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Abstract001

Natural Language to SQL (NL2SQL) provides002
a new model-centric paradigm that simplifies003
database access for non-technical users by con-004
verting natural language queries into SQL com-005
mands. Recent advancements, particularly006
those integrating Retrieval-Augmented Gen-007
eration (RAG) and Chain-of-Thought (CoT)008
reasoning, have made significant strides in en-009
hancing NL2SQL performance. However, chal-010
lenges such as inaccurate task decomposition011
and keyword extraction by LLMs remain ma-012
jor bottlenecks, often leading to errors in SQL013
generation. While existing datasets aim to mit-014
igate these issues by fine-tuning models, they015
struggled with over-fragmentation of tasks and016
lack of domain-specific keyword annotations,017
limiting their effectiveness. To address these018
limitations, we present DeKeyNLU, a novel019
dataset which contains 1,500 meticulously an-020
notated QA pairs aimed at refining task de-021
composition and enhancing keyword extraction022
precision for RAG pipline. Fine-tuned with023
DeKeyNLU, we propose DeKeySQL, a RAG-024
based NL2SQL pipeline that employs three dis-025
tinct modules for user question understanding,026
entity retrieval, and generation to improve SQL027
generation accuracy. We benchmarked mul-028
tiple model configurations within DeKeySQL029
RAG pipeline. Experimental results demon-030
strate that fine-tuning with DeKeyNLU signifi-031
cantly improves SQL generation accuracy on032
both BIRD (62.31% to 69.10%) and Spider033
(84.2% to 88.7%) dev datasets.034

1 Introduction035

The rapidly evolving landscape of data accessi-036

bility has intensified the need for intuitive inter-037

faces that empower non-technical users to inter-038

act with complex databases [Javaid et al., 2023,039

Al Naqbi et al., 2024]. Natural Language to SQL040

(NL2SQL) systems fulfill this requirement by trans-041

lating user-friendly natural language queries into042

precise SQL commands, facilitating seamless infor- 043

mation retrieval without requiring users to possess 044

programming skills for database question answer- 045

ing (Database QA) [Gao et al., 2023, Hong et al., 046

2024, Liu et al., 2024]. 047

Despite considerable advancements in NL2SQL 048

methods, accuracy remains a persistent challenge. 049

Modern hybrid approaches, which integrate Chain 050

of Thought (CoT) [Wei et al., 2022] reasoning and 051

Retrieval-Augmented Generation (RAG) [Lewis 052

et al., 2020] with specialized modules—such as 053

CHASE-SQL [Pourreza et al., 2024], CHESS [Ta- 054

laei et al., 2024], PURPLE [Ren et al., 2024], DTS- 055

SQL [Pourreza and Rafiei, 2024], and MAC-SQL 056

[Wang et al., 2023]—have made significant strides 057

but continue to encounter two major obstacles: in- 058

adequate task decomposition and imprecise key- 059

word extraction from user queries. These issues 060

frequently result in logical errors and incorrect field 061

identifications, particularly when queries involve 062

complex, multi-table relationships. 063

Prior work in the field has attempted to mitigate 064

these challenges. For instance, QDecomp [Tai et al., 065

2023] and QPL [Eyal et al., 2023] focus on refin- 066

ing query decomposition techniques by prompting 067

with LLMs, while DARA [Fang et al., 2024] strives 068

to enhance natural language understanding (NLU) 069

through agent frameworks. However, these ap- 070

proaches often lead to over-fragmentation of tasks 071

and do not adequately assess the overall model 072

performance in Database QA contexts. Further- 073

more, fine-tuning existing models with domain- 074

specific data has shown promise, but prevalent 075

datasets, such as BREAK [Wolfson et al., 2020], 076

lack comprehensive domain-specific annotations 077

for Database QA evaluation and do not empha- 078

size the precise keyword extraction required for 079

database retrieval. 080

To address these gaps, we present DeKeyNLU, a 081

novel dataset specifically designed to enhance NLU 082

capabilities for NL2SQL systems. DeKeyNLU 083
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Task Decomposition
GPT-4o: 1. Identify schools with the average Math 
score over 560 in the SAT test

DeKeyExtractor (Ours): 
1. Identify schools with the average score in Math over 
560
2. Determine if these schools are directly charter-
funded
3. Count the number of schools that are directly 
charter-funded 

Among the schools with the average score in Math over 
560 in the SAT test, how many schools are directly 
charter-funded?

DeKeySQL (Ours)  With Revision:
SELECT COUNT(T2.`School Code`) FROM satscores AS T1 INNER JOIN frpm AS T2 ON T1.cds = 
T2.CDSCode WHERE T1.AvgScrMath > 560 AND T2.`Charter Funding Type  ̀= 'Directly funded’ 

SQL GenerationQuestion
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DeKeySQL (Ours)  w/o Revision:
SELECT COUNT(*) FROM satscores T1 JOIN schools T2 ON T1.cds = T2.CDSCode WHERE T1.AvgScrMath > 
560 AND T2.FundingType = 'Direct’ 

Keyword Extraction
GPT-4o: [“schools with the average score”, “Math”, 
“560”, “SAT test”, “charter-funded”]
DeKeyExtractor (Ours): [“schools”, “average score in 
Math”, “560”, “SAT test”, “directly charter-funded”] 

Figure 1: Comparison of advanced NL2SQL methods with DeKeySQL. GPT-4o suffers from incomplete task
decomposition and incorrect keyword extraction. Missing a revision module, GPT-4o shows lower code generation
accuracy. Methods like MAC-SQL, CHESS, TA-SQL are efficient in either time or cost, but not both.

