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ABSTRACT

Long-context inference with Transformers is constrained by quadratic attention
and linear memory growth. Many linear-time alternatives require pretraining from
scratch, whereas Recurrent Memory Transformers (RMTs) convert pretrained mod-
els into segment-recurrent variants via finetuning without modifying the original
model architecture. However, their sequential memory updates underutilize GPUs.
We show that RMT-style architectures with layer-level memory (PRMTs) (e.g.,
ARMT) can be among the most latency-efficient linear approaches when scheduled
properly. We introduce Diagonal Batching, a compute-reordering scheme that
preserves exact recurrence while exposing inter-step parallelism by executing "di-
agonals" concurrently with grouped layers. On LLaMA (1B/3B/8B) up to 131,072
tokens on A100/H100, Diagonal Batching achieves up to 3.3× lower latency than
full-attention inference and 1.8× over a sequential ARMT baseline, with no cus-
tom CUDA kernels. With the right scheduling, PRMTs achieve linear scaling with
context length and stand out as competitive, scalable architectures among linear
recurrent models.

1 INTRODUCTION

Transformer-based language models have not only revolutionized natural language processing
(NLP) (Vaswani et al., 2017; Devlin et al., 2019; Radford et al., 2019), but also catalyzed the
development of intelligent agents that can solve complex, multi-step problems in various domains by
scaling up to large language models (LLMs) (OpenAI, 2023; Reid et al., 2024; Dubey et al., 2024).
However, these transformer-based models have quadratic time complexity and a linear memory
footprint with respect to the length of the input sequence. Consequently, real-world applications are
limited by the context window size of standard transformers that can fit within hardware constraints.

From an engineering perspective, numerous optimizations have been proposed to improve atten-
tion efficiency and manage GPU memory more effectively. Optimized attention kernels, such as
FlashAttention (Dao et al., 2022; Dao, 2024) and the xFormers library (Lefaudeux et al., 2022),
focus on reducing memory access overhead and maximizing throughput. Memory-saving atten-
tion modifications like Multi-Query Attention (MQA) (Shazeer, 2019), Grouped Query Attention
(GQA) (Ainslie et al., 2023), and Multi-head Latent Attention (MLA) (Liu et al., 2024a) lower GPU
RAM usage by sharing and optimizing KV-cache. For distributed long-context training, methods like
Ring Attention (Liu et al., 2024b) and Microsoft DeepSpeed’s Ulysses (Jacobs et al., 2023) partition
sequence data across multiple devices to scale beyond single-GPU memory limits.

Along with these engineering optimizations, alternative architectures to the standard Transformer
have been explored. Recently, state-space and linear recurrent models, such as S4 (Gu et al., 2021),
RWKV (Peng et al., 2023), RetNet (Sun et al., 2023), and Mamba (Gu & Dao, 2023; Dao & Gu,
2024) have replaced the softmax attention with alternative read-write operations. These models offer
efficient parallel training, like transformers, and require constant memory during inference, like
RNNs. However, these approaches often suffer from reduced memory capacity (Jelassi et al., 2024)
and decreased accuracy in read-write operations (Rodkin et al., 2024). Furthermore, both state-space
models and Transformers face theoretical limits, such as the TC0 complexity bound on the class of
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functions computable in a single forward pass (Merrill et al., 2024; Strobl et al., 2024), constraining
their expressivity despite massive parallelism.

Memory-augmented models (Weston et al., 2015; Sukhbaatar et al., 2015), especially memory-
augmented transformers with segment-level recurrence (Dai et al., 2019; Rae et al., 2020; Bulatov
et al., 2022; Hutchins et al., 2022) offer an alternative approach by compressing history into fixed-
size memory states and propagating them across segments. In Recurrent Memory Transformers
(RMT) (Bulatov et al., 2022), special memory tokens carry state between segments, and each
Transformer block acts as a recurrent cell. This approach reduces inference complexity to linear
time and constant memory, supporting arbitrarily long contexts (Bulatov et al., 2024). However,
the recurrent nature of RMT makes it not fully parallelizable; all subsequent layers have recurrent
dependencies, and all segments must be processed sequentially.

Parallel Recurrent Memory Transformers (PRMTs) (Rodkin et al., 2024) are a broader class of
architectures in which each layer maintains its own memory state. PRMTs localize recurrence within
layers and eliminate all inter-layer memory flow. The Associative Recurrent Memory Transformer
(ARMT) (Rodkin et al., 2024) belongs to this family and demonstrates exceptional scalability. It
maintains high quality on sequences of up to 50 million tokens, which is far beyond the capacity of
RMT and Mamba (Rodkin et al., 2024; Kuratov et al., 2024). Models such as RWKV, Mamba, and
other linear-recurrent architectures can also be considered members of the PRMT family due to their
layer-level memory design.

PRMTs are asymptotically linear, yet they run sequentially over segments, which underutilizes GPUs
for single, long input requests. Naive micro-batching and pipelining are not helpful because they
require sophisticated batching over very long input sequences. This leads to unpredictable SLAs
and even higher latencies, due to the co-execution of many large-context requests at the same time.
Moreover, for pipelining, kernels operate on small inputs (segment sizes typically under 1024),
leading to small kernels that are unable to utilize the GPU without micro-batching.

In this work, we introduce Diagonal Batching, a scheduling scheme that unlocks inter-segment
parallelism in PRMTs inference without altering their exact recurrence. By reorganizing the 2D grid
of layer and segment computations into independent "diagonals", our method enables concurrent
execution of up to N_Layers operations per GPU kernel launch, eliminating the need to use com-
plex pipelining or micro-batching at all, which greatly simplifies the complexity of large context
deployments. Diagonal Batching fully encapsulates transformer block computations across segments,
thus eliminating the layer- and segment-level synchronization barriers present in previous RMT
implementations. Diagonal Batching does not require writing custom CUDA kernels to achieve
efficiency.

