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ABSTRACT

Monotonic linear interpolation (MLI) — on the line connecting a random initial-
ization with the minimizer it converges to, the loss and accuracy are monotonic
— is a phenomenon that is commonly observed in the training of neural networks.
Such a phenomenon may seem to suggest that optimization of neural networks
is easy. In this paper, we show that the MLI property is not necessarily related
to the hardness of optimization problems, and empirical observations on MLI for
deep neural networks depend heavily on the biases. In particular, we show that
interpolating both weights and biases linearly leads to very different influences on
the final output, and when different classes have different last-layer biases on a deep
network, there will be a long plateau in both the loss and accuracy interpolation
(which existing theory of MLI cannot explain). We also show how the last-layer
biases for different classes can be different even on a perfectly balanced dataset
using a simple model. Empirically we demonstrate that similar intuitions hold on
practical networks and realistic datasets.

1 INTRODUCTION

Deep neural networks can often be optimized using simple gradient-based methods, despite the
objectives being highly nonconvex. Intuitively, this suggests that the loss landscape must have
nice properties that allow efficient optimization. To understand the properties of loss landscape,
Goodfellow et al. (2014) studied the linear interpolation between a random initialization and the local
minimum found after training. They observed that the loss interpolation curve is monotonic and
approximately convex (see the MNIST curve in Figure 1) and concluded that these tasks are easy to
optimize. However, other recent empirical observations, such as Frankle (2020) observed that for
deep neural networks on more complicated datasets, both the loss and the error curves have a long
plateau along the interpolation path, i.e., the loss and error remain high until close to the optimum
(see the CIFAR-10 curve in Figure 1). Does the long plateau along the linear interpolation suggest
these tasks are harder to optimize? Not necessarily, since the hardness of optimization problems does
not need to be related to the shape of interpolation curves (see examples in Appendix A).

In this paper we give the first theory that explains the plateau in both loss and error interpolations.
We attribute the plateau to simple reasons as the bias terms, the network initialization scale and the
network depth, which may not necessarily be related to the difficulty of optimization.

Note that there are many different theories for the optimization of overparametrized neural networks,
in particular the neural tangent kernel (NTK) analysis (Jacot et al., 2018; Du et al., 2018; Allen-Zhu
et al., 2019; Arora et al., 2019) and mean-field analysis (Chizat & Bach, 2018; Mei et al., 2018).
However they don’t explain the plateau in both loss and error interpolations. For NTK regime, the
network output is nearly linear in the parameters and the loss interpolation curve is monotonically
decreasing and convex — no plateau in the loss interpolation. Mean-field regime often uses a smaller
initialization on a homogeneous neural network (as considered in Chizat & Bach (2018); Mei et al.
(2018)). In this case, the interpolated network output is basically a scaled version of the network
output at the minimum and has same label predictions — no plateau in the error interpolation curve.
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Figure 1: Loss interpolation curve and error interpolation curve for a four-layer fully-connected
network (FCN4) on MNIST and for VGG16 on CIFAR-10.

1.1 OUR RESULTS

Our theoretical results consist of two parts. In the rst part (see Section 3), we give a plausible
explanation for the plateau in both the loss and error curves.

Claim 1 (informal). If a deep network has a relatively small initialization, and its last-layer biases
are signi cantly different for different classes, then both the loss and error curves will have a plateau.
The length of the plateau is longer for a deeper network.

We formalize this claim in Theorem 1. For intuition, consider dayer neural network that only

has bias on the last layer, and consider Xavier initialization (Glorot & Bengio, 2010) which typically
gives small output and zero bias. If we consider thimterpolation point (with coef cient for the
minimum and(1 ) for the initialization), then the weight “signal” from the minimum scales as

(as it is the product of layers) while the bias scales asAs illustrated in Figure 2 (right), when

is large and there is a difference in biases, the bias will dominate, which creates a plateau in error.
For the loss, one can also show that the weight signal is near 0 for spsallthe network output is
dominated by the biases and the loss cannot beat the random guessing at initialization. Note that this
explanation for the plateau does not have any implication on the hardness of optimization.

However, why would the last-layer biases be different for different classes, especially in cases when
the biases are initialized as zeros and all classes are balanced? In the second part (see Section 4), we
focus on a simple model that we cathomogeneous-weight network. This is a two-layer network
whosei-th output ishWi;. .;xi" + by, wherex 2 RY is the network inputWV;.. 2 RY is the weight

vector andy 2 R is the bias (see Figure 2 (left)). Our simple model simulates a deptstU/linear

network with bias on the output layer, in the sense that the signah@mogeneous while the bias is
1-homogeneous in the parameters. Under this model we can show that:

Claim 2 (informal). For ther-homogeneous-weight network on a simple balanced dataset, the class
that is learned last has the largest bias.

Here, a class is learned when all the samples in this class get classi ed correctly with good con dence.
We basically show that once a class gets learned, the bias associated with this class starts decreasing
and eventually the class that is learned last has the largest bias. We formalize this claim in Theorem 2.

In Section 5, we verify these ideas empirically on fully-connected networks for MNIST (Deng, 2012),
Fashion-MNIST (Xiao et al., 2017) and on VGG-16 (Simonyan & Zisserman, 2014) for CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009). We rst show that if we train a neural netwathoutusing

any bias, then the error curve has much shorter plateau or no plateau at all. Even for networks that
are trained normally with biases, we design a homogeneous interpolation scheme for biases to make
sure that both biases and weights esleomogeneous. Such an interpolation indeed signi cantly
shortens the plateau for the error. We also show that decreasing the initialization scale or increasing
the network depth can produce a longer plateau in both the error and loss curves. Finally, we show
that the bias is correlated with the ordering in which the classes are being learned for small datasets,
which suggests that even though the model we consider in the convergence analysis is simple, it
captures some of the behavior in practice.
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Figure 2: (Left) Our r-homogeneous-weight model with(x) = W, .;xi" + h.[gRight) Ehe
T
comparison between interpolated bia(:iq((” Q(T)) and interpolated weights signaWiE:]; X

1.2 RELATED WORKS

There are two major lines of work studying interpolation between different points for neural networks,
one on monotonic linear interpolation that interpolates the initial network and the learned network,
and the other on mode connectivity that connects two learned networks.

Monotonic linear interpolation. Goodfellow et al. (2014) rst studied the linear interpolation
between the network at initialization and the network after training on MNIST. Frankle (2020)
extended the experiments to modern networks on CIFAR-10 and ImageNet and found that though
the loss/error is still monotonically non-increasing along the path, it remains high until close to the
optimum. Lucas et al. (2021) showed that MLI holds when the network output curve along the
interpolation path is close to linear (measured by Gaussian length). However, the Gaussian length
can only be formally controlled in the NTK regime.

Mode connectivity. Mode connectivity considers the interpolation between two learned networks
(modes) found by SGD. In general, a linear interpolation between two different local minima crosses
regions of high loss (Goodfellow et al., 2014). Surprisingly, Draxler et al. (2018) and Garipov et al.
(2018) observed that local minima found by SGD from different initializations can be connected via
a piece-wise linear path of low loss. Frankle et al. (2020) and Fort et al. (2020) observed that local
minima trained from the same initialization can also be connected using a linear path. Freeman &
Bruna (2016); Venturi et al. (2018); Nguyen (2019; 2021); Kuditipudi et al. (2019); Shevchenko &
Mondelli (2020); Nguyen et al. (2021) gave several theoretical explanations for this phenomenon.

2 PRrRELIMINARIES

We rst formally de ne the linear interpolation between the network at initialization and the network
after training. Then we describe the notations that we will use in the paper.

Linear interpolation: Consider a network with parameters2 RP. Suppose the network is
initialized with parameters© and it converges to{T): A linear interpolationis constructed by
setting the parameter$ 1 = (1 )y @+ (M) for 2 [0;1] Theloss interpolation curvés

de ned as s ):[0;1]! R such that os{ ) is the training loss of the network akt 1: Similarly,

the error interpolation curveis de ned as enod ) : [0;1] ! [0; 1] with o ) as the training
error of the network atl 1: Here, the training error is simply the ratio of training samples that get
classi ed incorrectly by the network.

Notations: We use[k] to denote the sdtl;2; ;kg: We useN (0; ?) to denote the Gaussian
distribution with mean zero and varianc& We usek k to denote theé , norm for a vector or
the spectral norm for a matrix. For any non-zero veetowe usev to denotev=kvk: We use

O(); ( ); () to hide the dependency on constant factors and@(sg € ); € ) to hide the
dependency on poly-logarithmic factors.

For any timet, we use (V; f () to denote the parameters and the network at tinfer any 2 [0; 1];
we use ! I;f [ 1 to denote the interpolation point, whichmeans 1:=(1 ) @+ [Tland
f [ 1is the network with parameters !:
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3 PLATEAU FOR LOSS AND ERROR INTERPOLATIONS

We prove that the long plateau exists in the loss and error curves when the initialization is small and
the network is deep on fully-connected networks. The detailed proof can be found in Appendix B.3.

We consider am-layer fully-connected neural network withat least three. Given input2 R"°;
the network output is

gx):=Vr (M 1 (Vix) )+ b; 1)
whereV, 2 R" "r 1 for each layer 2 [r] andb2 R"r: Here the activation function () can be

either identity function or ReLU function. The output layer width equals to the number of classes,
i.e.,n, = k: We usel (fV;g; b) to denote the sum of cross entropy loss over all samples.

For the biases, we initialize them as zeros and assume after training there exists a gap between the
largest bias and the second largest, which also holds empirically (see Figure 8). Note this bias gap is
essential for the plateau in the error interpolation. If all the biases are equal in the trained network,
the logits for different classes only differ by the weights signal and the interpolated network has same
label predictions as the trained network.
Assumption 1 (Bias Gap) Choosingi 2 argmaxpq b’ ; we haved”)  maxig; B > o
Without loss of generality, we assume tb%t) > maxizk 1 q‘”. We denote nin = (T

T T : T
maXizk 1] q‘ ) and x = () min; » 1]q( ).

Then, we show both the loss and error interpolation curves have a long plateau in Theorem 1.
Theorem 1. Suppose the network is de ned as in Equat{@phand suppose the weights satisfy

Vi(o) ; Vi(T) Vmax for all layersi 2 [r]: On ak-class balanced dataset whose inputs
=r _2_
have’, norm at most, if Assumption 1 holds, for any> 0; aslongas < min lr =T,
r _1 .
thereexist 1 = ——; 5= b T i "Tand 3= V;ﬁsuch that

1. forall 2[ 1; 2];theerrorisl 1=k;
n )
2. forall 2[0; 3];wehavdogk 2 EL vil gl logk +  max +2€;

I
whereN is the number of training examples.