consists of 1,500 QA pairs meticulously annotated084

with a focus on two critical aspects: task decom-085

position and keyword extraction. Originating from086

the BIRD dataset [Li et al., 2024d], it provides a087

high-quality benchmark for evaluating and improv-088

ing NL2SQL methods in Database QA.089

In addition, we introduce DeKeySQL, a RAG-090

based pipeline optimized for NL2SQL tasks.091

DeKeySQL comprises three key modules: (1) User092

Question Understanding (UQU), which leverages093

the DeKeyNLU dataset for task decomposition and094

keyword extraction; (2) Entity Retrieval, incorpo-095

rating retrieval and re-ranking to identify database096

elements relevant to the users’ question; and (3)097

Generation, featuring task reasoning and feedback-098

driven error correction to produce accurate SQL099

statements.100

We benchmarked multiple model configurations101

within DeKeySQL RAG-based pipeline. Fine-102

tuning the UQU module with DeKeyNLU im-103

proved SQL generation accuracy from 62.31% to104

69.10% on the BIRD dev dataset and from 84.2% to105

88.7% on the Spider [Yu et al., 2018] dev dataset.106

Our experiments reveal that larger models, like107

GPT-4o-mini[OpenAI, 2024a], excel at task decom-108

position, while smaller models, such as Mistral-7B109

[Jiang et al., 2023], are more effective for keyword110

extraction. We also observed that optimal perfor-111

mance varies depending on dataset size and model112

architecture. Moreover, across the pipeline com-113

ponents, user question understanding emerged as114

the most significant factor influencing overall SQL115

generation accuracy, followed by entity retrieval116

and revision mechanisms.117

2 Related Work 118

2.1 Database Question Answering 119

Database Question Answering (Database QA) aims 120

to provide precise answers derived from tabular 121

data through advanced reasoning. Early research 122

focused on discrete reasoning [Jin et al., 2022], 123

with works such as TAT-QA [Zhu et al., 2021], 124

FinQA [Chen et al., 2021], and MVGE [Ma et al., 125

2017] exploring methods like fine-tuning, pre- 126

training, and in-context learning. Although these 127

approaches advanced the field, they often struggled 128

with generalization in multi-table settings [Zhang 129

et al., 2024]. 130

Parallelly, NL2SQL methods enable mapping 131

natural language questions to SQL queries, of- 132

fering efficient solutions [Gao et al., 2023]. 133

This area spans rule-based, neural network-based, 134

pre-trained language model (PLM)-based, and 135

large language model (LLM)-based strategies [Li 136

et al., 2024a]. Rule-based systems [Katsogiannis- 137

Meimarakis and Koutrika, 2021] were gradually su- 138

perseded by neural and transformer-based methods, 139

such as BERT [Devlin, 2018], which improved per- 140

formance on benchmarks like ScienceBenchmark 141

[Zhang et al., 2023]. Recent advances leverage 142

LLMs (e.g., GPT-4 [Achiam et al., 2023]), em- 143

powering systems such as CHESS [Talaei et al., 144

2024], DAIL-SQL [Gao et al., 2023], and MAC- 145

SQL [Wang et al., 2023] with specialized mod- 146

ules for enhanced accuracy and output refinement. 147

Nonetheless, LLM-based approaches continue to 148

face challenges like limited accuracy, high resource 149

costs, and runtime constraints, impeding their prac- 150
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ticality [Li et al., 2024a].151

2.2 Natural Language Understanding for152

NL2SQL153

Natural Language Understanding (NLU) is cen-154

tral to enabling machines to interpret human lan-155

guage [Allen, 1988], supporting tasks from key-156

word extraction to complex question answering [Yu157

et al., 2023]. The development of LLMs, including158

Gemini-Pro [Reid et al., 2024], GPT-4 [Achiam159

et al., 2023], and Mistral [Jiang et al., 2023], has160

significantly advanced NLU performance. To fur-161

ther augment their abilities, techniques such as ad-162

vanced text alignment [Zha et al., 2024], human-163

provided explanations [Liu et al., 2021], and ex-164

plicit reasoning frameworks like Chain-of-Thought165

(CoT) [Wei et al., 2022] and Tree-of-Thought [Yao166

et al., 2024] are widely studied. Robustness and167

generalization are assessed via benchmarks such as168

Adversarial NLI [Nie et al., 2019], OTTA [Deriu169

et al., 2020], and SemEval-2024 Task 2 [Jullien170

et al., 2024].171

In Database QA and NL2SQL, robust NLU is es-172

sential for query understanding and decomposition.173

Methods like QDecomp [Tai et al., 2023] and QPL174

[Eyal et al., 2023] break down complex user ques-175

tions, while DARA [Fang et al., 2024] and Iterated176

Decomposition [Reppert et al., 2023] iteratively177

refine intent understanding. Grammar-based mod-178

els (e.g., IRNet [Guo et al., 2019]) and techniques179

such as ValueNet [Brunner and Stockinger, 2021]180

help align natural language with structured schema181

elements. Yet, accurately handling nuanced queries182

remains challenging. While datasets like BREAK183

[Wolfson et al., 2020] support research in decompo-184

sition, many suffer from over-segmentation, and tra-185

ditional NLU datasets fail to capture key Database186

QA aspects like mapping keywords to database el-187

ements. Thus, there is a need for more holistic188

datasets and evaluation protocols that reflect the189

real-world requirements of Database QA systems.190

3 DeKeyNLU Dataset Creation191

As illustrated in Figure 1, current LLMs exhibit192

limitations in NLU capabilities for Database QA,193

which adversely affects NL2SQL accuracy. Exist-194

ing datasets like BREAK [Wolfson et al., 2020],195

while useful, often lack data directly pertinent to196

the primary task of complex SQL generation. More-197

over, their keyword extraction is often not compre-198

hensive or noise-free enough for robust NLU per-199

formance evaluation in Database QA. To address 200

these challenges, we developed the DeKeyNLU 201

dataset. 202

3.1 Data Sources 203

DeKeyNLU is derived from the BIRD dataset [Li 204

et al., 2024d], chosen for its validated origins, 205

large scale, and extensive use in NL2SQL research. 206

BIRD contains 12,751 text-to-SQL pairs across 207

95 databases (33.4 GB), spanning 37 professional 208

domains, and is specifically designed for evaluat- 209

ing and training NL2SQL models. It integrates 80 210

open-source relational databases from platforms 211

like Kaggle1 and Relation.vit. An additional 15 re- 212

lational databases were created for a hidden test set 213

to prevent data leakage. The BIRD team utilized 214

crowdsourcing to collect natural language ques- 215

tions paired with their corresponding SQL queries. 216

3.2 Selection and Annotation 217

We randomly selected 1,500 instances from the 218

BIRD training dataset. Each instance consists of 219

a user question and its ground truth SQL query. 220

Our annotation process, depicted in Figure 2, be- 221

gan with initial task decomposition and keyword 222

extraction performed by GPT-4o [OpenAI, 2024b]. 223

Task decomposition involved breaking user ques- 224

tions into a main task (primary goal) and sub-tasks 225

(refinements of the main task). Keyword extrac- 226

tion categorized terms into object (related to ta- 227

ble/column names) and implementation (filtering 228

criteria, represented as a dictionary of actions and 229

conditions). These elements aid similarity match- 230

ing within the database. 231

Despite using CoT [Wei et al., 2022] and few- 232

shot techniques [Brown, 2020], GPT-4o’s initial 233

interpretations were often suboptimal, producing 234

redundant/incomplete tasks or incorrect keywords 235

(see left panel of Figure 2). This necessitated man- 236

ual refinement. Three expert annotators were en- 237

gaged to review and correct GPT-4o’s outputs. A 238

three-phase cyclic process ensured cross-validation: 239

annotators started with different subsets (A, B, C), 240

then exchanged and reviewed, ensuring each in- 241

stance was evaluated by all. The process involved: 242

1. Evaluate Task Decomposition: Annotators 243

manually assessed the logical consistency of GPT- 244

4o-generated main tasks and sub-tasks, removing 245

redundancies and adding missing relevant tasks. 246

2. Evaluate Keyword Extraction: Keywords 247

1https://www.kaggle.com
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Question
The transaction of 840 USD happened in 
1998/10/14, when was this account opened?

Main Task: 
["1. Determine the date of account opening", 
"2. Identify the account associated with the 
transaction of 840 USD on 1998/10/14"]

Sub Task: 
["1.1 Find the account opening date", "2.1 
Identify the account associated with the 
transaction of 840 USD on 1998/10/14"]

Object: ["account"]

Implementation: 
[{"transaction": "840 "}, {"date": 
"1998/10/14"}] 

Initial Annotation

Step 1: Evaluate Task Decomposition
Manually analyze whether the main tasks and sub-tasks derived from 
question decomposition in GPT-4o are logically consistent. The main 
task represents the primary issue that needs to be addressed within the 
question, while the sub-tasks are further breakdowns of the main task.
If any tasks are found to be redundant, remove them. If any relevant 
tasks are missing, add them manually.

Step 2: Evaluate Keyword Extraction
Compare the question with the ground truth SQL. From the ground truth 
SQL, extract the relevant table name, column name, and filter 
condition. Based on these three elements, evaluate whether the 
keywords (object and implementation) generated by GPT-4o are 
correct. If they are incorrect, add or remove keywords accordingly.

Step 3: Final Scoring
After three rounds of rotational evaluation, the annotators will rate the 
revised keywords and tasks. A 5-point Likert scale is used, where 1 
indicates ‘unsatisfactory’ and 5 signifies ‘excellent.’ For any cases with
average scores lower than 4, the annotators will collaborate to discuss 
and determine the final modifications.

Question
The transaction of 840 USD happened in 
1998/10/14, when was this account opened?