We implement Diagonal Batching in the ARMT framework and evaluate its performance on a LLaMA-
1B, 3B, and 8B models with sequence lengths up to 131,072 tokens on an NVIDIA A100/H100
GPUs. Our experiments demonstrate a 3.3× speedup over standard full-attention inference and a
1.8× improvement relative to a sequential ARMT baseline for 1B models. We show that RMT-style
architectures with layer-level memory (PRMTs), such as ARMT, are among the most latency-efficient
linear approaches for long-context inference when scheduled properly (via Diagonal Batching).

Our contributions are:

1. We identify execution scheduling, rather than algorithmic complexity, as the primary utilization
bottleneck for RMT-style linear recurrent models, especially on small and medium segment sizes.

2. We show that ARMT linear transformer become highly latency-efficient when scheduled right
with Diagonal Batching, a simple, kernel-agnostic grouping schedule that preserves exact recurrence
and exposes up to Nlayers inter-step parallelism, yielding near-linear latency scaling without custom
kernels.

3. We empirically show that, ARMT with Diagonal Batching exhibits the best latency scaling with
context length among the linear-recurrent baselines we tested (Mamba, RWKV); on LLaMA-1B
at 131,072 tokens it achieves 3.3× lower latency than full attention and 1.8× over a sequential
ARMT baseline, with ≈1% relative logit drift, comparable to the drift observed between SDPA and
FlashAttention.
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Figure 1: Unlocking Parallelism in Recurrent Memory Transformers (RMT) with Diagonal
Batching. Left: RMT splits long sequences and processes segments sequentially. Each layer updates
a memory (mem0, mem1, . . . ) and the final-layer memory is fed as input to the next segment; red
arrows show the recurrent dependencies that force strictly sequential execution. Center: Parallel RMT
(layer-level memory): each layer passes its own state to the same layer in the next segment, removing
inter-layer dependencies but retaining per-layer segment recurrence. Right: Diagonal Batching
rearranges the 2D grid of layers (rows) and segments (columns) into independent "diagonals" (same
colored blocks). This allows all operations on one diagonal (up to N_Layers) to execute concurrently
on the GPU, thus eliminating the sequential bottleneck while preserving all layer-level recurrence.

2 BACKGROUND

2.1 RECURRENT MEMORY TRANSFORMERS

Recurrent Memory Transformer (RMT) extends standard Transformer architectures by introduc-
ing segment-level recurrence (Figure 1, left). Specifically, the hidden representations corresponding
to a segment s are conditioned on a recurrent state M—referred to as the memory—propagated from
the previous segment s− 1.

In the original RMT formulation, the memory state is implemented as a sequence of input embeddings.
The memory update mechanism can be formally expressed as:

[_, _,Ms] = Transformer([Ms−1, Hs−1,Ms−1]), (1)

where Ms denotes the memory state associated with segment s, and Hs−1 represents the input
embeddings from segment s− 1. The square brackets indicate concatenation of the input sequences.

Associative Recurrent Memory Transformer (ARMT) introduces a parallel memory mechanism
designed to support a hierarchical memory structure. Unlike the original RMT, ARMT maintains
distinct memory states across different layers. This design facilitates a more expressive memory
representation by allowing each layer to store and update its own memory.

The memory update rule in ARMT is formulated as follows:

[_,M l
s] = TransformerLayer(AssociativeLayer([H l−1

s−1,M
l−1
s ])) (2)

ki, vi = WKmi,WV mi; βi = σ(Wβmi); Al
0 = 0⃗; zl0 = 0⃗; (3)

vi =
Al

s−1ϕ(ki)

(zs−1)Tϕ(ki)
; γi = 1− (zs−1)

Tϕ(ki)

∥ϕ(ki)∥2
; (4)

Al
s = Al

s−1 +
∑
i

βi(vi − vi)⊗ ϕ(ki); zls = zls−1 +
∑
i

γiϕ(ki). (5)

AssociativeLayer(xi) =
Al

s−1ϕ(WQxi)

(zls−1)
Tϕ(WQxi)

, (6)
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where mi is the vector from M l
s, Al

s ∈ Rdmodel×6dmem , zls ∈ R6dmem , ϕ is the untrained nonlinearity
DPFP-3 (Schlag et al., 2021), xi. is the vector from [H l−1

s−1,M
l−1
s ].

This mechanism essentially implements quasi-linear attention with a delta rule for segment-level
recurrence.

2.2 LAYER-LEVEL RECURRENT MODELS

We call a model layer-level recurrent if, at time step t and layer ℓ, the computation depends only
on (t, ℓ− 1) and (t− 1, ℓ) in the layer-time grid. The index t may denote either tokens or segments
(chunks of tokens). We use Parallel Recurrent Memory Transformers (PRMTs; Figure 1, center) as a
broad label for architectures that satisfy this dependency at either granularity. This class includes
ARMT (Rodkin et al., 2024), RWKV (Peng et al., 2023), Mamba (Gu & Dao, 2023; Dao & Gu,
2024), and other linear-recurrent models (Yang et al., 2024).

Per-layer memory enables scheduling policies that exploit parallelism across segments. Diagonal
Batching targets such layer-level recurrent architectures: it preserves the above dependency while
enabling parallel execution across segments. By contrast, RMT (Bulatov et al., 2022) introduces an
additional dependency on the previous step’s final layer; when the step is a segment s, output of (s, ℓ)
also depends on (s− 1, L) (Figure 1, left), which prevents diagonal scheduling.

