
COALA: Numerically Stable and Efficient Framework
for Context-Aware Low-Rank Approximation

Uliana Parkina
HSE University

uliana.parkina@gmail.com

Maxim Rakhuba
HSE University

Abstract

Recent studies suggest that context-aware low-rank approximation is a useful tool
for compression and fine-tuning of modern large-scale neural networks. In this type
of approximation, a norm is weighted by a matrix of input activations, significantly
improving metrics over the unweighted case. Nevertheless, existing methods
for neural networks suffer from numerical instabilities due to their reliance on
classical formulas involving explicit Gram matrix computation and their subsequent
inversion. We demonstrate that this can degrade the approximation quality or cause
numerically singular matrices.
To address these limitations, we propose a novel inversion-free regularized frame-
work that is based entirely on stable decompositions and overcomes the numer-
ical pitfalls of prior art. Our method can handle possible challenging scenarios:
(1) when calibration matrices exceed GPU memory capacity, (2) when input acti-
vation matrices are nearly singular, and even (3) when insufficient data prevents
unique approximation. For the latter, we prove that our solution converges to a
desired approximation and derive explicit error bounds.

1 Introduction

Large Language Models (LLMs) have demonstrated high performance across a variety of tasks [52],
leading to significant advancements in artificial intelligence. However, the increasing size of these
models brings efficiency challenges, including inference speed and model size when resources are
constrained [55, 41, 6, 54]. To address these issues, various approaches have been proposed, such as
model compression and fine-tuning. Specifically, basic and context-aware low-rank approximation
techniques have proven to be an effective tool for compressing [46, 50, 25, 6, 27, 21] and fine-
tuning [33, 47, 42, 43] modern large-scale neural networks.

In the context-aware approach, we consider the task of approximating a weight ma-
trix W ∈ Rm×n given input data X ∈ Rn×k, where k is the batch size multiplied by the
context length. The goal is to find a low-rank approximation W ′ of W that maintains the performance
of the neural network while reducing its computational complexity. This objective leads to the
minimization of

L(W ′) = ∥WX −W ′X∥F ,
where ∥ · ∥F denotes the Frobenius norm. We aim to minimize L(W ′) with respect to the matrix
W ′ ∈ Rm×n, under the constraint that the rank of W ′ does not exceed r.

Despite its seeming simplicity, the context-aware low-rank approximation poses various challenges
from the computational point of view:

Numerical instabilities. The first source of difficulty stems from numerical instability. Prior
methods [46, 25, 47, 6] frequently depend on the inversion of large or nearly singular Gram matrices

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

of the columns of X , which can degrade performance and introduce substantial computational
errors in practice [44, 27]. Although theoretical guarantees for such inversion-based strategies often
assume that the Gram matrix is of full rank, this condition can fail under real-world constraints and
floating-point arithmetic [44, 27].

Large calibration datasets. Another challenge relates to memory limitations, particularly notice-
able in large-scale scenarios. For instance, calibrating LLaMA3-8B [15] using 100 examples of
length 2048 tokens and an internal dimensionality of 14336 leads a ≈ 10.9Gb matrix X in a single
precision. Thus, the method should be memory-efficient and, if necessary, support batch processing
without explicitly constructing the whole matrix X .

Limited data. A final challenge emerges when dealing with severely limited data. In low-data
regimes (e.g., 3–5 images in generative model adaptation [17, 14, 37]), the problem becomes ill-
posed and susceptible to non-unique solutions and overfitting. Similar difficulties appear in model
compression tasks when only constrained datasets are available [3, 29].

In this paper, we overcome all these issues in a single framework, called COALA (COntext-Aware
Low-rank Approximation). Our contributions are as follows.

• We propose to use a regularization term that balances fitting the available examples with
preserving the model’s capacity to generalize. This regularized formulation yields unique
solution for any X . Moreover, it boosts metrics of compressed neural networks by mitigating
overfitting. Under certain assumptions, we establish a theoretical convergence of the
regularized solution.

• We show how to fully avoid both inversion and computation of Gram matrices, which are
prone to numerical instabilities [12]. Also, to avoid computational challenges associated
with large matrices X , we preprocess them via the reliable TSQR algorithm [11], which
computes a QR decomposition in smaller chunks.

2 Related Work

In recent years, the compression of deep learning models has become a critical focus within the field.
Several approaches have been proposed to address this challenge, including quantization [48, 24],
structured pruning [30, 2, 53], and low-rank approximation methods [22, 49, 45]. Quantization
allows for reducing the bit-width of model weights, thereby decreasing memory consumption and
accelerating computations. Structured pruning removes unnecessary parameters and simplifies the
model architecture without significant loss of accuracy. Also, the low rank decomposition approach is
often memory-efficient and can accelerate model inference, which is particularly important for tasks
related to response speed and model size when deploying on mobile devices [50, 6, 28, 39, 7, 55].

The primary concept behind model compression using low-rank approximations is to represent the
weight matrix W as the product of two low-rank matrices: W = UV , where W ∈ Rm×n,U ∈
Rm×r,V ∈ Rr×n. This representation allows for storing O(mr + nr) elements instead of the
original O(mn), and enables the propagation of data X ∈ Rn×k through a layer with computational
complexity O(nkr +mkr) rather than O(mnk), which is advantageous when r ≪ m,n.

In this context, the theory of low-rank matrix approximations is developed to preserve certain
properties of the original matrix. For instance, the Eckart–Young-Mirsky theorem [13], based on the
singular value decomposition (SVD) [13] of a matrix, allows for the construction of a low-rank matrix
W ′ that best approximates W in the sense of minimizing the norm ∥W −W ′∥ for any unitarily
invariant norm, such as the Frobenius norm. However, as demonstrated in works [46, 50], such
approximations do not always efficiently preserve the model’s performance and are outperformed
by compression methods based on alternative ideas, such as quantization, structured pruning, and
unstructured pruning.

The work ASVD [50] proposes a solution that manages activation outliers by transforming the
weight matrix based on the activation distribution. However, this solution does not achieve the best
approximation error in the posed problem, providing a reasonable yet suboptimal solution [46]. Other
studies, such as [46, 44], [25] and [6], present solutions that attain the theoretical minimum of the

2

error in the Frobenius norm. Nonetheless, they still rely on the formation of Gram matrices and/or
inversion of small singular values.

3 Weighted Low-Rank Approximation

Building upon the previous discussion, by introducing a context-aware approach at each layer using X ,
we aim to reduce the number of parameters needed to store the matrix W by finding its low-rank
approximation. Formally, this can be formulated as the following minimization problem:

min
rank(W ′)≤r

∥(W −W ′)X∥F . (1)

This problem is a special case of the general weighted low-rank approximation problem [31, 32]:

min
rank(W ′)≤r

vec{W −W ′}⊤Q vec{W −W ′},

where Q is positive definite symmetric matrix and vec{·} denotes the column-wise vectorization of
a matrix. By applying [31, Theorem 3] (see Appendix A) in our specific case of the matrix Q, we
obtain:

W ′ = UΣrV
⊤S−1, (2)

where S = (XX⊤)1/2 is the unique positive definite square root of XX⊤, UΣV ⊤ is the SVD of
WS, and Σr is the matrix obtained from Σ by setting the last n− r singular values to zero.