Main Task: 
[ "1. Determine the date of account opening" ]

Sub Task: 
[“1.1 Identify the account associated with the 
transaction of 840 USD on 1998/10/14”, 
“1.2 Find the account opening date”]

Object: ["account", “transaction”  ]

Implementation: 
[{"transaction": "840 "}, {"date": 
"1998/10/14"}] 

Score: 5

Verified Annotation

Data Pre-annotated by GPT-4o Human Verification Process Data Verified by Human (DeKeyNLU)

Figure 2: The DeKeyNLU dataset creation workflow. User questions are initially pre-annotated by GPT-4o for
tasks (main and sub-tasks), objects, and implementations. These preliminary annotations are then subjected to a
rigorous human verification process, where annotators correct and refine both task decomposition and keyword
extraction. This involves three rounds of cross-validation. Following this, a final scoring phase identifies any low-
scoring annotations, which are then collaboratively reviewed and further refined to produce the final, high-quality
DeKeyNLU dataset.

(objects and implementations) were compared248

against user questions and ground truth SQL el-249

ements (filters, table/column names). Missing key-250

words were added, and extraneous ones removed.251

An initial training on 50 data points helped cali-252

brate annotators and establish quality standards.253

3. Final Scoring: After three rotational evalua-254

tion rounds, annotators rated revised keywords and255

tasks on a 5-point Likert scale (1=unsatisfactory,256

5=excellent). Cases averaging below 4 were dis-257

cussed collaboratively for final modifications. The258

inter-annotator agreement (Krippendorff’s Alpha)259

for human verification was 0.762, indicating a high260

level of consistency.261

3.3 Dataset Statistics262

After three review rounds, a dataset of 1,500263

question-answer pairs (decomposed tasks and key-264

words) was finalized. It was partitioned into train-265

ing (70%), validation (20%), and testing (10%)266

sets for robust model development and evaluation.267

Figure 3 shows the distribution of main tasks, sub-268

tasks, and keywords, which indicate question com-269

plexity. A higher number of tasks tests reasoning270

and integration capabilities, while more keywords271

suggest intricate table/column setups prone to er-272

rors. For main tasks: 68.2% of questions have one273

task, 24.9% have two, and 6.9% have three or more.274

For sub-tasks: 31.7% comprise one to two sub-275

tasks, 60% have three to four, and 8.3% contain276

over five. For keywords: 20.3% are linked to one277

or two keywords, 60.6% to three or four, and 19.2%278

to five or more. 279

4 RAG-based NL2SQL Framework: 280

DeKeySQL 281

We introduce DeKeySQL, a novel RAG-based 282

framework for NL2SQL generation, designed to 283

address common issues in existing approaches like 284

MAC-SQL [Wang et al., 2023] and CHESS [Ta- 285

laei et al., 2024], such as long runtimes, high costs, 286

and accuracy limitations. As depicted in Figure 287

4, DeKeySQL comprises three main components: 288

User Question Understanding (UQU), Entity Re- 289

trieval, and Generation. 290

4.1 User Question Understanding (UQU) 291

The initial phase of DeKeySQL focuses on compre- 292

hending user questions (Figure 4). The user ques- 293

tion is incorporated into a prompt template and fed 294

to an LLM (fine-tuned on DeKeyNLU) to generate 295

a structured response encompassing two key tasks: 296

Task Decomposition and Keyword Extraction. 297

Task Decomposition: Inspired by CoT reasoning 298

[Wei et al., 2022], we decompose complex user 299

questions into manageable components. We em- 300

ploy a two-level CoT approach, breaking questions 301

into a main task (primary goal) and sub-tasks (re- 302

finements). This hierarchical structure aids the gen- 303

eration model by clarifying task dependencies. For 304

example, the main task often corresponds to the 305

main SELECT component in SQL, while sub-tasks 306

map to operations like INNER JOIN, WHERE, etc. 307

General LLMs like GPT-4o can falter here (Figure 308
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Main Task Sub Task Keywords

1 2 3 4 1-2 3-4 5-6 7-8 1-2 3-4 5-6 ≥7

Figure 3: Distribution of the number of main tasks, sub-tasks, and keywords per question in the DeKeyNLU dataset.
These distributions illustrate the complexity inherent in the questions, reflecting the reasoning and integration
capabilities required of NL2SQL models.

2); thus, supervised fine-tuning with DeKeyNLU309

is employed to enhance stability and reliability.310

Keyword Extraction: Unlike prior methods that311

simply broke sentences into keywords leading to ir-312

relevancy, we classify keywords into object (terms313

associated with table/column names) and imple-314

mentation (filtering criteria as a key-value dictio-315

nary). While In-Context Learning (ICL) with multi-316

ple examples can guide LLMs, models like GPT-4o317

may still generate irrelevant keywords (Figure 2).318

To mitigate this, we fine-tune smaller models like319

Mistral-7B [Jiang et al., 2023] using DeKeyNLU,320

enhancing keyword extraction accuracy.321

4.2 Entity Retrieval322

Following keyword extraction, this module re-323

trieves corresponding database entities: table324

names, column names, table values, and textual de-325

scriptions (column/value descriptions). It consists326

of an embedder, retriever, and re-ranker. All table327

data are initially encoded and stored in a Chroma328

database. Keywords from UQU are encoded by329

the embedder and then used by the retriever to find330

the top-five resembling entities from the database.331

These are then passed to a re-ranker, which recal-332

culates similarity scores and selects the two most333

similar entities. This process is divided into two334

sub-tasks:335

Database Retrieval: Retrieves column names and336

table values. To handle large volumes of database337

values efficiently, we use MinHash [Zhu et al.,338

2016] + Jaccard Score or BM25 [Robertson et al.,339

2009]. MinHash generates fixed-size signatures for340

sets, approximating Jaccard similarity, while BM25341

is a probabilistic model using term frequency and342

inverse document frequency. For column names,343

the top five scoring entities (score > 0) are se-344

lected. For purely numeric keywords, only ex- 345

act matches for table values are considered; for 346

mixed text/numeric keywords, the top five scoring 347

entities are selected without a threshold. These 348

are re-ranked to find the two most similar enti- 349

ties. Retrieved entities are cross-referenced to get 350

table/column names, then de-duplicated and cate- 351

gorized (Figure 4). 352

Textual Description Retrieval: Retrieves column 353

and value descriptions. Given a smaller dataset for 354

this task, we directly use an embedding model to 355

encode data, then cosine similarity in the retriever 356

to find the top five entities. A specialized re-ranker 357

model then determines the final relevance order. 358

4.3 Generation 359

This process has two phases: SQL Generation and 360

Revision. 361

SQL Generation: Using ICL, general LLMs like 362

GPT-4o [OpenAI, 2024b] generate initial SQL 363

statements. Prompts (Appendix Figure 6) are struc- 364

tured into: data schema (formats, names, exam- 365

ples from Entity Retrieval), user question reasoning 366

(question, main/sub-tasks from UQU, hints from 367

dataset), constraints, and incentives. These details 368

guide the model to produce an initial SQL state- 369

ment. 370

Revision: Initial SQL may contain errors (incor- 371

rect table names, misaligned columns, etc., see 372

Figure 4). Erroneous SQL and corresponding er- 373

ror messages are fed back to an LLM for revision 374

(Appendix Figure 7). This iterative process yields 375

syntactically correct, operational SQL queries. 376

5 Experiments 377

We conducted comprehensive experiments to eval- 378

uate the DeKeyNLU dataset and the DeKeySQL 379
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Question
What is the highest eligible free rate for 
K-12 students in the schools in Alameda 
County?