2.3 EXISTING INFERENCE OPTIMIZATIONS TECHNIQUES FOR TRANSFORMER MODELS

Numerous techniques are proposed to speed up the inference of transformer models, including
FlashAttention (Dao et al., 2022; Dao, 2024), speculative decoding (Xia et al., 2023), quantiza-
tion (Frantar et al., 2022; Lin et al., 2024), among others. Practical methods should remain compatible
with these optimizations. Diagonal Batching is orthogonal to these methods and integrates with them
seamlessly, e.g., it can employ FlashAttention within segments computation and to compute attention
efficiently.

Hardware utilization. Effectiveness of individual operations is often analyzed via the roofline
model, which characterizes the performance limits of hardware based on computational intensity
and memory bandwidth (Williams et al., 2009). Transformer architecture mostly consists of matrix
multiplication - a compute bound operation. Matrix multiplication’s computational intensity does not
depend on batch size. However, the total achievable floating-point operations per second (FLOPS)
improves significantly, as larger batch sizes enable better parallel workload distribution across GPU
cores, optimizing hardware utilization (Dao et al., 2022).

Despite these benefits, a large batch size introduces significant memory demand. It mostly comes
from intermediate activation computations and storing output logits, which scales linearly with batch
size and sequence length. This limits practical usage of batching, as large language transformers
often use almost all available GPU memory.

3 DIAGONAL BATCHING METHOD

3.1 INTUITION AND DEPENDENCY GRAPH

In the naive approach, we must perform many forward operations (n_segments × n_layers)
using inputs of shape (segment_size, hidden_size). In PRMTs, each (segment,
layer) pair only depends on the preceding pairs: (segment, layer-1) and (segment-1,
layer).

Given this dependency, all pairs where segment + layer = i can be computed in parallel
during the i-th iteration. Each iteration can be visualized as a diagonal in the forward-pass computation
graph, as shown in Figure 1, right.

If the execution is not compute-bound, this diagonal execution approach can yield a significant
speedup for PRMT models.

4
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(b) Diagonal Batching: grouped compute scheme.

Figure 2: Baseline compute schedule in PRMTs leads to n_layers x n_segments sequential operations.
Diagonal Batching reduces this value to n_layers + n_segments by grouped computations.

Algorithm 1 GROUPED ARMT EXECUTION (DIAGONAL BATCHING)
Require: input sequence I, number of layers L, grouped layer G
1: ZEROGROUPEDMEMORY(M)
2: segments← SEGMENT(G, I) ▷ token ids to segments with memory tokens
3: GInput← [], Out← []
4: for i = 0 to L+ |segments| − 1 do
5: if i < |segments| then
6: prepend segments[i] to GInput ▷ ingest new segment
7: end if
8: X ← STACK(GInput)
9: if i > 0 then

10: X0:|X|−1 ← ASSOCIATE(G, X0:|X|−1) ▷ memory association operation between consecutive
segments

11: end if
12: Y ← GROUPEDFORWARD(G, X) ▷ multi-layer grouped call
13: UPDATEMEM(G, Y:,−num_mem_tokens:) ▷ memory update for next segment
14: GInput← list of segments in Y
15: if i ≥ L− 1 then
16: O ← GInput.POPLAST ▷ segment went through all layers
17: append O to Out
18: end if
19: end for
20: return CONCAT(Out) ▷ final logits

3.2 BATCHING

Simplified description of the algorithm is given for ARMT in Algorithm 1. For other Parallel RMTs,
the algorithm is the same, but without memory association and update operations.

Lemma 3.1. Diagonal Batching completes the DAG in the minimum possible number of groups,
Nsegments +Nlayers − 1, and schedules each node (i, j) in its earliest feasible group i+ j.

Proof. Topologically sort the DAG by the key (i, j) with root being (0, 0). In this ordering, each node
(i, j) appears at level i+ j, which is therefore the earliest group it can occupy, and the longest path
has length Nsegment+Nlayers−1 vertices. Hence, any schedule needs at least Nsegment+Nlayers−1
groups. Diagonal batching uses precisely those levels as its groups, achieving both bounds.

3.3 IMPLEMENTATION DETAILS

To efficiently implement grouped layer computations, we modify the base model architecture. All
layers are replaced with a single grouped layer, as shown in Figure 2. Using the initial layer of the
model as the basis, we implement the following adjustments: (1) Replace the linear layers with a
GroupedMatmul operation. The weights and biases are constructed by stacking those from the
original layers. (2) Layer normalization weights are also replaced by stacking parameters across all

5
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layers. Additionally, the forward pass is adapted to ensure correct broadcasting behavior. (3) All
other operations remain unchanged. However, they operate as though they handle significantly larger
batch sizes, contributing to parallel execution.

For the grouped matrix multiplication, we utilize the GroupedGEMM function from the CUTLASS
library with a minor optimization: the output tensor is pre-allocated as a single large tensor, which is
subsequently partitioned into individual submatrices without additional overhead.

Difference from pipelining. Diagonal Batching is a scheduling-and-layer-grouping method, not
pipeline parallelism. Unlike pipelines, it (1) uses a single control thread—no multi-thread/multi-
stream coordination or intrusive graph rewrites; (2) runs larger kernels instead of many small ones,
improving GPU utilization (see Figures 6 and 7) and avoiding CPU small-matrix special-casing (Yang
et al., 2021); and (3) requires no micro-batch overlap to hide bubbles as in pipelined systems (Huang
et al., 2019; Qi et al., 2023), yet achieves high utilization for single-request inference with a constant-
memory pattern, simplifying fleet deployment.

4 EXPERIMENTS

In the experiment section, we address two main questions regarding the Diagonal Batching method:
How much speedup we can get compared to the naive ARMT implementation in single request
inferences? How ARMT with Diagonal Batching scales compared to other linear recurrent models
(Mamba, RWKV) and to full-attention models (LLaMA)?