The above theorem shows thatforalR [ ;; 2]; the error remains @ 1=k that is the same as
random guessing. We skip the very short initial regi@dn——] since the bias is very small and the
error can be unpredictable due to the randomness in initial weights. When initialization ssale
small, this error plateau region is rougk|j(y(2\,2i:x )7 E ]. Empirically, ﬁ is smaller tharl and

does not change much when depth increases. So the plateau becomes longer in a deeper network.

Intuitively, the plateau in error curve is there because for a small initialization, the output is close to
v v (vi%) + b When is not large enough' is much smaller than

, S0 for every clase 6 k; the rstterm (signal part) cannot overcome the bias gakf) q(”).
This implies that all samples are predicted as ckaaad the errorid  1=k:

We also show that the average loss cannot be lowerltdgga  2e when ﬁ Note a small
random initialization can achieve a loss of approximalefyk. Usually the bias gap max in practice

is not very large, so the loss curve remains nearly at during this interpolation region. Again, the loss
plateau is becoming longer when deptimcreases. This is because the weights signal remains near 0
for a larger range of .

4 TRAINING DYNAMICS FOR CREATING A BIAS GAP

In this section, we explain how the gradient ow dynamics generates a bias gap on a balanced
dataset by analyzing a simple model. Below, we rst de ne the network model, training dataset and
optimization procedure for our analysis.
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r-nomogeneous-weight network:We consider a two-layer ankloutput neural network with
activation function (z) := z"; wherer is a positive constant that is at least three. As illustrated in
Figure 2 (left), under input 2 RY; thei-th outputf; (x) is W, .;xi" + b; where the weight vector
Wi;.. 2 RY is thei-th row of weight matrid 2 R* ¢ andh 2 R is thei-th entry of vectob 2 R¥:

In outputf; (x), we callhW;. .; xi" the signal since it is input-dependent and bathe bias.

Dataset: We consider &-class balanced dataset, wittas a constant. We denote the whole dataset
as$S and denote the subset for each clags[k] asS;. Each subse®; has exactlyN=k samples

and each sampbe 2 RY is independently sampled as+ ; where the noise N (0; TZI ): To
differentiate the noise terms among different samples, we denote the noise associated witlkx sample
as x: We assume akll;'s are orthonormal; without loss of generality, we asswme e for each

classi: Here, we assume the orthogonal features to facilitate the convergence analysis beyond the
NTK regime, following previous works (Allen-Zhu & Li, 2020; Ge et al., 2021).

Optimization: We initialize each entry in weight matriy by independently sampling from
Gaussian distributiolN (0; 2) and then taking the absolute valtie Our analysis can be triv-
ially generalized to standard Gaussian initialization (without taking absolute value) wigen
%n evelg integer. We initialize all bias terms as zeros. We use cross-entropy(losh) =

exp(fi(x)) . ; k . ; . _
i2k]  x2s; o9 %z[k]em(fi(x» ; and run gradient ow org-L (W; b) for time T: Our analy

sis can also be extended to gradient descent with a small step size.

Next we show that running gradient ow from a small initialization can converge to a model with
zero error and constant bias gap.

Theorem 2. Suppose the neural network, dataset and optimization procedure are as de ned in
Section 4. Suppose initialization scale (1) , noise level  €1) , dimensiord €1 = 2" 2)

and number of sampléd €1 =" 1), with probability at leasD:99 in the initialization, there
exists timel = (log(1 =)=" 2) such that we have

1. zero error: for all different;j 2 [k] and for allx 2 Si,fi(T)(x) fj(T)(x)+ (2);
2. biasgap:qm maXig i q‘” (1) withi =argmaxiz Q(T):

Due to space limit, we only give a proof sketch here and leave the detailed proof in Appendix C.
Since our dataset is perfectly balanced, it might seem surprising g1at gradient ow learns diverse

biases. We can compute the time derivative on the Ihas, 1 Nﬁ w25 Ui (X), whereu;(x)

i ; icp__exp(fi(x)) . inni i
is the softmax output for clags that is PCCGTR At the beginning, all logits are small,

we haveu; (x) 1=k and b 0: If all the samples are learned at the same time, we have
ui(x) Lu(x9 0forx 2S;;x°2SnS;, which again leadsth.  0:

On the other hand, we can consider what happens if all samples in one class (e.g),aka$sarned
before any sample in any other class (e.g., giasslearned. In this case we have

_ k X k X k N k Nk 1) 1 k 1

b=l g w0 g w1 gl Yy T kT
x2S x2SnS |

_ k X k X k N k N(k 1) 1_ 1

B=1 g uwk g w1l g0y T i
x2S X2SnS

where for any learned sampte2 S;; we haveu; (x)  1;u; (x)  O; for any not yet learned sample
X 2 S n§;; we haveu;(x);u;(x)  1=k: The above calculation shows tHatstarts to decrease
and all the other bias terms increase. Generalizing this intuition, we sholydlstdrts to decrease
whenever clasg’is learned, and the class that is learned last will have the largest bias.

1In the Xavier initialization, each entry in weight matti¥ is sampled fronN (0; 1=d); so we can think of
2 = 1 =dthat is small when input dimensiahis large.
2This is indeed possible since all samples of one class only differ in the noise terms in our setting. In the
analysis, we can show that the noise term has negligible contribution to the network output and all samples in
one class are learned almost at the same time.
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Figure 3: The training dynamics & andbin a four-class example.

As the weights are initialized randomly, by standard anti-concentration, one can argue that there is
a gap betweewifio) 's. Without loss of generality, we assu (?} > Wz(?% > > W éOk) . The

initial difference in the weights will lead to different classes being learned at different time. We show
that by doing induction on the following hypothesis through training:

Proposition 1 (Induction Hypothesis)In the same setting of Theorem 2, with probability at least 0.99

in initialization, there exist time poinB=: s; <t; <s, <t, < <skg 1<tk 1<s¢x:=T

witht; s; = (log(1 =)=" ?)andsjs1 t; = (1) fori2 [k 1]suchthatforany 2 [s;;si1];

1. (classes notyet learnedr any clasg;j © i+1;we have(lh(t) maX; o k] Q(E) o("),
@ g2 9 o(Hand@WS  O();

2. (classes already learneddr any clas§ i 1, we have (1}3“’ makx;oz [k] q(f) Q) ,
@fVx) 1P+ @) fori®8jx 2S;and QWS () ;

3. (parameters movemen(}) for anyj 2 [k]; ( ) = ijjo) < ijjt); (2) fBr any diEIinct
j%2K;0<w (% O()and (3)foranyj °2 [k] and anyx 2 Sjo;  W";

min O( ); Wj;(jt)0

This proposition shows that gradient ow learklasses one by one, from clak#o classk. More
precisely, each cladsis learned during timés;; si+1 ]: All the not yet learned class¢s i +1

have close to maximum biases and their weigﬂ}%) 's are small. All the already learned classes
i i 1lhave small biases and large Weing$t)‘s. For the parameters movement, we know that

all the diagonal entriewj;(jt)‘s are larger than the initialization and all the off-diagonal entvié: W'
are onlyO( ): The correlation between the weights and noise terms also remains small.

When learning classduring time][s;; sj+1 ]; the weight\Nifit) slowly grows to a small constant in

[si; ti] and then quickly grows large iiti ; Sj+1 :] As aresult, alk 2 S; become classi ed correctly.
During the same timeq(t) decreases and becomes smaller than the largest bias by at least a constant.
At the end timeT = s, aIthoughWk(;,T() remains small, alk 2 Sy are also classi ed correctly
becauséf) is the largest bias. See an illustration of this learning process in Figure 3.

Although we consider a simple neural network and data distribution, the analysis for the training
dynamics is still non-trivial. There are three major challenges in our proof: (1) How to ensure that
classi + 1 is learned much later than claisx (2) For any clasg that has not been learned, how

to maintain that its bias is close to the maximum? (3) For any learnedjclasgs/ to maintain the

large bias gap from the top bias? Next, we give the proof ideas for these questions. Since all the
off-diagonal entries and correlations with noise term#f) are negligible, in our proof we can

essentially focus on the movementwf,'s andb{")’s.

Lower bounding sj+1  Sj. During time[s;;t;], the dynamics oWifit) is similar as in the tensor
power method (Allen-Zhu & Li, 2020; Ge et al., 2021). The initial gap bet\/\)aéf*) andeij)
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ensures that Whewifi“) rises to a small constanl\/jfjt‘) isstilO( ) forallj i+1:Then after

constanttimesj,;  t;; WJ-;SJ-”1 is still O( ) since the increasing rate Wj;(jt) is merelyO( " 1):
Bias for classes that are not learnedForj i +1; we maintain thaq(t) maX;o k] q(é) o(").
First, we use the below lemma to show biases for any two clggs®s i + 1 remain close.
Lemma 1 (Coupling Biases) Assuming/Njojo;Wj;  O( ) andbo;ly  maxjoopgbe  O( 1),
we havehbo B > Oifbo b ",andBo Bk < Oifo B + ' for some positive
constant:

Second we show that any already learned or being learnedj€lass cannot have bias much larger
than any clasp i +1 not yet learned.

Lemma 2 (Bias Gap Control 1) For any differen§ %j 2 [K], if Wjojo Wi ; Wj; O( ) and
boe B O(');B maxopbe O(");wehavego Rk <O

Bias for learned classesAt time s; 1 ; we can prove that uj(s" o )(x) Cyforallx 2S; and
q(sj ) q‘fj ) C,. According to the below lemma, we can ensure q‘fét B C, for
anyt  Sj1:

Lemma 3 (Bias Gap Control II) There exist small positive constaris; C, such that for any
j 2k 1landanyx 2 Sj,if 1  uj(x)  Cq; Wik O()andy b C,; we have

b b< @@):
4.1 PRLATEAU AND MONOTONICITY FOR F-HOMOGENEOUSWEIGHT NETWORK

Now assuming the network at initialization and after training satis es the properties described in
Theorem 2 and Proposition 1, we can prove a tighter bound on the plateau region and also show the
monotonicity in error and loss curve. See the complete proofs in Appendix B.1 and Appendix B.2.

Same as in Assumption 1, we use to denote the bias gatp&T) Iqm fori 2 [k 1] and de-
note min = MiNjo 13 i and max = MaXip 17 . For the weights, we denoW i, =
T and Whax = MaXiz k] WifiT): We denoteRmin = miniapc 4 i:[WifiT)]r,

Minizge 1 Wi

Rmax = MaXizk 13 i:[VVifiT)]r: Below, we show the plateau and monotonicity of loss and er-
ror interpolations in Theorem 3.