You are a professional English teacher.
Question: {task question}
1. The upper sentence is completely 
correct. Please divide the upper 
sentence into main task and sub task.
2. Tell me how to implement each sub 
task and divide it into object and 
implementation. You can only detect 
the keywords in the  sentence, do not 
use words not included in the sentence. 
3. Object is related to the keywords in 
the question.
4. The value in the dictionary of 
implementation is mostly one to two 
words. If the values you select contains 
a lot of word, please double confirm 
whether it is belonged to filter condition, 
and then revise. It is number or 
adjective.

### EXAMPLE ONE:
### EXAMPLE TWO:

Prompt

Object: 
["highest eligible free rate", "K-12 
students", "schools"],
Implementation: 
[{"in": "Alameda County"}]}

Keywords Extraction
Main Task:
["Identify the highest eligible free 
rate for K-12 students in the 
schools in Alameda County"],
Sub Task: 
["1.1 Identify schools in Alameda 
County",  
"1.2 Determine the eligible free rate 
for K-12 students in these schools", 
"1.3 Find the highest eligible free 
rate among these schools” ]

Task Decomposition

User Question Understanding

LLM

Table schools

CDSCode Country Street … Phone

109835 Alameda Sperber … 581-0202

Table frpm

CDSCode FRPM Count Meal … Charter(Y/N)

109835 2346.0 4369.0 … 581-0202

Entity Retrieval

Embedder

Similar column names: {
"frpm": ["School Code"]},
Similar table values: {
"frpm": {"County Name": ["Alameda"],
"School Name": ["Alameda County 
Community", "Alameda High"]}}
Similar descriptions: {
"frpm": {"free meal count (k-12)": {
"column_description": "Free Meal 
Count (K-12)",
"value_description": "eligible free rate 
= Free Meal Count / Enrollment"}

Second SQL: SELECT `Percent 
(%) Eligible Free (K-12)` FROM 
frpm WHERE `County Name` 
= 'Alameda' AND `Percent (%) 
Eligible Free (K-12)` IS NOT 
NULL ORDER BY `Percent (%) 
Eligible Free (K-12)` DESC 
LIMIT 1  (Correct) 

Generation

Retriever

Reranker

Table description

Column name Column description … Value description
FRPM Count 
(K-12)

Free or Reduced Price Meal 
Count (K-12) … eligible FRPM rate = FRPM / 

Enrollment

LLM

Answer: [(1.0,)]  (Correct) Revision

First SQL: SELECT `Percent 
(%) Eligible Free (K-12)` FROM 
FRPM WHERE `Percent (%) 
Eligible Free (K-12)` IS NOT 
NULL ORDER BY `Percent (%) 
Eligible Free (K-12)` (Incorrect)
ERROR INFORMATION: FRPM 
table is not found. Execute 

Figure 4: The DeKeySQL Framework. (1) The user’s question is processed by the User Question Understanding
(UQU) module using a prompt template, directing an LLM (fine-tuned on DeKeyNLU) to perform keyword
extraction and task decomposition. (2) Extracted keywords are fed to the Entity Retrieval module to identify relevant
column names, table values, and descriptions from the database. (3) Task decomposition outputs, retrieved entity
data, and the original question are then input to the Generation LLM to produce SQL code. (4) If errors occur, the
error information and generated SQL are passed to a revision LLM for correction. (5) Finally, the corrected SQL is
executed to obtain the answer.

system. Our aims were: (1) to demonstrate380

DeKeyNLU’s effectiveness for model fine-tuning,381

and (2) to assess DeKeySQL’s performance against382

open-source SOTA methods.383

5.1 Experiment Setting384

Datasets: We used three datasets: DeKeyNLU (our385

proposed dataset), the BIRD development dataset,386

and the Spider dataset.387

NL2SQL Baseline Selection: We selected open-388

source NL2SQL methods or those with published389

papers, including GPT-4o as a baseline. Methods390

include: Distillery [Maamari et al., 2024] (schema391

linking augmentation), CHESS [Talaei et al., 2024]392

(integrates data catalogs/values), MAC-SQL [Wang393

et al., 2023] (multi-agent framework), Dail-SQL394

[Gao et al., 2023] (prompt engineering with ad-395

vanced question/example handling), and CodeS-396

15B [Li et al., 2024c] (incremental pre-training on397

SQL-centric corpus).398

Base Model Selection: For UQU, models included399

GPT-4o-mini [OpenAI, 2024a], GPT-4 [Achiam400

et al., 2023], Mistral-7B [Jiang et al., 2023],401

LLaMA3-8B [Dubey et al., 2024], Baichuan2-402

7B, and 13B [Yang et al., 2023]. For entity re-403

trieval, MinHash [Zhu et al., 2016] + Jaccard404

Score was compared against BM25 [Robertson405

Method Task Decomposition Keyword Extraction

BLEU ROUGE GPT-4o F1 Score

Llama3-8B 0.679 0.813 4.141 0.677
Baichuan2-7B 0.616 0.697 4.112 0.511
Baichuan2-13B 0.622 0.722 4.124 0.583
Mistral-7B 0.706 0.798 4.081 0.696
GPT-4o-mini 0.713 0.811 4.256 0.672
GPT-4 0.722 0.816 4.286 0.665

Table 1: Performance comparison of various fine-tuned
models on task decomposition (BLEU, ROUGE, GPT-
4o score) and keyword extraction (F1 Score) using the
DeKeyNLU test set. GPT-4 leads in task decomposition
metrics, while Mistral-7B shows the best F1 score for
keyword extraction.

et al., 2009]. Embedding models assessed: text- 406

embedding-3-large [OpenAI, 2024c], Stella-1.5B, 407

and Stella-400M. For code generation fine-tuning: 408

DeepSeek-Coder-V2-Instruct, DeepSeek-Coder- 409

V2-Base [Zhu et al., 2024], and Qwen-1.5-Coder 410

[Yang et al., 2024]. 411

Fine-tuning Process: Conducted on 4 Nvidia 4090 412

GPUs using Distributed Data Parallel and Deep- 413

Speed. Uniform batch size of 1, epoch count of 414

1, learning rate of 2e-4. Low-Rank Adaptation 415

(LoRA) [Hu et al., 2021] was used with rank=64, 416

alpha=16, dropout=0.05. Bit precision was 4. Fine- 417

tuning a UQU model with DeKeyNLU took 30 418

minutes; a code generation model took 4-5 hours. 419
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Method Configuration Dev EX

UQU + Entity Retrieval + Revision + Generation 60.36
Entity Retrieval + Revision + Generation 55.28
Entity Retrieval + Generation 51.25
Generation Only 46.35

Table 2: Module ablation study for DeKeySQL with
GPT-4 as the backbone on the BIRD development set,
showing Dev EX improvement with each added com-
ponent. The full pipeline (UQU + Entity Retrieval +
Revision + Generation) achieves the highest accuracy.

