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ABSTRACT

Monotonic linear interpolation (MLI) — on the line connecting a random initial-
ization with the minimizer it converges to, the loss and accuracy are monotonic
— is a phenomenon that is commonly observed in the training of neural networks.
Such a phenomenon may seem to suggest that optimization of neural networks
is easy. In this paper, we show that the MLI property is not necessarily related
to the hardness of optimization problems, and empirical observations on MLI for
deep neural networks depend heavily on the biases. In particular, we show that
interpolating both weights and biases linearly leads to very different influences on
the final output, and when different classes have different last-layer biases on a deep
network, there will be a long plateau in both the loss and accuracy interpolation
(which existing theory of MLI cannot explain). We also show how the last-layer
biases for different classes can be different even on a perfectly balanced dataset
using a simple model. Empirically we demonstrate that similar intuitions hold on
practical networks and realistic datasets.

1 INTRODUCTION

Deep neural networks can often be optimized using simple gradient-based methods, despite the
objectives being highly nonconvex. Intuitively, this suggests that the loss landscape must have
nice properties that allow efficient optimization. To understand the properties of loss landscape,
Goodfellow et al. (2014) studied the linear interpolation between a random initialization and the local
minimum found after training. They observed that the loss interpolation curve is monotonic and
approximately convex (see the MNIST curve in Figure 1) and concluded that these tasks are easy to
optimize. However, other recent empirical observations, such as Frankle (2020) observed that for
deep neural networks on more complicated datasets, both the loss and the error curves have a long
plateau along the interpolation path, i.e., the loss and error remain high until close to the optimum
(see the CIFAR-10 curve in Figure 1). Does the long plateau along the linear interpolation suggest
these tasks are harder to optimize? Not necessarily, since the hardness of optimization problems does
not need to be related to the shape of interpolation curves (see examples in Appendix A).

In this paper we give the first theory that explains the plateau in both loss and error interpolations.
We attribute the plateau to simple reasons as the bias terms, the network initialization scale and the
network depth, which may not necessarily be related to the difficulty of optimization.

Note that there are many different theories for the optimization of overparametrized neural networks,
in particular the neural tangent kernel (NTK) analysis (Jacot et al., 2018; Du et al., 2018; Allen-Zhu
et al., 2019; Arora et al., 2019) and mean-field analysis (Chizat & Bach, 2018; Mei et al., 2018).
However they don’t explain the plateau in both loss and error interpolations. For NTK regime, the
network output is nearly linear in the parameters and the loss interpolation curve is monotonically
decreasing and convex — no plateau in the loss interpolation. Mean-field regime often uses a smaller
initialization on a homogeneous neural network (as considered in Chizat & Bach (2018); Mei et al.
(2018)). In this case, the interpolated network output is basically a scaled version of the network
output at the minimum and has same label predictions — no plateau in the error interpolation curve.
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Figure 1: Loss interpolation curve and error interpolation curve for a four-layer fully-connected
network (FCN4) on MNIST and for VGG16 on CIFAR-10.

1.1 OUR RESULTS

Our theoretical results consist of two parts. In the first part (see Section 3), we give a plausible
explanation for the plateau in both the loss and error curves.

Claim 1 (informal). If a deep network has a relatively small initialization, and its last-layer biases
are significantly different for different classes, then both the loss and error curves will have a plateau.
The length of the plateau is longer for a deeper network.

We formalize this claim in Theorem 1. For intuition, consider an r-layer neural network that only
has bias on the last layer, and consider Xavier initialization (Glorot & Bengio, 2010) which typically
gives small output and zero bias. If we consider the α-interpolation point (with coefficient α for the
minimum and (1− α) for the initialization), then the weight “signal” from the minimum scales as αr

(as it is the product of r layers) while the bias scales as α. As illustrated in Figure 2 (right), when r
is large and there is a difference in biases, the bias will dominate, which creates a plateau in error.
For the loss, one can also show that the weight signal is near 0 for small α, so the network output is
dominated by the biases and the loss cannot beat the random guessing at initialization. Note that this
explanation for the plateau does not have any implication on the hardness of optimization.

However, why would the last-layer biases be different for different classes, especially in cases when
the biases are initialized as zeros and all classes are balanced? In the second part (see Section 4), we
focus on a simple model that we call r-homogeneous-weight network. This is a two-layer network
whose i-th output is ⟨Wi,:, x⟩r + bi, where x ∈ Rd is the network input, Wi,: ∈ Rd is the weight
vector and bi ∈ R is the bias (see Figure 2 (left)). Our simple model simulates a depth-r ReLU/linear
network with bias on the output layer, in the sense that the signal is r-homogeneous while the bias is
1-homogeneous in the parameters. Under this model we can show that:

Claim 2 (informal). For the r-homogeneous-weight network on a simple balanced dataset, the class
that is learned last has the largest bias.

Here, a class is learned when all the samples in this class get classified correctly with good confidence.
We basically show that once a class gets learned, the bias associated with this class starts decreasing
and eventually the class that is learned last has the largest bias. We formalize this claim in Theorem 2.

In Section 5, we verify these ideas empirically on fully-connected networks for MNIST (Deng, 2012),
Fashion-MNIST (Xiao et al., 2017) and on VGG-16 (Simonyan & Zisserman, 2014) for CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009). We first show that if we train a neural network without using
any bias, then the error curve has much shorter plateau or no plateau at all. Even for networks that
are trained normally with biases, we design a homogeneous interpolation scheme for biases to make
sure that both biases and weights are r-homogeneous. Such an interpolation indeed significantly
shortens the plateau for the error. We also show that decreasing the initialization scale or increasing
the network depth can produce a longer plateau in both the error and loss curves. Finally, we show
that the bias is correlated with the ordering in which the classes are being learned for small datasets,
which suggests that even though the model we consider in the convergence analysis is simple, it
captures some of the behavior in practice.
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1.2 RELATED WORKS

There are two major lines of work studying interpolation between different points for neural networks,
one on monotonic linear interpolation that interpolates the initial network and the learned network,
and the other on mode connectivity that connects two learned networks.

Monotonic linear interpolation. Goodfellow et al. (2014) first studied the linear interpolation
between the network at initialization and the network after training on MNIST. Frankle (2020)
extended the experiments to modern networks on CIFAR-10 and ImageNet and found that though
the loss/error is still monotonically non-increasing along the path, it remains high until close to the
optimum. Lucas et al. (2021) showed that MLI holds when the network output curve along the
interpolation path is close to linear (measured by Gaussian length). However, the Gaussian length
can only be formally controlled in the NTK regime.

Mode connectivity. Mode connectivity considers the interpolation between two learned networks
(modes) found by SGD. In general, a linear interpolation between two different local minima crosses
regions of high loss (Goodfellow et al., 2014). Surprisingly, Draxler et al. (2018) and Garipov et al.
(2018) observed that local minima found by SGD from different initializations can be connected via
a piece-wise linear path of low loss. Frankle et al. (2020) and Fort et al. (2020) observed that local
minima trained from the same initialization can also be connected using a linear path. Freeman &
Bruna (2016); Venturi et al. (2018); Nguyen (2019; 2021); Kuditipudi et al. (2019); Shevchenko &
Mondelli (2020); Nguyen et al. (2021) gave several theoretical explanations for this phenomenon.

2 PRELIMINARIES

We first formally define the linear interpolation between the network at initialization and the network
after training. Then we describe the notations that we will use in the paper.

Linear interpolation: Consider a network with parameters θ ∈ Rp. Suppose the network is
initialized with parameters θ(0) and it converges to θ(T ). A linear interpolation is constructed by
setting the parameters θ[α] = (1 − α)θ(0) + αθ(T ) for α ∈ [0, 1]. The loss interpolation curve is
defined as γloss(α) : [0, 1] → R such that γloss(α) is the training loss of the network at θ[α]. Similarly,
the error interpolation curve is defined as γerror(α) : [0, 1] → [0, 1] with γerror(α) as the training
error of the network at θ[α]. Here, the training error is simply the ratio of training samples that get
classified incorrectly by the network.

Notations: We use [k] to denote the set {1, 2, · · · , k}. We use N (0, δ2) to denote the Gaussian
distribution with mean zero and variance δ2. We use ∥·∥ to denote the ℓ2 norm for a vector or
the spectral norm for a matrix. For any non-zero vector v, we use v̄ to denote v/ ∥v∥ . We use
O(·),Θ(·),Ω(·) to hide the dependency on constant factors and use Õ(·), Θ̃(·), Ω̃(·) to hide the
dependency on poly-logarithmic factors.

For any time t, we use θ(t), f (t) to denote the parameters and the network at time t. For any α ∈ [0, 1],
we use θ[α], f [α] to denote the α interpolation point, which means θ[α] := (1− α)θ[0] + αθ[T ] and
f [α] is the network with parameters θ[α].
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3 PLATEAU FOR LOSS AND ERROR INTERPOLATIONS

We prove that the long plateau exists in the loss and error curves when the initialization is small and
the network is deep on fully-connected networks. The detailed proof can be found in Appendix B.3.

We consider an r-layer fully-connected neural network with r at least three. Given input x ∈ Rn0 ,
the network output is

g(x) := Vrσ (Vr−1 · · ·σ(V1x) · · ·) + b, (1)

where Vi ∈ Rnr×nr−1 for each layer i ∈ [r] and b ∈ Rnr . Here the activation function σ (·) can be
either identity function or ReLU function. The output layer width equals to the number of classes,
i.e., nr = k. We use L ({Vi} , b) to denote the sum of cross entropy loss over all samples.

For the biases, we initialize them as zeros and assume after training there exists a gap between the
largest bias and the second largest, which also holds empirically (see Figure 8). Note this bias gap is
essential for the plateau in the error interpolation. If all the biases are equal in the trained network,
the logits for different classes only differ by the weights signal and the interpolated network has same
label predictions as the trained network.

Assumption 1 (Bias Gap). Choosing i∗ ∈ argmaxi∈[k] b
(T )
i , we have b

(T )
i∗ − maxi ̸=i∗ b

(T )
i > 0.

Without loss of generality, we assume that b(T )
k > maxi∈[k−1] b

(T )
i . We denote ∆min := b

(T )
k −

maxi∈[k−1] b
(T )
i and ∆max := b

(T )
k −mini∈[k−1] b

(T )
i .

Then, we show both the loss and error interpolation curves have a long plateau in Theorem 1.
Theorem 1. Suppose the network is defined as in Equation (1) and suppose the weights satisfy∥∥∥V (0)

i

∥∥∥ ≤ δ,
∥∥∥V (T )

i

∥∥∥ ≤ Vmax for all layers i ∈ [r]. On a k-class balanced dataset whose inputs

have ℓ2 norm at most 1, if Assumption 1 holds, for any ϵ > 0, as long as δ < min
(

ϵ1/r

r , 1
r2 ,
(

1
2e

) 2
r−2

)
,

there exist α1 = δ
∆min

, α2 =
(

1
1+

√
δ

) r
r−1
(

∆min

2V r
max

) 1
r−1

and α3 = ϵ1/r

Vmax
such that

1. for all α ∈ [α1, α2], the error is 1− 1/k;

2. for all α ∈ [0, α3], we have log k − 2eϵ ≤ 1
NL

({
V

[α]
i

}
, b[α]

)
≤ log k + α∆max + 2eϵ,

where N is the number of training examples.

The above theorem shows that for all α ∈ [α1, α2], the error remains at 1− 1/k that is the same as
random guessing. We skip the very short initial region [0, δ

∆min
] since the bias is very small and the

error can be unpredictable due to the randomness in initial weights. When initialization scale δ is
small, this error plateau region is roughly [0, ( ∆min

2V r
max

)
1

r−1 ]. Empirically, ∆min

2V r
max

is smaller than 1 and
does not change much when depth increases. So the plateau becomes longer in a deeper network.

Intuitively, the plateau in error curve is there because for a small initialization, the output is close to
αrV

(T )
r σ

(
V

(T )
r−1 · · ·σ(V

(T )
1 x) · · ·

)
+ αb(T ). When α is not large enough αr is much smaller than

α, so for every class i ̸= k, the first term (signal part) cannot overcome the bias gap α(b
(T )
k − b

(T )
i ).

This implies that all samples are predicted as class k and the error is 1− 1/k.

We also show that the average loss cannot be lower than log k − 2eϵ when α ≤ ϵ1/r

Vmax
. Note a small

random initialization can achieve a loss of approximately log k. Usually the bias gap ∆max in practice
is not very large, so the loss curve remains nearly flat during this interpolation region. Again, the loss
plateau is becoming longer when depth r increases. This is because the weights signal remains near 0
for a larger range of α.

4 TRAINING DYNAMICS FOR CREATING A BIAS GAP

In this section, we explain how the gradient flow dynamics generates a bias gap on a balanced
dataset by analyzing a simple model. Below, we first define the network model, training dataset and
optimization procedure for our analysis.
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r-homogeneous-weight network: We consider a two-layer and k-output neural network with
activation function σ(z) := zr, where r is a positive constant that is at least three. As illustrated in
Figure 2 (left), under input x ∈ Rd, the i-th output fi(x) is ⟨Wi,:, x⟩r + bi, where the weight vector
Wi,: ∈ Rd is the i-th row of weight matrix W ∈ Rk×d and bi ∈ R is the i-th entry of vector b ∈ Rk.
In output fi(x), we call ⟨Wi,:, x⟩r the signal since it is input-dependent and call bi the bias.

Dataset: We consider a k-class balanced dataset, with k as a constant. We denote the whole dataset
as S and denote the subset for each class i ∈ [k] as Si. Each subset Si has exactly N/k samples
and each sample x ∈ Rd is independently sampled as vi + ξ, where the noise ξ ∼ N (0, σ2

d I). To
differentiate the noise terms among different samples, we denote the noise associated with sample x
as ξx. We assume all vi’s are orthonormal; without loss of generality, we assume vi = ei for each
class i. Here, we assume the orthogonal features to facilitate the convergence analysis beyond the
NTK regime, following previous works (Allen-Zhu & Li, 2020; Ge et al., 2021).

Optimization: We initialize each entry in weight matrix W by independently sampling from
Gaussian distribution N (0, δ2) and then taking the absolute value 1. Our analysis can be triv-
ially generalized to standard Gaussian initialization (without taking absolute value) when r is
an even integer. We initialize all bias terms as zeros. We use cross-entropy loss L(W, b) =∑

i∈[k]

∑
x∈Si

− log
(

exp(fi(x))∑
j∈[k] exp(fj(x))

)
, and run gradient flow on k

NL(W, b) for time T. Our analy-
sis can also be extended to gradient descent with a small step size.