One can show that using the symmetric matrix square root is not the only possible way to obtain
the solution. Any decomposition of the form SS⊤ = XX⊤ with a square matrix S is applicable as
well. For example, S can be an R⊤ factor from the Cholesky decomposition of the matrix XX⊤.
Alternatively, it can be based on SVD of XX⊤. For example, these two approaches were used
in [44, 46] and utilized in other studies [25, 47], see Appendix B. As we will see further, forming the
Gram matrix in this context may already lead to numerical problems in the ill-conditioned case, see
also a theoretical example from Appendix G.1. Inverting nearly singular matrices afterwards only
deteriorate this effect. In the next section, we show how to naturally avoid both problems at once.

4 Inversion-Free Solution

The following result provides a simple yet effective orthogonal-projection-based formula, avoiding
matrix inversion and Gram matrices.

Proposition 1. Let W ∈ Rm×n and X ∈ Rn×k be arbitrary matrices. A solution to the optimization
problem

min
rank(W ′)≤r

∥WX −W ′X∥F (3)

is attained at W ′ = UrU
⊤
r W , where Ur consists of the first r left singular vectors of the matrix WX .

Proof. Let us define A = WX and B = W ′X . Then,

rank(B) ≤ min (rank(W ′), rank(X)) ≤ rank(W ′) ≤ r.

It is well-known that the minimizer of ∥A − B∥F under the constraint rank(B) ≤ r is given by
B = UrU

⊤
r A, where Ur contains the first k left singular vectors of A (see Corollary 2 for details).

Substituting back for A and B, we have B = UrU
⊤
r A = UrU

⊤
r WX , implying

W ′X = UrU
⊤
r WX.

Hence, one of the possible solutions W ′ looks as follows:

W ′ = UrU
⊤
r W .

As desired, the rank of W ′ does not exceed r because Ur has rank r. Note that in general there can
be many solutions depending on the matrix X .

3

Although this result is well-established for the unweighted case (X = I), we include a proof here
since we were unable to find a weighted analogue in the literature. Note that this formula does
not require any additional constraints on X , such as the assumption of full column rank, which is
required in [46, 44]. However, let us note that the number of columns k of the matrix X grows
with the number of samples and can be a fairly large quantity, exceeding m and n by many times.
Nevertheless, it can can be efficiently computed with the help of the reliable QR decomposition.
Proposition 2. Suppose that n ≤ k. Then, we can get Ur in Proposition 1 as the first r left singular
vectors of the matrix WR⊤, where R is the upper triangular matrix from the QR decomposition
of X⊤.

Proof. Let QR = X⊤ be the QR decomposition of X⊤. Then, using orthogonal invariance of ∥ · ∥F :

∥(W ′ −W)X∥2F = ∥(W ′ −W)R⊤Q⊤∥2F =

= tr
(
(W ′ −W)R⊤Q⊤QR(W ′ −W)⊤

)
=

[
Q⊤Q = I

]
=

= tr
(
(W ′ −W)R⊤R(W ′ −W)⊤

)
= ∥(W ′ −W)R⊤∥2F .

We complete the proof by applying Proposition 1 to the new minimization task.

Note that in the proof of Proposition 2, we only use the fact that RTR = XXT , so any matrix for
which this is true will suffice.

The pseudocode of the final solution is summarized in Algorithm 1.

Algorithm 1 A Stable Solution to the Weighted Low-Rank Approximation Problem

Require: W ∈ Rm×n, X ∈ Rn×k, r ∈ N, n ≤ k
Ensure: A ∈ Rm×r, B ∈ Rr×n

1 Compute the upper–triangular factor R by performing a TSQR factorization of X⊤:
[Q,R] ← QR(X⊤) ▷ Use the Tall–Skinny QR (TSQR) method, see Section 4.2.

2 Compute the SVD of WR⊤:
[U , Σ,V ⊤]← SVD(WR⊤)

3 Let Ur = U [:, : r]
4 Set A← Ur

5 Set B ← U⊤
r W

6 return A, B

4.1 Stability

Let us analyze potential issues that arise on real-world data. In particular, we use the LLaMA3 [15]
model on the WikiText2 [34] dataset and construct weighted low-rank approximation of matrices in
three ways: (1) via Cholesky decomposition of (XX⊤) as in SVD-LLM, (2) via SVD of (XX⊤) as
in SVD-LLM v2, and (3) via the QR-based approach.

Figure 1 shows that the approaches relying on the Gram matrix suffer from large errors that are
independent of the chosen rank and appear already during the construction of the approximation of
W . We evaluate the error in the spectral norm ∥ · ∥2, the operator norm induced by the Euclidean
vector norm via ∥A∥2 = supx ̸=0 ∥Ax∥2/∥x∥2. Being defined through a supremum over all possible
inputs, this bound cannot be exceeded by any particular vector x.

The size of these errors is linked to the distribution of singular values: very small singular values
cause numerical instabilities when inversion of the Gram matrix is involved. As illustrated in Figure 2,
several layers exhibit a sharp drop in the smallest singular values of the input matrix X . Our findings
indicate that computing XX⊤ introduces noticeable numerical errors, which may subsequently
impact the final results.

4.2 Efficiency

In this section, we also discuss the compression time for large models. In our approach we preprocess
X using the QR decomposition, see Proposition 2. The need for only the R factor in the QR
decomposition provides further acceleration.

4

Figure 1: Relative approximation error versus ap-
proximation rank obtained by different methods
on layer 1 q_proj. The reference weight ma-
trix W ref

r was computed using the inversion-free
COALA method and in high working precision
(fp64) to serve as the ground-truth solution. The
LLaMA3-1B [15] model was used with 64 exam-
ples from the Wikitext [34] dataset.

Figure 2: Distribution of singular values of matrix
X , obtained from the outputs of layer 1 q_proj
in the LLaMA3-1B [15] model, computed over
64 samples from the WikiText [34] dataset.

Table 1: Computation times produced by different methods.
Model #Samples Strategy Time, s

LLaMA3-1B 64
SVD-LLM 273.93±22.12

SVD-LLM V2 404.88±5.49
COALA 196.34±6.48

LLaMA3-8B 128
SVD-LLM 3624.88±512.4

SVD-LLM V2 4210.5±63.3
COALA 1811.0±15.6

We compared the time required by different methods in Table 1. Additionally, we examined the break-
ing point at which computing the SVD of XX⊤ becomes faster than performing a QR decomposition
of X . We have observed that even when the matrix has a highly unbalanced aspect ratio – with one
dimension exceeding the other by several tens of times – the QR decomposition remains the preferred
method, see Figure 3, left graph. All calculations were performed on a single NVIDIA A100 GPU. To
preserve the integrity of the experiment, the SVD on the GPU was executed with PyTorch’s “gesvd”
method, because the default “gesvdj” method, although faster, produces a noticeably larger error.