We start by showing that efficiency grows for individual bottleneck operations inside network - linear
layers and attention. Then, we show the resulting scaling for the transformer models with ARMT of
different sizes. We conducted all experiments with the models from the LLaMA-3 family (Grattafiori
et al., 2024).

4.1 INFERENCE SCALING

The performance increase for individual operations directly translates into overall model speedup.
We evaluate this effect on LLaMA ARMT models of varying sizes—160M (Table 9), 1B (Table 1),
3B (Table 7), and 8B (Table 8).

Across all model sizes and batch configurations, our implementation consistently achieves substantial
speedups over the default ARMT implementation. Gains are particularly pronounced for smaller
segment sizes. This is because, with larger matrix multiplications, hardware utilization is already
near peak FLOPS, leaving less room for group scaling.

A key implication of these results is that researchers can prioritize quality-driven choices for segment
size without being overly constrained by performance. Diagonal Batching decouples performance
from segment size, allowing better flexibility in architectural decisions.

4.2 SCALING BY MODEL FAMILY

We show how the different architecture families scale with input sequence length across different
model parameter sizes in Figure 3. Scaling for wider model classes includes measurement for
GPT and is shown in Appendix Figure 12. For model sizes under 0.5B, efficiency increase is very
significant, so the 3B model under Diagonal Batching performs similarly to the 0.4B model before
optimization. For bigger models, the gap is smaller, but allows to outperform the base non-linear
model starting from 32k context.

4.3 COMPARISON WITH OTHER LINEAR TRANSFORMERS

Comparison with other models shown in Figure 4. More extensive comparison shown in Ap-
pendix Figure 11 and Figure 10. Before our optimization, ARMT was slower on many configurations
than Mamba, RWKV, and sometimes even a quadratic-complexity transformer. With the Diagonal
Batching algorithm, ARMT outperforms other linear transformers with most configurations, provid-
ing a cost cut compared to non-linear transformers. For a fair comparison, we use the most efficient

6
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Table 1: Diagonal Batching speeds up the execution for longer sequences — from 1.1× to 2.7×
compared to base ARMT at 131072 sequence length. Execution time comparison (in seconds) and
relative speedups across different sequence lengths compared to LLama-3.2-1B-ARMT. Configuration
format: (segment_size, memory_tokens). Measured on Nvidia A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

Llama-3.2-1B 0.024 0.026 0.376 0.926 2.460 8.160
Configuration: (512, 128)
LLama-3.2-1B-ARMT 0.147 0.574 1.15 2.29 4.52 8.98
Diagonal Batching: LLama-3.2-1B-ARMT 0.283 x0.52 0.248 x2.32 0.454 x2.53 0.861 x2.66 1.67 x2.71 3.3 x2.72

Configuration: (1024, 128)
LLama-3.2-1B-ARMT 0.149 0.291 0.578 1.15 2.3 4.48
Diagonal Batching: LLama-3.2-1B-ARMT 0.119 x1.25 0.196 x1.49 0.351 x1.65 0.656 x1.75 1.27 x1.81 2.48 x1.81

Configuration: (2048, 128)
LLama-3.2-1B-ARMT 0.094 0.177 0.344 0.679 1.35 2.68
Diagonal Batching: LLama-3.2-1B-ARMT 0.108 x0.87 0.176 x1.01 0.304 x1.13 0.571 x1.19 1.11 x1.22 2.18 x1.23

Configuration: (4096, 128)
LLama-3.2-1B-ARMT 0.082 0.155 0.301 0.594 1.18 2.35
Diagonal Batching: LLama-3.2-1B-ARMT 0.102 x0.80 0.172 x0.90 0.295 x1.02 0.553 x1.07 1.07 x1.10 2.1 x1.12

Table 2: Diagonal batching speeds up the execution - from 1.1 to 1.3 times comparing to base ARMT
for 131072 sequence length, LLama-3.2-3B-ARMT, measured on Nvidia A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

Llama-3.2-3B 0.168 0.344 0.769 1.95 5.59 18.2
Configuration: (1024, 128)
LLama-3.2-3B-ARMT 0.272 0.537 1.05 2.02 4.09 8.23
Diagonal Batching: LLama-3.1-3B-ARMT 0.274 x0.99 0.454 x1.18 0.833 x1.26 1.58 x1.28 3.1 x1.32 6.14 x1.34
Configuration: (4096, 128)
LLama-3.2-3B-ARMT 0.203 0.39 0.765 1.52 3.01 6.01
Diagonal Batching: LLama-3.2-3B-ARMT 0.239 x0.85 0.411 x0.95 0.739 x1.04 1.4 x1.09 2.72 x1.11 5.37 x1.12

implementations for all architectures. Flash Attention 2 for non-linear transformers, ARMT and
ARMT with Diagonal Batching. We used mamba-ssm package for Mamba, and flash linear attention
for RWKV.

4.4 DIAGONAL BATCHING VS MINI-BATCHING

Another way to increase compute load on GPUs is to increase the batch size. We evaluate the
effectiveness of Diagonal Batching compared to standard mini-batching by measuring compute time
per segment under identical hardware and model configurations. As shown in Figure 5, diagonal
batching achieves compute scaling per segment that closely matches micro-batching across almost all
tested scenarios.

To provide an upper bound on achievable performance, we also report the Ideal Even Load case,
where all segments are computed with a full grouped layer with maximum achievable FLOPS. One
can see that this even load setup is much better, mostly matching or overcoming the biggest batch
sizes. The gap between them is our current implementation inefficiency. Notably, Diagonal Batching
delivers substantial performance improvements for larger models (starting from 1B parameters),
particularly when segment sizes are moderate. For these configurations, Diagonal Batching matches
large batch sizes.