Next we show that running gradient flow from a small initialization can converge to a model with
zero error and constant bias gap.

Theorem 2. Suppose the neural network, dataset and optimization procedure are as defined in
Section 4. Suppose initialization scale δ ≤ Θ(1), noise level σ ≤ Θ̃(1), dimension d ≥ Θ̃(1/δ2r−2)

and number of samples N ≥ Θ̃(1/δr−1), with probability at least 0.99 in the initialization, there
exists time T = Θ(log(1/δ)/δr−2) such that we have

1. zero error: for all different i, j ∈ [k] and for all x ∈ Si, f
(T )
i (x) ≥ f

(T )
j (x) + Ω(1);

2. bias gap: b(T )
i∗ −maxi ̸=i∗ b

(T )
i ≥ Ω(1) with i∗ = argmaxi∈[k] b

(T )
i .

Due to space limit, we only give a proof sketch here and leave the detailed proof in Appendix C.
Since our dataset is perfectly balanced, it might seem surprising that gradient flow learns diverse
biases. We can compute the time derivative on the bias, ḃi = 1 − k

N

∑
x∈S ui(x), where ui(x)

is the softmax output for class i, that is exp(fi(x))∑
i′∈[k] exp(fi′ (x))

. At the beginning, all logits are small,

we have ui(x) ≈ 1/k and ḃi ≈ 0. If all the samples are learned at the same time, we have
ui(x) ≈ 1, ui(x

′) ≈ 0 for x ∈ Si, x
′ ∈ S \ Si, which again leads to ḃi ≈ 0.

On the other hand, we can consider what happens if all samples in one class (e.g., class i) are learned
before any sample in any other class (e.g., class j) is learned 2. In this case we have

ḃi = 1− k

N

∑
x∈Si

ui(x)−
k

N

∑
x∈S\Si

ui(x) ≈ 1− k

N
· N
k

· 1− k

N
· N(k − 1)

k
· 1
k
= −k − 1

k
,

ḃj = 1− k

N

∑
x∈Si

uj(x)−
k

N

∑
x∈S\Si

uj(x) ≈ 1− k

N
· N
k

· 0− k

N
· N(k − 1)

k
· 1
k
=

1

k
,

where for any learned sample x ∈ Si, we have ui(x) ≈ 1, uj(x) ≈ 0; for any not yet learned sample
x ∈ S \ Si, we have ui(x), uj(x) ≈ 1/k. The above calculation shows that bi starts to decrease
and all the other bias terms increase. Generalizing this intuition, we show that bi′ starts to decrease
whenever class i′ is learned, and the class that is learned last will have the largest bias.

1In the Xavier initialization, each entry in weight matrix W is sampled from N (0, 1/d), so we can think of
δ2 = 1/d that is small when input dimension d is large.

2This is indeed possible since all samples of one class only differ in the noise terms in our setting. In the
analysis, we can show that the noise term has negligible contribution to the network output and all samples in
one class are learned almost at the same time.
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Figure 3: The training dynamics of W and b in a four-class example.

As the weights are initialized randomly, by standard anti-concentration, one can argue that there is
a gap between W

(0)
i,i ’s. Without loss of generality, we assume W

(0)
1,1 > W

(0)
2,2 > · · · > W

(0)
k,k . The

initial difference in the weights will lead to different classes being learned at different time. We show
that by doing induction on the following hypothesis through training:

Proposition 1 (Induction Hypothesis). In the same setting of Theorem 2, with probability at least 0.99
in initialization, there exist time points 0 =: s1 < t1 < s2 < t2 < · · · < sk−1 < tk−1 < sk := T
with ti−si = Θ(log(1/δ)/δr−2) and si+1−ti = Θ(1) for i ∈ [k−1] such that for any t ∈ [si, si+1],

1. (classes not yet learned) for any class j, j′ ≥ i+1, we have (1) b(t)j ≥ maxi′∈[k] b
(t)
i′ −O(δr),

(2)
∣∣∣b(t)j − b

(t)
j′

∣∣∣ ≤ O(δr) and (3) W (t)
j,j ≤ O(δ);

2. (classes already learned) for any class j ≤ i− 1, we have (1) b(t)j ≤ maxi′∈[k] b
(t)
i′ −Ω(1),

(2) f (t)
j (x) ≥ f

(t)
i′ (x) + Ω(1) for i′ ̸= j, x ∈ Sj and (3) W (t)

j,j ≥ Ω(1);

3. (parameters movement) (1) for any j ∈ [k],Θ(δ) = W
(0)
j,j < W

(t)
j,j , (2) for any distinct

j, j′ ∈ [k], 0 < W
(t)
j,j′ ≤ O(δ) and (3) for any j, j′ ∈ [k] and any x ∈ Sj′ ,

∣∣∣〈W (t)
j,: , ξx

〉∣∣∣ ≤
min

(
O(δ),W

(t)
j,j′

)
.

This proposition shows that gradient flow learns k classes one by one, from class 1 to class k. More
precisely, each class i is learned during time [si, si+1]. All the not yet learned classes j ≥ i + 1

have close to maximum biases and their weights W (t)
j,j ’s are small. All the already learned classes

j ≤ i− 1 have small biases and large weights W (t)
j,j ’s. For the parameters movement, we know that

all the diagonal entries W (t)
j,j ’s are larger than the initialization and all the off-diagonal entries W (t)

j,j′ ’s
are only O(δ). The correlation between the weights and noise terms also remains small.

When learning class i during time [si, si+1], the weight W (t)
i,i slowly grows to a small constant in

[si, ti] and then quickly grows large in [ti, si+1.] As a result, all x ∈ Si become classified correctly.
During the same time, b(t)i decreases and becomes smaller than the largest bias by at least a constant.
At the end time T = sk, although W

(T )
k,k remains small, all x ∈ Sk are also classified correctly

because b
(T )
k is the largest bias. See an illustration of this learning process in Figure 3.

Although we consider a simple neural network and data distribution, the analysis for the training
dynamics is still non-trivial. There are three major challenges in our proof: (1) How to ensure that
class i + 1 is learned much later than class i? (2) For any class j that has not been learned, how
to maintain that its bias is close to the maximum? (3) For any learned class j, how to maintain the
large bias gap from the top bias? Next, we give the proof ideas for these questions. Since all the
off-diagonal entries and correlations with noise terms in W (t) are negligible, in our proof we can
essentially focus on the movement of W (t)

i,i ’s and b
(t)
i ’s.

Lower bounding si+1 − si. During time [si, ti], the dynamics of W (t)
i,i is similar as in the tensor

power method (Allen-Zhu & Li, 2020; Ge et al., 2021). The initial gap between W
(0)
i,i and W

(0)
j,j
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ensures that when W
(ti)
i,i rises to a small constant, W (ti)

j,j is still O(δ) for all j ≥ i + 1. Then after

constant time si+1 − ti, W
si+1

j,j is still O(δ) since the increasing rate of W (t)
j,j is merely O(δr−1).

Bias for classes that are not learned. For j ≥ i+1, we maintain that b(t)j ≥ maxi′∈[k] b
(t)
i′ −O(δr).

First, we use the below lemma to show biases for any two classes j, j′ ≥ i+ 1 remain close.
Lemma 1 (Coupling Biases). Assuming Wj′,j′ ,Wj,j ≤ O(δ) and bj′ , bj ≥ maxi′∈[k] bi′ −O(δr),
we have ḃj′ − ḃj > 0 if bj′ − bj ≤ −µδr, and ḃj′ − ḃj < 0 if bj′ − bj ≥ +µδr for some positive
constant µ.

Second we show that any already learned or being learned class j′ ≤ i cannot have bias much larger
than any class j ≥ i+ 1 not yet learned.
Lemma 2 (Bias Gap Control I). For any different j′, j ∈ [k], if Wj′,j′ ≥ Wj,j ,Wj,j ≤ O(δ) and
bj′ − bj ≥ O(δr), bj ≥ maxi′∈[k] bi′ −O(δr), we have ḃj′ − ḃj < 0.

Bias for learned classes. At time sj+1, we can prove that 1− u
(sj+1)
j (x) ≤ C1 for all x ∈ Sj and

b
(sj+1)
j − b

(sj+1)
k ≤ −C2. According to the below lemma, we can ensure that b(t)j − b

(t)
k ≤ −C2 for

any t ≥ sj+1.

Lemma 3 (Bias Gap Control II). There exist small positive constants C1, C2 such that for any
j ∈ [k − 1] and any x ∈ Sj , if 1 − uj(x) ≤ C1,Wk,k ≤ O(δ) and bj − bk ≥ −C2, we have
ḃj − ḃk < −Ω(1).

4.1 PLATEAU AND MONOTONICITY FOR r-HOMOGENEOUS-WEIGHT NETWORK

Now assuming the network at initialization and after training satisfies the properties described in
Theorem 2 and Proposition 1, we can prove a tighter bound on the plateau region and also show the
monotonicity in error and loss curve. See the complete proofs in Appendix B.1 and Appendix B.2.

Same as in Assumption 1, we use ∆i to denote the bias gap b
(T )
k − b

(T )
i for i ∈ [k − 1] and de-

note ∆min := mini∈[k−1] ∆i and ∆max = maxi∈[k−1] ∆i. For the weights, we denote Wmin =

mini∈[k−1] W
(T )
i,i and Wmax = maxi∈[k] W

(T )
i,i . We denote Rmin = mini∈[k−1] ∆i/[W

(T )
i,i ]r,

Rmax = maxi∈[k−1] ∆i/[W
(T )
i,i ]r. Below, we show the plateau and monotonicity of loss and er-

ror interpolations in Theorem 3.
Theorem 3. Suppose the neural network, dataset and optimization procedure are as de-
fined in Section 4. Suppose the network at initialization and after training satisfies
the properties described in Theorem 2 and Proposition 1. For any ϵ ∈ (0, 1), sup-

pose δ ≤ min(Θ(ϵ1/r),Θ(R
1

r−1

min∆
1/r
min),Θ((Wmin

Wmax
)

2r
r−2 )). There exist α1 = δ

∆min
, α2 =

( 1
1+O(

√
δ)
)

r
r−1R

1
r−1

min , α3 = ϵ1/r

Wmax
and α4 = (1 +O(δ))

1
r−1
(
Rmax

r

) 1
r−1 such that

1. for all α ∈ [α1, α2], the error is 1− 1/k; for all α ∈ [α1, 1], the error is non-increasing;

2. for all α ∈ [0, α3], we have log k − eϵ ≤ 1
NL(W [α], b[α]) ≤ log k + α∆max + eϵ; for all

α ∈ [α4, 1], the loss is strictly monotonically decreasing.

The analysis for the plateau is very similar as in Theorem 1 since a r-homogeneous-weight network
is similar to a depth-r fully connected neural network with only last-layer biases in the sense that the
weights are r-homogeneous while the (last-layer) bias is 1-homogeneous. For the error plateau, we
prove a tighter bound on the right boundary α2 than in Theorem 1. We also show the error is non-
increasing for α ∈ [δ/∆min, 1] by arguing that once a sample is correctly classified at interpolated
point α′ ≥ δ/∆min, it will remain so for any α ≥ α′. Similar as in Theorem 1, we can show that the
loss is no smaller than log k − eϵ when α ≤ ϵ1/r

Wmax
. To show the monotonicity of loss after α4, we

show that f [α]
i (x)− f

[α]
j (x) is increasing in α for i ̸= j and x ∈ Si.

In summary, for α ∈ [α1, α2], the signal is smaller than the bias gap and the error remains at 1− 1/k.
Before α3, the signal is very small and the loss remains large; after α4, the signal starts to overcome
the bias gap and the loss is decreasing. See an illustration in Figure 2 (right).
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5 EXPERIMENTS

In this section we empirically show that intuitions from our simple theoretical model can also be
applied to more realistic datasets and architectures. First, we show that bias plays an important role
in creating the plateau in the error interpolation, as predicted by Theorem 1. We then demonstrate
the influence of initialization size and network depth (also see Theorem 1). Finally, we show that
similar to Proposition 1 the class that is learned last often has larger bias. Due to space constraint, we
only show the results on MNIST and CIFAR-100 in this section, while similar results also hold on
Fashion-MNIST and CIFAR-10 (see Appendix D).

Unless specified otherwise, we use a depth-10 and width-1024 fully-connected ReLU neural network
(FCN10) for MNIST and use VGG-16 (without batch normalization) for CIFAR-100. We use
Kaiming initialization (He et al., 2015) for the weights and set all bias terms as zeros. For FCN10
on MNIST, we use a small initialization by scaling the weights of each layer by (0.001)1/10 so the
output is scaled by 0.001. We train each network using SGD for 100 epochs. See more experiment
settings in Appendix D.

We linearly interpolate using 50 evenly spaced points between the network at initialization and the
network at the end of training. We evaluate error and loss on the train set. For each setting, we repeat
the experiments three times from different random seeds and plot the mean and deviation.
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Figure 4: Loss and error curves across networks with all bias, last bias and no bias.

Role of bias in creating plateau. We demonstrate the importance of bias using two experiments.
In the first experiment, we compare the loss/error interpolation curves between networks equipped
with bias for all the layers (all bias), with bias only for the output layer (last bias), and with no bias
at all (no bias). Figure 4 shows that networks with all bias and last bias have a much longer error
plateau than networks without bias. Three bias settings have similar loss interpolation curves.
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Figure 5: Loss and error curves across networks with normal and homogeneous interpolation on bias.

By our theory, the bias dominates the signal at the beginning of the interpolation because the bias
term scales as α while the signal scales as αr. In the second experiment, to correct this discrepancy,
we interpolate the bias at the h-th layer (input is at the 0-th layer) as b[α]h = (1− α)

h
b
(0)
h +αhb

(T )
h =

αhb
(T )
h . We call this the homogeneous interpolation as now terms involving bias and weights all have

αr coefficients. We compare this with the normal interpolation that linearly interpolates the bias
terms. Figure 5 shows that for networks with all bias or last bias, using homogeneous interpolation
can significantly reduce the plateau in the error interpolation, but does not affect the loss interpolation.