4 ·103 8 ·103 2 ·104 3 ·104 7 ·104

n, number of columns

0.125

0.25

0.5

1.0

2.0

4.0

8.0

tim
e

(s
ec

on
ds

)

QR(X)

SVD(XX⊤)

1

6 ·10−2 1 ·10−1 2 ·10−1 5 ·10−1 1 ·100 2 ·100 4 ·100

chunk size (Gb)

3.0

4.0

5.0

6.0

7.0

8.0

tim
e

(s
ec

on
ds

)

TSQR

SVD(XX⊤)

1Figure 3: Runtimes for computing S: SS⊤ = XX⊤ using two approaches. Left: Matrix X ∈
R4096×n for different n. Right: Matrix X ∈ R4096×3·105 split into chunks of different size. In this
case, QR is computed using the TSQR method and the Gram matrix using XX⊤ =

∑p
i=1 XiX

⊤
i .

When dealing with matrices X so large that they cannot be accommodated in fast memory, one
can still easily compute the Gram matrix by splitting it into p batches of smaller sizes that fit in

5

memory, resulting into XX⊤ =
∑p

i=1 XiX
⊤
i . In our case, we can also efficiently compute the

QR decomposition using the Tall Skinny QR (TSQR) method [11]. It allows for reducing QR
decomposition of the whole matrix to p QR decompositions of the smaller sizes. For example, we
can sequentially apply the QR decomposition to each new block, incorporating the R matrix obtained
from the previous step, i.e., for p = 3:

X⊤ =

X⊤
0

X⊤
1

X⊤
2

 =

Q0R0

X⊤
1

X⊤
2

 =

[
Q0

I
I

]R0

X⊤
1

X⊤
2

 =

=

[
Q0

I
I

] [
Q01

I

] [
R01

X⊤
2

]
=

[
Q0

I
I

] [
Q01

I

]
Q012R012.

Since a product of matrices with orthonormal columns also has orthonornal columns, we conclude
that this is indeed a QR decomposition of X⊤. As can be seen in Figure 3 (right), this approach not
only eliminates the need to store large matrices, but also speeds up the solution time for large-scale
matrices X .

Moreover, if multiple GPUs are available, the scheme can be transformed into a binary tree structure
to enable parallel execution, thereby achieving a speedup in computational time:

X3

X2

X1

X0

→
→
→
→

R3

R2

R1

R0

↗
↘
↗
↘

R23

R01

↗
↘

R0123

If one or more arrows point to the same matrix, then this matrix represents the R-factor obtained from
the QR decomposition of the matrix formed by stacking all the matrices at the opposite ends of the
arrows. This process is described in more detail in [11].

5 Weighted Low-Rank Approximation with Regularization

So far, we have discussed various numerical aspects of solving the problem (3). However, in practice,
we want to adapt the model to fit the available examples, but not excessively, as we aim to avoid
overfitting and preserve the model’s knowledge in other domains. This situation becomes particularly
pronounced when data is scarce and matrix X may have more columns than rows. For example, in
model compression, data are often limited due to confidentiality, yet there’s a need to deploy models
on devices with restricted resources [3, 29]. A similarly relevant challenge is adapting pre-trained
generative models to new concepts using just a handful of images (usually 3–5) [17]. Thus, we can
formulate the following minimization problem:

min
rank(W ′)≤k

∥WX −W ′X∥2F + µ∥W −W ′∥2F , (4)

where µ ≥ 0 is a given parameter. Notably, this strategy yields systematic improvements even in
data-sufficient scenarios.

Our methodology presented in earlier sections continues to provide an efficient and robust solution to
the problem (4) as well.
Proposition 3. Let W ∈ Rm×n and X ∈ Rn×k be arbitrary matrices. Then problem (4) is
equivalent to

min
rank(W ′)≤k

∥(W −W ′)X̃∥2F ,

where X̃ = [X
√
µI].

Proof. We have

∥(W ′ −W)X∥2F + µ∥W ′ −W∥2F = ∥ [(W ′ −W)X
√
µ(W ′ −W)] ∥2F =

= ∥(W ′ −W) · [X √
µ · I] ∥2F .

6

This equivalence means that we can use the same approach as in the unregularized problem by
augmenting the data matrix X with the scaled identity matrix

√
µI . By transforming the regularized

problem into this form, we can apply efficient algorithms such as Proposition 2 for its solution. The
corresponding pseudocode is presented in Algorithm 2.

Algorithm 2 A solution to the weighted low-rank approximation problem with regularization

Require: W ∈ Rm×n, X ∈ Rn×k, µ ∈ R+, r ∈ N
Ensure: A ∈ Rm×r, B ∈ Rr×n

1 Form the matrix X ′ = [X
√
µ I], where I is the n× n identity matrix.

2 Call Algorithm 1 with input (W ,X ′, r) to compute A and B.
3 return A, B

What is the limit of Wµ as µ→ 0? Another natural question is what happens with the regularized
solution Wµ for small µ. If X is of full row rank, then it is natural to assume that it Wµ converges to
a unique solution of the unregularized problem. It is, however, unclear what happens in the general
case and what is the convergence rate. We establish that Wµ converges to a well-defined solution W0,
which corresponds to the solution obtained from Proposition 1. The following theorem provides a
precise estimate for the convergence rate.
Theorem 1. Let W ∈ Rm×n and X ∈ Rn×k. Suppose that X has rank(X) = k ≥ r and that
the singular values of WX satisfy σr(WX) ̸= σr+1(WX), where σi(·) denotes the i-th largest
singular value. Let W0 = UrU

⊤
r W denote the solution to the problem (3), and let Wµ denote the

solution to the regularized problem (4). then the following estimate holds:

∥W0 −Wµ∥F ≤
2∥W∥22∥W∥F

σ2
r (WX)− σ2

r+1 (WX)
· µ.

Proof. See Appendix E.

In the case where X has full rank, we have a more precise estimate with a better constant, which,
however, also involves the multiplier 1/gap, where

gap = σr(WX)− σr+1(WX),

see Appendix D. This gap-dependent behavior is intrinsic to the problem, as demonstrated in
Example G.2.

Our estimate suggests that even in the degenerate case Wµ approaches W0 linearly with respect to
µ as µ→ 0, which we also observe in numerical simulations. The estimate may also be useful for
practical reasons as it shows asymptotic dependence on key parameters such as the gap value and
the regularization parameter µ. For example, the estimate quantifies how sensitive our solution is to
the choice of µ, which can inform practical decisions about selecting an appropriate regularization
parameter. This can be of particular interest in applications where the balance between fitting the
data and preventing overfitting is delicate.