Theorem 3. Suppose the neural network, dataset and optimization procedure are as de-
ned in Section 4. Suppose the network at initialization and after training satis es
the properties described in Theorem 2 and Proposition 1. For any2 (0;1); sup-

U . .
pose min( () ( Rpw mn)s (€ V‘?,’%;)'ZZ)): There exist 1 = —; , =
r - = 1
(1+ol(pj))ﬁthnin1; 3= wlmax and 4=(1+ O( ))rll Rmac 71 sych that

1. forall 2 1; 2];theerrorisl 1=k;forall 2 [ 1;1]; the erroris non-increasing;

2. forall 2[0; 3], wehavdogk e FL(WLLH ) logk+ e + €;forall
2 [ 4;1], the loss is strictly monotonically decreasing.

The analysis for the plateau is very similar as in Theorem 1 simebamogeneous-weight network

is similar to a depth-fully connected neural network with only last-layer biases in the sense that the
weights are -homogeneous while the (last-layer) biadikomogeneous. For the error plateau, we
prove a tighter bound on the right boundarythan in Theorem 1. We also show the error is non-
increasing for 2 [ = in; 1] by arguing that once a sample is correctly classi ed at interpolated
point © = |, itwill remain so for any 0 Similar as in Theorem 1, we can show that the

loss is no smaller thalogk e when vvlTa’x To show the monotonicity of loss aftey; we

show thaff i[ ](x) fj[ ](x) isincreasingin fori 6 j andx 2 S;:

Insummary, for 2 [ 1; »2]; the signal is smaller than the bias gap and the error remaihs atk.
Before 3; the signal is very small and the loss remains large; afiethe signal starts to overcome
the bias gap and the loss is decreasing. See an illustration in Figure 2 (right).
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5 EXPERIMENTS

In this section we empirically show that intuitions from our simple theoretical model can also be
applied to more realistic datasets and architectures. First, we show that bias plays an important role
in creating the plateau in the error interpolation, as predicted by Theorem 1. We then demonstrate
the in uence of initialization size and network depth (also see Theorem 1). Finally, we show that
similar to Proposition 1 the class that is learned last often has larger bias. Due to space constraint, we
only show the results on MNIST and CIFAR-100 in this section, while similar results also hold on
Fashion-MNIST and CIFAR-10 (see Appendix D).

Unless speci ed otherwise, we use a depth-10 and width-1024 fully-connected ReLU neural network
(FCN10) for MNIST and use VGG-16 (without batch normalization) for CIFAR-100. We use
Kaiming initialization (He et al., 2015) for the weights and set all bias terms as zeros. For FCN10
on MNIST, we use a small initialization by scaling the weights of each lay€01901)'=1° so the
output is scaled b®:001 We train each network using SGD fd@0epochs. See more experiment
settings in Appendix D.

We linearly interpolate using0 evenly spaced points between the network at initialization and the
network at the end of training. We evaluate error and loss on the train set. For each setting, we repeat
the experiments three times from different random seeds and plot the mean and deviation.

Figure 4: Loss and error curves across networks with all bias, last bias and no bias.

Role of bias in creating plateau. We demonstrate the importance of bias using two experiments.
In the rst experiment, we compare the loss/error interpolation curves between networks equipped
with bias for all the layersd(l bias), with bias only for the output layetgst biag, and with no bias

at all (no biag. Figure 4 shows that networks with all bias and last bias have a much longer error
plateau than networks without bias. Three bias settings have similar loss interpolation curves.

Figure 5: Loss and error curves across networks with normal and homogeneous interpolation on bias.

By our theory, the bias dominates the signal at the beginning of the interpolation because the bias
term scales as while the signal scales as : In the second experiment, to correct this discrepancy,

we interpolate the bias at ttmeth layer (input is at th@-th layer) astf{1 e (1 )h bff’) + D =
h bff): We call this thehomogeneous interpolatias now terms involving bias and weights all have
" coef cients. We compare this with theormal interpolationthat linearly interpolates the bias

terms. Figure 5 shows that for networks with all bias or last bias, using homogeneous interpolation
can signi cantly reduce the plateau in the error interpolation, but does not affect the loss interpolation.

Role of initialization scale and network depth. Our theory suggests that with a smaller initial-
ization, the signal magnitude at the initial interpolation is smaller, which can create longer plateau
in both loss interpolation and error interpolation. We compare networks under initialization scales
1;0:1; 0:01 and0:001; where scald corresponds to the standard Kaiming initialization. For other
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Figure 6: Loss and error curves across networks with different initialization scales.

initialization ; we rescale each layer by the same factor so the output is rescaledNegording to
Figure 6, smaller initialization does create longer plateau in loss and error interpolation.

Figure 7: Loss and error curves across networks with different depths.

With a deeper network, the signal grows slower at the initial interpolation phase, which can potentially
create a longer plateau in both loss interpolation and error interpolation. We compare FCN4,
FCNG6, FCN8, FCN10 on MNIST and compare VGG11, VGG13, VGG16, VGG19 on CIFAR-100.
According to Figure 7, deeper networks do have longer plateau in loss and error interpolation.

Figure 8: Train loss for each class and bias term dynamics on 2-class MNIST and 3-class MNIST.

Bias learning dynamics. Our dynamics analysis in Section 4 shows that gradient descent can learn
diverse biases on a balanced dataset by learning different classes at different time points. In particular,
the last learned class should have the highest bias term. We verify this theory by studying FCN10
with only output bias on balanced 2-class or 3-class MNIST. To separate the learning of different
classes, we compute the per-class loss by only considering the examples in that particular class.
According to Figure 8, in the 2-class MNIST, number 1 is learned last and its bias is larger, which ts
our theory. Also in the 3-class MNIST, class 2 is learned rst, class 3 the second and class 1 the last;
for the learned bias, class 2 bias is smallest, class 3 bias in the middle and class 1 bias the highest.

6 CONCLUSION

Our theory suggests that the plateau in loss/error interpolation curves may be attributed to simple
reasons, and it's unclear if these reasons are related to the dif culty/easiness of optimization. In
our experiments although the training succeeds in all the settings, the loss and error interpolation
curves can be easily manipulated by changing the initialization size, network depth and bias terms.
Therefore, we believe one needs to look at structures more complicated than linear interpolation to
understand why optimization succeeds for deep neural networks.

Though our theory requires a small initialization, we also observe plateau in CIFAR-100 with standard
initialization, which suggests that the useful signal is still a high order term iffe also observe

that sometimes the ordering of the biases does not exactly follow the ordering of the learning. We
believe this is partially due to the correlation between different-class features and offer a preliminary
explanation in Appendix D.5. We leave the thorough study of these problems in the future work.



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

This work is supported by NSF Award DMS-2031849, CCF-1845171 (CAREER), CCF-1934964
(Tripods) and a Sloan Research Fellowship.

REPRODUCIBILITY STATEMENT

For our theoretical results, we listed all the assumptions and stated the theorems in the main text and
we left the complete proof for all the claims in the Appendix. For our experimental results, we de ned
the detailed experiment settings in the Appendix and also uploaded the source code as supplementary
material.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learningarXiv preprint arXiv:2012.098162020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. Iinternational Conference on Machine Learnjmp. 242—-252. PMLR, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networkgetnational
Conference on Machine Learningp. 322—-332. PMLR, 2019.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transpoAdvances in neural information processing systedis 2018.

Li Deng. The mnist database of handwritten digit images for machine learning reskzEghSignal
Processing Magazin®9(6):141-142, 2012.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers in
neural network energy landscape.Iternational conference on machine learnjpgp. 1309-1318.
PMLR, 2018.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networksXiv preprint arXiv:1810.020542018.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kerydliances in Neural Information
Processing Systen33:5850-5861, 2020.

Jonathan Frankle. Revisiting" qualitatively characterizing neural network optimization problems”.
arXiv preprint arXiv:2012.06898020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis.linernational Conference on Machine Learnjng
pp. 3259-3269. PMLR, 2020.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-recti ed network optimization.
arXiv preprint arXiv:1611.0154®016.

Timur Garipov, Pavel I1zmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dkehgances in neural information
processing system31, 2018.

Rong Ge, Yunwei Ren, Xiang Wang, and Mo Zhou. Understanding de ation process in over-

parametrized tensor decompositioAdvances in Neural Information Processing Systedds
2021.

10



Published as a conference paper at ICLR 2023

Xavier Glorot and Yoshua Bengio. Understanding the dif culty of training deep feedforward neural
networks. InProceedings of the thirteenth international conference on arti cial intelligence and
statistics pp. 249-256. JMLR Workshop and Conference Proceedings, 2010.

lan J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problemsarXiv preprint arXiv:1412.65442014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti ers: Surpassing
human-level performance on imagenet classi cationPtaceedings of the IEEE international
conference on computer visigop. 1026—-1034, 2015.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hBrdrnal of the ACM
(JACM), 60(6):1-39, 2013.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural network&dvances in neural information processing systedis 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Rohith Kuditipudi, Xiang Wang, Holden Lee, Yi Zhang, Zhiyuan Li, Wei Hu, Rong Ge, and Sanjeev
Arora. Explaining landscape connectivity of low-cost solutions for multilayer riedsances in
Neural Information Processing Systerig, 2019.

James Lucas, Juhan Bae, Michael R Zhang, Stanislav Fort, Richard Zemel, and Roger Grosse.
Analyzing monotonic linear interpolation in neural network loss landscapeXiv preprint
arXiv:2104.110442021.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean eld view of the landscape of two-
layer neural networksProceedings of the National Academy of Scient&5(33):E7665-E7671,
2018.

Quynh Nguyen. On connected sublevel sets in deep learnirigtdmational Conference on Machine
Learning pp. 4790-4799. PMLR, 2019.

Quynh Nguyen. A note on connectivity of sublevel sets in deep learniagXiv preprint
arXiv:2101.085762021.

Quynh N Nguyen, Pierre Bréchet, and Marco Mondelli. When are solutions connected in deep
networks?Advances in Neural Information Processing Syste8is2021.

Alexander Shevchenko and Marco Mondelli. Landscape connectivity and dropout stability of
sgd solutions for over-parameterized neural networks$ntiernational Conference on Machine
Learning pp. 8773-8784. PMLR, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition.arXiv preprint arXiv:1409.15562014.

Luca Venturi, Afonso S Bandeira, and Joan Bruna. Spurious valleys in two-layer neural network
optimization landscapesurXiv preprint arXiv:1802.063842018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithmsuXiv preprint arXiv:1708.0774,72017.

11



Published as a conference paper at ICLR 2023

A EXAMPLES FOR THE DISCONNECTION BETWEEN LINEAR INTERPOLATION
SHAPE AND OPTIMIZATION DIFFICULTY

We give two examples that illustrate the disconnection between the linear interpolation shape and the
optimization dif culty. In Section A.1, we show a function that is NP-hard to optimize, but has a
convex and monotonically decreasing loss interpolation. Then in Section A.2, we give a function that
is easy to optimize, but has a non-monotonic loss interpolation.