Role of initialization scale and network depth. Our theory suggests that with a smaller initial-
ization, the signal magnitude at the initial interpolation is smaller, which can create longer plateau
in both loss interpolation and error interpolation. We compare networks under initialization scales
1, 0.1, 0.01 and 0.001, where scale 1 corresponds to the standard Kaiming initialization. For other

8



Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

tra
in

 lo
ss

Loss Interpolation, MNIST
init=1
init=0.1
init=0.01
init=0.001

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

tra
in

 e
rro

r

Error Interpolation, MNIST
init=1
init=0.1
init=0.01
init=0.001

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

tra
in

 lo
ss

Loss Interpolation, CIFAR-100

init=1
init=0.1
init=0.01
init=0.001

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

tra
in

 e
rro

r

Error Interpolation, CIFAR-100

init=1
init=0.1
init=0.01
init=0.001

Figure 6: Loss and error curves across networks with different initialization scales.

initialization β, we rescale each layer by the same factor so the output is rescaled by β. According to
Figure 6, smaller initialization does create longer plateau in loss and error interpolation.
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Figure 7: Loss and error curves across networks with different depths.

With a deeper network, the signal grows slower at the initial interpolation phase, which can potentially
create a longer plateau in both loss interpolation and error interpolation. We compare FCN4,
FCN6, FCN8, FCN10 on MNIST and compare VGG11, VGG13, VGG16, VGG19 on CIFAR-100.
According to Figure 7, deeper networks do have longer plateau in loss and error interpolation.
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Figure 8: Train loss for each class and bias term dynamics on 2-class MNIST and 3-class MNIST.

Bias learning dynamics. Our dynamics analysis in Section 4 shows that gradient descent can learn
diverse biases on a balanced dataset by learning different classes at different time points. In particular,
the last learned class should have the highest bias term. We verify this theory by studying FCN10
with only output bias on balanced 2-class or 3-class MNIST. To separate the learning of different
classes, we compute the per-class loss by only considering the examples in that particular class.
According to Figure 8, in the 2-class MNIST, number 1 is learned last and its bias is larger, which fits
our theory. Also in the 3-class MNIST, class 2 is learned first, class 3 the second and class 1 the last;
for the learned bias, class 2 bias is smallest, class 3 bias in the middle and class 1 bias the highest.

6 CONCLUSION

Our theory suggests that the plateau in loss/error interpolation curves may be attributed to simple
reasons, and it’s unclear if these reasons are related to the difficulty/easiness of optimization. In
our experiments although the training succeeds in all the settings, the loss and error interpolation
curves can be easily manipulated by changing the initialization size, network depth and bias terms.
Therefore, we believe one needs to look at structures more complicated than linear interpolation to
understand why optimization succeeds for deep neural networks.

Though our theory requires a small initialization, we also observe plateau in CIFAR-100 with standard
initialization, which suggests that the useful signal is still a high order term in α. We also observe
that sometimes the ordering of the biases does not exactly follow the ordering of the learning. We
believe this is partially due to the correlation between different-class features and offer a preliminary
explanation in Appendix D.5. We leave the thorough study of these problems in the future work.
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A EXAMPLES FOR THE DISCONNECTION BETWEEN LINEAR INTERPOLATION
SHAPE AND OPTIMIZATION DIFFICULTY

We give two examples that illustrate the disconnection between the linear interpolation shape and the
optimization difficulty. In Section A.1, we show a function that is NP-hard to optimize, but has a
convex and monotonically decreasing loss interpolation. Then in Section A.2, we give a function that
is easy to optimize, but has a non-monotonic loss interpolation.

A.1 HARD FUNCTION WITH CONVEX LOSS INTERPOLATION

For any symmetric third-order tensor T ∈ Rd×d×d, our goal is to minimize

f(x, z) = −T (x, x, x) + ∥x∥4 + z4 (2)

where x ∈ Rd and z ∈ R.

It’s known that finding the spectral norm of a symmetric third-order tensor (that is,
maxv∈Rd,∥v∥=1 T (v, v, v)) is NP-hard (Hillar & Lim, 2013). We prove that minimizing f(x, z)
is also NP-hard by reducing the tensor spectral norm problem to it.
Proposition 2. Minimizing f(x, z) as defined in Eqn. 2 is NP-hard.

Proof. For any non-zero tensor T, let (x∗, z∗) be one minimizer of f(x, z), it’s easy to verify that
T (x∗, x∗, x∗) > 0. We show that x̄∗ := x∗/ ∥x∗∥ must be a solution to maxv∈Rd,∥v∥=1 T (v, v, v).

For the sake of contradiction, assume there exists v∗ with unit norm such that T (v∗, v∗, v∗) >
T (x̄∗, x̄∗, x̄∗). It’s easy to verify that f(∥x∗∥ v∗, z∗) < f(x∗, z∗), which however contradicts the
optimality of (x∗, z∗).

Next, we prove that start from certain initialization, the loss along the linear interpolation path is
convex and monotonically decreasing. Note that assuming the unit Frobenius norm of T does not
hurt the NP-hardness of the problem. And our initialization is oblivious of the tensor T.
Proposition 3. Assume ∥T∥F = 1. Suppose we start from initialization (x0, z0) with x0 = 0

and |z0| > 3
√
2

4 . Let (x∗, z∗) be a minimizer of f(x, z) as defined in Eqn. 2. We know the loss
interpolation curve γ(α) := f ((1− α)x0 + αx∗, (1− α)z0 + αz∗) is convex and monotonically
decreasing for α ∈ [0, 1].

Proof. We first prove that at any minimizer (x∗, z∗), we must have z∗ = 0. Otherwise, we can set
z as zero to further decrease the loss. Starting from an initialization (x(0), z(0)) with x(0) = 0, we
know at each interpolation point x[α] = αx∗, z[α] = (1− α)z(0). Therefore, we have

γ(α) = f(x[α], z[α]) =− T (x[α], x[α], x[α]) +
∥∥∥x[α]

∥∥∥4 + [z[α]]4
=− T (αx∗, αx∗, αx∗) + ∥αx∗∥4 +

[
(1− α)z(0)

]4
=− α3T (x∗, x∗, x∗) + α4 ∥x∗∥4 + (1− α)4

[
z(0)

]4
.

To prove the convexity of γ(α) for α ∈ [0, 1], we only need to prove γ′′(α) > 0 for α ∈ [0, 1]. We
have

γ′′(α) =− 6αT (x∗, x∗, x∗) + 12α2 ∥x∗∥4 + 12(1− α)2
[
z(0)

]4
=− 6α ∥x∗∥3 T (x̄∗, x̄∗, x̄∗) + 12α2 ∥x∗∥4 + 12(1− α)2

[
z(0)

]4
.

Since the formula for γ′′(α) involves both T (x̄∗, x̄∗, x̄∗) and ∥x∗∥ , we first figure out the relation
between these two quantities. Suppose T (x̄∗, x̄∗, x̄∗) = p > 0, it’s not hard to find ∥x∗∥ must be
equal to 3p

4 . This is because −∥x∗∥3 p + ∥x∗∥4 is minimized when ∥x∗∥ = 3p
4 . Next, we prove

γ′′(α) > 0 for α ∈ (2/3, 1] and α ∈ [0, 2/3] separetely.
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When α ∈ (2/3, 1], we have

12α2 ∥x∗∥4 > 6pα ∥x∗∥3 = 6α ∥x∗∥3 T (x̄∗, x̄∗, x̄∗).

Therefore, we know γ′′(α) > 0.

When α ∈ [0, 2/3], we know

12(1− α)2
[
z(0)

]4
≥ 4

3

[
z(0)

]4
.

Since ∥T∥F = 1, we know T (x̄∗, x̄∗, x̄∗) ≤ 1 and ∥x∗∥ ≤ 3/4. Therefore, we have

6α ∥x∗∥3 T (x̄∗, x̄∗, x̄∗) ≤ 6 · 2
3
·
(
3

4

)3

· 1 =
27

16
.

Then, we know that if
∣∣z(0)∣∣ > 3

√
2

4 , we have γ′′(α) > 0.

A.2 EASY FUNCTION WITH NON-MONOTONIC LOSS INTERPOLATION

In this section, we give an easy-to-optimize function that however has a non-monotonic loss interpo-
lation curve. We consider the following loss function

f(x, y) =

0 if x = y = 0(
1− y

3
√

x2+y2

)((
x2 + y2

)2 − 2
(
x2 + y2

))
otherwise,

(3)

where x, y ∈ R. We can also re-parameterize f(x, y) using angle θ ∈ [0, 2π) and length r ∈ [0,∞)

as h(θ, r) =
(
1− sin(θ)

3

) (
r4 − 2r2

)
.

Next, we prove that starting from any non-zero point, gradient flow converges to the global minimizer.

Proposition 4. Starting from any non-zero initialization, gradient flow on f(x, y) as defined in Eqn. 3
converges to the global minimizer (0,−1).

Proof. We know the unique minimizer of f(x, y) is (0,−1) by considering its equivalent form
h(θ, r). For h(θ, r) =

(
1− sin(θ)

3

) (
r4 − 2r2

)
, we know

(
r4 − 2r2

)
is minimized at r = 1 and(

1− sin(θ)
3

)
is maximized at θ = 3π

2 .

Besides the minimizer (0,−1), the other stationary point is at (0, 0). For any point (x, y) different
from (0,−1) and (0, 0), if x2 + y2 ̸= 1, the gradient along the radial direction is non-zero; if

y√
x2+y2

̸= −1, the gradient along the tangent direction is non-zero. It’s also easy to verify that

starting from a non-zero point, gradient flow does not converge to (0, 0), so it must converge to
(0,−1)

It’s also very easy to prove that gradient descent with appropriate step size converges to an ϵ-
neighborhood of the global minimizer within poly(1/ϵ) number of iterations. This is because the
gradient is at least poly(ϵ) for any non-zero point outside of the ϵ-neighborhood of the global
minimizer. Starting from an initialization (x, y) with x2 + y2 = Θ(1), the smoothness along the
training is also bounded by a constant.

Next, we prove that starting from certain initialization 3, the loss interpolation between the initializa-
tion and the global minimizer is non-monotonic. We prove this by identifying two points along the
interpolation path such that the point closer to minimizer has a higher loss compared with the point
further to the minimizer.

3Note the initialization condition in Prop. 5 is satisfied with constant probability for a reasonable initialization
scheme. For example, if we uniformly sample (x, y) from the set S = {(x, y) ∈ R2|x2 + y2 ≤ R} with
R ≥ 2, the condition is satisfied with constant probability.
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Proposition 5. Suppose we start from an initialization (x0, y0) = (r sin(β), r cos(β)) with r ≥ 1 and
β ∈ [−π/3, π/3]. Consider the loss interpolation curve γ(α) = f((1−α)x0+αx∗, (1−α)y0+αy∗)
with (x∗, y∗) = (0,−1) and f(·, ·) defined in Eqn. 3. We know there exist 0 ≤ α1 < α2 ≤ 1 such
that

γ(α2)− γ(α1) ≥
5

32
.

Proof. We prove for any β ∈ [−π/3, π/3] and any r ≥ 1, the loss interpolation between
(r sin(β), r cos(β)) to (0,−1) is non-monotonic. In particular, we show there are two points along
the linear interpolation satisfying

f (sin (β/2) cos (β/2) ,− sin (β/2) sin (β/2))− f (sin(β), cos(β)) ≥ 1/12,

where (sin (β/2) cos (β/2) ,− sin (β/2) sin (β/2)) is the middle point between (sin(β), cos(β)) and
(0,−1).

Next, we separately upper bound f (sin(β), cos(β)) and lower bound
f (sin (β/2) cos (β/2) ,− sin (β/2) sin (β/2)). We have

max
β∈[−π/3,π/3]

f (sin(β), cos(β)) ≤ f(0, 1) = −2

3

and

min
β∈[−π/3,π/3]

f (sin (β/2) cos (β/2) ,− sin (β/2) sin (β/2))

≥f (sin (π/6) cos (π/6) ,− sin (π/6) sin (π/6))

=

(
1 +

1

2
· 1
3

)((
1

2

)4

− 2

(
1

2

)2
)

=− 49

96
.

Therefore, we have f (sin (β/2) cos (β/2) ,− sin (β/2) sin (β/2))− f (sin(β), cos(β)) ≥ 5
32 .

B PROOF FOR PLATEAU AND MONOTONICITY

We first consider the r-homogeneous-weight model. We prove the plateau and monotonicity properties
for the error interpolation (Theorem 4) in Section B.1. We then prove the plateau and monotonicity
properties for the loss interpolation (Theorem 5) in Section B.2. Theorem 3 is a simple combination
of Theorem 4 and Theorem 5. Finally, we give the plateau analysis for the fully-connected neural
networks (Theorem 1) in Section B.3.

B.1 ERROR INTERPOLATION FOR r-HOMOGENEOUS-WEIGHT MODEL

Theorem 4 (Error Interpolation). Suppose the network at initialization and after training
satisfy the properties described in Theorem 2 and Induction Hypothesis 1. Suppose δ ≤
min(O(1), O(R

1
r−1

min∆
1/r
min), O((Wmin

Wmax
)

2r
r−2 )). There exist α1 = δ

∆min
and α2 = ( 1

1+O(
√
δ)
)

r
r−1R

1
r−1

min ,
such that

1. for all α ∈ [α1, α2], the error is 1− 1/k;

2. for all α ∈ [α1, 1], the error is non-increasing.

Proof of Theorem 4. This theorem directly follows from Lemma 4 and Lemma 5. □

Next, we separately prove the initial plateau in Lemma 4 and the monotonicity in Lemma 5.
Lemma 4 (Error Plateau). In the same setting as in Theorem 4, there exists α1 = δ

∆min
and

α2 =
(

1
1+O(

√
δ)

) r
r−1

R
1

r−1

min , such that for any interpolation point with α ∈ [α1, α2], the error is

1− 1/k. Moreover, we have f
[α]
i (ej) < f

[α]
k (ej) for all j ∈ [k] and all i ̸= k.
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In the proof of Lemma 4, we show that for interpolation point α ∈ [α1, α2], the bias term dominates
and all samples are classified as class k that has the largest bias.

Proof of Lemma 4. We only need to show that for all α ∈ [α1, α2], we have

f
[α]
i (x) < f

[α]
k (x)

for all x ∈ S and all i ̸= k, which immediately implies the error is 1−1/k. Without loss of generality,
assume x ∈ Sj where j may equal i or k.

For α ∈
[
α1,

√
δ

Wmin

)
. If α1 = δ

∆min
≥

√
δ

Wmin
, we only need to consider the case when α ∈[ √

δ
Wmin

, α2

]
. So here we assume δ

∆min
<

√
δ

Wmin
. We can lower bound f

[α]
k (x)− f

[α]
i (x) as

f
[α]
k (x)− f

[α]
i (x)

=
[〈

W
[α]
k,: , x

〉]r
+ b

[α]
k −

[〈
W

[α]
i,: , x

〉]r
− b

[α]
i

=
[〈

W
[α]
k,: , x

〉]r
+ b

[α]
k −

[
W

[α]
i,j ±O(δ)

]r
− b

[α]
i

≥α∆i −
[
W

(0)
i,j + αW

(T )
i,j +O(δ)

]r
,

where the second equality uses
∣∣∣〈W [α]

i,: , ξx

〉∣∣∣ ≤ O(δ) and the inequality uses
〈
W

[α]
k,: , x

〉
≥ 0.