These findings suggest that Diagonal Batching effectively captures the utilization benefits of large-
batch inference — through parallelized scheduling rather than increased memory allocation.
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Figure 3: Diagonal batching lowers the scaling curve for the whole family of LLaMA models. For a
512 segment size, the 3B model with Diagonal Batching is performing almost as 0.4B with Eager
implementation. Model’s family scaling for non-linear transformer, ARMT before and after Diagonal
Batching usage. Measurements are done with bfloat16 on a single Nvidia A100 80Gb.
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Figure 4: Diagonal batching makes ARMT the best performing linear architecture across different
model sizes. Comparison between linear architectures and quadratic transformer grouped by the
model’s sizes. Measured with bfloat16 on Nvidia A100.

4.5 ERROR ACCUMULATION

We conducted an empirical investigation on computational error accumulation during the inference
stage with Diagonal Batching. Our experiments show that the overall error is less than 2% for all
sequences shorter than 32,768 tokens. This is comparable to other efficient layer implementations
used in production. For example, we observed FlashAttention2 (Dao, 2024) gives 1-2% relative logits
error compared to other attention implementations on the same input sequences.

The detailed error values for each segment are presented in Table 3. The error is calculated as the ratio
of the Frobenius norm of the difference between the logits of the base ARMT implementation and the
logits of ARMT with Diagonal Batching to the norm of the logits of the base ARMT. However, we
find that effect of error accumulation on downstream tasks is negligible. To prove this, we evaluated
the trained ARMT model both in original implementation and with Diagonal Batching; the results are
presented in Table 4 in Appendix D. These results show that both implementations achieve the same
results on the BABILong benchmark (Kuratov et al., 2024), while Table 5 in Appendix D shows that
Diagonal Batching can increase the relative speed by up to 3.2x for 64k-length token sequences.
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Figure 5: Ideal batch-size scaling vs grouped batching on Nvidia A100 for LLaMA models, time per
segment in batch (group).

Table 3: During inference with diagonal batching, error accumulates but does not exceed 2%, which
is comparable to the change of attention implementation (FlashAttention vs SDPA). The results for
ARMT with Llama-3.2-1B-Instruct are shown with a segment size of 1024 tokens.

Number of segments 1 2 4 8 16 32 64 128

Diagonal Batching, Error, % 0.00 1.10 1.16 1.22 1.26 1.27 1.29 1.37

FlashAttention2 (Dao, 2024) vs torch SDPA, Error, % 1.25 1.15 1.17 1.22 1.36 1.45 1.79 2.04

5 CONCLUSIONS

We showed that the principal bottleneck in RMTs and their layer-memory variants (PRMTs) is not
algorithmic complexity but scheduling: recurrent dependencies force fine-grained synchronization,
which underutilizes modern accelerators. We introduced Diagonal Batching, a simple but powerful
scheduling scheme that reorganizes the layer-segment computation grid into concurrency-friendly
diagonals, enabling up to N_layers operations per kernel without altering exact recurrence. For
single-request long-context inference (batch=1) on A100/H100, Diagonal Batching narrows the
utilization gap without custom kernels, reducing cost per million tokens.

Relative to other linear-recurrent models, a base ARMT implementation is latency-inefficient. With
Diagonal Batching, however, ARMT shows the best latency scaling with context length: latency
grows near-linearly with length and matches or exceeds the end-to-end latency of custom-kernel
baselines such as Mamba and RWKV at longer contexts. Compared to full-attention models, on
LLaMA-1B at 131,072 tokens, ARMT with Diagonal Batching achieves 3.3× lower latency than
full-attention LLaMA-1B and 1.8× over a sequential ARMT baseline, while preserving numerical
fidelity on the same level as FlashAttention (about 1% relative logit error).

Considering these advantages, with right scheduling, Diagonal Batching turns theoretically appealing
compute scaling of PRMTs into a practical solution for exact linear-time inference on extremely long
contexts. By eliminating the major performance barrier, it positions memory-augmented recurrent
Transformers as a competitive and scalable foundation for next-generation LLM applications that
require efficient long-range input processing.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of results, we are releasing the full codebase. Currently, the code can be
found in the Supplementary Materials. Section C provides details on reproducibility, including used
hardware, software, and models details.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively for text polishing and editing (wording, spell checking).

B LIMITATIONS

Despite its advantages, Diagonal Batching has several limitations. First, it is not directly compatible
with the Recurrent Memory Transformers (RMTs) due to intra-layer recurrence. However, a more
promising approach is to focus on Parallel RMTs, which have already been shown in previous works
to be more effective (Rodkin et al., 2024). Second, our current implementation assumes a uniform
layer configuration. When models employ heterogeneous layers or varied hidden sizes, applying the
technique requires more intricate grouping logic and manual engineering. Finally, the achievable
speedup increases with the number of layers. Therefore, shallower models or models with very few
layers will only see modest performance gains.

C REPRODUCIBILITY

We attach an anonymized repository containing all inference/training code, experiment scripts,
and figure notebooks. Experiments were run on a single NVIDIA A100 80 GB (and verified on
H100) with PyTorch 2.5.1, CUDA 12.1, and BF16 precision. Exact package versions are pinned in
requirements.txt in the artifact. Code can be found in Supplementary Materials.

We evaluate LLaMA-3 and GPT ARMT variants with parameter sizes from approximate groups in
200M, 400M, 1-2B, 3B. These groups follow publicly available checkpoints for GPT, LLaMA, and
linear transformers (Mamba and RWKV). All ARMT checkpoints and conversion utilities follow the
baseline repository instructions, which our artifact pins (commit hash is included in the README).
Unless stated otherwise, we use the following parameters for experiments: single request (batch=1),
segment sizes in 512, 1024, 2048, 4096, memory tokens = 16 for the main latency results and bfloat16.
BABILong experiments use the task configs described by the benchmark authors.