6 Experiments

6.1 Model compression

In this section, we evaluate the effectiveness of our regularization-based compression approach in
practice 1. We first fix the procedure for selecting the regularization parameter µ. Specifically, we
determine µ relative to the unregularized solution W0 (i.e., the one obtained for µ = 0) according to
the formula below:

µ =
∥W0X −WX∥2F
∥W0 −W∥2F

· λ, (5)

where λ serves as a hyperparameter controlling the adjustment. This step is crucial because different
layers of large language models exhibit substantially different norms of the weight matrices W ,

1Our code is available at https://github.com/urparkina/COALA.

7

https://github.com/urparkina/COALA

calibration matrices X , and their products WX , see, e.g., [19]. Moreover, we compare these two
strategies, analyzing how the metric depends on adaptive and non-adaptive choices of µ across
layers, see Figure 4. The Mistral-7B-Instruct model was selected due to its pronounced variation of
layer-wise norms.

10−4 10−3 10−2 10−1 100 101 102

regularization hyperparameter

54

56

58

ac
cu

ra
cy

,%

adaptive
non-adaptive

1Figure 4: Comparison of the impact of parameter tuning with (Equation (5)) and without considering
layer-wise norms on model quality at 70% compression, evaluated on a common-sense reasoning
dataset using the Mistral-7B-Instruct model.

Figure 5 presents sensitivity analysis of the parameter λ, demonstrating that the optimal value of µ
remains relatively stable (in the region from 1 to 10) across different settings, including various model
architectures, datasets, and compression ratios.

10−2 10−1 100 101

λ

35

40

45

50

55

ac
cu

ra
cy

,% LLaMA3-8B
Mistral-7B
LLaMA2-7B

1

10−2 10−1 100 101

λ

45

50

55

60

ac
cu

ra
cy

,%

LLaMA3-8B
Mistral-7B
LLaMA2-7B

1Figure 5: The dependence of average accuracy on the parameter λ on the commonsense reasoning
dataset for different models. On the left: 70% compression ratio, on the right: 80% compression
ratio.

Table 2 compares several methods without adaptive rank selection under reduced-precision (fp16)
conditions. We observe that our more numerically stable formulations improve performance, with
regularization providing the most consistent gains. We compare our method to approaches that do not
use fine-tuning or adaptive rank selection. However, our solution can be potentially used not only as a
standalone compression technique, but also integrated into other works as a part of a problem-solving
framework.

Finally, Table 3 compares our approach with state-of-the-art methods that report the relevant metrics
in their manuscripts. Our method achieves comparable or even superior results solely due to the use
of regularization, without any additional heuristics or fine-tuning.

8

Table 2: Metric values of various compression methods. All computations, except for solving the
weighted low-rank approximation problem, were performed in half precision (fp16). Experiments
were conducted using the LLaMA-3.2-1B-Instruct model compressed at 90% using text samples from
the commonsense reasoning dataset, which was also used for validation.

Method boolQ PIQA WiNoG HSwag ARC-E ARC-C OBQA
Original 69.5±0.7 74.4±1.0 59.5±1.3 60.7±0.5 63.2±0.9 38.1±2.1 34.6±1.4

ASVD 58.0±0.7 52.5±1.0 51.3±1.3 27.8±0.5 30.0±0.9 25.9±2.1 26.8±1.4

SVD-LLM 54.1±0.7 60.6±1.0 53.8±1.3 34.6±0.5 44.3±0.9 25.5±2.1 26.0±1.4

COALAµ=0 57.6±0.7 60.9±1.0 53.2±1.3 34.6±0.5 43.4±0.9 27.3±2.1 26.0±1.4

COALAµ 59.0±0.7 62.8±1.0 54.0±1.3 36.6±0.5 46.2±0.9 29.2±2.1 27.6±1.4

Table 3: Metric values of various compression methods. Experiments were conducted using the
Mistral-7B model on the WikiText2 dataset and commonsense reasoning used for validation. The
results for SliceGPT [2] and FLAP [1] were taken from the work [25].

Ratio Method MMLU BoolQ PIQA WiNoG HSweg ARC-E ARC-C OBQA
100% Mistral-7B 62.50 83.98 82.05 73.95 81.02 79.55 53.92 44.00

FLAP 25.90 62.26 72.31 64.09 55.94 51.05 31.91 36.80
SliceGPT 28.60 37.86 60.66 59.43 45.10 48.15 30.03 32.00

80% SVD-LLM 41.80 68.29 73.39 68.43 61.75 71.34 40.53 36.60
SoLA 44.20 66.09 73.67 68.75 63.32 69.99 39.76 39.20
COALA 41.20 78.07 77.04 68.82 65.06 72.13 43.43 40.20

FLAP 26.40 65.26 69.59 64.80 55.61 48.91 30.55 35.80
SliceGPT 25.00 37.83 54.41 51.62 32.54 35.02 22.95 26.80

70% SVD-LLM 28.20 64.62 64.91 64.17 47.36 58.25 30.72 34.20
SoLA 33.80 62.57 68.39 64.48 53.00 60.90 32.76 37.60
COALA 27.35 63.82 70.40 62.43 51.02 63.63 35.49 36.00

We conducted experiments on the models LLaMA3-8B, LLaMA3-1B [16] and Mistral-7B [5]
(including Insrtuct versions), comparing our approach with existing methods across various datasets:
boolQ [8], OpenbookQA [35], WinoGrande [38], HellaSwag [51], Arc_e [9], Arc_c [10], PIQA [4],
MMLU [18]. We used A100 GPU and Tesla T4 GPU for our experiments. The results indicate that
in all the considered settings our regularized algorithm systematically achieves better metrics during
compression.

6.2 Fine-Tuning

Table 4: Results of fine-tuning LLaMA3-1B-Instruct at rank r = 8 using different PEFT initializa-
tion methods on the commonsense reasoning dataset with 24 examples for initialization. In exact
arithmetic, “COALA α = 2” is equivalent to CorDA. See hyperparameters in Appendix F.

Method BoolQ PIQA SIQA HSweg WiNoG ARC-e ARC-c OBQA Avg.

LoRA 64.5 76.1 71.5 82.4 53.8 76.8 58.5 68.2 75.0
PiSSA 64.5 76.0 71.5 83.0 52.0 78.4 60.8 70.4 75.4
CorDA 61.4 68.7 62.1 60.8 52.4 68.7 40.1 52.8 60.9
COALA α = 2 64.4 75.9 72.6 82.7 54.3 78.2 59.5 68.0 75.4
COALA α = 1 64.1 76.1 72.8 82.8 56.0 77.5 59.8 68.4 75.5

Training and fine-tuning models with specific constraints or regularization applied to the weights
has proven to be an effective technique in recent years [23, 40]. Fine-tuning methods often utilizes
the concept of low-rank matrix approximations for initialization, see PiSSA [33] and CorDA [47]
appraoches. We investigate the application of our method for initializing LoRA [23] adapters and
demonstrate its advantages. The following proposition unifies these methods and also leads to a new
method for α = 1.