A.1 HARD FUNCTION WITH CONVEX LOSS INTERPOLATION

For any symmetric third-order tensdr2 RY ¢ 9; our goal is to minimize
f(x;z)= Tx;x)+ kxk?* + z* 2)
wherex 2 RY andz 2 R:

Its known that nding the spectral norm of a symmetric third-order tensor (that is,
MaX,, ra:kvk=1 T (V;V;V)) is NP-hard (Hillar & Lim, 2013). We prove that minimizinig(x; z)
is also NP-hard by reducing the tensor spectral norm problem to it.

Proposition 2. Minimizingf (x; z) as de ned in Eqgn. 2 is NP-hard.

Proof. For any non-zero tensdr; let (x ;z ) be one minimizer of (x; z); it's easy to verify that
T(x ;x ;x ) > 0: We show thak := x =kx k must be a solution tax,, ga:kyk=1 T (V;V;V).

For the sake of contradiction, assume there existwith unit norm such thaf (v ;v ;v ) >
T(x ;x ;x ):It's easy to verify thaf (kx kv ;z ) <f (x ;z ); which however contradicts the
optimality of (x ;z ). O

Next, we prove that start from certain initialization, the loss along the linear interpolation path is
convex and monotonically decreasing. Note that assuming the unit Frobenius nérdoes not
hurt the NP-hardness of the problem. And our initialization is oblivious of the tefsor

Proposition 3. AssumekTk. = 1: Suppose we start from initializatiofxo; zo) with xo = 0
andjzoj > %: Let(x ;z ) be a minimizer of (x;z) as de ned in Egn. 2. We know the loss
interpolation curve ( ) := f ((1 Yo+ X ;(1 )zo + z ) is convex and monotonically

decreasing for 2 [0; 1]:

Proof. We rst prove that at any minimizefx ;z ), we must have = 0: Otherwise, we can set
z as zero to further decrease the loss. Starting from an initializ&i@h; z® ) with x© =0, we
know at each interpolation point 1= x :z[l 1=(@1  )z©: Therefore, we have
h i
()= f(xd = T bxl Lxl e <1 54 201"
h i,
= T(x ;x ;x )+kx K+ @ )@
h iy
T(x ;x ;x )+ “*kx K'+(@  )* 2@

To prove the convexity of ( ) for 2 [0; 1]; we only need to prove®{ ) > Ofor 2 [0;1]. We
have H

(P
R )= 6T (x:x:x)+12 2kx K*+12(1 )2 @
h i,
= 6 kx K®T(x ;x ;x )+12 2kx k*+12(1 )2 zO

Since the formula for °7 ) involves bothT (x ;x ;x ) andkx k;we rst gure out the relation
between these two quantities. Supp®gg ;X ;x ) = p > 0;it's not hard to ndkx k must be

equal to%p. This is becausek x k® p+ kx k* is minimized wherkx k = :%p_ Next, we prove
U )> 0for 2 (2=3;1]and 2 [0;2=3]separetely.

12
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When 2 (2=3;1]; we have
12 2kx k*> 6p kx K*=6 kx K3T(X ;X ;X ):
Therefore, we know °{ ) > 0:

When 2 [0; 2=3]; we know
h iy, 4h i 4
12(1 2 40 - S0 .
( )z 3 z

SincekTk. =1;weknowT(x ;x ;x ) landkx k 3=4: Therefore, we have

s, 2 3° _ o1
6 kx K"T(x ;x ;x) 6§ 2 1_F3'
p_
Then, we know that ifz® > 3:2:we have °0 ) > O: O

A.2 EASY FUNCTION WITH NON-MONOTONIC LOSS INTERPOLATION

In this section, we give an easy-to-optimize function that however has a non-monotonic loss interpo-
lation curve. We consider the following loss function

8

<0 ifx=y=0

fay)=. ?O#yz x2+y2? 2 x2+y?2  otherwise )

wherex;y 2 R. We can also re-parameteriz€x; y) using angle 2 [0;2 ) and lengthr 2 [0;1 )
ash(;r)y= 1 ) 4 2r2

Next, we prove that starting from any non-zero point, gradient ow converges to the global minimizer.

Proposition 4. Starting from any non-zero initialization, gradient ow dér{x; y) as de nedin Egn. 3
converges to the global minimizéy; 1):

Proof. We know the unique minimizer df(x;y) is (0; 1) by considering its equivalent form
h(;r):Forh(;r)= 1 % ré 2r2 ;weknow r* 2r? is minimized atr = 1 and

1 ) ismaximized at = 3
Besides the minimizg0; 1), the other stationary point is é; 0): For any point(x; y) different
from (0; 1) and(0;0); if x* + y?2 6 1; the gradient along the radial direction is non-zero; if

% 6 1, the gradient along the tangent direction is non-zero. It's also easy to verify that

starting from a non-zero point, gradient ow does not convergfi®); so it must converge to
©; 1 O

It's also very easy to prove that gradient descent with appropriate step size converges to an
neighborhood of the global minimizer withpoly(1=) number of iterations. This is because the
gradient is at leagpoly( ) for any non-zero point outside of theneighborhood of the global
minimizer. Starting from an initializatio(x; y) with x> + y> = (1) ; the smoothness along the
training is also bounded by a constant.

Next, we prove that starting from certain initializatidrthe loss interpolation between the initializa-
tion and the global minimizer is non-monotonic. We prove this by identifying two points along the
interpolation path such that the point closer to minimizer has a higher loss compared with the point
further to the minimizer.

3Note the initialization condition in Prop. 5 is satis ed with constant probability for a reasonable initialization
scheme. For example, if we uniformly samgley) from the setS = f(x;y) 2 R%jx?> + y> Rg with
R  2; the condition is satis ed with constant probability.

13
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Proposition 5. Suppose we start from an initializatigrg; yo) = (r sin( );r cos( )) withr  1and

2 [ =3; =3] Considerthelossinterpolationcurvgé )= f((1 )Xo+ X ;(1 )yo+t Yy )
with (x ;y )=(0; 1)andf(; ) denedinEqgn.3. We know thereex®t ;< , 1such
that

5
(2 (1) 3
Proof. We prove for any 2 [ =3; =3] and anyr 1; the loss interpolation between

(rsin( );rcos()) to(0; 1)isnon-monotonic. In particular, we show there are two points along
the linear interpolation satisfying

f (sin(=2)cos(=2); sin(=2)sin(=2)) f(sin( );cos()) 1=12

where(sin( =2)cos(=2); sin(=2)sin(=2))isthe middle point betwegsin( );cos( )) and
0; 1):

Next, we  separately upper boundf (sin( );cos()) and lower bound
f (sin(=2)cos(=2); sin(=2)sin(=2)). We have

max 3]f (sin( );cos()) f(0;1)= %

2 =3;=
and
2[rrligl;:glf(sin(:2)cos(:2); sin(=2)sin(=2))
f (sin(=6)cos(=6); sin(:6|)sin(:6))
_ 11 14 12
=33 3 23
= 9%

Therefore, we haveé (sin( =2)cos(=2); sin(=2)sin(=2)) f (sin( );cos()) %: O

B PROOF FOR PLATEAU AND MONOTONICITY

We rst consider the -homogeneous-weight model. We prove the plateau and monotonicity properties
for the error interpolation (Theorem 4) in Section B.1. We then prove the plateau and monotonicity
properties for the loss interpolation (Theorem 5) in Section B.2. Theorem 3 is a simple combination
of Theorem 4 and Theorem 5. Finally, we give the plateau analysis for the fully-connected neural
networks (Theorem 1) in Section B.3.

B.1 ERROR INTERPOLATION FOR -HOMOGENEOUSWEIGHT MODEL

Theorem 4 (Error Interpolation) Suppose the network at initialization and after training
satisfy the properties described in Theorem 2 and Induction Hypothesis 1. Suppose
1

r

1 — r . 1
min(O(1); O(RT i )s O(( e )77)): There exist | = —and ;= (55p— 01( =)™ Rpn »
such that

1. forall 2 [ i1; »];theerrorisl 1=k;

2. forall 2 [ 1;1]; the error is non-increasing.

Proof of Theorem 4. This theorem directly follows from Lemma 4 and Lemma 5.

Next, we separately prove the initial plateau in Lemma 4 and the monotonicity in Lemma 5.
Lemma 4 (Error Plateau) In the same setting as in Theorem 4, there existss —— and

r 1
— 1 rot r1
2= I3 o( ) Rmin J

1 1=k: Moreover, we havéi[ ](e,—) <f & ](e,) forallj 2 [k]and alli 6 k.

such that for any interpolation point with 2 [ 1; 2]; the error is

14
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In the proof of Lemma 4, we show that for interpolation poin2 [ ;; »]; the bias term dominates
and all samples are classi ed as cl&sthat has the largest bias.

Proof of Lemma 4. We only need to show thatforall2 [ 1; »]; we have
fl) < L x)

forallx 2 S and alli & k; which immediately implies the errorks 1=k: Without loss of generality,
assume 2 S; wherej may equal ork:

h [ p-
ﬁor 2 14,5%w— - If 1= — =, we only need to consider the case wher2
B I min min = min
w—: 2 :Sohereweassume — < z—:We can lower bouncﬂ,E ](x) fi[ ](x) as
fllxy £l N
HD( ) Eir( ) hD Ei,
= VVIE;:];X +d<] Wig:];x q[]
hD Ol Ei, ] h . iy ]
= Wk;:h;x +47 wi!l o) o
| r
i WiEjO) + W iEjT) +0()
D E D E
where the second equality usesNif :]; X O( ) and the inequality uses\NlL :];x (0
h p_ i
To provef& ](x) fi[ ](x). > 0for 2 — W . we only need to prove— |
p- r
Wifjo) W WiF-T) + O( > 0: Since min » we know — . Due to full ac-
curacy, we know Wif:T);xE '~ for x 2 S;; which then impliesw” ™" because
i (1) and W; x  O() O(): Sincew}"” T andwy  O() for

h@ j; so we haveWiij) iWifiT) Whax as long as O( ,1:"2 ): So we can upper bound

p_ r
W+ —W{" + 0()  asfollows,

" p B #r " p 7W #r
wO+ w40 o( )+ max
" Wiin % 0 . 0 Whnin "
p- p- r
W max W max
r'W min | Winin
P- r
e W max
Wmin '

2
where the second inequality assumes @) %ﬁf . Therefore, to prove——
p_ | r min min
W + 7—w{" +0() > 0we onlyneed
|
p— .
Wmax

e [—————
Wmin
h 2

1 l W min roe .
which holds as long as< = won :

hp o i

For 2 Wi 2 - Similar as above, we only need to show that ;

r —
w + w {"+0() > ofori 6 kandj 2 [k]: Sincew,”  O( )and P Wi s we
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havew O(p "W min). Therefore, we havv” + W {7+ 0() 1+ O(p Oow D
Therefore, we hﬁve

©) ) a P Nl
i Wi+ Wy '+ 0() i 1+0( ) LW >0
e
where the last inequality assumes s = ﬁk) ' RI.- where Rmin

. T
MiNi2 [k 13 i=[Wi$i )]r3
Next, we show that the error is non-increasing fo2 [ ;1] by proving that once a sample is
classi ed correctly it will remain so.