To reproduce results for papers, see the attached repository:

1. ‘paper_experiments/measure_flops.ipynb‘ - individual operation scaling

2. ‘paper_experiments/llamas_batch_scaling.ipynb‘ - LLaMA scaling with batch size

3. ‘paper_experiments/ideal_grouped_scaling.ipynb‘ - reproduce Ideal/Even Load baseline in
paper

4. ‘usage_llama1b.ipynb‘ - performance comparison of torch model, ARMT implementation,
and grouped batching algorithm

To reproduce the BABILong evaluation and training

1. Install additional dependencies - clone BABILong repo and prepare data:

(a) ‘git clone https://github.com/booydar/babilong.git‘
(b) ‘unzip ./babilong/data/tasks_1-20_v1-2.zip‘

2. ‘run_eval_bl_fast_trained.py‘ - example of evaluation on BABILong for ARMT and ARMT
with Diagonal batching (trained on BABILong train set)

3. ‘calc_babilong_scores.ipynb‘ - extract and plot tables with BABILong scores and inference
time for ARMT and ARMT with Diagonal batching

4. ‘train_babilong_example.ipynb‘ - example of finetuning ARMT with Diagonal batching on
BABILong

5. ‘run_eval_bl_fast_finetuned.py‘ - example of evaluation on BABILong for ARMT with
Diagonal batching after additional finetuning

Diagonal Batching benefits from base model kernel work optimizations, which are assumed to be
presented (we use torch models from Huggingface Transformers); no custom CUDA is required.
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Table 4: Diagonal Batching maintains the same scores as the original ARMT inference method on the
BABILong benchmark. Scores of the models were evaluated on the first two tasks: QA1 and QA2.

Task Length,
tokens

LLama-3.2-1B
ARMT

LLama-3.2-1B
ARMT,

Diagonal Batching

QA1

0K 100 100
1K 100 100
2K 100 100
4K 100 100
8K 100 100
16K 100 100
32K 100 100
64K 70 69
128K 4 4

QA2

0K 100 100
1K 100 100
2K 100 100
4K 100 100
8K 99 100
16K 98 98
32K 94 94
64K 47 46
128K 3 3

From grouped GEMM, we use CUTLASS GroupedGemm to avoid separate concatenation of input
segments (it is done implicitly by allocating the output blob as continuous memory).

We fix PyTorch/CUDA seeds and enable deterministic flags where possible; minor variance in end-
to-end latency is expected due to kernel autotuning and GPU clocks. Seeds and flags are set in the
provided scripts.

As a result, in the attachment are provided artifacts, including source code, pinned requirements,
ARMT patch + commit, run scripts, notebooks producing all plots/tables, and guidance commands
used for each result.

D EVALUATING MODELS WITH DIAGONAL BATCHING

Although diagonal Batching significantly speeds up the inference, it also introduces some numerical
drifts due to the optimized execution procedure. To estimate the effect of these drifts on practical
tasks, we evaluated the ARMT model on the BABILong benchmark Kuratov et al. (2024) with and
without diagonal Batching. The ARMT model was trained on the BABILong dataset with curriculum
learning on length up to 8192 tokens, similar to the approach described in Kuratov et al. (2024). After,
we evaluated this model with and without diagonal batching on QA1 and QA2 tasks from BABILong.
Note that we did not change the weights of the model in this experiment; we simply applied the
proposed Diagonal Batching grouping method.

The evaluation results are presented in Table 4. As one can see, despite the numerical drifts during
the forward pass, the generation results remain almost unchanged up to the 65536 input length. These
results show that diagonal batching preserves the quality of the generation of the trained ARMT
model and can be used as a drop-in replacement to speed up the inference.

We also compared the inference time of these two approaches on the same benchmark. In this
experiment, we measure not the forward pass time, but the generation time on the BABILong. Table 5
shows that the diagonal batching approach significantly speeds up the generation, up to 3 times on
the input length of 65536 tokens. During both of these experiments, we used the following ARMT
configuration - the size of the segment was set to 1024 tokens, the number of memory tokens was set
to 16, and the associative memory hidden size was 64.

Finally, we implemented the backward pass for diagonal batching to support training. Aligning
the training and inference code eliminates a discrepancy that is likely the source of logit-level
floating-point drift.
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Table 5: Diagonal Batching significantly speeds up ARMT inference on longer inputs. Inference time
(in seconds) and relative speed-up of the models are given on the BABILong dataset, first two tasks.

Task Length,
tokens

LLama-3.2-1B,
ARMT

LLama-3.2-1B,
ARMT,

Diagonal Batching
Speed-up (× times)

QA1

2K 13.43 15.06 0.89
4K 22.45 17.99 1.25
8K 41.41 22.49 1.84
16K 79.16 33.12 2.39
32K 153.68 54.20 2.84
64K 302.15 94.36 3.20

QA2

2K 13.08 14.93 0.88
4K 22.66 18.21 1.24
8K 41.66 22.70 1.84
16K 79.80 33.38 2.39
32K 153.82 53.46 2.88
64K 303.40 94.69 3.20

To further evaluate the difference between ARMT model with and without Diagonal Batching, we
calculated how many tokens differ among tokens chosen by argmax during forward pass. The results
are presented in Table 6.

Table 6: During inference with diagonal batching, error accumulates in chosen by argmax tokens, but
does not exceed 2%. The results for ARMT with Llama-3.2-1B-Instruct are shown with a segment
size of 1024 tokens.