9

Proposition 4. The solution to the optimization problem

min
rank(W ′)≤r

tr
(
(W −W ′)(XX⊤)α(W −W ′)⊤

)
(6)

for an arbitrary α ≥ 0, α ∈ Z, is given by the formula:

W ′ = UrU
⊤
r W , where UΣV ⊤ = W (XX⊤)

α
2

and Ur consists of the first r columns of the matrix U .

Proof. Note, that

tr
(
(W −W ′)(XX⊤)α(W −W ′)⊤

)
= ∥(W −W ′)(XX⊤)

α
2 ∥2F ,

where (XX⊤)
α
2 = S is such a square positive definite matrix that SS⊤ = (XX⊤)α. Thus, applying

Proposition 1 , we obtain the desired solution.

Note that to obtain (XX⊤)
α
2 one does not have to compute XX⊤ explicitly. One possible strategy

is to take the SVD of X: X = UΣV ⊤ and then (XX⊤)
α
2 = UΣ

α
2 U⊤.

Remark 1. For α = 2, the task (6) becomes equivalent to the following minimization problem:

min
rank(W ′)≤r

tr
(
(W −W ′)(XX⊤)2(W −W ′)⊤

)
= min

rank(W ′)≤r
∥(W −W ′)XX⊤∥2F .

Thus, applying Corollary 1 , we arrive at the solution

W ′ = UrΣrV
⊤
r (XX⊤)−1,

where UΣV ⊤ = WXX⊤ and Ur, Σr,V
⊤
r are truncated matrix. This solution is presented as an

algorithm in the CorDA method.

By applying our Proposition 1 , we can obtain another way of solving this problem:

W ′ = UrU
⊤
r W ,

where Ur consists of the first r left singular vectors of the matrix WXX⊤.

We show that the solution provided by the CorDA method solves the problem described in (6), when
α = 2, and also applied our formulas for robustness purposes. Without them, in some scenarios,
inversions of XX⊤ raised runtime errors due to singular matrices or lead to large numerical errors.
Note also that for α = 0 the minimization problem (6) leads to the PiSSA method. We conduct
experiments on the LLaMA3-1B-Instruct [15] model. Table 4 suggests that the robustified version of
CorDA (COALA, α = 2) significantly boosts the performance. Both robust versions for α = 1 and
α = 2 yield results similar to PiSSA, though α = 1 performs slightly better.

7 Limitations

The limitations of our work are closely linked to the applicability and effectiveness of the weighted
approximation approach. Thus, its efficiency is limited to tasks and domains where these methods
perform well.

8 Conclusion

In conclusion, we have presented a new, regularized inversion-free framework for context-aware
low-rank approximation of LLM. We aimed to address the issue of numerical instability seen in
previous works, and developed solutions for challenging scenarios such as large calibration matrices
exceeding GPU memory capacity and near-singular input activation matrices. In our experiments, we
observed favorable results in both model compression and fine-tuning scenarios compared to previous
methods.

10

Acknowledgments

The work was supported by the grant for research centers in the field of AI provided by the
Ministry of Economic Development of the Russian Federation in accordance with the agreement
000000C313925P4E0002 and the agreement with HSE University № 139-15-2025-009. The cal-
culations were performed in part through the computational resources of HPC facilities at HSE
University [26].

The authors are also grateful to A. Osinsky for insightful suggestions that led to an improved
theoretical bound.

References
[1] Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive

structured pruning for large language models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 10865–10873, 2024.

[2] Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns. In
ICLR. OpenReview.net, 2024.

[3] Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu. Few shot network compression via cross
distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
3203–3210, 2020.

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[5] Devendra Singh Chaplot. Albert q. jiang, alexandre sablayrolles, arthur mensch, chris bamford,
devendra singh chaplot, diego de las casas, florian bressand, gianna lengyel, guillaume lample,
lucile saulnier, lélio renard lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril,
thomas wang, timothée lacroix, william el sayed. arXiv preprint arXiv:2310.06825, 2023.

[6] Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-
rank compression for large nlp models. Advances in neural information processing systems,
34:29321–29334, 2021.

[7] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks. 10 2017.

[8] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In
NAACL, 2019.

[9] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

[11] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. Communication-optimal
parallel and sequential qr and lu factorizations. SIAM Journal on Scientific Computing,
34(1):A206–A239, 2012.

[12] James W Demmel. Applied numerical linear algebra. SIAM, 1997.

[13] G.H. Golub, Alan Hoffman, and G.W. Stewart. A generalization of the eckart-young-mirsky
matrix approximation theorem. Linear Algebra and its Applications, 88-89:317–327, 1987.

11

[14] Mikhail Gorbunov, Kolya Yudin, Vera Soboleva, Aibek Alanov, Alexey Naumov, and Maxim
Rakhuba. Group and shuffle: Efficient structured orthogonal parametrization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

[15] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey et al. The llama 3
herd of models. arXiv preprint, arXiv:2407.21783, version 3, 2024.

[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[17] Ligong Han, Yinxiao Li, Han Zhang, Peyman Milanfar, Dimitris Metaxas, and Feng Yang.
Svdiff: Compact parameter space for diffusion fine-tuning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7323–7334, 2023.

[18] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021.

[19] Stefan Hex and Turn Trout. Residual stream norms grow exponentially over the forward pass.
2023. https://www.lesswrong.com/posts/8mizBCm3dyc432nK8/residual-stream-norms-grow-
exponentially-over-the-forward.

[20] Roger A Horn and Charles R Johnson. Topics in matrix analysis. Cambridge university press,
1994.

[21] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization. In International Conference on
Learning Representations, 2022.

[22] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization. In ICLR. OpenReview.net, 2022.

[23] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[24] Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele
Magno, and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In
ICML. OpenReview.net, 2024.

[25] Xinhao Huang, You-Liang Huang, and Zeyi Wen. Sola: Leveraging soft activation sparsity and
low-rank decomposition for large language model compression. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pages 17494–17502, 2025.

[26] PS Kostenetskiy, RA Chulkevich, and VI Kozyrev. Hpc resources of the higher school of
economics. In Journal of Physics: Conference Series, volume 1740, page 012050. IOP
Publishing, 2021.

[27] Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and
Xiaokang Yang. Adasvd: Adaptive singular value decomposition for large language models.
CoRR, abs/2502.01403, February 2025.

[28] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivas-
tava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient
llms at inference time. In International Conference on Machine Learning, pages 22137–22176.
PMLR, 2023.

[29] Raphael Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
neural networks. 10 2017.

[30] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurIPS, 2023.

12

[31] Jonathan H Manton, Robert Mahony, and Yingbo Hua. The geometry of weighted low-rank
approximations. IEEE Transactions on Signal Processing, 51(2):500–514, 2003.