5.2 Metrics420

BLEU, ROUGE, and GPT-4o Score: For eval-421

uating task decomposition in NLU, we compared422

generated reasoning results against human-labeled423

ground truth using BLEU (BLEU-1, BLEU-2 for424

linguistic accuracy via n-gram matches) [Papineni425

et al., 2002], ROUGE (ROUGE-1, ROUGE-2,426

ROUGE-L for n-gram, sequence, and word pair427

overlap, measuring comprehensiveness/relevance)428

[Lin, 2004], and GPT-4o scores (five-point Likert429

scale, calibrated with human judgment for overall430

similarity) [Zheng et al., 2023]. Calibration details431

are in Table 9.432

F1 Score: For keyword extraction in NLU, perfor-433

mance was evaluated using precision, recall, and434

the F1 score, balancing correctness and recall for a435

holistic view of extraction efficiency.436

Execution Accuracy (EX): SQL query correct-437

ness was measured by comparing executed pre-438

dicted query results against reference query results439

on specific database instances. This ensures se-440

mantic correctness and accounts for varied SQL441

formulations yielding identical results.442

5.3 Results443

Supervised Fine-tuning with DeKeyNLU: As444

shown in Table 4 (top row vs third row for445

UQU impact), fine-tuning the UQU module with446

DeKeyNLU elevated Dev EX from 62.31% (GPT-447

4o without DeKeyNLU fine-tuning for UQU) to448

69.10% (GPT-4o-mini fine-tuned on DeKeyNLU449

for UQU, with GPT-4o for generation) on the BIRD450

dev dataset. On the Spider dev dataset, a similar451

improvement from 84.2% to 88.7% was observed.452

Table 1 reveals that model size impacts suitability453

for different fine-tuning tasks. Larger models (GPT-454

4, GPT-4o-mini) perform better on complex tasks455

like task decomposition after fine-tuning. Smaller456

models (Mistral-7B) outperform on tasks not re-457

quiring deep understanding, like keyword extrac-458

tion. This suggests task-specific model selection459

for fine-tuning is crucial. Table 3 shows the effects 460

of varying dataset sizes and epochs on keyword 461

extraction fine-tuning. Mistral-7B performed best 462

overall, followed by LLaMA-8B. For all models 463

except Mistral-7B, F1-Score initially rose then fell 464

with increasing training data, indicating more data 465

isn"t always better. Increasing epochs consistently 466

improved F1-Scores, suggesting it’s a highly ef- 467

fective method for enhancing keyword extraction 468

accuracy. 469

Ablation Study: The module ablation study (Table 470

2), using GPT-4 as the backbone, showed signifi- 471

cant accuracy improvements with each added mod- 472

ule. The UQU module (keyword extraction and 473

task decomposition) yielded the largest gain, boost- 474

ing accuracy by 9.18% (from 51.25% to 60.36%, 475

comparing "Entity Retrieval + Generation" with the 476

full pipeline). The entity retrieval module also con- 477

tributed substantially, increasing accuracy by 4.9% 478

(from 46.35% to 51.25%, comparing "Generation" 479

with "Entity Retrieval + Generation"). UQU, entity 480

retrieval, and revision modules were all indispens- 481

able. The model ablation study (Table 4) indicated 482

MinHash outperformed BM25 in entity retrieval 483

(e.g. 51.25% vs 49.34% when other components 484

are GPT-4 and text-embedding-3-large) with less 485

computation time. Surprisingly, the smaller Stella- 486

400M embedding model surpassed the larger Stella- 487

1.5B (e.g., 53.17% vs 51.36% Dev EX with GPT-4 488

UQU/Gen and MinHash retriever), suggesting pa- 489

rameter size isn"t always a guarantor of better per- 490

formance. For code generation, general LLMs like 491

GPT-4o and GPT-4 outperformed the fine-tuned 492

smaller code models in our setup, underscoring the 493

impact of parameter size and pre-training quality 494

on complex code generation accuracy. These find- 495

ings emphasize balancing architecture, parameter 496

size, and task-specific optimization. 497

BIRD and Spider Dataset Evaluation: For BIRD, 498

we report Dev EX due to its anonymity policy 499

for test set evaluation; test EX and VES will be 500

added in future updates. Table 5 shows DeKeySQL 501

achieves the best Dev EX on BIRD compared to 502

other SOTA models and is the current best open- 503

source method. On Spider, DeKeySQL shows the 504

highest EX on both dev and test sets. In practi- 505

cal utility assessment (Table 6), DeKeySQL ex- 506

cels in time efficiency, operational cost, and accu- 507

racy. Compared to CHESS, DeKeySQL achieves 508

a 52.4% runtime reduction and a 97% opera- 509

tional cost decrease, showcasing significant indus- 510

trial application potential. DeKeySQL is the top- 511
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Method Dataset Size Epoch w/o
Fine-tuning20% 40% 60% 80% 100% 1 2 3

Llama3-8B 0.609 0.636 0.677 0.661 0.653 0.677 0.728 0.734 0.442
Baichuan2-7B 0.497 0.515 0.558 0.522 0.511 0.511 0.648 0.688 0.208
Mistral-7B 0.648 0.640 0.634 0.694 0.696 0.696 0.755 0.769 0.502
Baichuan2-13B 0.412 0.554 0.573 0.638 0.585 0.585 0.609 0.647 0.266

Table 3: Impact of DeKeyNLU dataset size (percentage of training data used) and number of training epochs on
keyword extraction F1 score for various models. Mistral-7B generally benefits from more data and epochs, while
other models show nuanced responses to dataset size.

Module Focus UQU Model Entity Retrieval (Retriever + Embedder) Generation Model Dev EX

UQU

GPT-4o-mini (Finetuned on DeKeyNLU) MinHASH + Stella-400M GPT-4o 69.10
Mistral-7B (Finetuned on DeKeyNLU) MinHASH + Stella-400M GPT-4o 65.16
GPT-4o (No DeKeyNLU fine-tuning) MinHASH + Stella-400M GPT-4o 62.31
GPT-4 (No DeKeyNLU fine-tuning) MinHASH + Stella-400M GPT-4o 59.62

Generation

GPT-4 MinHASH + Stella-400M GPT-4o 59.62
GPT-4 MinHASH + Stella-400M DeepSeek-Coder-V2-Instruct (Finetuned) 55.78
GPT-4 MinHASH + Stella-400M DeepSeek-Coder-V2-Base (Finetuned) 50.41
GPT-4 MinHASH + Stella-400M Qwen-1.5-Coder (Finetuned) 30.82
GPT-4 MinHASH + Stella-400M GPT-4 53.17

Entity Retrieval

GPT-4 MinHASH + Stella-400M GPT-4 53.17
GPT-4 MinHASH + Stella-1.5B GPT-4 51.36
GPT-4 MinHASH + text-embedding-3-large GPT-4 51.25
GPT-4 BM25 + text-embedding-3-large GPT-4 49.34

Table 4: Performance (Dev EX on BIRD) of DeKeySQL with different backbone models for UQU, Entity Retrieval,
and Generation modules. Results highlight the impact of DeKeyNLU fine-tuning (e.g., GPT-4o-mini for UQU) and
the surprising efficacy of smaller embedding models like Stella-400M.

Method BIRD Dataset Spider Dataset
Dev EX Dev EX Test EX

GPT-4 46.35 74.0 67.4
Distillery [Maamari et al., 2024] 67.21 - -
CHESS [Talaei et al., 2024] 68.31 87.2 -
Dail-SQL [Gao et al., 2023] 54.76 84.4 86.6
SFT CodeS-15B [Li et al., 2024c] 58.47 84.9 79.4
MAC-SQL [Wang et al., 2023] 57.56 86.7 82.8
DeKeySQL(ours) 69.10 88.7 87.1

Table 5: Performance comparison (Execution Accuracy
- EX) on BIRD and Spider datasets. DeKeySQL demon-
strates state-of-the-art results among evaluated methods,
particularly on the development sets. "-" indicates re-
sults not reported or not applicable. Results are sourced
from official leaderboards where available.

performing open-source NL2SQL method evalu-512

ated.513

6 Conclusion514

This paper introduced DeKeyNLU, a novel dataset515

of 1,500 annotated question-SQL pairs, specif-516

ically designed to tackle critical challenges in517

task decomposition and keyword extraction for518

NL2SQL systems. Built upon the BIRD dataset,519

DeKeyNLU furnishes domain-specific annotations520

and establishes a high-quality benchmark for eval-521

uating and improving LLM performance in this522

domain. Our comprehensive experiments demon-523

strate that fine-tuning with DeKeyNLU signifi-524

cantly enhances SQL generation accuracy, with525

performance reaching 69.10% on the BIRD devel-526

opment set (an increase from 62.31%) and 88.7%527

Method Time(s) Dev EX Cost (USD)