Number of segments 1 2 4 8 16 32 64 128

Diagonal Batching, percentage of different tokens chosen by argmax 0.00 0.05 0.02 0.05 0.09 0.12 0.12 0.13

D.1 LINEAR LAYER EFFICIENCY

The only change from the base model is that we substitute linear layer with matrix multiplication
to layers with grouped GEMM with the group equal to all weights of the linear layers. In Figure 6
we show that grouped GEMM FLOPS scales similarly through group size to GEMM with the
corresponding batch size. This gives the basis that our method should scale similarly to the underlying
model with batch size, as all other operations are basically the same (but in a different order).

Second, we have a group size equal to the number of layers in the model. This way, we move the
grouped GEMM operation to peak GEMM flops for a100 and h100 GPUs, ensuring high utilization.
Corresponding FLOPS improvement shown in Figure 6.
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Figure 6: Cutlass Group GEMM scales similarly to batch size 1 Linear layer’s matrix multiplication,
starting from group size 4.
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D.2 ATTENTION LAYER EFFICIENCY

Our method does not modify the attention layer at all. Instead, attention just performs a batched
operation with a batch size equal to the number of layers. This increases its performance to the
implementation FLOPS peak. We show relative FLOPS speedups in Figure 7.
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Figure 7: Diagonal batching increases attention performance by treating groups as batches—similar
to increasing the model’s overall batch size.
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Figure 8: Diagonal Batching enables the Recurrent Memory Transformers (ARMT) to process
128k token sequences 3.3x faster than the LLama-3.2-1B model, with 167.1x memory savings.
These results were obtained using an A100 GPU, and the segment size for the ARMT was set to
1,024 tokens.

To clearly illustrate the speedup provided by the developed diagonal batching algorithm, we present
relative improvements across various configurations and sequence lengths. Results for speedup
against the original ARMT implementation are shown in Table 11 and against the underlying LLaMA
model in Table 10. These measurements provide additional insights into how our method scales and
compares to the baseline implementations.

We also present results for different size models of LLaMA-3 family Grattafiori et al. (2024):
LLaMA-160M (Table 9), 1B (Table 1), 3B (Table 7), and 8B (Table 8) models.
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Table 7: Diagonal batching speeds up the execution - from 1.1 to 1.3 times comparing to base ARMT
for 131072 sequence length, LLama-3.2-3B-ARMT, measured on Nvidia A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

Llama-3.2-3B 0.168 0.344 0.769 1.95 5.59 18.2
Configuration: (1024, 128)
LLama-3.2-3B-ARMT 0.272 0.537 1.05 2.02 4.09 8.23
Diagonal Batching: LLama-3.1-3B-ARMT 0.274 x0.99 0.454 x1.18 0.833 x1.26 1.58 x1.28 3.1 x1.32 6.14 x1.34
Configuration: (4096, 128)
LLama-3.2-3B-ARMT 0.203 0.39 0.765 1.52 3.01 6.01
Diagonal Batching: LLama-3.2-3B-ARMT 0.239 x0.85 0.411 x0.95 0.739 x1.04 1.4 x1.09 2.72 x1.11 5.37 x1.12

Table 8: Diagonal batching speed-ups the execution - from 1.05 to 1.14 times comparing to base
ARMT for 131072 sequence length. Execution time comparison (in seconds) and relative speedups
across different sequence lengths compared to LLama-3.2-8B-ARMT. Configuration in format
(segment_size, memory_tokens). Nvidia A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

Llama-3.1-8B 0.332 0.682 1.48 3.61 9.82 30.4
Configuration: (1024, 128)
LLama-3.1-8B-ARMT 0.497 0.936 1.82 3.63 7.22 14.4
Diagonal Batching: LLama-3.1-8B-ARMT 0.478 x1.04 0.86 x1.09 1.64 x1.11 3.2 x1.13 6.34 x1.14 12.6 x1.14
Configuration: (4096, 128)
LLama-3.1-8B-ARMT 0.384 0.754 1.48 2.95 5.86 11.7
Diagonal Batching: LLama-3.1-8B-ARMT 0.432 x0.89 0.781 x0.97 1.46 x1.01 2.83 x1.04 5.6 x1.05 11.1 x1.05

Table 10: Diagonal batching ARMT implementation allows to speedup the execution for longer
sequences due to linear complexity - from 2.4 times to 3.8 times with respect to LLama-3.2-1B
for 131072 sequence length. Table shows Diagonal Batching executor speedup against original
LLama-3.2-1B for different methods across sequence lengths. Configuration in format (segment_size,
memory_tokens). Measured on Nvidia A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

LLama-3.2-1B, configuration: (512, 128) 0.085 0.105 0.828 1.075 1.473 2.473

LLama-3.2-1B, configuration: (1024, 128) 0.202 0.133 1.071 1.412 1.937 3.290

LLama-3.2-1B, configuration: (2048, 128) 0.222 0.148 1.237 1.622 2.216 3.743

LLama-3.2-1B, configuration: (4096, 128) 0.235 0.151 1.275 1.675 2.299 3.886
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Table 9: Diagonal batching speed-ups the execution - from 1.6 to 3.9 times comparing to base ARMT
for 131072 sequence length. Execution time comparison (in seconds) and relative speedups across
different sequence lengths compared to LLama-160M-ARMT. Configuration in format (segment_size,
memory_tokens). Nvidia A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

Llama-160M 0.017 0.033 0.075 0.196 0.594 2.03
Configuration: (1024, 128)
LLama-160M-ARMT 0.105 0.211 0.422 0.877 1.72 3.37
Diagonal Batching: LLama-160M-ARMT 0.061 x1.72 0.087 x2.43 0.138 x3.06 0.243 x3.61 0.451 x3.81 0.855 x3.94
Configuration: (4096, 128)
LLama-160M-ARMT 0.031 0.057 0.111 0.216 0.432 0.855
Diagonal Batching: LLama-160M-ARMT 0.046 x0.67 0.062 x0.92 0.094 x1.18 0.156 x1.38 0.284 x1.52 0.537 x1.59

Table 11: Diagonal batching allows to speedup the execution for longer sequences - from 1.1 times to
2.7 times with respect to base ARMT for 131072 sequence length. In cases when diagonal batching
is slower, we can fall back to the original inference algorithm at runtime. Table shows Diagonal
Batching executor speedup against original ARMT inplementation for different methods across
sequence lengths. Configuration in format (segment_size, memory_tokens). Measured on Nvidia
A100 GPU.