[32] Ivan Markovsky. Structured low-rank approximation and its applications. Automatica, 44(4):891–
909, 2008.

[33] Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular
vectors adaptation of large language models. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[34] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[35] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[36] Sean O’Rourke, Van Vu, and Ke Wang. Random perturbation of low rank matrices: Improving
classical bounds. Linear Algebra and its Applications, 540:26–59, 2018.

[37] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
22500–22510, 2023.

[38] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[39] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. In The Twelfth International Conference on Learning
Representations, 2024.

[40] Askar Tsyganov, Evgeny Frolov, Sergey Samsonov, and Maxim Rakhuba. Matrix-free two-to-
infinity and one-to-two norms estimation. arXiv preprint arXiv:2508.04444, 2025.

[41] Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen
Yan, Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language
models: A survey. Transactions on Machine Learning Research, 2024. Survey Certification.

[42] Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora: Harnessing minor
singular components for parameter-efficient llm finetuning. arXiv preprint arXiv:2406.09044,
2024.

[43] Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approxima-
tion. Advances in Neural Information Processing Systems, 37:54905–54931, 2024.

[44] Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing sin-
gular value truncation for large language model compression. arXiv preprint arXiv:2503.12340,
2025.

[45] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: truncation-aware singular
value decomposition for large language model compression. CoRR, abs/2403.07378, 2024.

[46] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular
value decomposition for large language model compression. In The Thirteenth International
Conference on Learning Representations, 2025.

[47] Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon Song, Jianlong Wu, Liqiang Nie, and
Bernard Ghanem. CorDA: Context-oriented decomposition adaptation of large language models
for task-aware parameter-efficient fine-tuning. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[48] Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: partially binarized large language
models. In ICLR. OpenReview.net, 2024.

13

[49] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
activation-aware singular value decomposition for compressing large language models. CoRR,
abs/2312.05821, 2023.

[50] Zhihang Yuan, Yuzhang Shang, Yue Song, Dawei Yang, Qiang Wu, Yan Yan, and Guangyu Sun.
ASVD: Activation-aware singular value decomposition for compressing large language models,
2025.

[51] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[52] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023.

[53] Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner:
Fine-grained pruning for large language models. CoRR, abs/2406.10594, 2024.

[54] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language
models. arXiv preprint arXiv:2404.14294, 2024.

[55] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. Transactions of the Association for Computational Linguistics,
12:1556–1577, 2024.

[56] Difan Zou, Philip M. Long, and Quanquan Gu. On the global convergence of training deep
linear resnets. In International Conference on Learning Representations, 2020.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. The abstract and introduction give a concise overview of the paper’s
methods and findings, accurately reflecting its contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: Yes. The paper includes all necessary assumptions and offers thorough, correct
proofs for each theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. We provide all the necessary information. Moreover, the Appendix
Section F contained hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The section with the code repository can be found in Section 6, which contains
the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The necessary details of the experiments are presented in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we provided error bars for experiments where there was indeterminacy
and the possibility to provide them.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The necessary details of the experiments are presented in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes. Out research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper has no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. All used papers are properly cited in the text.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release any new assets in our papper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No. The paper does not mention any significant LLM usage in its core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A General Weighted Low-Rank Approximation Problem

Definition A.1 (General Weighted Low-Rank Approximation Problem). Given a matrix W ∈ Rm×n,
we aim to find a matrix W ′ of rank at most r, such that the objective function

min
W ′:rank(W ′)≤r

vec{W −W ′}⊤Q vec{W −W ′} (7)

is minimized, where vec{·} denotes the vectorization operator, transforming a given matrix into a
column vector by stacking its columns on top of each other. The matrix Q ∈ Rmn×mn represents a
positive definite matrix.

Theorem 2. (From [31]) In (7), if Q = Q1 ⊗ Q2, where Q1 ∈ Rm×m and Q2 ∈ Rn×n are
both positive definite and symmetric, then the solution W ′ of (7) is given by the following closed-
form expression. Let Q1/2

2 WQ
1/2
1 = UΣV ⊤ be the compact SVD, where Q

1/2
1 is the unique

positive definite symmetric matrix such that Q1/2
1 Q

1/2
1 = Q1 and similarly for Q1/2

2 . Then, W ′ =

Q
−1/2
2 UΣrV

⊤Q
−1/2
1 , where Σr is obtained from Σ by setting all but the first r singular values to

zero. Here, ⊗ is the Kronecker product [20].

Proof. See work [31].

Observe that if we choose Q2 = I and Q1 = XX⊤, we immediately obtain a solution to the
problem (1) . More generally, note that any square matrix S satisfying SS⊤ = XX⊤ can be
employed in this construction. For instance, a standard choice would be the Cholesky factor of XX⊤.

Corollary 1. Let W and X be arbitrary matrices belonging to Rm×n and Rn×k respectively, with
X having full row rank.. The solution to the optimization problem (1) can be obtained using the
formula

W ′ = UΣrV
⊤(XX⊤)−1/2,

where UΣV ⊤ = W (XX⊤)1/2 is SVD.

Proof. Note, that

∥(W −W ′)X∥F = tr(
(
W −W ′)XX⊤(W −W ′)⊤

)
=

[
tr(AB) = vec{A}⊤ vec{B⊤}

]
=

= vec{W −W ′}⊤ vec{(W −W ′)XX⊤} =
= vec{W −W ′}⊤ vec{I(W −W ′)XX⊤} =

[
vec{ABC} = (C⊤ ⊗A) vec{B}

]
=

= vec{W −W ′}⊤(XX⊤ ⊗ I) vec{W −W ′}.

So, if X has a full rank, we can apply Theorem 2, where Q1 = XX⊤, Q2 = I:

W ′ = I−1/2UΣrV
⊤(XX⊤)−1/2 = UΣrV

⊤(XX⊤)−1/2,

where UΣV ⊤ = W (XX⊤)1/2.

B SVD-LLM Method

In this section, we present pseudocode for several approaches to solve the problem, including the
method outlined in Section A, an approach leveraging the Cholesky decomposition, and one utilizing
the square root of the matrix XX⊤.

The Algorithm 3 from the work [46] provides the solution via Cholesky decomposition for the matrix
XX⊤, while the Algorithm 4 from the work [44] finds the solution via the search for symmetric
matrix square root of XX⊤ through SVD.