Lemma 5 (Error Monotonicity) In the same setting as in Theorem 4, there exists —— such
that the error is non-increasing for 2 [ 1;1]:

Proof of Lemma 5. We rst show that sampley is correctly classi ed for the whole rande;; 1].
Second, we show for any other sample once it become classi ed right it will remain so. Combining
these two cases, we prove the monotonicity of the error rate.

Class k. We rst show that every 2 Sy is classi ed correctly forany 2 [ 1;1]: According to
Lemma 4, we know that

fE oo > 1] e
for anyi 6 k: We only need to prove thzﬁ;{ ](x) fi[ ](x) is increasing for 2 [ 1;1]: Expanding
fllx) £l (x), we have

[ [
SN A GV

Ei, h D E D) Ei,
= (1 ) WOix + Wi x a ) w%x + wlx + K g7 ;
E D E
which is increasing since Wk(;T:);x ; Wk(?:);x ; Wif:T);x ; Wif?) ;X O( ) and

o> @)

Other classes. For any clas$ 6 k; from Lemma 4, we know that it is classi ed incorrectly for
2 [ 1; 2]: We prove that once it become classi ed correctly at sorfig ( »; 1], it remains so
for 2 %1

We show that at; for any x 2 S;, if fi[ ](x) > fj[ ](x) for all j 6 i, we have
@@ fi[ ](x) fj[ ](x) > 0 Expandingfi[ ](x) fi[ ](x);we have

fhi[D](X) f-[ ](X)

Ei, hD Ei,
= Wi;:];x +l:{] WJ-E:];X q’]
hD Ei, hD Ei,
= WiE:];X WJE:];X H(T) q(T)

wllx > Q(T) (RN
D E
where we use WjE :]; X 0: Computing@@ fi[ ](x) fj[ ](x) ; we have

2l 1
@h D E D Ei, h D E D Ei,
=— @ ) wP%x + wlx @ ) w%x + wlix + {7 "
@1D E D E D Ei, 1D E D
r Wif?);x + Wif:T);x Wif?);x Wi;(T);x Wif?);x q(T) q(” o(");
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where the inequalityuseswjf?);x ; ijT);x O():

If5"” 4T 0; we only need to prove
hD E D E D Ei, ;D D E
r Wi;(?) X+ WifT);x Wi;((:’);x Wif:T);x Wif?) ;X o(")>0;
D D E D E
which holds since Wif:T);x Wif?);x ; W-R];x 1) :

If q(T) b™) > 0; we have

](x) £ ()
@1D D E D Ei, ,D E D E
w®x + Wi x w®;x W x w®;x 7 67 o(")

P @ PO
1 o("yr w; w9
Ll O W Wy e
wx +  wilix w9
(MR i T

hD Ei,
where the last inequality uses Wi[.];x > q(T) (7). Therefore, to prove
B E
T o( ' )yr W(T:);x Wfo:) X
2 fll(e) f[ () > 0; we only need to provﬁnwi.(o.) XF)+ wyiFT);xF nw’i@ o i
We have
D E D E D E D E
1 o(")r Wif.T);x Wi@;x 1 o("Yr Wi(.T);x w@:x 1
i SANF D E D E =
0). T). 0. T). 0).
Wi;(:),x + Wif:),x Wif:),x 2 Wi;(:),x Wif:),x
D E D E D E
The rst inequality requires Wif?);x WifT);x b Wif?);x and the s%cond inequality
usesr 3;(1 O(")) 2=3:Toprove Wif?);x WifT);x W-(O)' , it's equiva-
lent to show Wif?);x — Wif:T);x : Since 2= Tol('&) r R,’mnl,we can lower
bound;;— as follows,
} 1 n rrl Rﬁ
1+ 2 1+0( ) min
1 r
8Rm|nl’
where th%rst meo‘gallty uses 1and the second inequality usks O(p ) 2ir 2:Sowe
haver;— W );x lRr‘mn1 min - Therefore, we only need O R;mn1 ' to ensure that
D E D E D E
WO -y Wy WO -y
i [N i

B.2 LOSSINTERPOLATION FOR -HOMOGENEOUSWEIGHT MODEL

In this section, we give a proof of Theorem 5.

Theorem 5 (Loss Interpolation) Suppose the network at initialization and after training satisfy
the properties described in Theorem 2 and Induction Hypothesis 1. For @n{0; 1); suppose

=r —_— L
O( 7); there exist 3 = ——and 4 =(L+ O( ))7 T Rme 77 such that

1. forall 2[0; 3],wehavdogk e FL(WLLHI]) logk+ nax+e;

2. forall 2 [ 4;1], the loss is monotonically decreasing.
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Proof of Theorem 5. This theorem directly follows from Lemma 6 and Lemma 7.

Next, we prove the initial loss plateau in Lemma 6 and the monotonicity in Lemma 7.
1=r
Wmax

Lemma 6 (Loss Plateau)In the same setting as in Theorem 5, for amy 0; there exists 3 =
suchthatforall 2 [0; 3]

N(@ogk e) LWILHI]) N(ogk+ max+e):

We show that for 2 [0; 3]; the weightsW! 1 is negligible and the bias dominates, which then
gives a lower bound and an upper bound of the loss.

Proof of Lemma 6. Since 3= Wlm and O ¥ :wehave
hD Ei, hD E D E D Ei, 1 r
wilix = w@ix (Wil wi®ix ) 1+ 2 e

foralli 2 [k];x2S:

We can divide the datas8tinto N=k disjoint subset$P, glelk where eacliP; contains exactly one
sample from each class. Next, we bound the total loss of each $b¥¥ithout loss of generality,
let's consider subsd?; and supposg(!) is thei-th class sample in this subset. For convenience, we
denote the total loss of samplesip asL (W[ 1,10 1):

Lower bounding L1 (W! ;6 1):  We have
Op (vt 1
X i exp f: '(x\V)
Lwllg =" jog@—2Y []‘ | A
i2 K] exp f; '(x()
0

Y
=log @ By
2 exp i '(x®)

00

1,1
lo %% K § §
9 P exp flI(x) ’

i2[k] P

P o1
[]
j2pg &P f (x0) A

j2 k] EXP fj[ J(x()

where the last inequality uses the HM-GM inequality. We can then upper bound
P exp fl1(x™)

[ P as follows,
i2[k] 12[k]eXp fj[ ](X(i))
. hD _Ei,
X exp £ 1(x®) X exp WLIxO 4+ p,
= hB- Ei
i ARG P Tl L T
i2k] jopg®P F(XW)  iapg g exp WX + b,
X exp(bi+e)
i2[K] J'2[k]eXp(bi)
i2pk €XP(bi)
:FLEX e
j21 €XP (D)) Pe)
=exp(e):
Plugging back to the lower bound bf (W[ I; b 1); we have
k
L.(wl g1 Kl — Kk (loa k :
1 0 0) 0g xp@) (logk e)
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Upper bounding L. (WI ;0 1): We have

0p [ 1oy (i) 1
X - exp fr '(x\")
Lywl g =" jog@— 121 — - A
i2[K] exp f; '(x()
P !
X 09 2 €XP(bj +e)

121 exp(bi)

klog(kexp(  max + €))
k(logk+  max *+€)

The above analysis applies for every suigeso we have

N(ogk e) LWILHI) N(ogk+ max+e):

Next we show that when is reasonably large, we haf/é ](e.) fj[ ](e.) increasing for all 6 j,
which then implies that the loss is decreasing.

Lemma 7 (Loss Monotonicity) In the same setting as in Theorem 5, there exisis =

1
1+ O ))ﬁ Rm% " * such that the loss is monotonically decreasing fa2 [ 4; 1]:

Proof of Lemma 7. To prove that the loss is monotonically decreasing, we only need to show that
foranyi 2 [k] and anyx 2 Si,fi[ ](x) fj[ ](x) is monotonically increasing fgr6 i:

Same as in Lemma 5, it's easy to prove that{d Sy; fx(x) f;(x) withj 6 k monotonically
increases for 2 [0; 1]: So we focus on other classes.

Fori 6 k; we showtha%@ fi[ ](x) fj[ ](x) > Oforx 2 Sj when 4

@
g e flle)
@h D E D Ei, h D E D Ei,
== @ ) wix +  Wlx @) Wi+ wiixe o+ fT gD
Q D E D Ei, , D E D E
ra ) WO+ wln Wi W@ 6D T o()
hD Ei, ; D D E
rr b wix wiix o w@ix g H? o)
11
© hD Ei,

rrt 10 5 wiix gD HT @ o)

min
>0;
where the second Iastinequalityuseﬁlif?);x = Wif:T);x O = . .Thelastinequality
requires

(T) (T)
rtto@+o( ))M
wm
5l
1

which is satised as long as L+ O()7T Bmac 71 where Rpax =

T
maXizk 1 i:[Wifi )]r3-

B.3 PLATEAU FOR DEEP FULLY-CONNECTED NETWORKS

In this section, we consider fully-connected neural networks as de ned in Section 3 and prove that
both the error and loss curves have plateau. We restate Theorem 1 as follows.
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Theorem 1. Suppose the network is de ned as in Equat{@phand suppose the weights satisfy

Vi(o) ; Vi(T) Vmax for all layersi 2 [r]: On ak-class balanced dataset whose inputs
- 2
have’, norm at mosti, if Assumption 1 holds, forany> 0; aslongas < min lr ;riz; 2—1e re
r 1 -
there exist 1 = ——; 5= ﬁk T i "Tand 3= V;#such that

1. forall 2 [ 1; 2];theerrorisl 1=k;
n o)
2. forall 2[0; 3];wehavdogk 2e &L VAREEL S logk +  max +2€;

I
whereN is the number of training examples.

Proof of Theorem 1. This theorem directly follows from Lemma 8 and Lemma 9.