To prove f
[α]
k (x) − f

[α]
i (x) > 0 for α ∈

[
δ

∆min
,

√
δ

Wmin

]
, we only need to prove δ

∆min
∆i −[

W
(0)
i,j +

√
δ

Wmin
W

(T )
i,j +O(δ)

]r
> 0. Since ∆i ≥ ∆min, we know δ

∆min
∆i ≥ δ. Due to full ac-

curacy, we know
〈
W

(T )
i,: , x

〉
≥ ∆

1/r
i for x ∈ Si, which then implies W (T )

i,i ≥ Ω
(
∆

1/r
i

)
because

∆i ≥ Ω(1) and
〈
W

(T )
i,: , ξx

〉
≤ O(δ) ≤ O(1). Since W

(T )
i,i ≥ Ω

(
∆

1/r
i

)
and W

(T )
i,j ≤ O(δ) for

i ̸= j, so we have W
(T )
i,j ≤ W

(T )
i,i ≤ Wmax as long as δ ≤ O(∆

1/r
min). So we can upper bound[

W
(0)
i,j +

√
δ

Wmin
W

(T )
i,j +O(δ)

]r
as follows,[

W
(0)
i,j +

√
δ

Wmin
W

(T )
i,j +O(δ)

]r
≤

[
O(δ) +

√
δWmax

Wmin

]r

≤

[√
δWmax

rWmin
+

√
δWmax

Wmin

]r

≤e

(√
δWmax

Wmin

)r

,

where the second inequality assumes δ ≤ O
(

W 2
max

W 2
min

)
. Therefore, to prove δ

∆min
∆i −[

W
(0)
i,j +

√
δ

Wmin
W

(T )
i,j +O(δ)

]r
> 0 we only need

δ − e

(√
δWmax

Wmin

)r

> 0,

which holds as long as δ <
[
1
e

(
Wmin

Wmax

)r] 2
r−2

.

For α ∈
[ √

δ
Wmin

, α2

]
. Similar as above, we only need to show that α∆i −[

W
(0)
i,j + αW

(T )
i,j +O(δ)

]r
> 0 for i ̸= k and j ∈ [k]. Since W

(0)
i,j ≤ O(δ) and α ≥

√
δ/Wmin, we
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have W (0)
i,j ≤ O(

√
δαWmin). Therefore, we have W (0)

i,j +αW
(T )
i,j +O(δ) ≤

(
1 +O(

√
δ)
)
αW

(T )
i,i .

Therefore, we have

α∆i −
[
W

(0)
i,j + αW

(T )
i,j +O(δ)

]r
≥ α∆i −

(
1 +O(

√
δ)
)r

αr
[
W

(T )
i,i

]r
> 0,

where the last inequality assumes α ≤ α2 :=
(

1
1+O(

√
δ)

) r
r−1

R
1

r−1

min where Rmin =

mini∈[k−1] ∆i/[W
(T )
i,i ]r. □

Next, we show that the error is non-increasing for α ∈ [α1, 1] by proving that once a sample is
classified correctly it will remain so.
Lemma 5 (Error Monotonicity). In the same setting as in Theorem 4, there exists δ1 = δ

∆min
such

that the error is non-increasing for α ∈ [α1, 1].

Proof of Lemma 5. We first show that sample ek is correctly classified for the whole range [α1, 1].
Second, we show for any other sample once it become classified right it will remain so. Combining
these two cases, we prove the monotonicity of the error rate.

Class k. We first show that every x ∈ Sk is classified correctly for any α ∈ [α1, 1]. According to
Lemma 4, we know that

f
[α1]
k (x) > f

[α1]
i (x)

for any i ̸= k. We only need to prove that f [α]
k (x)− f

[α]
i (x) is increasing for α ∈ [α1, 1]. Expanding

f
[α]
k (x)− f

[α]
i (x), we have

f
[α]
k (x)− f

[α]
i (x)

=
[
(1− α)

〈
W

(0)
k,: , x

〉
+ α

(〈
W

(T )
k,: , x

〉)]r
−
[
(1− α)

〈
W

(0)
i,: , x

〉
+ α

〈
W

(T )
i,: , x

〉]r
+ α

(
b
(T )
k − b

(T )
i

)
,

which is increasing since
∣∣∣〈W (T )

k,: , x
〉∣∣∣ , ∣∣∣〈W (0)

k,: , x
〉∣∣∣ , ∣∣∣〈W (T )

i,: , x
〉∣∣∣ , ∣∣∣〈W (0)

i,: , x
〉∣∣∣ ≤ O(δ) and

b
(T )
k − b

(T )
i > Ω(1).

Other classes. For any class i ̸= k, from Lemma 4, we know that it is classified incorrectly for
α ∈ [α1, α2]. We prove that once it become classified correctly at some α′ ∈ (α2, 1], it remains so
for α ∈ [α′, 1].

We show that at α, for any x ∈ Si, if f
[α]
i (x) > f

[α]
j (x) for all j ̸= i, we have

∂
∂α

(
f
[α]
i (x)− f

[α]
j (x)

)
> 0. Expanding f

[α]
i (x)− f

[α]
j (x), we have

f
[α]
i (x)− f

[α]
j (x)

=
[〈

W
[α]
i,: , x

〉]r
+ b

[α]
i −

[〈
W

[α]
j,: , x

〉]r
− b

[α]
j

=
[〈

W
[α]
i,: , x

〉]r
−
[〈

W
[α]
j,: , x

〉]r
− α

(
b
(T )
j − b

(T )
i

)
.

Since f
[α]
i (x)− f

[α]
j (x) > 0, we have[〈

W
[α]
i,: , x

〉]r
> α

(
b
(T )
j − b

(T )
i

)
,

where we use
〈
W

[α]
j,: , x

〉
≥ 0. Computing ∂

∂α

(
f
[α]
i (x)− f

[α]
j (x)

)
, we have

∂

∂α

(
f
[α]
i (x)− f

[α]
j (x)

)
=

∂

∂α

([
(1− α)

〈
W

(0)
i,: , x

〉
+ α

〈
W

(T )
i,: , x

〉]r
−
[
(1− α)

〈
W

(0)
j,: , x

〉
+ α

〈
W

(T )
j,: , x

〉]r
+ α

(
b
(T )
i − b

(T )
j

))
≥r
[〈

W
(0)
i,: , x

〉
+ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)]r−1 (〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
−
(
b
(T )
j − b

(T )
i

)
−O(δr),
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where the inequality uses
∣∣∣〈W (0)

j,: , x
〉∣∣∣ , ∣∣∣〈W (T )

j,: , x
〉∣∣∣ ≤ O(δ).

If b(T )
j − b

(T )
i ≤ 0, we only need to prove

r
[〈

W
(0)
i,: , x

〉
+ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)]r−1 (〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
−O(δr) > 0,

which holds since
(〈

W
(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
,
〈
W

[α]
i,: , x

〉
≥ Ω(1).

If b(T )
j − b

(T )
i > 0, we have

∂

∂α

(
f
[α]
i (x)− f

[α]
j (x)

)
=r
[〈

W
(0)
i,: , x

〉
+ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)]r−1 (〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
−
(
b
(T )
j − b

(T )
i

)
−O(δr)

>
(1−O(δr)) r

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
[〈

W
(0)
i,: , x

〉
+ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)] · α(b(T )
j − b

(T )
i

)
−
(
b
(T )
j − b

(T )
i

)
,

where the last inequality uses
[〈

W
[α]
i,: , x

〉]r
> α

(
b
(T )
j − b

(T )
i

)
. Therefore, to prove

∂
∂α

(
f
[α]
i (ei)− f

[α]
j (ei)

)
> 0, we only need to prove

(1−O(δr))r
(〈

W
(T )
i,: ,x

〉
−
〈
W

(0)
i,: ,x

〉)
[〈

W
(0)
i,: ,x

〉
+α

(〈
W

(T )
i,: ,x

〉
−
〈
W

(0)
i,: ,x

〉)] ≥ 1
α .

We have

(1−O(δr)) r
(〈

W
(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
[〈

W
(0)
i,: , x

〉
+ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)] ≥
(1−O(δr)) r

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
2α
(〈

W
(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉) ≥ 1

α
.

The first inequality requires
〈
W

(0)
i,: , x

〉
≤ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
and the second inequality

uses r ≥ 3, (1−O(δr)) ≥ 2/3. To prove
〈
W

(0)
i,: , x

〉
≤ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
, it’s equiva-

lent to show
〈
W

(0)
i,: , x

〉
≤ α

1+α

〈
W

(T )
i,: , x

〉
. Since α ≥ α2 =

(
1

1+O(
√
δ)

) r
r−1

R
1

r−1

min , we can lower
bound α

1+α as follows,

α

1 + α
≥1

2

(
1

1 +O(
√
δ)

) r
r−1

R
1

r−1

min

≥1

8
R

1
r−1

min ,

where the first inequality uses α ≤ 1 and the second inequality uses 1 +O(
√
δ) ≤ 2, r ≥ 2. So we

have α
1+α

〈
W

(T )
i,: , x

〉
≥ 1

8R
1

r−1

min∆
1/r
min. Therefore, we only need δ ≤ O

(
R

1
r−1

min∆
1/r
min

)
to ensure that〈

W
(0)
i,: , x

〉
≤ α

(〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
. □

B.2 LOSS INTERPOLATION FOR r-HOMOGENEOUS-WEIGHT MODEL

In this section, we give a proof of Theorem 5.

Theorem 5 (Loss Interpolation). Suppose the network at initialization and after training satisfy
the properties described in Theorem 2 and Induction Hypothesis 1. For any ϵ ∈ (0, 1), suppose

δ ≤ O(ϵ1/r), there exist α3 = ϵ1/r

Wmax
and α4 = (1 +O(δ))

1
r−1
(
Rmax

r

) 1
r−1 such that

1. for all α ∈ [0, α3], we have log k − eϵ ≤ 1
NL(W [α], b[α]) ≤ log k + α∆max + eϵ;

2. for all α ∈ [α4, 1], the loss is monotonically decreasing.
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Proof of Theorem 5. This theorem directly follows from Lemma 6 and Lemma 7. □

Next, we prove the initial loss plateau in Lemma 6 and the monotonicity in Lemma 7.

Lemma 6 (Loss Plateau). In the same setting as in Theorem 5, for any ϵ > 0, there exists α3 = ϵ1/r

Wmax

such that for all α ∈ [0, α3]

N (log k − eϵ) ≤ L(W [α], b[α]) ≤ N (log k + α∆max + eϵ) .

We show that for α ∈ [0, α3], the weights W [α] is negligible and the bias dominates, which then
gives a lower bound and an upper bound of the loss.

Proof of Lemma 6. Since α ≤ α3 = ϵ1/r

Wmax
and δ ≤ O

(
ϵ1/r

)
, we have[〈

W
[α]
i,: , x

〉]r
=
[〈

W
(0)
i,: , x

〉
+ α(

〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉
)
]r

≤
[(

1 +
1

r

)
ϵ1/r

]r
≤ eϵ,

for all i ∈ [k], x ∈ S.

We can divide the dataset S into N/k disjoint subsets {Pl}N/k
l=1 where each Pl contains exactly one

sample from each class. Next, we bound the total loss of each subset Pl. Without loss of generality,
let’s consider subset P1 and suppose x(i) is the i-th class sample in this subset. For convenience, we
denote the total loss of samples in P1 as L1(W

[α], b[α]).

Lower bounding L1(W
[α], b[α]). We have

L1(W
[α], b[α]) =

∑
i∈[k]

log

∑j∈[k] exp
(
f
[α]
j (x(i))

)
exp

(
f
[α]
i (x(i))

)


= log

∏
i∈[k]

∑
j∈[k] exp

(
f
[α]
j (x(i))

)
exp

(
f
[α]
i (x(i))

)


≥ log


 k∑

i∈[k]

exp
(
f
[α]
i (x(i))

)
∑

j∈[k] exp
(
f
[α]
j (x(i))

)


k ,

where the last inequality uses the HM-GM inequality. We can then upper bound∑
i∈[k]

exp
(
f
[α]
i (x(i))

)
∑

j∈[k] exp
(
f
[α]
j (x(i))

) as follows,

∑
i∈[k]

exp
(
f
[α]
i (x(i))

)
∑

j∈[k] exp
(
f
[α]
j (x(i))

) =
∑
i∈[k]

exp
([〈

W
[α]
i,: , x

(i)
〉]r

+ αbi

)
∑

j∈[k] exp
([〈

W
[α]
j,: , x

(i)
〉]r

+ αbj

)
≤
∑
i∈[k]

exp (αbi + eϵ)∑
j∈[k] exp (αbj)

=

∑
i∈[k] exp (αbi)∑
j∈[k] exp (αbj)

exp (eϵ)

= exp (eϵ) .

Plugging back to the lower bound of L1(W
[α], b[α]), we have

L1(W
[α], b[α]) ≥ k log

(
k

exp (eϵ)

)
= k (log k − eϵ) .
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Upper bounding L1(W
[α], b[α]). We have

L1(W
[α], b[α]) =

∑
i∈[k]

log

∑j∈[k] exp
(
f
[α]
j (x(i))

)
exp

(
f
[α]
i (x(i))

)


≤
∑
i∈[k]

log

(∑
j∈[k] exp (αbj + eϵ)

exp (αbi)

)
≤k log (k exp (α∆max + eϵ))

≤k (log k + α∆max + eϵ)

The above analysis applies for every subset Pl, so we have

N (log k − eϵ) ≤ L(W [α], b[α]) ≤ N (log k + α∆max + eϵ) .

□

Next we show that when α is reasonably large, we have f
[α]
i (ei)− f

[α]
j (ei) increasing for all i ̸= j,

which then implies that the loss is decreasing.
Lemma 7 (Loss Monotonicity). In the same setting as in Theorem 5, there exists α4 =

(1 +O(δ))
1

r−1
(
Rmax

r

) 1
r−1 such that the loss is monotonically decreasing for α ∈ [α4, 1].

Proof of Lemma 7. To prove that the loss is monotonically decreasing, we only need to show that
for any i ∈ [k] and any x ∈ Si, f

[α]
i (x)− f

[α]
j (x) is monotonically increasing for j ̸= i.

Same as in Lemma 5, it’s easy to prove that for x ∈ Sk, fk(x)− fj(x) with j ̸= k monotonically
increases for α ∈ [0, 1]. So we focus on other classes.