22

Algorithm 3 SVD-LLM method [46]

Input: W ∈ Rm×n, X ∈ Rn×k, r ∈ N
Output: A ∈ Rm×r, B ∈ Rr×n

1 Compute the upper triangular matrix S from the Cholesky decomposition of XX⊤:
S ← cholesky(XX⊤)

2 Compute the singular value decomposition of WS:
[U , Σ,V ⊤]← svd(WS)

3 Let Ur, Σr,Vr = U [:, : r], Σ[: r, : r],Vr[:, : r]
4 Set A← Ur

5 Set B ← ΣrV
⊤
r S−1

6 return A, B

Algorithm 4 SVD-LLM V2 method [44]

Input: W ∈ Rm×n, X ∈ Rn×k, r ∈ N
Output: A ∈ Rm×r, B ∈ Rr×n

1 Compute the SVD of XX⊤:
[Us,S,V

⊤
s]← svd(XX⊤)

2 Compute M ←WUsS
1/2

3 Compute the SVD of M :
[U , Σ,V ⊤]← svd(M)

4 Let Ur, Σr,Vr = U [:, : r], Σ[: r, : r],Vr[:, : r]
5 Compute S−1/2

6 Set A← Ur

7 Set B ← ΣrV
⊤
r S−1/2U⊤

s
8 return A, B

C Basics of Low-Rank Approximation

This section presents statements of established results as well as references to their original sources.
Although readers may choose to skip this part, it serves to provide greater clarity in the subsequent
proofs when referring to these well-known findings.
Theorem 3. (Eckart-Young-Mirsky) Let A ∈ Rm×n have the SVD

A = U ΣV ⊤,

where Σ = diag(σ1,σ2, . . . ,σp) with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 and p = min(m,n). For any
integer r with 1 ≤ r < p, define the rank-r matrix

Ar = Ur Σr V
⊤
r

by keeping only the top r singular values σ1, . . . ,σr in Σ, along with the corresponding columns of
U and V . Then Ar is a best rank-r approximation to A in the Frobenius norm, i.e.

Ar = argmin
rank(B)≤r

∥∥A−B
∥∥
F
.

Moreover, if σr ̸= σr+1, then this best rank-r approximation Ar is unique.

Proof. See [13].

Corollary 2. The solution to the low-rank approximation problem

min
rank(Ak)≤k

∥A−Ak∥F ,

can be obtained using the formula Ak = UkU
⊤
k A or Ak = AVkV

⊤
k , where the SVD of matrix A is

given by

A =
[
Uk U⊥

k

] [Σk 0
0 Σ′

k

] [
Vk V ⊥

k

]⊤
,

23

Theorem 4 (Davis-Kahan-Wedin sin(Θ) Theorem). Let A ∈ Rm×n be a matrix such that its r-th
and (r + 1)-th singular values satisfy σr(A) ̸= σr+1(A). Let E ∈ Rm×n be a perturbation matrix,
and define Â = A+ E. Let Ur ∈ Rm×r and Ûr ∈ Rm×r be matrices whose columns consist of the
first r left singular vectors of A and Â, respectively. Then,∥∥∥UrU

⊤
r − ÛrÛ

⊤
r

∥∥∥
2
≤ 2∥E∥2

σr(A)− σr+1(A)
.

Proof. This result is proved in “Random perturbation of low rank matrices: Improving classical
bounds” [36].

Lemma 1. Let A ∈ Rd×r be a rank-r matrix. Then for any B ∈ Rr×k it holds that

σmin(A) ∥B∥F ≤ ∥AB∥F ≤ σmax(A) ∥B∥F = ∥A∥2∥B∥F .

Proof. The proof is classical and can be found, e.g., in [56].

D Convergence Proofs for the Full-Rank Regularization Problem

Theorem 5. Let W ∈ Rm×n and X ∈ Rn×k. Suppose that X has full row rank (i.e., rank(X) = n)
and that the singular values of WX satisfy σr(WX) ̸= σr+1(WX), where σi(·) denotes the i-th
largest singular value. Then, the solution W0 to the problem (1) is unique. Furthermore, if Wµ

denotes the solution to the regularized problem (4) , then the following estimate holds:

∥W0 −Wµ∥F ≤
∥W∥2 ∥W∥F

σr(WX)− σr+1(WX)
· µ

σm(X)

where, ∥ · ∥2 denotes the spectral norm.

Before we proceed to the proof of Theorem 5, let us establish an auxiliary lemma.
Lemma 2. Let X ∈ Rm×n,m ≤ n, rank(X) = m. Then

∥(XX⊤)1/2 − (XX⊤ + µI)1/2∥2 ≤
µ

2σm(X)
.

Proof. Let UΛU⊤ = XX⊤ define the eigendecomposition of a symmetric positive definite matrix.
Then, U is orthogonal, and the elements of Λ are positive.

∥(XX⊤)1/2 − (XX⊤ + µI)1/2∥2 = ∥UΛ1/2U⊤ − (UΛU⊤ + µUU⊤)1/2∥2 =

= ∥U(Λ1/2 − (Λ + µI)1/2)U⊤∥2 = [∥ · ∥2 is unitarily invariant] =

= ∥Λ1/2 − (Λ + µI)1/2∥2 = max
λ∈σ(XX⊤)

(√
λ+ µ−

√
λ
)
.

Note that√
λ+ µ−

√
λ =

(
√
λ+ µ−

√
λ)(
√
λ+ µ+

√
λ)√

λ+ µ+
√
λ

=
µ√

λ+ µ+
√
λ
≤ µ

2
√
λ
.

Then

∥(XX⊤)1/2 − (XX⊤ + µI)1/2∥2 = max
λ∈σ(XX⊤)

(√
λ+ µ−

√
λ
)
≤

≤ max
λ∈σ(XX⊤)

µ

2
√
λ
= max

σ∈σ(X)

µ

2σ
=

µ

2σm(X)
.

Proof of Theorem 5. The uniqueness of W0 follows from the fact that if σr(WX) ̸= σr+1(WX),
then the rank-r low-rank approximation Yr of the matrix WX is unique (by Eckart-Young-Mirsky
Theorem 3). Hence, W0 is a solution if and only if W0X = Yr. Moreover, since the kernel of X

24

is empty, if such a matrix W0 exists, it must be unique. However, by Proposition 1 , such a matrix
indeed exists.

We now establish the estimate from the theorem’s condition. By Proposition 1 , we obtain

W0 = U0U
⊤
0 W ,

where U0 denotes the first r left singular vectors of WH0, and H0 = (XX⊤)1/2. Analogously, using
Proposition 3 , we have

Wµ = UµU
⊤
µ W ,

where Uµ denotes the first r left singular vectors of WHµ, and Hµ = (XX⊤ + µI)1/2. From
Lemma 2 it follows that

∥H0 −Hµ∥2 ≤
µ

2σm(X)
.

Consequently,

∥WH0 −WHµ∥2 ≤ ∥W∥2∥H0 −Hµ∥2 ≤
∥W∥2
2σm(X)

µ.

By applying Davis-Kahan Theorem 4, we obtain

∥U0U
⊤
0 − UµU

⊤
µ ∥2 ≤

2∥WH0 −WHµ∥2
σr(WH)− σr+1(WH)

≤

≤ 2∥W∥2
2σm(X) (σr(WH)− σr+1(WH))

µ =
∥W∥2

σm(X)(σr(WH)− σr+1(WH))
µ.