We separately prove the plateau of error interpolation in Lemma 8 and the plateau of loss interpolation
in Lemma 9. Then, Theorem 1 is simply a combination of Lemma 8 and Lemma 9. For convenience,
we denoteh(x) := V, (V; 1 (V1x) ) inthe proof.

r 1

Lemma 8. In the setting of Theorem 1, there exigt= —— and = —»— Ch o
such that the errorid 1=k for any interpolation point 2 [ 1; »]:

Proof of Lemma 8. Recall that the network output under inpwt is g(x) :=
Vi (M 1 (V1x) )+ b. Similar as in the proof of Lemma 4, we only need to show that
forall 2[ i1; »2]; we have

g 100 <9l ')
foralli 6 k and all samplex, which immediately implies the erroris  1=k:

h p— p-
ﬁor 2 i Ny - If 1 = — v we only need to consider the case wher?
pP- p—
v 2 SO here we assume— < —:Wecan lower boungl[( ](x) gi[ ](x) as
g’ g leo=nlleo+ ) nlleg o]
Y (0) (T)
min 2 (1 )\/J + Vj
j2[r]
mn  2( + Vmax)r;
where the rst inequality holds becauské] q[ ] min and h[k ](x) ; hi[ ](x)
QjZ[r] @ V@ + v, (D : The second inequality useg1 V@ + v (¥ 1
) \/J(O) + \/](T) + Vmax:
h p_
Since 2 — v we have
p_ Py
g0 d'00 — mn 2 Ve
min max
1 p-"
2 1+ - ;
r
2e r=2

>0;

where the second inequality assumes 1=r? and the last inequality assumes 2—16 Tz
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hp_ i
For 2 — 2. Similar as above, we only need to show thatmin ~ 2( + V max)" > O.
Since ﬁ; we have P "V max: Therefore, we have
p- r
mn 2( + Vmax)r mn 2 1+ Vimax >0

r 1 oo 1
flglp; min .

where the second inequality holds as longas » := % g v
max

=r

Next, we show that for 2 [O; Vl—]; the loss cannot decrease by much. Similar as in Lemma 6, we

prove that the signal is very small and the logit is dominated by the bias term. This then gives a lower
and upper bounds for the loss.

Lemma 9. In the setting of Theorem 1, there exists= % such that forall 2 [0; 3]

L o}
logk 2e Nt vil g1 logk+ g +2e;

whereN is the number of samples.

Proof of Lemma 9. Since 3= V;a; and % we have

hUlx)  (+ Vi)' e
for all inputx:

Similar as in the proof of Lemma 6, we can show that
1
logk 2e NL vl g1 logk+ e +2€

where we have an additional factor@beforee because now the signal can be positive or negative.
HereN is the number of samples.

C PROOF OF TRAINING DYNAMICS

In this section, we give the complete proof of Theorem 2.

Theorem 2. Suppose the neural network, dataset and optimization procedure are as de ned in
Section 4. Suppose initialization scale (1) , noise level €1) ,dimensiod €1 =2 ?)

and number of sampled €1 =" 1), with probability at leasD:99 in the initialization, there
exists timel = (log(1 =)=" 2) such that we have

1. zero error: for all differeni;j 2 [k] and for allx 2 Si,fim(x) fj(T)(x)+ (2);
2. biasgap:qm maXig i Q(T) (1) withi =argmaxiz q‘”:

Proof of Theorem 2. This theorem directly follows from Proposition 1.

We consider the-homogeneous-weight network as de ned in Section 4. Our simple model simulates
a depthr ReLU/linear network with bias on the output layer, in the sense that the weights signal is
r-homogeneous while the biasishomogeneous in the parameters.

Next, we prove Proposition 1 while leaving the proof of supporting lemmas into Section C.1. Through
the proof of Proposition 1, we restate the lemmas when we use it for the convenience of readers.

Proposition 1 (Induction Hypothesis)In the same setting of Theorem 2, with probability at least 0.99
in initialization, there exist time poinB=: s; <t; <s, <t, < <SSk 1<ty 1<s¢x:=T
witht; s = (log(1 =)=" ?)andsjs; t; = (1) fori 2 [k 1]suchthatforany 2 [s;;sj1 ];

1. (classes notyet learnedrany clasg;j © i+1;we have(ln(t) mawX; o k] Q(E) o("),
@ 4 ) o()and@Wwg O();
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2. (classes already learnedpr any clas§ i 1, we have (1)3“’ max; oz [] q({) Q ,
@0 )+ @ fori®6jix 2S; and QW (1) ;

3. (parameters movemen(}) for anyj 2 [k]; ( ) = ijjo) <W jfj”; (2) fBr any diEtinct
i %2 k;0<wW{% O()and (3)foranyj °2 [k] and anyx 2 Sjo;  W\Y;
min O( ); W%,

Proof of Proposition 1. Through the proof, we assume the conditions in Theorem 2 hold in all
the lemmas without explicitly stated. At the initialization, we have the following properties with
probability at leas:99.

Lemma 10(Initialization). With probability at leasD:99in the initialization, we have
1. forallj;j °2 [k, W% = ()
2. for all distinctj;j °2 [k, W W, = ( )

3. forallx 2S;k yk O();

ot ploQ(N)
4. forall distinctx;x°2'S;  4: xo 0 5
D 0 E plo(N)
5. forallj 2 [Klandallx 2S; ;g ; WO o =

Without loss of generality, we assumé?} >W 2(03 > >W éok) :

It's not hard to verify that the induction hypothesis holds at the initializatidPor anyi 2 [k 1];
assuming the induction hypothesis holds for tiifkes; ]; now we prove that it continues to hold in
[si;si+1 ]: Next, we rst prove the rst two properties in the Proposition 1 and leave the last one at
the end.

The learning ok 2 S; can be divided into four stages:

1. Stage Ofort 2 [si;tiJwitht; s; = O(log(1=)=" 2): During this stageWifit) grows to
a small constant,.

2. Stage Ifort 2 [ti;ti(‘”)]with ti(W) ti = O(1): In this stageWifit) grows from ¢ to alarge
constant ;.

3. Stage 2for t 2 [t™);t™with t t™) = O(1): At the end of this stage, we have
Miny2s, ui(t)(x) 1 > for a small constant .

4. stage 3fort 2 [t tP with ) = O(1), wheret!” = s;,; . During this stage,
we haveq“) bff) decreases to 3 with 3 a positive constant.

Next, we consider these four stages one by one.

Stage 0. We show thaWifit) increases faster thaNi(ﬂ i+1 SO that\Nifit) reaches a constant while

Wi(,f)l i+ Isstill O( ): We use the following lemma to characterize the increasing raw,(b}f;i +
andw,.

D E D E
“‘We vlslill maint%in a stronger bound onijt:); x by proving Wj;(‘:); X O(p logN ), which
implies W{; O( ) as long as 0(1:p logN):
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Lemma 11. For anyj 2 [K]; we have
Wit r 1P e
@w o logN

@t d
If minyas; (1 uj(x)) (1) ,we further have

[ J— X W p__ X
1 O( logN ) % @ y)rwj? v 1+ O( logN ) %
XZSj @t XZSJ‘
It's not hard to verify thaminyos, 1 u(x) imines,, 1 u® (x) (1) ,sowe have
Wt) p k X h i ro1
@@"t 1 O( logN ) N 1 ux) r Wifit) ;
X2S

% 1+0( logN ) N 1 out e rwh) i+l

X2S i+

We can upper bountl uI+1 (x) for anyx 2 S+ as follows,

P (t)
4O oo P FE00 exp £ (%)
1 |+1( )_ P O
ioa (k) €XP fio”(X)

P (1) (t)
i02 (k] EXP Bo exp b
= (1+0(");

F t
io2 k] €XP q(o)
where the inequality usesWID 1 X O( ) for everyi®2 [K]:

We can lower bound ui(t)(x) forx 2 S; as follows,
P () 0
© i) €XP 0" (x) exp f;7(x)
1 u’(x)= P o
02 (k] €XP o’ (X)

P t t
io2 (k] EXP q(o) exp Q()

1 o( o)

L t
i02 (k] EXP q(o)
P
i02 (k] EXP q(g) exp h(:)l

'J
(t)
021k €XP Do

(1 O(o O("):

D E
The rst inequality uses W.o;: O( o) for everyi® 2 [k]: The second inequality uses

Iqm q@l + O( "), which is guaranteed by the following lemma.
Lemma 2 (Bias Gap Control 1) For any differenf %j 2 [K], if Wjoj0  Wjj ;W4 O( ) and
Bo B O(');B maxbe O( '), wehavdyo B <O

According to Lemma 10, we know there exists constant 1 such that\/v(o) CWi(fi a1

Choose constarg suchpthalSr Z = pC andWifio) S P
constantsand O(1= logN); 0(1), we have

CWi(fi i+1 - Choosing ¢ as small

1+0(ID logN' ) max 1 W s O(p logN" ) min 1 u (x)
x2S

|+1
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We can also lower bountl ui(t)(x) for x 2 S; by a constant,

P
(t) (t)
o 02 k] €XP B exp b
1 u(x) P

(t)
o[k €XP Do

(1 O o)

exp b
d t
io2[k] EXP Q(O)
@ ;
where the last inequality holds becausggis a small constant artqﬁ)l max;oy [k q(é’ o("):
Lemma 12 (Adapted from Lemma C.19 in Allen-Zhu & Li (2020)Letr 3 be a constant and let
fW;w’g o be two positive sequences updated as
@Wt) h | r 1
@Ht Ci Wifit) for someC; = (1)
t)
oV
@t
Supposewifio) ijJ-O)Sr = (1+ (1)) ;thenwe musthave for evedy= O(1); lett; be the rst
time such thaw,")  A; then

(1 O(o)

r

h ir o1
SG ijjt) for someS = (1) :

wi? ow):

Then, according to Lemma 12, we know that there exjsts O(log(1= )=" ?2) such thalvvft‘) =

0 andWi(inl);i 4 O(): By similar argument, we also knowjfj“) O( )foranyj i+1:

Stage 1. In this stage, we show thwifit) grows to a large constant within constant time. Since
wi  pandd) B L, + O("); we have
1w @
for all x 2 S;: This further implies,
@w
@t

p—— X h ir 1
1 O( logN ) NE 1 u(t)(x) row
x2S

@ ;
where the inequality also uswgfit) o: Since the increasing rate is at least a constant, we know
Wifit) grows to 3 in constant time. For any i +1; since the increasing rate ijjt) is merely
o(" Y);we knoijfjt) remains a©( ) through Stage 1.