For i ̸= k, we show that ∂
∂α

(
f
[α]
i (x)− f

[α]
j (x)

)
> 0 for x ∈ Si when α ≥ α4,

∂

∂α

(
f
[α]
i (ei)− f

[α]
j (ei)

)
=

∂

∂α

([
(1− α)

〈
W

(0)
i,: , x

〉
+ α

〈
W

(T )
i,: , x

〉]r
−
[
(1− α)

〈
W

(0)
j,: , x

〉
+ α

〈
W

(T )
j,: , x

〉]r
+ α

(
b
(T )
i − b

(T )
j

))
≥r
[
(1− α)

〈
W

(0)
i,: , x

〉
+ α

〈
W

(T )
i,: , x

〉]r−1 (〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
−
(
b
(T )
k − b

(T )
i

)
−O(δr)

≥rαr−1
[〈

W
(T )
i,: , x

〉]r−1 (〈
W

(T )
i,: , x

〉
−
〈
W

(0)
i,: , x

〉)
−
(
b
(T )
k − b

(T )
i

)
−O(δr)

≥rαr−1

(
1−O

(
δ

∆
1/r
min

))[〈
W

(T )
i,: , x

〉]r
−
(
b
(T )
k − b

(T )
i

)
(1 +O(δr))

>0,

where the second last inequality uses
〈
W

(0)
i,: , x

〉
/
〈
W

(T )
i,: , x

〉
≤ O

(
δ/∆

1/r
min

)
. The last inequality

requires

rαr−1 ≥ (1 +O(δ))
b
(T )
k − b

(T )
i[

W
(T )
i,i

]r
which is satisfied as long as α ≥ (1 +O(δ))

1
r−1
(
Rmax

r

) 1
r−1 where Rmax =

maxi∈[k−1] ∆i/[W
(T )
i,i ]r.. □

B.3 PLATEAU FOR DEEP FULLY-CONNECTED NETWORKS

In this section, we consider fully-connected neural networks as defined in Section 3 and prove that
both the error and loss curves have plateau. We restate Theorem 1 as follows.
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Theorem 1. Suppose the network is defined as in Equation (1) and suppose the weights satisfy∥∥∥V (0)
i

∥∥∥ ≤ δ,
∥∥∥V (T )

i

∥∥∥ ≤ Vmax for all layers i ∈ [r]. On a k-class balanced dataset whose inputs

have ℓ2 norm at most 1, if Assumption 1 holds, for any ϵ > 0, as long as δ < min
(

ϵ1/r

r , 1
r2 ,
(

1
2e

) 2
r−2

)
,

there exist α1 = δ
∆min

, α2 =
(

1
1+

√
δ

) r
r−1
(

∆min

2V r
max

) 1
r−1

and α3 = ϵ1/r

Vmax
such that

1. for all α ∈ [α1, α2], the error is 1− 1/k;

2. for all α ∈ [0, α3], we have log k − 2eϵ ≤ 1
NL

({
V

[α]
i

}
, b[α]

)
≤ log k + α∆max + 2eϵ,

where N is the number of training examples.

Proof of Theorem 1. This theorem directly follows from Lemma 8 and Lemma 9. □

We separately prove the plateau of error interpolation in Lemma 8 and the plateau of loss interpolation
in Lemma 9. Then, Theorem 1 is simply a combination of Lemma 8 and Lemma 9. For convenience,
we denote h(x) := Vrσ (Vr−1 · · ·σ(V1x) · · ·) in the proof.

Lemma 8. In the setting of Theorem 1, there exist α1 = δ
∆min

and α2 =
(

1
1+

√
δ

) r
r−1
(

∆min

2V r
max

) 1
r−1

such that the error is 1− 1/k for any interpolation point α ∈ [α1, α2].

Proof of Lemma 8. Recall that the network output under input x is g(x) :=
Vrσ (Vr−1 · · ·σ(V1x) · · ·) + b. Similar as in the proof of Lemma 4, we only need to show that
for all α ∈ [α1, α2], we have

g
[α]
i (x) < g

[α]
k (x)

for all i ̸= k and all samples x, which immediately implies the error is 1− 1/k.

For α ∈
[
α1,

√
δ

Vmax

)
. If α1 = δ

∆min
≥

√
δ

Vmax
, we only need to consider the case when α ∈[ √

δ
Vmax

, α2

]
. So here we assume δ

∆min
<

√
δ

Vmax
. We can lower bound g

[α]
k (x)− g

[α]
i (x) as

g
[α]
k (x)− g

[α]
i (x) = h

[α]
k (x) + b

[α]
k − h

[α]
i (x)− b

[α]
i

≥ α∆min − 2
∏
j∈[r]

∥∥∥(1− α)V
(0)
j + αV

(T )
j

∥∥∥
≥ α∆min − 2 (δ + αVmax)

r
,

where the first inequality holds because b
[α]
k − b

[α]
i ≥ α∆min and

∣∣∣h[α]
k (x)

∣∣∣ , ∣∣∣h[α]
i (x)

∣∣∣ ≤∏
j∈[r]

∥∥∥(1− α)V
(0)
j + αV

(T )
j

∥∥∥ . The second inequality uses
∥∥∥(1− α)V

(0)
j + αV

(T )
j

∥∥∥ ≤ (1 −

α)
∥∥∥V (0)

j

∥∥∥+ α
∥∥∥V (T )

j

∥∥∥ ≤ δ + αVmax.

Since α ∈
[

δ
∆min

,
√
δ

Vmax

)
, we have

g
[α]
k (x)− g

[α]
i (x) ≥ δ

∆min
∆min − 2

(
δ +

√
δ

Vmax
Vmax

)r

,

≥δ − 2

((
1 +

1

r

)√
δ

)r

,

≥δ − 2eδr/2

>0,

where the second inequality assumes δ ≤ 1/r2 and the last inequality assumes δ <
(

1
2e

) 2
r−2 .
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For α ∈
[ √

δ
Vmax

, α2

]
. Similar as above, we only need to show that α∆min − 2 (δ + αVmax)

r
> 0.

Since α ≥
√
δ

Vmax
, we have δ ≤

√
δαVmax. Therefore, we have

α∆min − 2 (δ + αVmax)
r ≥ α∆min − 2

((
1 +

√
δ
)
αVmax

)r
> 0,

where the second inequality holds as long as α ≤ α2 :=
(
1
2

) 1
r−1

(
1

1+
√
δ

) r
r−1
(

∆min

V r
max

) 1
r−1

. □

Next, we show that for α ∈ [0, ϵ1/r

Vmax
], the loss cannot decrease by much. Similar as in Lemma 6, we

prove that the signal is very small and the logit is dominated by the bias term. This then gives a lower
and upper bounds for the loss.

Lemma 9. In the setting of Theorem 1, there exists α3 = ϵ1/r

Vmax
such that for all α ∈ [0, α3]

log k − 2eϵ ≤ 1

N
L
({

V
[α]
i

}
, b[α]

)
≤ log k + α∆max + 2eϵ,

where N is the number of samples.

Proof of Lemma 9. Since α ≤ α3 = ϵ1/r

Vmax
and δ ≤ ϵ1/r

r , we have∥∥∥h[α](x)
∥∥∥ ≤ (δ + αVmax)

r ≤ eϵ

for all input x.

Similar as in the proof of Lemma 6, we can show that

log k − 2eϵ ≤ 1

N
L
({

V
[α]
i

}
, b[α]

)
≤ log k + α∆max + 2eϵ,

where we have an additional factor of 2 before eϵ because now the signal can be positive or negative.
Here N is the number of samples. □

C PROOF OF TRAINING DYNAMICS

In this section, we give the complete proof of Theorem 2.
Theorem 2. Suppose the neural network, dataset and optimization procedure are as defined in
Section 4. Suppose initialization scale δ ≤ Θ(1), noise level σ ≤ Θ̃(1), dimension d ≥ Θ̃(1/δ2r−2)

and number of samples N ≥ Θ̃(1/δr−1), with probability at least 0.99 in the initialization, there
exists time T = Θ(log(1/δ)/δr−2) such that we have

1. zero error: for all different i, j ∈ [k] and for all x ∈ Si, f
(T )
i (x) ≥ f

(T )
j (x) + Ω(1);

2. bias gap: b(T )
i∗ −maxi ̸=i∗ b

(T )
i ≥ Ω(1) with i∗ = argmaxi∈[k] b

(T )
i .

Proof of Theorem 2. This theorem directly follows from Proposition 1. □

We consider the r-homogeneous-weight network as defined in Section 4. Our simple model simulates
a depth-r ReLU/linear network with bias on the output layer, in the sense that the weights signal is
r-homogeneous while the bias is 1-homogeneous in the parameters.

Next, we prove Proposition 1 while leaving the proof of supporting lemmas into Section C.1. Through
the proof of Proposition 1, we restate the lemmas when we use it for the convenience of readers.
Proposition 1 (Induction Hypothesis). In the same setting of Theorem 2, with probability at least 0.99
in initialization, there exist time points 0 =: s1 < t1 < s2 < t2 < · · · < sk−1 < tk−1 < sk := T
with ti−si = Θ(log(1/δ)/δr−2) and si+1−ti = Θ(1) for i ∈ [k−1] such that for any t ∈ [si, si+1],

1. (classes not yet learned) for any class j, j′ ≥ i+1, we have (1) b(t)j ≥ maxi′∈[k] b
(t)
i′ −O(δr),

(2)
∣∣∣b(t)j − b

(t)
j′

∣∣∣ ≤ O(δr) and (3) W (t)
j,j ≤ O(δ);
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2. (classes already learned) for any class j ≤ i− 1, we have (1) b(t)j ≤ maxi′∈[k] b
(t)
i′ −Ω(1),

(2) f (t)
j (x) ≥ f

(t)
i′ (x) + Ω(1) for i′ ̸= j, x ∈ Sj and (3) W (t)

j,j ≥ Ω(1);

3. (parameters movement) (1) for any j ∈ [k],Θ(δ) = W
(0)
j,j < W

(t)
j,j , (2) for any distinct

j, j′ ∈ [k], 0 < W
(t)
j,j′ ≤ O(δ) and (3) for any j, j′ ∈ [k] and any x ∈ Sj′ ,

∣∣∣〈W (t)
j,: , ξx

〉∣∣∣ ≤
min

(
O(δ),W

(t)
j,j′

)
.

Proof of Proposition 1. Through the proof, we assume the conditions in Theorem 2 hold in all
the lemmas without explicitly stated. At the initialization, we have the following properties with
probability at least 0.99.

Lemma 10 (Initialization). With probability at least 0.99 in the initialization, we have

1. for all j, j′ ∈ [k], W (0)
j,j′ = Θ(δ);

2. for all distinct j, j′ ∈ [k],
∣∣∣W (0)

j,j −W
(0)
j′,j′

∣∣∣ = Θ(δ);

3. for all x ∈ S, ∥ξx∥ ≤ O(σ);

4. for all distinct x, x′ ∈ S,
∣∣〈ξ̄x, ξ̄x′

〉∣∣ ≤ O

(√
log(N)√

d

)
.

5. for all j ∈ [k] and all x ∈ S,
∣∣〈ξ̄x, ej〉∣∣ , ∣∣∣〈ξ̄x, W̄ (0)

j,:

〉∣∣∣ ≤ O

(√
log(N)√

d

)
.

Without loss of generality, we assume W
(0)
1,1 > W

(0)
2,2 > · · · > W

(0)
k,k .

It’s not hard to verify that the induction hypothesis holds at the initialization 4. For any i ∈ [k − 1],
assuming the induction hypothesis holds for time [0, si], now we prove that it continues to hold in
[si, si+1]. Next, we first prove the first two properties in the Proposition 1 and leave the last one at
the end.

The learning of x ∈ Si can be divided into four stages:

1. Stage 0 for t ∈ [si, ti] with ti − si = O(log(1/δ)/δr−2). During this stage, W (t)
i,i grows to

a small constant µ0.

2. Stage 1 for t ∈ [ti, t
(w)
i ] with t

(w)
i − ti = O(1). In this stage, W (t)

i,i grows from µ0 to a large
constant µ1.

3. Stage 2 for t ∈ [t
(w)
i , t

(u)
i ] with t

(u)
i − t

(w)
i = O(1). At the end of this stage, we have

minx∈Si u
(t)
i (x) ≥ 1− µ2 for a small constant µ2.

4. Stage 3 for t ∈ [t
(u)
i , t

(b)
i ] with t

(b)
i − t

(u)
i = O(1), where t

(b)
i = si+1. During this stage,

we have b
(t)
i − b

(t)
k decreases to −µ3 with µ3 a positive constant.

Next, we consider these four stages one by one.

Stage 0. We show that W (t)
i,i increases faster than W

(t)
i+1,i+1 so that W (t)

i,i reaches a constant while

W
(t)
i+1,i+1 is still O(δ). We use the following lemma to characterize the increasing rate of W (t)

i+1,i+1

and W
(t)
i,i .

4We will maintain a stronger bound on
∣∣∣〈W (t)

j,: , ξx
〉∣∣∣ by proving

∣∣∣〈W (t)
j,: , ξx

〉∣∣∣ ≤ O(
√
logNσδ), which

implies
∣∣∣〈W (t)

j,: , ξx
〉∣∣∣ ≤ O(δ) as long as σ ≤ O(1/

√
logN).
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Lemma 11. For any j ∈ [k], we have

∂W
(t)
j,j

∂t
≥ −O

(
δr−1

√
logNσ√
d

)
.

If minx∈Sj
(1− uj(x)) ≥ Ω(1), we further have(

1−O(
√

logNσ)
) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j ≤

∂W
(t)
j,j

∂t
≤
(
1 +O(

√
logNσ)

) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j .

It’s not hard to verify that minx∈Si

(
1− u

(t)
i (x)

)
,minx∈Si+1

(
1− u

(t)
i+1(x)

)
≥ Ω(1), so we have

∂W
(t)
i,i

∂t
≥
(
1−O(

√
logNσ)

) k

N

∑
x∈Si

(
1− u

(t)
i (x)

)
r
[
W

(t)
i,i

]r−1

,

∂W
(t)
i+1,i+1

∂t
≤
(
1 +O(

√
logNσ)

) k

N

∑
x∈Si+1

(
1− u

(t)
i+1(x)

)
r
[
W

(t)
i+1,i+1

]r−1

.