Method Sequence Length

4096 8192 16384 32768 65536 131072

LLama-3.2-1B, configuration: (512, 128) 0.519 2.315 2.533 2.660 2.707 2.721

LLama-3.2-1B, configuration: (1024, 128) 1.252 1.485 1.647 1.753 1.811 1.806

LLama-3.2-1B, configuration: (2048, 128) 0.870 1.006 1.132 1.189 1.216 1.229

LLama-3.2-1B, configuration: (4096, 128) 0.804 0.901 1.020 1.074 1.103 1.119

E.1 APPLICATION TO OTHER MODELS

Diagonal Batching may also benefit other PRMT models as they contain recurrent structure. Examples
include Mamba and xLSTM. In these cases, diagonal batching can be applied with a segment size of
1, since these models exhibit token-level recurrence.

In Table 12 and Figure 9, we show that diagonal batching provides higher efficiency per segment by
increasing compute parallelism.

Batch size

Method 1 2 4 8 12 16 20 24

mamba_ssm with
DB

0.0000382 0.000038 0.000038 0.000038 0.000038 0.000038 0.000038 0.000038

mamba_ssm 0.00092 0.00046 0.00023 0.000115 0.000092 0.000059 0.000046 0.000039

No mamba_ssm
with DB

0.002865 0.002865 0.002865 0.002865 0.002865 0.002865 0.002865 0.002865

No mamba_ssm 0.0658 0.03547 0.01778 0.00929 0.005743 0.00424 OOM OOM

Table 12: Diagonal batching can be beneficial for Mamba on small batch sizes. Mamba through-
put/latency (in seconds) across batch sizes with and without efficient CUDA kernels for mamba
(mamba_ssm). Measured on state-spaces/mamba-130m-hf model on single A100 inference. 8k
context used for measurements to prevent OOM on large batch sizes and, as mamba is token-recurrent
model, its efficiency does not increase then context is larger.
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Figure 9: Comparison of Mamba performance with and without efficient CUDA kernels for mamba
(mamba_ssm).

To apply diagonal batching to Mamba in practice, one must rewrite the Mamba CUDA kernels to
enable external segmentation of the forward pass, as the current implementation computes the full
forward for each layer.

E.2 ADDITIONAL COMPARISON WITH OTHER ARCHITECTURES
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Figure 10: ARMT with Diagonal Batching is the best latency model in each category for the 64k
context. ARMT+Diagonal Batching has very competitive performance across a wide variety of
segment sizes. Comparison is made for open source models that can out of the box support such
context. Reference efficient implementation is used - mamba-ssm for Mamba and flash linear attention
Yang & Zhang (2024) for RWKV. Single Nvidia A100 80Gb for measurements.

E.3 DECODING STAGE WITH ARMT

Diagonal batching does not modify the decoding stage, meaning that ARMT inference with diagonal
batching remains identical to the native ARMT implementation. However, ARMT provides several
advantages over standard quadratic-time Transformers. Most importantly, it eliminates the need to
store and repeatedly move large KV-caches between HBM and registers for each request - the cost
that grows linearly with both load and context length. Instead, ARMT relies on compact associative
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Figure 11: ARMT with Diagonal Batching is the best latency model in each category for the 32k
context. ARMT+Diagonal Batching has very competitive performance across a wide variety of
segment sizes. Comparison is made for open source models that can out of the box support such
context. Reference efficient implementation is used - mamba-ssm for Mamba and flash linear attention
for RWKV. Single Nvidia A100 80Gb for measurements.

memory produced during the prefill stage. This memory has fixed size per context and therefore
scales only with the number of concurrent requests. As a result, ARMT can execute substantially
more decoding phases in parallel within a disaggregated prefill–decode inference pipeline.

Table 13 shows that LLaMA-1B with ARMT sustains far more parallel requests before reaching
OOM on an NVIDIA RTX 6000, and even very long contexts remain feasible.

Table 14 demonstrates that ARMT maintains stable decoding efficiency across large batch sizes,
reducing memory-boundedness during decode. Further optimization of memory kernels for ARMT
remains an open direction.

Context Length Max Batch LLaMA Max Batch LLaMA ARMT
4096 4 16
8192 1 16
16384 0 16
32768 0 16
65536 0 16

Table 13: ARMT allows to handle constant big batch size in parallel on decode, not depending on
input context size. Maximum batch size before OOM on NVIDIA RTX 6000.
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Figure 12: Plot comparison across different architectures grouped by model size.

Prefill Size Decode 10 Tokens LLaMA, s Decode 10 Tokens ARMT LLaMA, s
1024 0.007 0.025
4096 0.006 0.025
8192 0.007 0.081
16384 OOM 0.027
32768 OOM 0.026
65536 OOM 0.027

Table 14: Decode latency does not grow while batch size increase for ARMT model, yet it can
handle much more requests in paralle then classic LLaMA transformer. Decode 10-token runtime
comparison between LLaMA and ARMT-LLaMA for different prefill sizes. Measured on 48Gb
NVIDIA RTX 6000.
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