CHESS [Talaei et al., 2024] 119.38 0.5 11
TA-SQL 57.92 0.5 0.41
SFT CodeS-15B [Li et al., 2024c] 35 0.4 -
MAC-SQL [Wang et al., 2023] 133.55 0.7 0.38
Chat2Query 680.96 0.6 -
DeKeySQL (ours) 56.81 0.8 0.32

Table 6: Practical utility metrics (Time, Dev EX, Cost)
for NL2SQL methods using GPT-4o as the base genera-
tion model. DeKeySQL demonstrates a strong balance
of efficiency and accuracy. "-" indicates data not avail-
able.

on the Spider development set (up from 84.2%). 528

We further observed that larger models like GPT- 529

4o-mini are particularly adept at task decomposi- 530

tion, whereas smaller, more agile models such as 531

Mistral-7B excel in keyword extraction. Within the 532

NL2SQL pipeline, entity retrieval was identified as 533

the most critical component for overall accuracy, 534

followed by user question understanding and the 535

revision mechanisms. These findings underscore 536

the profound value of dataset-centric approaches 537

and meticulous pipeline design in advancing the 538

capabilities of NL2SQL systems, paving the way 539

for intuitive and accurate data interaction for users. 540

Limitations 541

While DeKeyNLU and DeKeySQL demonstrate 542

considerable advancements, several limitations and 543

avenues for future research remain. The primary 544
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constraint is the DeKeyNLU dataset size (1,500545

samples), a consequence of resource limitations.546

While meticulously curated, this size may affect547

the robustness and generalizability of UQU mod-548

els, particularly for highly diverse real-world sce-549

narios. Expanding this dataset, possibly through550

semi-automated annotation techniques or exploring551

data augmentation strategies tailored for structured552

NLU tasks, is a key future direction. The restricted553

availability of high-quality annotated data, often554

compounded by copyright concerns for source data,555

poses an ongoing challenge for dataset expansion556

and community sharing that the field must address.557

Our benchmarking was also constrained by compu-558

tational resources, preventing experimentation with559

the largest available LLMs (e.g., DeepSeek-V2-560

Coder-236B, Llama3.1-70B) or their integration561

with more advanced RAG modules. Such larger562

models and components could potentially yield563

further accuracy and robustness improvements. Fu-564

ture work should evaluate these cutting-edge mod-565

els and diverse RAG configurations to establish566

more comprehensive benchmarks. Additionally,567

exploring the generalization of DeKeyNLU-trained568

models to completely unseen database schemas569

and question types, beyond the scope of BIRD,570

would be valuable. Investigating adaptive task de-571

composition strategies that can dynamically adjust572

granularity based on query complexity is another573

promising research avenue.574
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A Disclaimers 843

DeKeyNLU is developed based on the BIRD 844

dataset. Given the BIRD dataset’s claim that it 845

should be distributed under CC BY-NC 4.0 [Li 846

et al., 2024d]. 847

The DeKeyNLU dataset will be publicly avail- 848

able under the same CC BY-NC 4.0 license. 849

All annotators in our team hold bachelor’s de- 850

grees with their education conducted in English. 851

They were compensated at a rate of 14 USD/hr 852

for their annotation work. The DeKeyNLU dataset 853

does not contain any personally identifiable infor- 854

mation or offensive content. 855

The DeKeyNLU dataset was initially generated 856

by an LLM and then meticulously annotated and re- 857

vised by human experts. After three rounds of man- 858

ual revision, the high-quality DeKeyNLU dataset 859

was finalized. 860

B Performance of Revision Module 861

In our analysis of DeKeySQL, the Revision module 862

is activated only once during processing. While it 863

11



enhances accuracy, multiple iterations do not neces-864

sarily lead to better outcomes proportionally to cost.865

We experimented on 50 sample queries, varying the866

revision threshold from 1 to 5 (Table 7). Increasing867

the threshold generally improves accuracy with an868

associated rise in computational cost, though exe-869

cution time doesn"t follow a consistent pattern. A870

threshold of 3 offered an optimal balance of cost,871

accuracy, and execution time for our setup. For in-872

stance, a revision threshold of 1 yielded a Dev EX873

of 67.28% (on the BIRD dev set, based on context874

of DeKeySQL performance improvements being875

on BIRD), while increasing it to 5 improved Dev876

EX to 69.10%. The Revision module is capped at a877

threshold of 5 to prevent infinite loops and manage878

cost-effectiveness.

Threshold Time (s) Cost (USD) Accuracy (%)

One 322.79 1.402 48
Two 357.57 1.598 58

Three 339.44 2.953 62
Four 345.23 3.119 62
Five 469.04 4.265 64

Table 7: Performance of the Revision module with dif-
ferent iteration thresholds on a sample of 50 queries
from the BIRD dev set. Accuracy refers to Dev EX.

879

C Error Analysis Details880

Previous research, such as CHESS and CHASE-881

SQL, has not disclosed the specific datasets used882

for their error analyses, making direct objective883

comparisons challenging. Therefore, we conducted884

our own error analysis by randomly sampling 20%885

of failed cases from the BIRD dataset results. As886

shown in Table 8, we found that 45% of the golden887

SQL queries themselves had issues, primarily in-888

correct column names (11%) and missing GROUP889

BY/DISTINCT/RANK clauses (8%). Additionally,890

6% of golden SQLs did not follow provided evi-891

dence cues. For DeKeySQL, 49% of its incorrectly892

generated SQL queries were mainly due to not ad-893

hering to evidence (17%), incorrect column usage894

(11%), and incorrect operations (8%). Vague ques-895

tions, where question information was insufficient896

for correct SQL generation, accounted for 6% of897

issues, affecting both golden and predicted SQL.898

C.1 Error Types in Predicted SQL of899

DeKeySQL900

Our error analysis (examples in Tables 10 through901

14) identified five significant error types in902

Error Category % in Incorrect % in Incorrect % in Vague
Golden SQL (Total 45%) Predicted SQL (Total 49%) Questions (Total 6%)

Evidence Misalignment 6% 17% 0%
Incorrect Column 11% 11% 5%
Incorrect Filtering 5% 4% 1%
Description Issue 0% 0% 0%
Incorrect Aggregation 2% 1% 0%
Group by/Distinct/Rank Issue 8% 6% 0%
Incorrect Operation 6% 8% 0%
Date Handling Error 0% 0% 0%
NULL Value Handling 3% 1% 0%
Revision Error (Internal) 0% 0% 0%
Incorrect Table 4% 1% 0%

Table 8: Distribution of error categories identified
in Golden SQL queries, DeKeySQL’s Predicted SQL
queries (for failed cases), and Vague Questions from a
20% sample of BIRD dataset failed cases.