We can upper bound 1− u
(t)
i+1(x) for any x ∈ Si+1 as follows,

1− u
(t)
i+1(x) =

∑
i′∈[k] exp

(
f
(t)
i′ (x)

)
− exp

(
f
(t)
i+1(x)

)
∑

i′∈[k] exp
(
f
(t)
i′ (x)

)
≤

∑
i′∈[k] exp

(
b
(t)
i′

)
− exp

(
b
(t)
i+1

)
∑

i′∈[k] exp
(
b
(t)
i′

) (1 +O(δr)) ,

where the inequality uses
∣∣∣〈W (t)

i′,: , x
〉∣∣∣ ≤ O(δ) for every i′ ∈ [k].

We can lower bound 1− u
(t)
i (x) for x ∈ Si as follows,

1− u
(t)
i (x) =

∑
i′∈[k] exp

(
f
(t)
i′ (x)

)
− exp

(
f
(t)
i (x)

)
∑

i′∈[k] exp
(
f
(t)
i′ (x)

)
≥

∑
i′∈[k] exp

(
b
(t)
i′

)
− exp

(
b
(t)
i

)
∑

i′∈[k] exp
(
b
(t)
i′

) (1−O(µr
0))

≥

∑
i′∈[k] exp

(
b
(t)
i′

)
− exp

(
b
(t)
i+1

)
∑

i′∈[k] exp
(
b
(t)
i′

) (1−O(µr
0)−O(δr)) .

The first inequality uses
∣∣∣〈W (t)

i′,: , x
〉∣∣∣ ≤ O(µ0) for every i′ ∈ [k]. The second inequality uses

b
(t)
i ≤ b

(t)
i+1 +O(δr), which is guaranteed by the following lemma.

Lemma 2 (Bias Gap Control I). For any different j′, j ∈ [k], if Wj′,j′ ≥ Wj,j ,Wj,j ≤ O(δ) and
bj′ − bj ≥ O(δr), bj ≥ maxi′∈[k] bi′ −O(δr), we have ḃj′ − ḃj < 0.

According to Lemma 10, we know there exists constant C > 1 such that W (0)
i,i ≥ CW

(0)
i+1,i+1.

Choose constant S such that S
1

r−2 =
√
C and W

(0)
i,i ≥ S

1
r−2

√
CW

(0)
i+1,i+1. Choosing µ0 as small

constants and σ ≤ O(1/
√
logN), δ ≤ O(1), we have(

1 +O(
√
logNσ)

)
max

x∈Si+1

(
1− u

(t)
i+1(x)

)
≤ S

(
1−O(

√
logNσ)

)
min
x∈Si

(
1− u

(t)
i (x)

)
.
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We can also lower bound 1− u
(t)
i (x) for x ∈ Si by a constant,

1− u
(t)
i (x) ≥

∑
i′∈[k] exp

(
b
(t)
i′

)
− exp

(
b
(t)
i

)
∑

i′∈[k] exp
(
b
(t)
i′

) (1−O(µr
0))

≥
exp

(
b
(t)
i+1

)
∑

i′∈[k] exp
(
b
(t)
i′

) (1−O(µr
0))

≥Ω(1),

where the last inequality holds because µ0 is a small constant and b
(t)
i+1 ≥ maxi′∈[k] b

(t)
i′ −O(δr).

Lemma 12 (Adapted from Lemma C.19 in Allen-Zhu & Li (2020)). Let r ≥ 3 be a constant and let
{W (t)

i,i ,W
(t)
j,j }t≥0 be two positive sequences updated as

∂W
(t)
i,i

∂t
≥ Ct

[
W

(t)
i,i

]r−1

for some Ct = Θ(1),

∂W
(t)
j,j

∂t
≤ SCt

[
W

(t)
j,j

]r−1

for some S = Θ(1).

Suppose W
(0)
i,i ≥ W

(0)
j,j S

1
r−2 (1 + Ω(1)) , then we must have for every A = O(1), let ti be the first

time such that W (ti)
i,i ≥ A, then

W
(ti)
j,j ≤ O(W

(0)
j,j ).

Then, according to Lemma 12, we know that there exists ti = O(log(1/δ)/δr−2) such that W (ti)
i,i =

µ0 and W
(ti)
i+1,i+1 ≤ O(δ). By similar argument, we also know W

(ti)
j,j ≤ O(δ) for any j ≥ i+ 1.

Stage 1. In this stage, we show that W (t)
i,i grows to a large constant µ1 within constant time. Since

W
(t)
i,i ≤ µ1 and b

(t)
i,i ≤ b

(t)
i+1,i+1 +O(δr), we have

1− u
(t)
i (x) ≥ Ω(1),

for all x ∈ Si. This further implies,

∂W
(t)
i,i

∂t
≥
(
1−O(

√
logNσ)

) k

N

∑
x∈Si

(
1− u

(t)
i (x)

)
r
[
W

(t)
i,i

]r−1

≥Ω(1),

where the inequality also uses W (t)
i,i ≥ µ0. Since the increasing rate is at least a constant, we know

W
(t)
i,i grows to µ1 in constant time. For any j ≥ i+ 1, since the increasing rate of W (t)

j,j is merely

O(δr−1), we know W
(t)
j,j remains as O(δ) through Stage 1.

Stage 2. In this stage, we prove that u(t)
i (x) for any x ∈ Si grows to 1 − µ2 with µ2 a small

constant. We use the following lemma to characterize the increasing rate of f (t)
i (x)− f

(t)
j (x).

Lemma 13. For any x ∈ Si and any j ̸= i, if 1− ui(x) ≥ Ω(1), we have
∂

∂t
(fi(x)− fj(x)) ≥ Ω(W 2r−2

i,i )−O(1).

Since u
(t)
i (x) ≤ 1− µ2, we know 1− u

(t)
i (x) ≥ Ω(1). For any j ̸= i, we have

∂

∂t

(
f
(t)
i (x)− f

(t)
j (x)

)
≥Ω

([
W

(t)
i,i

]2r−2
)
−O(1)

≥Ω(1),
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where the last inequality holds because W
(t)
i,i ≥ µ1 with µ1 a large enough constant.

The next lemma guarantees that at the beginning of Stage 2, we have b
(t)
i − b

(t)
j ≥ −O(1), which

then implies f (t)
i (x)− f

(t)
j (x) ≥ −O(1).

Lemma 14 (Bias Gap Control III). For any different i, j ∈ [k], if Wi,i ≤ O(1),Wj,j ≤ O(δ) and
bi − bj ≤ −O(1), we have

ḃi − ḃj > 0.

Let C be a constant such that f (t)
i (x)− f

(t)
j (x) ≥ C for every j ̸= i implies ui(x) ≥ 1− µ2. Since

at the at the beginning of Stage 2, we have f
(t)
i (x) − f

(t)
j (x) ≥ −O(1), within constant time, we

have f
(t)
i (x)− f

(t)
j (x) ≥ C for every j ̸= i and ui(x) ≥ 1− µ2.

Lemma 15 (Accuracy Monotonicity). Given any positive constant C2, there exists positive constant
C1 such that for all different i, j ∈ [k], as long as Wi,i ≥ C1 and fi(x) − fj(x) ≤ C2 for any
x ∈ Si, we have ∂(fi(x)−fj(x))

∂t > 0.

According to Lemma 15, by choosing large enough µ1, we can ensure that f (t)
i (ei)− f

(t)
j (ei) ≥ C

and ui(ei) ≥ 1 − µ2 throughout the training. Note that once W
(t)
i,i rises to µ1, it will stay at least

µ1 −O(δ) throughout the training, according to the gradient lower bound in Lemma 11.

Stage 3. In this stage, we prove that within constant time we have b(t)i − b
(t)
k ≤ −µ3. The following

lemma shows that b(t)i − b
(t)
k decreases in at least a constant rate.

Lemma 3 (Bias Gap Control II). There exist small positive constants C1, C2 such that for any
j ∈ [k − 1] and any x ∈ Sj , if 1 − uj(x) ≤ C1,Wk,k ≤ O(δ) and bj − bk ≥ −C2, we have
ḃj − ḃk < −Ω(1).

Choosing µ2 = C1, µ3 = C2 where C1, C2 are from Lemma 3, so we know that b(t)i − b
(t)
k decreases

at a constant rate until b(t)i − b
(t)
k ≤ −µ3. At time t(u)i , we know that bt

(u)
i
i − b

t
(u)
i

k ≤ O(δr). So within
constant time, we have b

si+1

i − b
si+1

k = −µ3. By Lemma 3, we also know that for any t ≥ si+1, we
have b

(t)
i − b

(t)
k ≤ −µ3.

The following lemma shows that b(t)k is close to the maximum bias.
Lemma 1 (Coupling Biases). Assuming Wj′,j′ ,Wj,j ≤ O(δ) and bj′ , bj ≥ maxi′∈[k] bi′ −O(δr),
we have ḃj′ − ḃj > 0 if bj′ − bj ≤ −µδr, and ḃj′ − ḃj < 0 if bj′ − bj ≥ +µδr for some positive
constant µ.

Combining Lemma 1 and Lemma 2, we know that throughout the training b
(t)
k ≥ maxi′∈[k] b

(t)
i′ −

O(δr). Therefore, we have b
(t)
i −maxi′∈[k] b

(t)
i′ ≤ −Ω(1) for t ≥ si+1.

Finally, let’s bound the movement of different parameters.

Monotonicity of diagonal terms: For j ∈ [k − 1], according to Lemma 11 we know W
(t)
j,j can only

start decreasing when it exceeds a large constant and can only decrease by at most O(δ) through the
algorithm. By choosing δ ≤ O(1), we can ensure that W (0)

j,j < W
(t)
j,j for any t. For W (t)

k,k, we know it

monotonically increases since we always have 1− u
(t)
k (x) ≥ Ω(1) for x ∈ Sk. This is because W (t)

k,k

remains as small as O(δ) through the algorithm and b
(t)
k − b

(t)
k−1 ≤ O(1).

Bounding non-diagonal terms: We use the following lemma to prove that Ω̃(δ) < W
(t)
j,j′ ≤ O(δ)

for j ̸= j′.

Lemma 16. For any j ̸= j′, we have TẆj,j′ ≤ O(δ). Furthermore, there exists absolute constant
µ > 0 such that if 0 < Wj,j′ <

µδ

log
1

r−2 (1/δ)
, we have TẆj,j′ ≥ − µδ

2 log
1

r−2 (1/δ)
.
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The first property in Lemma 16 guarantees that the increasing rate is so small that that the total
increase within T time is only O(δ), which then implies that W (t)

j,j′ ≤ O(δ) through the training. The

second property in Lemma 16 guarantees that once W
(t)
j,j′ falls below µδ

log
1

r−2 (1/δ)
, its decreasing rate

is so small that that the total decrease within T time is only µδ

2 log
1

r−2 (1/δ)
, which then implies that

W
(t)
j,j′ > Ω̃(δ) through the training.

Bounding noise correlations: The following lemma shows that the total change of
〈
W

(t)
j,: , ξx

〉
within

T time is only O(
√
logNσδ). Since at initialization, we know

∣∣∣〈W (0)
j,: , ξx

〉∣∣∣ ≤ O(
√
logNσδ), we

conclude that
∣∣∣〈W (t)

j,: , ξx

〉∣∣∣ ≤ O(
√
logNσδ) throughout the training. Since W

(t)
j,j′ ≥ Ω̃(δ), as long

as σ ≤ Õ(1), we also have
∣∣∣〈W (t)

j,: , ξx

〉∣∣∣ ≤ Wj,j′ for x ∈ Sj′ .

Lemma 17. For every j ∈ [k] and every x ∈ S, we have∣∣∣〈Ẇj,:, ξx

〉∣∣∣ · T ≤ O
(√

logNσδ
)

□

C.1 PROOF OF LEMMAS

Lemma 10 (Initialization). With probability at least 0.99 in the initialization, we have

1. for all j, j′ ∈ [k], W (0)
j,j′ = Θ(δ);

2. for all distinct j, j′ ∈ [k],
∣∣∣W (0)

j,j −W
(0)
j′,j′

∣∣∣ = Θ(δ);

3. for all x ∈ S, ∥ξx∥ ≤ O(σ);

4. for all distinct x, x′ ∈ S,
∣∣〈ξ̄x, ξ̄x′

〉∣∣ ≤ O

(√
log(N)√

d

)
.

5. for all j ∈ [k] and all x ∈ S,
∣∣〈ξ̄x, ej〉∣∣ , ∣∣∣〈ξ̄x, W̄ (0)

j,:

〉∣∣∣ ≤ O

(√
log(N)√

d

)
.

Without loss of generality, we assume W
(0)
1,1 > W

(0)
2,2 > · · · > W

(0)
k,k .

Proof of Lemma 10. Recall that each W
(0)
j,j′ is independently sampled from N (0, δ2) before taking

the absolute value. By standard Gaussian concentration inequality, we know for any j, j′ ∈ [k], with
probability at least 1− 1

1000k2 ,

W
(0)
j,j′ ≤ O(δ).

By anti-concentration inequality of Gaussian polynomials, we know for any j, j′ ∈ [k], with proba-
bility at least 1− 1

1000k2 ,

W
(0)
j,j′ ≥ Ω(δ).

Also by anti-concentration inequality of Gaussian polynomials, we know for any distinct j, j′ ∈ [k],
with probability at least 1− 1

1000k2 ,∣∣∣∣[W (0)
j,j

]2
−
[
W

(0)
j′,j′

]2∣∣∣∣ ≥ Ω(δ2),

which implies
∣∣∣W (0)

j,j −W
(0)
j′,j′

∣∣∣ ≥ Ω(δ) assuming W
(0)
j,j ,W

(0)
j′,j′ = Θ(δ).
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By the norm concentration of random vectors with independent Gaussian entries, for each x ∈ S, we
have with probability at least 1− 1

1000N2 ,

∥ξx∥ ≤ O(σ)

as long as d ≥ O(logN).

By the concentration of standard Gaussian variable, for any distinct x, x′ ∈ S, we have with
probability at least 1− 1

1000N2 , ∣∣〈ξ̄x, ξ̄x′
〉∣∣ ≤ O

(√
logN√
d

)
.

Similarly, for any x and any ej , we have with probability at least 1− 1
1000kN ,

∣∣〈ξ̄x, ej〉∣∣ ≤ O

(√
logN√
d

)
;

for any x and any W̄
(0)
j,: , we have with probability at least 1− 1

1000kN ,∣∣∣〈ξ̄x, W̄ (0)
j,:

〉∣∣∣ ≤ O

(√
logN√
d

)
;

Taking a union bound over all these events, we know with probability at least 0.99 in the initialization,
we have

1. for all j, j′ ∈ [k], W (0)
i,j = Θ(δ);

2. for all distinct j, j′ ∈ [k],
∣∣∣W (0)

j,j −W
(0)
j′,j′

∣∣∣ = Θ(δ);

3. for all x ∈ S, ∥ξx∥ ≤ O(σ);

4. for all distinct x, x′ ∈ S,
∣∣〈ξ̄x, ξ̄x′

〉∣∣ ≤ O

(√
log(N)√

d

)
.