Stage 2. In this stage, we prove thalgm(x) for anyx 2 S; grows tol 2 with , a small
constant. We use the following lemma to characterize the increasing ra&g(oo fj(t)(x).
Lemma 13. Foranyx 2 Sjandanyj 6 i; if1  uj(x) (1) ,we have

SHE0 100 (W 2 o

Sinceui(t)(x) 1 ,;weknowl ui(t)(x) (1) . For anyj 6 i; we have
@

h
F0x) 1O wo' Tt o)
@t ! i i

1
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where the last inequality holds becaw'-t) 1 with 3 alarge enough constant.

The next lemma guarantees that at the beginning of Stage 2, qu(Haveq(t) 0O(1); which
thenimpliest "(x) Y (x)  0O():

Lemma 14 (Bias Gap Control Ill) For any differenti;j 2 [K], if Wi;  O(1); Wj; O( ) and
b b O(1); we have

b k>0

LetC be a constant such thg" (x)  f{”(x) Cforeveryj 6 i impliesui(x) 1  :Since
at the at the beginning of Stage 2, we ha}%(x) fj(t)(x) O(1); within constant time, we
havef i(t)(x) fj(t)(x) C foreveryj 6 i andu;(x) 1 3

Lemma 15 (Accuracy Monotonicity) Given any positive constafil, ; there exists positive constant
C; such that for all different;j 2 [k]; as long aswi; Cyandfi(x) fj(x) C;forany
a

X ZSi;wehaveW > 0
According to Lemma 15, by choosing large enoughwe can ensure thzﬁft)(a) fj(t)(e.) C

anduj(eg) 1  ,throughout the training. Note that oanfit) rises to i, it will stay at least
1 O( ) throughout the training, according to the gradient lower bound in Lemma 11.

Stage 3. In this stage, we prove that within constant time we Haﬁ{)e q(f) 3. The following
lemma shows theum q(f) decreases in at least a constant rate.

Lemma 3 (Bias Gap Control 1) There exist small positive constar@is; C, such that for any
j 2k 1]andanyx 2 Sj,if 1 uj(x)  Ci; Wik O()andly b C,; we have

B k< (@):

Choosing , = C;; 3= C, whereCy; C, are from Lemma 3, so we know tHeﬁ) bf(t) decreases

(u) (u)
at a constant rate untilft) q(f) 3t At timeti(“); we know thalqt' qt(' O( "): So within
constant time, we ha\laq?”1 kﬁi” = 3: By Lemma 3, we also know that for aty s;.; ; we
haveq(t) lq(f)

The following lemma shows thzhf) is close to the maximum bias.

Lemma 1 (Coupling Biases) AssuminghNjojo;Wj;  O( ) andbo;ly  maxjoopgbe  O( 1),
we havebo B > Oifbo b ",andBo Bk < Oifo B + ' for some positive
constant:

Combining Lemma 1 and Lemma 2, we know that throughout the trahﬁihg max; oy [k q(})

O( "): Therefore, we havq(t) max;op [k] q(E,) (1) fort sjs:

Finally, let's bound the movement of different parameters.

Monotonicity of diagonal terms: Forj 2 [k  1]; according to Lemma 11 we knowjfjt) can only
start decreasing when it exceeds a large constant and can only decrease byG{ mtsbugh the
algorithm. By choosing  O(1); we can ensure tha!t/jfjo) < Wj;(jt) for anyt: Foer(fk) ; we know it
monotonically increases since we always have uff) (X) (1) forx 2 Sy:Thisis becauswlf;tk)
remains as small &3( ) through the algorithm antf) q((t) 1 O(1):

Bounding non-diagonal terms:We use the following lemma to prove thfit ) < ijjt)o o()
forj 6 |©
Lemma 16. For anyj 6 j° we haver W;; o  O( ): Furthermore, there exists absolute constant

> Osuchthatifd <Wjj o < ————; we haveT W;; o —_—
log™ Z(1=) 2log™ 2(1=)
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The rst property in Lemma 16 guarantees that the increasing rate is so small that that the total

increase withirll' time is onlyO( ), which then implies thaWj;(jt)o O( ) through the training. The

second property in Lemma 16 guarantees that wﬁ& falls below—————; its decreasing rate
E |Og" 2 (1: )

is so small that that the total decrease withitime is only—————, which then implies that
2logT™ 2(1=)

W% > & ) through the training.
D
Bounding noise correlations: The following lemma shows thatlghe total change wj;(‘) ; x within
T time is onlyg(p log NE ): Since at initialization, we know Wj;((?) o O(p logN );we
conclude that Wj;(t:); b O(p IogEN ) throughout the training. smcuﬁf% € );aslong
as  ©(1);wealsohave W(; ,  Wjjoforx 2 S
Lemma 17. For everyj 2 [K] and every 2 S; we have
D E p
W 5« T O logN

C.1 PROOF OF LEMMAS

Lemma 10(Initialization). With probability at leasD:99in the initialization, we have

1. forallj;j °2 [k, W% = ();

2. for all distinctj;j °2 [k, W W, = ( );

3. forallx 2S;k yk O( );

ot pIOg(N)
4. forall distinctx;x°2'S;  ,: xo 0 3
D P gty
5 forallj 2 [kKlandallx2S; ;g ; X;Wj;@ @] ﬁogé—)

Without loss of generality, we assumé?i >W 2(03 > >W k(ok) :

Proof of Lemma 10. Recall that eacklvj;(jo)0 is independently sampled frod (0; 2) before taking

the absolute value. By standard Gaussian concentration inequality, we know foj &8y[k]; with
probability atleast. gz

w o():

By anti-concentration inequality of Gaussian polynomials, we know forjgr§2 [k]; with proba-
bility at leastl 155z

0
e

Also by anti-concentration inequality of Gaussian polynomials, we know for any digtjrit2 [K];
with probability at least  1c5ez

gz ho g
WO Wt (o
which implies W W, () assumingv ;W= ( ):

il
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By the norm concentration of random vectors with independent Gaussian entries, for 2&hwe
have with probability at least 1555z

kxk O()
aslongasl O(logN):

By the concentration of standard Gaussian variable, for any distid® 2 S; we have with
probability at least.  155ex=

pIogN

d

X1 x©

Similarly, for anyx and anyg , we have with probability at leadt 5y

pIogN

g O :

for anyx and any\Njfcf) , we have with probability at leadt 550
D E Pr—x
logN
X, Wj.(q (@] 9 :
- d
Taking a union bound over all these events, we know with probability at@@8in the initialization,
we have

1. forallj;j °2 [k, WS = ();

2. forall distinctj;j °2 [k], W wWQo = (),

3. forallx 2S;k yk O( );

P IogEN)

4. for all distinctx; x°2 S; ;o o) 5

E

D S
5 forallj 2 [Klandallx 2S; g ; W o N

d

Lemma 12 (Adapted from Lemma C.19 in Allen-Zhu & Li (2020)Letr 3 be a constant and let
fw;w’g o be two positive sequences updated as

Wit h ir o1

@@"'t c w for someC; = (1) ;
wio h iy

% sc W for someS = (1) :

SupposeWifio) ijJ-O)Sr = (1+ (1)) ;thenwe must have for evety= O(1); lett; be the rst
time such thaWifit‘) A, then

Wi oy

Proof of Lemma 12. This lemma directly follows from Lemma C.19 in Allen-Zhu & Li (2020) by
taking the continuous time limit and settikgas a constant.

Lemma 1 (Coupling Biases) Assumingh; o; o; Wi; O( ) andbo;g  maxjoy; e O( "),
we haveo B > 0ifbho b ",andBo B < Oifho B + T for some positive
constant:
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Proof of Lemma 1. Let's rst write down the time derivative ofyo;

k X
h.o =1 W U] O(X)
x2S

EX b &XP(Wo;xi" + Bo)

N os I i02 k) €XP (Wie;:; xi" + o)

=1

exp(hw;o. xi"+10)
,oz[k]exp(hNio;:;xinio)
exp(hW,- 0;:;Xir + qo) b exp(q o)

2 1) €XP (Wi XI" + i) i02 k] €XP (Wio.;;Xi " + Bro)

For anyx 2 S; we can bound as follows,

P

o( ")
where we usegiWo..;xij  O( )+ O(p logN ) O( ) assuming 1=p logN: The similar

it e b
bound also holds fop—&®MWi xi + ;)
i02[k]exp(hNi0;:;X| + Do)

ifho B "; we can now upper bourigle I3 as follows,
kX o exp(y) exp(ho)
J— P . + O r
t}o q N x2S 102 [K] eXp(l‘f‘/\/io;:;)“r + ho) ( )
X 0
LS p exp (i) exF)(gr) £ o( N
N X2S;[S jo 102 k] exp (Wio..;xi~ + bo)
X
( r) 5 P exli‘)/\(/q) - +O( r)
x2Si[s jo  1°2[K] exp (Wio..; Xi~ + Bo)
j i 0, exp(b;)
Whenx 2 S;j [ S jo; we can lower boune o exp(h/v:o;:;xir+bio) as follows,
P eXp (Q) -p exp (h)
io2 [k] €XP (H\Nm;:;xir + bo) 02 [k] €XP (bo) exp (H\NiO;;;Xir)
p &xpP@) 1
i) €XP(be) 1+ 0O(T)
1) ;
where the rstinequality usgWio..;xij ~ and the second inequality assurbies max;oz ] o

O( ") and is at most some small constant.
Therefore, ifgoc b ", we have
Bo B ( )+O(N)<O

where the second inequality chooseas a large enough constant. Similarly, we can prove that if
bo b ", we have

Bo B (") O(H)>o
Lemma 2 (Bias Gap Control 1) For any differenf %j 2 [K], if Wjoj0  Wjj ; Wj; O( ) and
Bo B O(');B  maxibe O( "), wehavdyo B <O

Proof of Lemma 2. We can write dowri o Il:} as follows, |

k X k X
be B= 1 N uj o(x) 1 N uj (x)
x2S x2S
k X k X
=5 W00yt o (U () jo(x)):
XZSjo XZSnSjo
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We rst prove that for any 2 Sjo; we haveu; (x) ujo(x)  0: We can upper bount} (x) and
lower bound jo(x) as follows,

fj(x)= MW ;xi"+h O(")+h

fjo(x) = AWjos;xi" + o By:
The bound orf; (x) holds becausBW;. .; xi = Wjj o+ W, .; i O( )+ O(p IogN ) O():
The bound orfjo(x) holds becausBW;o..;xi = Wjojo+ Wijo.; i () O( TogN )> O
With the above two bounds, we know that(x) uje(x) Oaslongasye B O("):