DeKeySQL’s predicted SQL: 903

• Incorrect Column Names: DeKeySQL 904

sometimes generates inaccurate column 905

names or selects incorrect columns. 906

• Incorrect Aggregation: Occasionally, 907

DeKeySQL joins tables unnecessarily or uses 908

incorrect column names in the "ON" clause, 909

leading to aggregation issues. 910

• Incorrect Operation: DeKeySQL may ex- 911

hibit flawed or superfluous mathematical cal- 912

culations, often due to an insufficient under- 913

standing of the database schema. 914

• Incorrect Evidence Understanding: In 915

some instances, DeKeySQL fails to consult 916

relevant evidence (e.g., formulas provided in 917

prompts) when generating SQL commands, 918

highlighting limitations in the LLM’s adher- 919

ence to complex instructions. 920

• Incorrect Filtering: Filtering values in SQL 921

commands can be inaccurate or non-existent 922

in the database. This is often linked to impre- 923

cise keyword extraction, indicating room for 924

improvement in that sub-module. 925

C.2 Errors in Keyword Extraction and Task 926

Decomposition (Qualitative) 927

Qualitative examples of errors in keyword extrac- 928

tion and task decomposition from the DeKeyNLU 929

annotation process are presented in Table 15 and 930

16. Keyword extraction errors are categorized as: 931

missed keywords, wrong keywords, and useless 932

keywords. Task decomposition errors include: a 933

main task that should be a sub-task, an incomplete 934

main task, an incomplete sub-task, incorrect sub- 935

task numbering/assignment, and ambiguous sub- 936

task definitions. These examples informed the re- 937

finement of our annotation guidelines and highlight 938

the challenges LLMs face. 939
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D Calibration of GPT-4o Score for NLU940

Evaluation941

To confirm the reliability of GPT-4o’s automated942

evaluation for NLU tasks (task decomposition) and943

measure its alignment with human judgments, we944

incorporated calibration techniques. We compared945

GPT-4o scores for generated answers with human946

scores assigned by the three dataset annotators on947

a 5-point Likert scale. Table 9 summarizes results948

for six models. On average, human evaluations949

were consistently slightly higher (0.125 to 0.202,950

mean 0.152) than GPT-4o scores. To address this,951

inspired by methodologies from EvalGen [Shankar952

et al., 2024] and CalibraEval [Li et al., 2024b], we953

performed a calibration between GPT-4o scores954

and human evaluations. The resulting regression955

model is:956

HumanEvaluation = 1.015×GPT4oScore+0.042
(1)957

After applying this calibration (Equation 1), the av-958

erage difference between calibrated GPT-4o scores959

and human evaluations reduced from 0.152 to960

0.046, demonstrating significantly improved con-961

sistency.962
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Model GPT-4o Score Human Evaluation Difference (Human - GPT-4o) Calibrated GPT-4o Score Difference (Human - Calibrated)

Llama3-8B 4.141 4.266 0.125 4.245 0.021
Baichuan2-7B 4.112 4.25 0.138 4.216 0.034
Baichuan2-13B 4.124 4.316 0.192 4.228 0.088
Mistral-7B 4.081 4.283 0.202 4.184 0.099
GPT-4o-mini 4.256 4.383 0.127 4.362 0.021
GPT-4 4.286 4.416 0.13 4.392 0.024

Table 9: Comparison of Model Scores (GPT-4o automated score for task decomposition) and Human Evaluation
on a 5-point Likert scale, before and after calibration. Calibration significantly reduces the difference between
automated and human scores.

Question Please list the phone numbers of the direct charter-funded schools that are opened after 2000/1/1.

Evidence Charter schools refers to Charter School (Y/N) = 1 in the frpm

Gold SQL SELECT T2.Phone FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode
WHERE T1.Charter Funding Type = "Directly funded" AND T1.Charter School (Y/N) = 1 AND
T2.OpenDate > "2000-01-01"

Predicted SQL SELECT T1.Phone FROM schools T1 JOIN frpm T2 ON T1.CDSCode = T2.CDSCode WHERE
T1.FundingType = "Directly funded" AND T1.OpenDate > "2000-01-01" AND T2.Charter School
(Y/N) = 1

Table 10: Example of an incorrect column name error in DeKeySQL’s predicted SQL. The model used "Funding-
Type" from the ’schools" table alias T1, while the correct schema required "Charter Funding Type" from the "frpm"
table alias T1 (or T2 if aliasing was different in gold).

Question Which school in Contra Costa has the highest number of test takers?

Evidence ""

Gold SQL SELECT sname FROM satscores WHERE cname = "Contra Costa" AND sname IS NOT NULL
ORDER BY NumTstTakr DESC LIMIT 1

Predicted SQL SELECT T1.sname FROM satscores T1 JOIN schools T2 ON T1.cds = T2.CDSCode WHERE
T2.County = "Contra Costa" AND T1.NumTstTakr IS NOT NULL ORDER BY T1.NumTstTakr
DESC LIMIT 1

Table 11: Example of an incorrect aggregation error: DeKeySQL unnecessarily joined the ’schools" table when
’satscores" already contained sufficient information ("cname" for county, ’sname" for school name).

Question How many test takers are there at the school/s whose mailing city address is in Fresno?

Evidence ""

Gold SQL SELECT T1.NumTstTakr FROM satscores AS T1 INNER JOIN schools AS T2 ON T1.cds =
T2.CDSCode WHERE T2.MailCity = "Fresno"

Predicted SQL SELECT SUM(T2.NumTstTakr) AS totalTestTakers FROM schools T1 JOIN satscores T2 ON
T1.CDSCode = T2.cds WHERE T1.MailCity = "Fresno"

Table 12: Example of an incorrect operation error: DeKeySQL used ’sUM(T2.NumTstTakr)" when the question
asked for the number of test takers at *each* school, implying individual counts, not a sum across all schools
matching the criteria.
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Question Name schools in Riverside which the average of average math score for SAT is grater than 400, what is
the funding type of these schools?

Evidence Average of average math = sum(average math scores) / count(schools).

Gold SQL SELECT T1.sname, T2.Charter Funding Type FROM satscores AS T1 INNER JOIN frpm AS T2
ON T1.cds = T2.CDSCode WHERE T2.District Name LIKE "Riverside%" GROUP BY T1.sname,
T2.Charter Funding Type HAVING CAST(SUM(T1.AvgScrMath) AS REAL) / COUNT(T1.cds) >
400

Gold SQL SELECT T1.sname, T2.FundingType FROM satscores AS T1 INNER JOIN schools AS T2
ON T1.CDSCode = T2.CDSCode WHERE T2.County = "Riverside" GROUP BY T1.sname,
T2.FundingType HAVING CAST(SUM(T1.AvgScrMath) AS REAL) / COUNT(T1.cds) > 400

Predicted SQL SELECT T1.sname, T2."FundingType" FROM satscores AS T1 JOIN schools AS T2 ON T1.cds =
T2.CDSCode WHERE T2.County = "Riverside" GROUP BY T1.sname, T2."FundingType" HAVING
AVG(T2.AvgScrMath) > 400

Table 13: Example of an incorrect evidence understanding error: DeKeySQL used "AVG(T2.AvgScrMath)"
instead of following the provided evidence formula: "Average of average math = sum(average math scores) /
count(schools)".

Question How many schools have an average SAT verbal score greater than 500 for students in grade 10?

Evidence ""

Gold SQL SELECT COUNT(DISTINCT T1.sname) FROM satscores AS T1 JOIN schools AS T2 ON T1.cds =
T2.CDSCode WHERE T1.AvgScrVerbal > 500 AND T2.GradeLevel = "High School"

Predicted SQL SELECT COUNT(T1.cds) FROM satscores AS T1 JOIN schools AS T2 ON T1.cds = T2.CDSCode
WHERE T1.AvgScrVerbal > 500 AND T2.GradeLevel = "100"

Table 14: Example of an incorrect filtering error: DeKeySQL incorrectly used a numeric value "100" for
"GradeLevel" which should have been a text value like "High School" or "Middle School" based on the database
schema, indicating a mismatch between extracted keywords and actual database values.

You are a professional English teacher.
Question: {task question}
1. The upper sentence is completely correct. Please divide the upper sentence into main task and sub task.
2. Tell me how to implement each sub task and divide it into object and implementation. You can only detect the keywords in the  sentence, do not use 
words not included in the sentence. 
3. Object is related to the keywords in the question.
4. The value in the dictionary of implementation is mostly one to two words. If the values you select contains a lot of word, please double confirm 
whether it is belonged to filter condition, and then revise. It is number or adjective.
5. Please only respond with a JSON object structured as follows, don't change the keys name.