5. for all j ∈ [k] and all x ∈ S,
∣∣〈ξ̄x, ej〉∣∣ , ∣∣∣〈ξ̄x, W̄ (0)

j,:

〉∣∣∣ ≤ O

(√
log(N)√

d

)
.

□

Lemma 12 (Adapted from Lemma C.19 in Allen-Zhu & Li (2020)). Let r ≥ 3 be a constant and let
{W (t)

i,i ,W
(t)
j,j }t≥0 be two positive sequences updated as

∂W
(t)
i,i

∂t
≥ Ct

[
W

(t)
i,i

]r−1

for some Ct = Θ(1),

∂W
(t)
j,j

∂t
≤ SCt

[
W

(t)
j,j

]r−1

for some S = Θ(1).

Suppose W
(0)
i,i ≥ W

(0)
j,j S

1
r−2 (1 + Ω(1)) , then we must have for every A = O(1), let ti be the first

time such that W (ti)
i,i ≥ A, then

W
(ti)
j,j ≤ O(W

(0)
j,j ).

Proof of Lemma 12. This lemma directly follows from Lemma C.19 in Allen-Zhu & Li (2020) by
taking the continuous time limit and setting k as a constant. □

Lemma 1 (Coupling Biases). Assuming Wj′,j′ ,Wj,j ≤ O(δ) and bj′ , bj ≥ maxi′∈[k] bi′ −O(δr),
we have ḃj′ − ḃj > 0 if bj′ − bj ≤ −µδr, and ḃj′ − ḃj < 0 if bj′ − bj ≥ +µδr for some positive
constant µ.
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Proof of Lemma 1. Let’s first write down the time derivative on bj′ ,

ḃj′ =1− k

N

∑
x∈S

uj′(x)

=1− k

N

∑
x∈S

exp (⟨Wj′,:, x⟩r + bj′)∑
i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)

For any x ∈ S, we can bound
exp(⟨Wj′,:,x⟩r+bj′)∑

i′∈[k] exp(⟨Wi′,:,x⟩r+bi′)
as follows,∣∣∣∣∣ exp (⟨Wj′,:, x⟩r + bj′)∑

i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)
− exp (bj′)∑

i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)

∣∣∣∣∣ ≤ O(δr),

where we uses |⟨Wj′,:, x⟩| ≤ O(δ) +O(
√
logNσδ) ≤ O(δ) assuming σ ≤ 1/

√
logN. The similar

bound also holds for exp(⟨Wj,:,x⟩r+bj)∑
i′∈[k] exp(⟨Wi′,:,x⟩r+bi′)

If bj′ − bj ≥ µδr, we can now upper bound ḃj′ − ḃj as follows,

ḃj′ − ḃj ≤
k

N

∑
x∈S

exp (bj)− exp (bj′)∑
i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)

+O(δr)

≤ k

N

∑
x∈Sj∪Sj′

exp (bj)− exp (bj′)∑
i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)

+O(δr)

≤− Ω(µδr) · k

N

∑
x∈Sj∪Sj′

exp (bj)∑
i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)

+O(δr)

When x ∈ Sj ∪ Sj′ , we can lower bound exp(bj)∑
i′∈[k] exp(⟨Wi′,:,x⟩r+bi′)

as follows,

exp (bj)∑
i′∈[k] exp (⟨Wi′,:, x⟩r + bi′)

=
exp (bj)∑

i′∈[k] exp (bi′) exp (⟨Wi′,:, x⟩r)

≥ exp (bj)∑
i′∈[k] exp (bi′)

· 1

1 +O(δr)

≥Ω(1),

where the first inequality uses |⟨Wi′,:, x⟩| ≤ δ and the second inequality assumes bj ≥ maxi′∈[k] bi′−
O(δr) and δ is at most some small constant.

Therefore, if bj′ − bj ≥ µδr, we have

ḃj′ − ḃj ≤ −Ω(µδr) +O(δr) < 0,

where the second inequality chooses µ as a large enough constant. Similarly, we can prove that if
bj′ − bj ≤ −µδr, we have

ḃj′ − ḃj ≥ Ω(µδr)−O(δr) > 0.

□

Lemma 2 (Bias Gap Control I). For any different j′, j ∈ [k], if Wj′,j′ ≥ Wj,j ,Wj,j ≤ O(δ) and
bj′ − bj ≥ O(δr), bj ≥ maxi′∈[k] bi′ −O(δr), we have ḃj′ − ḃj < 0.

Proof of Lemma 2. We can write down ḃj′ − ḃj as follows,

ḃj′ − ḃj =

(
1− k

N

∑
x∈S

uj′(x)

)
−

(
1− k

N

∑
x∈S

uj(x)

)

=
k

N

∑
x∈Sj′

(uj(x)− uj′(x)) +
k

N

∑
x∈S\Sj′

(uj(x)− uj′(x)) .
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We first prove that for any x ∈ Sj′ , we have uj(x) − uj′(x) ≤ 0. We can upper bound fj(x) and
lower bound fj′(x) as follows,

fj(x) = ⟨Wj,:, x⟩r + bj ≤ O(δr) + bj

fj′(x) = ⟨Wj′,:, x⟩r + bj′ ≥ bj .

The bound on fj(x) holds because ⟨Wj,:, x⟩ = Wj,j′ + ⟨Wj,:, ξx⟩ ≤ O(δ)+O(
√
logNσδ) ≤ O(δ).

The bound on fj′(x) holds because ⟨Wj′,:, x⟩ = Wj′,j′ + ⟨Wj′,:, ξx⟩ ≥ Ω(δ)−O(
√
logNσδ) > 0.

With the above two bounds, we know that uj(x)− uj′(x) ≤ 0 as long as bj′ − bj ≥ O(δr).

Same as in the proof of Lemma 1, for each x ∈ S \ Sj′ , we can bound uj′(x), uj(x) as follows,
exp (bj′)∑

i′∈[k] exp (fi′(x))
−O(δr) ≤ uj′(x) ≤

exp (bj′)∑
i′∈[k] exp (fi′(x))

+O(δr),

exp (bj)∑
i′∈[k] exp (fi′(x))

−O(δr) ≤ uj(x) ≤
exp (bj)∑

i′∈[k] exp (fi′(x))
+O(δr).

Therefore, if bj′ − bj ≥ µδr, we can further upper bound ḃj′ − ḃj as follows,

ḃj′ − ḃj ≤
k

N

∑
x∈S\Sj′

(uj(x)− uj′(x)) .

≤ k

N

∑
x∈S\Sj′

exp (bj)− exp (bj′)∑
i′∈[k] exp (fi′(x))

+O(δr)

≤ k

N

∑
x∈Sj

exp (bj)− exp (bj′)∑
i′∈[k] exp (fi′(x))

+O(δr)

≤− Ω(µδr)
k

N

∑
x∈Sj

exp (bj)∑
i′∈[k] exp (fi′(x))

+O(δr).

Similar as in Lemma 1, we can show that exp(bj)∑
i′∈[k] exp(fi′ (x))

≥ Ω(1) due to Wj,j ≤ O(δ) and

bj ≥ maxi′∈[k] bi′ −O(δr). So, finally we have

ḃj′ − ḃj ≤ −Ω(µδr) +O(δr) < 0,

where the last inequality chooses µ as a large enough constant. □
Lemma 15 (Accuracy Monotonicity). Given any positive constant C2, there exists positive constant
C1 such that for all different i, j ∈ [k], as long as Wi,i ≥ C1 and fi(x) − fj(x) ≤ C2 for any
x ∈ Si, we have ∂(fi(x)−fj(x))

∂t > 0.

Proof of Lemma 15. Since fi(x) − fj(x) ≤ C2, we know 1 − ui(x) ≥ Ω(1). This immediately
implies minx′∈Si (1− ui(x

′)) ≥ Ω(1) since |ui(x)− ui(x
′)| ≤ O(δ). According to Lemma 13, we

can bound ∂(fi(ei)−fj(ei))
∂t as follows,

∂ (fi(x)− fj(x))

∂t
≥ Ω(W 2r−2

i,i )−O(1) > 0

where the second inequality holds because Wi,i ≥ C1 with C1 a large enough constant. □
Lemma 3 (Bias Gap Control II). There exist small positive constants C1, C2 such that for any
j ∈ [k − 1] and any x ∈ Sj , if 1 − uj(x) ≤ C1,Wk,k ≤ O(δ) and bj − bk ≥ −C2, we have
ḃj − ḃk < −Ω(1).

Proof of Lemma 3. Since 1− uj(x) ≤ C1 for some x ∈ Sj , we know 1− uj(x
′) ≤ C1 +O(δ) for

every x′ ∈ Sj . We can write down ḃj − ḃk as follows,

ḃj − ḃk =

(
1− k

N

∑
x′∈S

uj(x
′)

)
−

(
1− k

N

∑
x′∈S

uk(x
′)

)

=
k

N

∑
x′∈Sj

(uk(x
′)− uj(x

′)) +
k

N

∑
x′∈S\Sj

(uk(x
′)− uj(x

′)) .
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First, we upper bound uk(x
′)− uj(x

′) for every x′ ∈ Sj as follows,

uk(x
′)− uj(x

′) ≤ 1− uj(x
′)− uj(x

′) = −1 + 2 (1− uj(x
′)) ≤ 2C1 − 1 +O(δ).

Same as in the proof of Lemma 1, for each x′ ∈ S \ Sj , we can bound uj(x
′), uk(x

′) as follows,

exp (bj)∑
i′∈[k] exp (fi′(x

′))
−O(δr) ≤ uj(x

′) ≤ exp (bj)∑
i′∈[k] exp (fi′(x

′))
+O(δr),

exp (bk)∑
i′∈[k] exp (fi′(x

′))
−O(δr) ≤ uk(x

′) ≤ exp (bk)∑
i′∈[k] exp (fi′(x

′))
+O(δr).

Therefore, we can upper bound uk(x
′)− uj(x

′) as follows,

uk(x
′)− uj(x

′) ≤ exp (bk)− exp (bj)∑
i′∈[k] exp (fi′(x

′))
+O(δ)

=
exp (bj)∑

i′∈[k] exp (fi′(x
′))

· (exp(bk − bj)− 1) +O(δr)

≤O(C2) +O(δr),

where the last inequality uses bk − bj ≤ C2.

Above all, we can upper bound ḃj − ḃk as follows,

ḃj − ḃk ≤− 1 + 2C1 +O(C2) +O(δr)

<− Ω(1),

where the second inequality holds as long as C1, C2, δ are at most some small constants. □

Lemma 14 (Bias Gap Control III). For any different i, j ∈ [k], if Wi,i ≤ O(1),Wj,j ≤ O(δ) and
bi − bj ≤ −O(1), we have

ḃi − ḃj > 0.

Proof of Lemma 14. We can write down ḃi − ḃj as follows,

ḃi − ḃj =

(
1− k

N

∑
x∈S

ui(x)

)
−

(
1− k

N

∑
x∈S

uj(x)

)

=
k

N

∑
x∈S

(uj(x)− ui(x))

Next, we lower bound uj(x)− ui(x) for every x ∈ S,

uj(x)− ui(x) =
exp (⟨Wj,:, x⟩r + bj)− exp (⟨Wi,:, x⟩r + bi)∑

i′∈[k] fi′(x)

≥exp (O(δr) + bj)− exp (O(1) + bi)∑
i′∈[k] fi′(x)

So as long as bj − bi > O(1), we have uj(x) − ui(x) > 0 for all x ∈ S, which then implies
ḃi − ḃj > 0. □

Lemma 17. For every j ∈ [k] and every x ∈ S, we have∣∣∣〈Ẇj,:, ξx

〉∣∣∣ · T ≤ O
(√

logNσδ
)

Proof of Lemma 17. For each j ∈ [k], we have

Ẇj,: =
k

N

∑
x′∈Sj

(1− uj(x
′)) r ⟨Wj,:, x

′⟩r−1
x′ −

∑
x′∈S\Sj

uj(x
′)r ⟨Wj,:, x

′⟩r−1
x′
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and 〈
Ẇj,:, ξ̄x

〉
=

k

N

∑
x′∈Sj

(1− uj(x
′)) r ⟨Wj,:, x

′⟩r−1 〈
x′, ξ̄x

〉
−

∑
x′∈S\Sj

uj(x
′)r ⟨Wj,:, x

′⟩r−1 〈
x′, ξ̄x

〉
We know that

∣∣〈x, ξ̄x〉∣∣ ≤ O(σ +
√
logN/

√
d). For any x′ ̸= x, we have

∣∣〈x′, ξ̄x
〉∣∣ ≤

O((σ
√
logN)/

√
d+

√
logN/

√
d) ≤ O(

√
logN/

√
d) as long as σ ≤ 1.

According to Lemma 18, we know that for x′ ∈ Sj , we have
∣∣∣(1− uj(x

′)) ⟨Wj,:, x
′⟩r−1

∣∣∣ ≤ O(1).

For x′ ∈ S \ Si, we have
∣∣∣ui(x

′) ⟨Wj,:, x
′⟩r−1

∣∣∣ ≤ O(δr−1) since |⟨Wj,:, x
′⟩| ≤ O(δ) +

O(
√
logNδσ) ≤ O(δ) assuming σ ≤ 1/

√
logN.

Therefore, we can bound
∣∣∣〈Ẇj,:, ξ̄x

〉∣∣∣ as follows,

∣∣∣〈Ẇj,:, ξ̄x

〉∣∣∣ ≤ O

(
σ

N
+

√
logN√
d

)
Since T ≤ O(log(1/δ)/δr−2), N ≥ log(1/δ)/δr−1 and d ≥ log2(1/δ)/δ2r−2, we know∣∣∣〈Ẇj,:, ξ̄x

〉∣∣∣ · T ≤ O(
√

logNδ).

□

Lemma 18. For any i ∈ [k] and x ∈ Si, if (1− ui(x)) ⟨Wi,:, x⟩r−1 ≥ Θ(1), we have

d

dt

(
(1− ui(x)) ⟨Wi,:, x⟩r−1

)
< 0.

Proof of Lemma 18. We can write 1− ui(x) as
∑

j∈[k],j ̸=i exp(fj(x))∑
j∈[k],j ̸=i exp(fj(x))+exp(fi(x))

. Next, we prove that

for any j′ ̸= i, we have

d

dt

(
exp (fj′(x))∑

j∈[k],j ̸=i exp (fj(x)) + exp (fi(x))
⟨Wi,:, x⟩r−1

)
< 0.

