ ≤ T = 10, represented by the blue line (cumulative), and the
Direc Delta on any particular timestep T ′ ∈ {1, . . . , T}, represented by the orange line (pointwise).
We show that a uniform prior over all timesteps gives the best results. The same plot also ablates over
the number of Monte-Carlo samples, k ∈ {1, . . . , 5}, where we conclude that only few iterations
are required for convergence. (Right:) We further ablate over different choices of diffusion models,
and show that results remain relatively consistent across the tested choices.

prior over the subset {T ′, . . . , T} (cumulative from T ′ to T ) where T ′ ≤ T , or a Direc delta on any
particular timestep T ′ ∈ {1, . . . , T} (pointwise).

Number of Monte-Carlo Steps. The computational feasibility of our method depends on the
number of Monte-Carlo steps (i.e. k in Algorithm 1) required to produce a reliable approximate
of the desired distance. We ablate over choices of k ∈ {1, . . . , 5} in Figure 3 and show that the
deviation of scores when evaluated on the STS-B dataset is small (±0.77) across different choices
of k. This finding is promising, as it implies that our method can be computationally efficient,
requiring only a small number of Monte-Carlo iterations to converge.

Choice of Stable Diffusion Model. On the right of Figure 3, we also show that our results are
relatively consistent across several versions of Stable Diffusion models, including Stable Diffusion
XL and Stable Diffusion 3 Medium.
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Error Analysis. Here, we evaluate our method on word similarity datasets, categorized by the
part of speech (POS) from which the words originate. We use RG65 (Rubenstein & Goodenough,
1965) and SimLex-999 (Hill et al., 2015) for our evaluation, which contains pairs of words and their
semantic similarity score as annotated by humans. The former consists of nouns, while the latter
includes adjectives, nouns, and verbs. Our analysis in Table 2 compares the representations learnt
by the text encoder of the diffusion model to that of the model itself (extracted via our approach).
Interestingly, we observe that while the semantic relations between nouns are largely preserved,
the semantic relations between verbs and adjectives tend to deteriorate after learning the reverse
diffusion process for image generation.

Table 2: We evaluate the spearman correlation between semantic similarity scores obtained via our
method, and that labeled by human annotators. We use the text encoder bottleneck of the StableD-
iffusion model as the paragon. While the semantic properties of nouns are largely preserved from
learning the diffusion process, this comes at the expense of semantics of adjectives and verbs.

RG65 SimLex SimLex (Adj) SimLex (Noun) SimLex (Verb)

Paragon 77.5 34.2 40.6 42.8 10.3
StableDiffusion 60.2 20.5 34.0 30.0 -14.3

Table 3: Ablation on choices for T on the STS-B dataset: We show that variance with respect to the
choice of T is small, allowing semantic distances to be computed efficiently by using lower values.

T = 5 T = 10 T = 15 T = 20 T = 30 T = 50

Spearman Corr. 70.1 70.3 70.1 68.9 70.2 69.5

5 DISCUSSION AND LIMITATIONS

Our method has several limitations. First, imageries might indeed not be sufficient to fully capture
the meaning of certain expressions, such as mathematical abstractions (like ‘imaginary numbers’)
and metaphysical concepts (like ‘conscience’). Furthermore, many modern diffusion models use a
pre-trained text-encoder to pre-process textual prompts. This means that representation structures
obtained from the diffusion model outputs would be bottle-necked by those learnt by the text en-
coder. However, this limitation can be mitigated by the development of better encoders, such as
those based on LLMs (BehnamGhader et al., 2024). Additionally, these encoder-based (vector) rep-
resentations are often difficult to interpret, while our proposed method offers a way to visualize and
interpret the learnt semantic similarities between textual expressions. Lastly, computation costs also
remain a key limitation of our method, since it requires several inference passes through the diffu-
sion model to compute a single semantic similarity score, mitigated only partially by the conclusions
of our ablation study on required number of iterations.

Nevertheless, our method is the first to show that textual representations can be meaningfully com-
pared for diffusion models by “grounding” them in the space of conjured images. We introduce
the first method for evaluating semantic alignment of text-conditioned diffusion models. In par-
ticular, our work enables not only qualifying (via visual ‘explanations’), but also quantifying the
alignment of this resulting semantic space with that of human annotators. Our method also enable
fine-grained analysis of the failure modes of existing diffusion models, pinpointing specific areas
where they align poorly with human annotators. Our general framework of conjuring semantic sim-
ilarity is applicable to the broader class of image generative models, and we leave the exploration of
applications beyond diffusion models to future work.
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A ADDITIONAL VISUALIZATIONS

Noisy
Image 

Sequence

t=T
t=0

t=T
t=0

Figure 4: “Merlion” vs “Mermaid Lion”: While both prompts express compositions of the same
set of objects, the model associates different meanings with “Merlion” as opposed to “Mermaid +
Lion”, where the former is associated to the mascot of Singapore, while the latter is a mermaid with
hair resembling a lion’s mane.

Noisy
Image 

Sequence

t=T
t=0

t=T
t=0

Figure 5: “Bag of Chips” vs “Bag of Fries”: The interpretation of “chips” depends on cultural
background (US vs UK), but the interpretation of “fries” is relatively non-ambiguous. Interestingly,
this observation can be visualized when computing semantic similarity with our method. We see
that on the left of the figure (second image column), the model attempts to convert a picture of chips
(US) into fries by changing the rounded textures into sharper rectangular ones, when denoised with
“Bag of Fries”. On the other hand, pictures of fries still remain relatively identifiable as fries (fifth
image column) when denoised using “Bag of Chips”.
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