Thus,

∥W0 −Wµ∥F = ∥U0U
⊤
0 W − UµU

⊤
µ W∥F = ∥(U0U

⊤
0 − UµU

⊤
µ)W∥F ≤

≤ ∥U0U
⊤
0 − UµU

⊤
µ ∥2∥W∥F ≤

∥W∥2∥W∥F
σm(X)(σr(WH)− σr+1(WH))

µ.

E Convergence Proofs (Without the Full-Rank Condition)

Proof of Theorem 1 . By Proposition 1 , we obtain

W0 = U0U
⊤
0 W ,

where U0 denotes the first r left singular vectors of WX , and H0 = (XX⊤)1/2. Analogously, using
Proposition 3 , we have

Wµ = UµU
⊤
µ W ,

where Uµ denotes the first r left singular vectors of WHµ, and Hµ = (XX⊤ + µI)1/2. However, we
can get the matrices U0 and Uµ are defined as the matrices of the first r left singular vectors obtained
from the singular value decompositions:

U0 ← SVD
(
WXX⊤W⊤), Uµ ← SVD

(
W (XX⊤ + µI)W⊤).

Here we use the fact that the left singular vectors of a matrix A coincide with the eigenvectors vectors
(same that left singular in this case) of AA⊤.

Consider the perturbation of the matrix WXX⊤W⊤:

∥WXX⊤W⊤ −W (XX⊤ + µI)W⊤∥2 = µ∥WW⊤∥2 = µ∥W∥22.

By Applying Davis-Kahan Theorem 4, we obtain

∥U0U
⊤
0 − UµU

⊤
µ ∥2 ≤

2∥WXX⊤W⊤ −W (XX⊤ + µI)W⊤∥2
σr(WXX⊤W⊤)− σr+1(WXX⊤W⊤)

.

25

Since σk(WXX⊤W⊤) = σ2
k(WX), this yields

∥U0U
⊤
0 − UµU

⊤
µ ∥2 ≤

2∥W∥22
σ2
r(WX)− σ2

r+1(WX)
µ.

Combining this bound with W0 = U0U
⊤
0 W and Wµ = UµU

⊤
µ W , we arrive at

∥W0 −Wµ∥F = ∥(U0U
⊤
0 − UµU

⊤
µ)W∥F

≤ ∥U0U
⊤
0 − UµU

⊤
µ ∥2 ∥W∥F

≤ 2∥W∥22∥W∥F
σ2
r(WX)− σ2

r+1(WX)
µ.

F Implementation Details

Table 5: Choice of hyperparameters for different methods, which were applied to the matrices Q, K,
V, O, Up, Down.

Hyperparameter LoRA PiSSA CorDA COALA
Rank r 8 8 8 8
α 12 4 1

2 8
Dropout 0.0 0.0 0.0 0.0
Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Scheduler Cosine Cosine Cosine Cosine
Batch Size 16 16 16 16
Warmup Steps 100 100 100 100
Epochs 1 1 1 1

Fine-tuning: All training runs were conducted on the same dataset consisting of 40,000 examples,
presented in the same order across all experiments. Training a single model required approximately
10 hours, with an additional 2 hours allocated for evaluating the response accuracy on the valida-
tion dataset. All experiments were performed on an NVIDIA Tesla T4 GPU with Driver Version
535.183.01 and CUDA Version 12.2. The parameter α was individually selected for each initialization
method since the norms resulting from different initialization methods varied, impacting the gradient
norms. See Table 5 for the other parameters.

Compression: We compressed the Q, K, V, O, Up and Down matrices, approximating each of them
with the same rank r to achieve the desired parameter ratio.

G Examples

In this section, we present examples supporting various assertions of our work.

Example G.1 (Loss of Precision When Computing the Gram Matrix [12]). When “squaring” a
matrix and then taking square root, we can lose accuracy in computing its smaller singular values.
This phenomenon can be illustrated on the following matrix:

X =

(
1 1
0
√
ε

)
,

where ε = εm/2, and εm is a small positive number, representing the machine epsilon (the smallest
number such that 1 + εm ̸= 1 in machine arithmetic).

26

First, we compute the singular values of matrix X . The singular values are the square roots of the
eigenvalues of X⊤X:

X⊤X =

(
1 0
1
√
ε

)(
1 1
0
√
ε

)
=

(
1 1
1 1 + ε

)
.

det(X⊤X − λI) = 0.
This leads to:

λ2 − (2 + ε)λ+ ε = 0.

λ =
2 + ε±

√
(2 + ε)2 − 4ε

2
.

Thus, the eigenvalues are:

λ1 =
2 + ε+ 2 + ε2

4

2
= 2 +

ε

2
+

ε2

8
+O(ε3),

λ2 =
2 + ε−

(
2 + ε2

4

)
2

=
ε

2
− ε2

8
+O(ε3).

The singular values of X are the square roots of the eigenvalues:

σ1 =
√
λ1 =

√
2 +

ε

2
+

ε2

8
=
√
2 ·

√
1 +

ε

4
+

ε2

16
=
√
2

(
1 +

ε

8
− ε2

128

)
+O(ε3).

σ2 =
√
λ2 =

√
ε

2
− ε2

8
=

√
ε

2
·
√
1− ε

4
= σ2 =

√
ε√
2

(
1− ε

8
− ε2

128

)
+O(ε3/2).

Finally,

σ1 =
√
2 +

√
2

8
ε+O(ε2),

σ2 =

√
ε√
2
−
√
ε

8
√
2
ε+O(ε3/2).

However, in machine arithmetic, we will obtain:

XX⊤ =

(
1 1
1 1

)
,

and also
σ̃1(X) =

√
2, σ̃2(X) = 0.

As a result,
|σ2(X)− σ̃2(X)| = O(√ε).

So we lost approximately square root of machine epsilon.

Figure 6: Figure illustrating the dependence of the convergence slope angle of regularized models
compared to non-regularized models, with all other factors held constant.

27

Example G.2 (Dependence on gap−1).

We fixed all dimensional parameters, left and right singular vectors of the matrix WX , as well as
all singular values except for the r-th and (r + 1)-th ones. Then, we varied the difference between
σr(WX) and σr+1(WX). The convergence rate of the regularized solution to the unregularized
solution with respect to this gap is presented Figure 6. We observe that the dependence on the gap is
intrinsic to the problem and that we catch the correct asymptotic behaviour in our theoretical bound
in the full rank case.

28

	Introduction
	Related Work
	Weighted Low-Rank Approximation
	Inversion-Free Solution
	Stability
	Efficiency

	Weighted Low-Rank Approximation with Regularization
	Experiments
	Model compression
	Fine-Tuning

	Limitations
	Conclusion
	General Weighted Low-Rank Approximation Problem
	SVD-LLM Method
	Basics of Low-Rank Approximation
	Convergence Proofs for the Full-Rank Regularization Problem
	Convergence Proofs (Without the Full-Rank Condition)
	Implementation Details
	Examples