### EXAMPLE ONE:
{
'question':"Name schools in Riverside which the average of average math score for SAT is grater than 400, what is the funding type of these schools?",
‘main task':["1. Name schools in Riverside which the average of average math score for SAT is grater than 400", "2. what is the funding type of these 
schools?"],
'sub task':["1.1 find the name of schools in Riverside",
"1.2 get the average math score of these school", 
"1.3 calculate the average score of average math score of eah school.", 
"1.4 find the school which the average of average math score for SAT is grater than 400",
"2.1 the funding type of these schools"],
'object':['Name schools','funding type', 'average math score for SAT','schools’],
'implementation':[{'in':'Riverside'}, {'is grater than':'400'}]
}

### EXAMPLE TWO:
{
'question': "How many units of item no.9 were sold in store no.1 in total in January, 2012?",
' main task': ["Determine the total units sold of item no.9 in store no.1 in January, 2012"],
'sub task': ["1.1 Identify store no.1",
"1.2 Identify item no.9",
"1.3 Track sales in January, 2012",
"1.4 Calculate total units sold of item no.9"],
'object': ['units', 'item no', 'store no'],
'implementation': [{'store no.': '1’}, {'item no.': '9’}, {'in': 'January, 2012'}]
}

Figure 5: Prompt of keyword extraction and task decomposition.
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You are a data science expert.
Below, you are presented with a database schema and a question.
Your task is to read the schema, understand the question, and generate a valid SQLite query to answer the question.
Before generating the final SQL query think step by step on how to write the query.

### Database Schema
{DATABASE_SCHEMA}

This schema offers an in-depth description of the database's architecture, detailing tables, columns, primary keys, foreign keys, and any pertinent 
information regarding relationships or constraints. 
Pay attention!!! Special attention should be given to the examples listed beside each column of data schema, as they directly hint at which columns are 
relevant to our query.

### Constraints
1. For key phrases mentioned in the question, we have provided the most similar values within the columns denoted by "-- examples" in front of the 
corresponding column names. This is a crucial hint indicating the correct columns to use for your SQL query.
2. pay attention!!! avoid using different column for the same object with different filter values.
3. pay attention!!! Don’t write a wrong column in the SQL code. Please check whether the column is belong to the table again in the SQL.

### Question: 
{QUESTION} 

### Steps that you should follow:
{Main Task}
{Sub Task}
{Hint}

The main task, sub task and evidence are correct, please base on them generate final sql query, please strictly follow the main task, sub task and 
evidence. 
If there is an equation in the evidence, please strictly follow the equation!!!
The amount of item SELECT in sql query depends on the number of main tasks. if there is only one main task, you should only SELECT one item related 
to the main task in the sql query.

Please respond with a JSON object structured as follows:
{{"SQL": "Your SQL query is here."}}

Figure 6: The prompt template used for the SQL Generation module within DeKeySQL. This template structures
the input to the LLM, including database schema, user question, decomposed tasks, and extracted entities, guiding
the model to produce an initial SQL statement.

Objective: Your objective is to make sure a query follows the database admin instructions and use the correct conditions.

Database Schema:    
{DATABASE_SCHEMA}

### Constraints
1. When you need to find the highest or lowest values based on a certain condition, using ORDER BY + LIMIT 1 is prefered over using MAX/MIN within 
sub queries.
2. If predicted query includes an ORDER BY clause to sort the results, you should only include the column(s) used for sorting in the SELECT clause if the 
question specifically ask for them. Otherwise, omit these columns from the SELECT.
3. Predicted query should return all of the information asked in the question without any missing or extra information.
4. For key phrases mentioned in the question, we have provided the most similar values within the columns denoted by "-- examples" in front of the 
corresponding column names. This is a crucial hint indicating the correct columns to use for your SQL query.
5. If you are joining multiple tables, make sure to use alias names for the tables and use the alias names to reference the columns in the query. Use T1, 
T2, T3, ... as alias names.

### Question:
{QUESTION}

### ERROR INFORMATION
{Error Infomation}

### Steps that you should follow:
{Main Task}
{Sub Task}
{Hint}

### Predicted query:
{SQL}

Pay attention to the ERROR INFORMATION, based on the error revise the SQL query.
Think about whether the predicted query used the hint and evidence already, if not, use the hint and evidence in the sql query generation.

Please respond with a JSON object structured as follows (if the sql query is correct, return the query as it is):
{{"revised_SQL": "Your revised SQL query is here."}}

Figure 7: The prompt template used for the Revision module in DeKeySQL. This template provides the LLM with
the erroneous SQL query and associated error messages, facilitating a targeted correction process to refine the SQL
into a syntactically correct and operational query.
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Error Type Question Predicted Ground Truth

Miss Keyword Write the title and all the key-
words of the episode that was
aired on 3/22/2009.

object["title", "keywords"] object["title", "keywords",
"episode"]

Wrong Keyword Write down the need statement of
Family History Project.

object[’statement"] object["need statement"]

Useless Keyword List the tax code and inspection
type of the business named "Rue
Lepic".

object["tax code", "business",
"inspection type", "name"]

object["tax code", "business",
"inspection type"]

Table 15: Qualitative Examples of Keyword Extraction Errors

Error Type Question Predicted Ground Truth

Main Task Be-
longs to Sub Task

What is the rental
price per day of the
most expensive chil-
dren’s film?

main task["1. Identify
the most expensive chil-
dren’s film", "2. Find
the rental price per day of
that film"]

main task["1. Find the
rental price per day of
the most expensive chil-
dren’s film"]

Main Task Is In-
complete

Which nation has the
lowest proportion of
people who speak
an African language?
Please state the na-
tion’s full name.

main task["Identify the
nation with the lowest
proportion of speakers of
African languages"]

main task["1. Identify
the nation with the low-
est proportion of people
who speak an African lan-
guage", "2. State the full
name of this nation"]

Sub Task Is In-
complete

Please list the names
of the male students
that belong to the
navy department.

main task["1. List the
names of the male stu-
dents that belong to the
navy department"]
sub task["1.1 identify
male students", "1.2 filter
students belonging to the
navy department"]

main task["1. List the
names of the male stu-
dents that belong to the
navy department"]
sub task["1.1 find the
male students", "1.2 fil-
ter students with navy de-
partment", "1.3 list the
names of these male stu-
dents"]

Sub Task Number
Is Wrong

For the business with
great experience ex-
isted in Sun Lakes
city, provide the user
ID who gave review
on it and user follow-
ers.

main task["1. Identify the
business with great expe-
rience in Sun Lakes city",
"2. Provide the user ID
who gave review on it and
user followers"]
sub task["1.1 identify the
business with great expe-
rience in Sun Lakes city",
"1.2 find the user ID of
the person who gave re-
view on this business",
"1.3 get the number of
user followers for this
user"]

main task["1. Identify the
business with great expe-
rience in Sun Lakes city",
"2. Provide the user ID
who gave review on it and
user followers"]
sub task["1.1 find the
business with great expe-
rience in Sun Lakes city",
"2.1 identify the user ID
who gave review on this
business", "2.2 find the
followers of these users"]

Sub Task Is Am-
biguous

Is SuperSport Park
located at Centurion?

main task["1. Is Super-
Sport Park located at Cen-
turion?"]
sub task["1.1 verify the
location of SuperSport
Park"]

main task["1. Is Super-
Sport Park located at Cen-
turion?"]
sub task["1.1 find the
location of SuperSport
Park", "1.2 check if the
location is at Centurion"]

Table 16: Qualitative Examples of Task Decomposition Errors
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