This derivative can be written the sum of two terms:

d

dt

(
exp (fj′(x))∑

j∈[k],j ̸=i exp (fj(x)) + exp (fi(x))
⟨Wi,:, x⟩r−1

)

=
1∑

j∈[k],j ̸=i exp (fj(x)− fj′(x)) + exp (fi(x)− fj′(x))

d

dt

(
⟨Wi,:, x⟩r−1

)
+

d

dt

(
1∑

j∈[k],j ̸=i exp (fj(x)− fj′(x)) + exp (fi(x)− fj′(x))

)
⟨Wi,:, x⟩r−1

.

For the first term, we have

1∑
j∈[k],j ̸=i exp (fj(x)− fj′(x)) + exp (fi(x)− fj′(x))

d

dt

(
⟨Wi,:, x⟩r−1

)
=

1∑
j∈[k],j ̸=i exp (fj(x)− fj′(x)) + exp (fi(x)− fj′(x))

(r − 1) ⟨Wi,:, x⟩r−2
〈
Ẇi,:, x

〉
≤ 1

exp (fi(x)− fj′(x))
(r − 1) ⟨Wi,:, x⟩r−2

〈
Ẇi,:, x

〉
.
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For the second term, we have

d

dt

(
1∑

j∈[k],j ̸=i exp (fj(x)− fj′(x)) + exp (fi(x)− fj′(x))

)
⟨Wi,:, x⟩r−1

=−

∑
j∈[k],j ̸=i exp (fj(x)− fj′(x))

(
ḟj(x)− ḟj′(x)

)
+ exp (fi(x)− fj′(x))

(
ḟi(x)− ḟj′(x)

)
(∑

j∈[k],j ̸=i exp (fj(x)− fj′(x)) + exp (fi(x)− fj′(x))
)2 ⟨Wi,:, x⟩r−1

≤− 1

2
·
r ⟨Wi,:, x⟩r−1

〈
Ẇi,:, x

〉
exp (fi(x)− fj′(x))

⟨Wi,:, x⟩r−1
,

where the last inequality uses fi(x)− fj(x) ≥ Ω(1),
∣∣∣ḟj(x)− ḟj′(x)

∣∣∣ ≤ O(1) and ḟi(x)− ḟj′(x) ≥

r ⟨Wi,:, x⟩r−1
〈
Ẇi,:, x

〉
−O(1) ≥ Ω(1).

Combining the bounds on both terms, as long as ⟨Wi,:, x⟩ is larger than certain constant (which is

guaranteed by (1− ui(x)) ⟨Wi,:, x⟩r−1 ≥ Θ(1)), we know d
dt

(
(1− ui(x)) ⟨Wi,:, x⟩r−1

)
< 0. □

Lemma 16. For any j ̸= j′, we have TẆj,j′ ≤ O(δ). Furthermore, there exists absolute constant
µ > 0 such that if 0 < Wj,j′ <

µδ

log
1

r−2 (1/δ)
, we have TẆj,j′ ≥ − µδ

2 log
1

r−2 (1/δ)
.

Proof of Lemma 16. We can write down the derivative of Wj,j′ as follows,

Ẇj,j′

=
k

N

∑
x∈Sj

(1− uj(x)) r ⟨Wj,:, x⟩r−1 ⟨ej′ , x⟩

− k

N

∑
x∈Sj′

uj(x)r ⟨Wj,:, x⟩r−1 ⟨ej′ , x⟩

− k

N

∑
x∈S\(Sj∪Sj′ )

uj(x)r ⟨Wj,:, x⟩r−1 ⟨ej′ , x⟩

=±O

(
σ
√
logN√
d

)
−O

((
Wj,j′ ±O

(√
logNδσ

))r−1
)
±O

(
δr−1σ

√
logN√
d

)
.

The bound on the first term relies on (1− uj(x)) ⟨Wj,:, x⟩r−1 ≤ O(1) and ⟨ej′ , x⟩ =

±O
(

σ
√
logN√
d

)
for x ∈ Sj , where (1− uj(x)) ⟨Wj,:, x⟩r−1 ≤ O(1) is guaranteed by Lemma 18.

The bound on the second term uses ⟨Wj,:, x⟩ = Wj,j′ ± O
(√

logNδσ
)

and ⟨ej′ , x⟩ = 1 ±
O
(

σ
√
logN√
d

)
for x ∈ Sj′ . The bound on the third term uses ⟨Wj,:, x⟩ = O(δ) and ⟨ej′ , x⟩ =

±O
(

σ
√
logN√
d

)
for x ∈ S \ (Sj ∪ Sj′).

To prove the upper bound of the derivative, we have

Ẇj,j′ ≤O(
σ
√
logN√
d

)

where we use Wj,j′ ±O
(√

logNδσ
)
≥ 0. Since T = O(log(1/δ)/δr−2), we have

TẆj,j′ ≤ O(δ),

as long as d ≥ O( logN log2(1/δ)
δ2r−2 ).
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We show that there exists absolute constant µ > 0 such that if 0 < Wj,j′ <
µδ

log
1

r−2 (1/δ)
, we have

TẆj,j′ ≥ − µδ

2 log
1

r−2 (1/δ)
, which holds as long as Ẇj,j′ ≥ −O

(
µδr−1

log
r−1
r−2 (1/δ)

)
. We have

Ẇj,j′

=±O(
σ
√
logN√
d

)−O

((
Wj,j′ ±O

(√
logNδσ

))r−1
)

≥−O(
σ
√
logN√
d

)−O

(
µr−1δr−1

log
r−1
r−2 (1/δ)

)

≥−O

(
µr−1δr−1

log
r−1
r−2 (1/δ)

)

≥−O

(
µδr−1

log
r−1
r−2 (1/δ)

)
.

The first inequality assumes σ ≤ O

(
µ

√
logN log

1
r−2 (1/δ)

)
. The second inequality assumes d ≥

O( logN log
2r−2
r−2 (1/δ)

µ2r−2δ2r−2 ). The third inequality chooses µ as a small enough constant. □

Lemma 11. For any j ∈ [k], we have

∂W
(t)
j,j

∂t
≥ −O

(
δr−1

√
logNσ√
d

)
.

If minx∈Sj
(1− uj(x)) ≥ Ω(1), we further have(

1−O(
√

logNσ)
) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j ≤

∂W
(t)
j,j

∂t
≤
(
1 +O(

√
logNσ)

) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j .

Proof of Lemma 11. We have

Ẇj,j =
k

N

∑
x∈Sj

(1− uj(x)) r ⟨Wj,:, x⟩r−1 ⟨x, ej⟩ −
k

N

∑
x∈S\Sj

uj(x)r ⟨Wj,:, x⟩r−1 ⟨x, ej⟩

=
k

N

∑
x∈Sj

(1− uj(x)) r
(
Wj,j ±O

(√
logNδσ

))r−1
(
1±O

(√
logNσ√

d

))

− k

N

∑
x∈S\Sj

uj(x)r
(
O(δ)±O

(√
logNδσ

))r−1
(
±O

(√
logNσ√

d

))

=
(
1±O(

√
logNσ)

) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j ±O

(
δr−1

√
logNσ√
d

)
,

where the second equality uses |⟨Wj,:, ξx⟩| ≤ O(
√
logNδσ), |⟨ξx, ej⟩| ≤ O

(√
logNσ√

d

)
and Wj,j′ ≤

O(δ) for j ̸= j′.

Therefore, if minx∈Sj (1− uj(x)) ≥ Ω(1), we know(
1−O(

√
logNσ)

) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j ≤ Ẇj,j ≤

(
1 +O(

√
logNσ)

) k

N

∑
x∈Sj

(1− uj(x)) rW
r−1
j,j .

And we always have

Ẇj,j ≥ −O

(
δr−1

√
logNσ√
d

)
.

□
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Lemma 13. For any x ∈ Si and any j ̸= i, if 1− ui(x) ≥ Ω(1), we have

∂

∂t
(fi(x)− fj(x)) ≥ Ω(W 2r−2

i,i )−O(1).

Proof of Lemma 13. Recall that fi(x) = ⟨Wi,:, x⟩r + bi, so we have

ḟi(x) =r ⟨Wi,:, x⟩r−1
〈
Ẇi,:, x

〉
+ ḃi

=r
(
Wi,i ±

√
logNσδ

)r−1 (
Ẇi,i +

〈
Ẇi,:, ξx

〉)
+ ḃi

≥Ω(W 2r−2
i,i )−O(1),

where in the last inequality we uses Ẇi,i ≥ Ω(W r−1
i,i ) ≥ Ω(δr) and

∣∣∣〈Ẇi,:, ξx

〉∣∣∣ ≤ σ
√
logNδr−1

log(1/δ) ≤
O(δr−1).

We also have

ḟj(x) =r ⟨Wj,:, x⟩r−1
〈
Ẇj,:, x

〉
+ ḃj

=r
(
Wj,i +

√
logNσδ

)r−1 (
Ẇj,i ±

〈
Ẇj,:, ξx

〉)
+ ḃj

≤O(1),

where we uses |Wj,i| ≤ O(δ),
∣∣∣Ẇj,i

∣∣∣ ≤ O(δr−1) and
∣∣∣〈Ẇj,:, ξx

〉∣∣∣ ≤ O(δr−1).

Therefore, we have

dt

d
(fi(x)− fj(x)) ≥ Ω(W 2r−2

i,i )−O(1).

□

D ADDITIONAL EXPERIMENTS

In this section, we describe the detailed setting of our experiments and also include additional
experiment results.

MNIST & Fashion-MNIST. Unless specified otherwise, we use a depth-10 and width-1024
fully-connected ReLU neural network (FCN10) for MNIST and Fashion-MNIST. We use Kaiming
initialization for the weights and set all bias terms as zero. We use a small initialization by scaling the
weights of each layer by (0.001)1/h so the output is scaled by 0.001, where h is the network depth.
We train the network using SGD with learning rate 0.01 and momentum 0.9 for 100 epochs.

CIFAR-10 & CIFAR-100 We use VGG-16 (without batch normalization) for CIFAR-10 and
CIFAR-100. We use Kaiming initialization for the weights and set all bias terms as zero. We run
SGD with momentum 0.9 and weight decay 1e−4 for 100 epochs. For the learning rate, we start
from 0.01 and reduce it by a factor of 0.1 at the 60-th epoch and 90-th epoch.

We linearly interpolate using 50 evenly spaced points between the network at initialization and the
network at the end of training. We evaluate error and loss on the train set. For each setting, we repeat
the experiments three times from different random seeds and plot the mean and deviation.

Note in Figure 1, to contrast the convex curve and plateau curve, we have used FCN4 with standard
initialization on MNIST, and VGG-16 with 0.001 initialization on CIFAR-10.

Our code is based on the implementation from Lucas et al. (2021). Each trial of our experiment can
be finished on an Nvidia Tesla P100 within one hour.
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D.1 ALL BIAS V.S. LAST BIAS V.S. NO BIAS
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Figure 9: Comparison between networks with all bias, last bias and no bias on Fashion-MNIST and
CIFAR-10.

Figure 9 shows that on both Fashion-MNIST and CIFAR-10, having bias on the last layer or on all
layers can create longer plateau in error curve, while does not significantly affect the loss curve.

D.2 NORMAL INTERPOLATION V.S. HOMOGENEOUS INTERPOLATION.
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Figure 10: Comparison between networks with normal interpolation and homogeneous interpolation
on bias on Fashion-MNIST and CIFAR-10.

Figure 10 shows that on both Fashion-MNIST and CIFAR-10, applying homogeneous interpolation
on biases can significantly reduce the plateau on error interpolation curve.

D.3 DIFFERENT INITIALIZATIONS
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Figure 11: Comparison between networks with different initialization scales on MNIST and CIFAR-
100 with last bias.
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Figure 12: Comparison between networks with different initialization scales on Fashion-MNIST and
CIFAR-10 with all bias.
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Figure 13: Comparison between networks with different initialization scales on Fashion-MNIST and
CIFAR-10 with last bias.

Smaller initialization creates longer plateau in both error and loss curves. See Figure 11 for MNIST,
CIFAR-100 with last bias; see Figure 12 for Fashion-MNIST, CIFAR-10 with all bias; see Figure 13
for Fashion-MNIST, CIFAR-10 with last bias.

D.4 DIFFERENT DEPTHS
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Figure 14: Comparison between networks with different depth on MNIST and CIFAR-100 with last
bias.
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Figure 15: Comparison between networks with different depth on Fashion-MNIST and CIFAR-10
with all bias. We use 0.001 initialization scale for VGG-16 on CIFAR-10.
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Figure 16: Comparison between networks with different depth on Fashion-MNIST and CIFAR-10
with last bias. We use 0.001 initialization scale for VGG-16 on CIFAR-10.

Deeper networks create longer plateau in both error and loss curves. See Figure 14 for MNIST,
CIFAR-100 with last bias; see Figure 15 for Fashion-MNIST, CIFAR-10 with all bias; see Figure 16
for Fashion-MNIST, CIFAR-10 with last bias.
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D.5 BIAS DYNAMICS
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Figure 17: Train loss for each class and bias term dynamics on MNIST{1, 2} and MNIST{2, 3}.

In Figure 17, we give two more examples on two-class MNIST in which the later learned class has
larger bias.
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Figure 18: Train loss for each class and bias term dynamics on MNIST{7, 8, 9}.

In Figure 18, although class 9 is learned last, class 7 gets the largest bias after training. Let S be
the set of all samples for number 7,8,9 and let S7, S9, S9 be the set of samples for each class. For
convenience, we use ui,j to denote 1

|S|
∑

x∈Sj
ui(x), where ui(x) is the softmax output for class i

under input x. Then, we can write down the derivative on three bias terms:

ḃ7 =
1

3
− u7,7 − u7,8 − u7,9

ḃ8 =
1

3
− u8,7 − u8,8 − u8,9

ḃ9 =
1

3
− u9,7 − u9,8 − u9,9.

According to the per-class loss, we know that
∑

x∈S7
− log (u7(x)) <

∑
x∈S9

− log (u9(x)) , which
intuitively implies that

∑
x∈S7

u7(x) >
∑

x∈S9
u9(x) that is u7,7 > u9,9. This tends to drive b7

smaller than b9. However, because u9,8 > u7,8, we actually have ḃ9 < ḃ7. So eventually b9 becomes
smaller than b7. Intuitively, class 9 is more correlated with class 8, so u9,8 > u7,8.
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