Same as in the proof of Lemma 1, for eacB S n S;o; we can bound; o(x); u; (x) as follows,

p_ exp(@o) . . o expo) .
02 kg €XP (Fio(X)) OC7)  uyelx) ioz[k]exp(fio(x))+o( );
p_&p@) ' , p &p@) .
PTG e) B R O ey I
Therefore, ifgo B ", we can further upper bourigle Iy as follows,
Be B oo 00w
XZSnSjo
k X 0
R
x2sns ;o 1°2[K] '
k X e 0 r
P
x2s;  192[k] '
nk X 5 exp@) :
e ' O :
( )N x2s;  i%2[K] exp (fio(x)) ()
Similar as in Lemma 1, we can show that—2%2)____ (1) due tow; O( ) and

i02 k] eXp(f i O(X))
b maxipp ke O( ). So, nally we have
Bo Bk ( H+o("H)<o
where the last inequality choosesis a large enough constant.
Lemma 15 (Accuracy Monotonicity) Given any positive constafl,; there exists positive constant
C; such that for all different;j 2 [k]; as long aswi; Cyandfi(x) fj(x) C;forany
X ZSi;wehavew > 0

Proof of Lemma 15. Sincef;(x) f;(x) Cy weknowl wui(x) (1) : This immediately

impliesmingos, (1 Ui (x9) (1) sincejui(x)  ui(x%j O( ): According to Lemma 13, we

can boun f‘(ei)@tfi(e‘ ) as follows,
afi(x) fjx)

@t
where the second inequality holds becaW4e C; with C; a large enough constant.
Lemma 3 (Bias Gap Control Il) There exist small positive constar@s; C, such that for any
j 2k 1]andanyx 2 Sj,if1 uj(x) Cq; Wik O( ) andh I C,; we have
B < (D):

Proof of Lemma 3.Sincel u;(x) C; forsomex 2 S, we knowl u;(x9 Cq+ O( ) for
everyx®2 S;: We can write dowry Iy as follows,

(W22 o1)>0

k X k X '
B b= 1 N u; (x9 13 Uk (X9
x02S x02S
— k k X .
N (U (xy Uy (xY) + N (U (xy U (x9):
x02S; x02SnS

29



Published as a conference paper at ICLR 2023

First, we upper boundy (x9  u; (x9 for everyx®2 S; as follows,
w9 u(xd 1 ouy(x% uyx%= 1+2@ uy((x9 2C; 1+0():

Same as in the proof of Lemma 1, for ead2 S n Sj ; we can bound; (x9; ux (x9 as follows,

o exp) ; _ b exp@®) ry.

io2 k] €XP (fio(x9) oD ) 02 kg €XP (fio(x9) + o)
o expb) : o exp(h) ":

o2 k) €XP (Fio(x9) O ut) i02 k7 €XP (Fio(x9) + o)

Therefore, we can upper bound(x9  u; (x9 as follows,
_ sxp) exp()
b)) 02 (k) €XP (Fio(x9) SS0)
=pP0) __ epin ) p+o(N)

02 k) €XP (Fio(x9)
O(C2)+ O( );
where the last inequality uses b  Cy:
Above all, we can upper bourlel by as follows,
B b 1+2C1+ O(C)+ O( ")
< @)
where the second inequality holds as longasC,; are at most some small constants.

Lemma 14 (Bias Gap Control lll) For any different;j 2 [K], if W;;  O(1); Wj; O( ) and
b b O(1); we have

b k>0
Proof of Lemma 14.We can write dowrz. b as follows,
| |
k X ' k X '
b B= 1 N u; (x) 1 N uj (x)
x2S X2S

X
=7 o ww)

N
x2S
Next, we lower bound; (x)  u;(x) foreveryx 2 S;

:exp(h\N-;;;xirEt]) exp(h\Ni;:;xir+h)

uj (x)  ui(x) o2 F1o00)
exp(O( )3 B) exp(O(1)+ h)
jo2 k) Fio(X)

Soaslongay b > O(1); we haveu;(x) ui(x) > Oforall x 2 S; which then implies
b Bh>0
Lemma 17. For everyj 2 [k] and every 2 S; we have

D E

p
W .« T O logN
Proof of Lemma 17.For eaclj 2 [k]; we have
0 1
W_k@xl -O)I’N\/"Oirlo X -O)H\N"quoA
TN ( uj(x))r X X uj (xO)r X X

x02S; x028nS |
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and
D E
Wj;:; X
0 1
k X X
:W@ @ U (x9Yrhwgxdt b ox® u OO A x4t x% A
x02S x92SnS |
We know thaﬁ3 X; % I%gN— d). For anyx® 6 x; we have x%

O(( pIogN)— d+ lTogN= d) O( logN= d)aslongas 1
According to Lemma 18, we know that faf 2 S;; we have (1 u; (x9) bW, ;x4" 1 O(1):
Forx 2 S nS;, we have u(x9 hw; .;x4" ! O( " 1) sincejhw; .; xYj o() +
O(pm ) O( ) assuming 1:p logN:
Therefore, we can boung)\Alj;;; XE as follows,

D\Al,-;;; XE O Nt ﬂg%—N

SinceT O(log(1=)=" 2);N log(1=)=" Yandd log’(1=)= 2 2;we know
D E p
W5« T O(C logN ):

Lemma 18. For anyi 2 [k] andx 2 S;;if (1 u;(x)) W, . xi" ! (1) ; we have

@ u) W xi" ' <o

P
j2k1; s &XP(fi (X))

e exp(T; Grexpl T () - : Next, we prove that

Proof of Lemma 18.We can writel  u;(X) as®

for anyj°6 i; we have
|

d exp (fjo(x)) o1
— P HWi. . xi <0
dt i21k15 81 €XP(fj (X)) +exp (fi(x)) '

This derivative can be written the sum of two terms:
!

d exp (f;o(x)) o1
— P HW;. . xi
dt i21k 81 €XP (fj (X)) +exp (fi(x)) b
1 d
=P — hwxit !
i2ikgiei €XP(Fj(x)  fjo(x)) +exp(fi(x) fjo(x)) dt b
+ 9P ! Bw;oxi” b

dt opgie P @ (X)) flo(x) +exp(fi(x) fjo(x))

For the rst term, we have

1 d o1
P — Wi ;
wre &P ) 00 +exp(fi(x) fopyd X o
1 r2
=P 1) hw;. .
e & ) FeeNFexp (i) feoy T Y W5
1 D E

Loyl 2 .
e To0ay D WX Wi
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For the second term, we have

d 1
— P AW, cxit l
dt 2ppiei P F (X)) fjo(x)+exp(fi(x) fjo(x)) b

P

_ j2[k];j6iexp(f:3(x) fio(x)) f1(x)  fio(x) +exp(fi(x) fjo(x)) 2f+(X) f1o(x) AW xi"
Dj2[k];j6EieXp(fj(X) fjo(x)) +exp (fi(x) fjo(x))

1 WXt bowgox

2 exp(fi(x) fj(x)

1

B oxi” b

where the IastDinequaI'iEty useés(x) fj(x) (1) ; f=(x) fp(x) O(1) andf(x) fio(x)
riw,;xi® t Wix 0o@Q) Q) :

Combining the bounds on both terms, as lon$\&s; Xi is larger than certain constant (which is
guaranteed bl u;(x)) W, ;xi® * (1) ), weknowd (1 ui(x)) W xi” 1 < 0.
Lemma 16. For anyj 6 j° we haver W;; o  O( ): Furthermore, there exists absolute constant

> Osuchthatifd <Wj; o < ————; we haveT W;; o —_—
log™ Z(1=) 2log™ 2(1=)

Proof of Lemma 16. We can write down the derivative &%;; o as follows,

W5 0
k X - .
:ﬁ 1 u(x)) r hw; .;xi hej o; Xi
x2S
k X o ,
N uj (x)r W, . xi heo; Xi
X2Sjo
k X T
N u; (x)r W, . xi hej o; Xi
x25n (S; [S o)
R o QR
P— r 1
= 9N o wye o " ogN o 19N
The bound on the rst term relies ol u;(x)) er;;;Xir ! O(1) and hgo;xi =

O iéogj forx 2 S;; where(1 u;(x)) hw; axit ! O(1) is guaranteed by Lemma 18.
The bound on the second term us#¥; .;xi = W;j0o O pm andhgo;xi = 1
) —pé"gj for x 2 S;jo: The bound on the third term uséé/;. .;xi = O( ) andhgo;xi =

o) Hpi"gj forx 2Sn (S [So):

To prove the upper bound of the derivative, we have

P
logN
W0 O(—$2)

where we us&Vj; o O P logN 0. SinceT = O(log(1=)=" ?);we have
TW50  O();

2 —
aslongasl O(9Nle (=)
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We show that there exists absolute constant 0 such that if0 < W;j o < ————; we have
|ogr 2(1: )
r 1

; Which holds as long agy;; o O ——— :Wehave

logr 2(1=)

TWj:j 0 U S
2logt 2(1=)
W 0

P ot - 1
= O(ﬁéo?iN) O Wgj. O P logN r
|

pi .

logN r 1r 1
4997) O oo

d | |ogr 2(]_:)

r1ro1

o(

o o1

log™ % (1= ),
r1

o o1

logm2(1=)

The rstinequality assumes O p—————— ! The second inequality assumes

T
logN log"™ 2(1=)

2 2
O(l9Nlog ' % (=)): The third inequality choosesas a small enough constant.

Lemma 11. For anyj 2 [K]; we have

@w o P logN
@t P
If minyos; (L uj(x)) (1) ,we further have

[ J— X W p__ X
1 O( logN ) K @ uy)yrwi ! v 1+ O( logN ) K @ uyx)rw
N M @t N Ji
XZSj XZSj
Proof of Lemma 11.We have
X
W :% @ u))riwgxit thei % u (Or g oxi" Th ey
x2S X28nS | D
k p—— r1 logN
=— @ uy)r w; O logN 1 O —%L
N d
XZSj
p___
k X p_—_  r1 logN
uy(x)r o() O ' IogN o
x25nS | d
p___
p X ro1
= 1 o( logN ) % @ we)Ww, !t o 'ggN :
x2S

P —
where the second equality ugeeV;. :; «ij O(p logN );jhxigii O —#¥X— andwj; o
O( )forj &%

Therefore, ifminyos, (1 uj(x)) (1) , we know

e k X ro1 P—r k X ro1
1 O( logN ) N 1 u(x)) rwWy; Wi 1+ 0O( logN ) N 1 u(x) rwy; =
x2S x2S
And we always have p
r 1 I N
W5 O gg
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Lemma 13. Foranyx 2 Sjandanyj 6 i;if1 uj(x) (1) ,we have

oMK ) (WE P ow:

Proof of Lemma 13. Recall thaff; (x) = H\Ni;;;xir + b; so we have

D E
fx)=riw; xi® 1 Wi ox + b
P r 1 D E
=r Wi;i |OgN \Ni;i + Wi;:; X + br
(Wi % o);

D E P,
where in the last inequality we us@g;; (Wifi Y ( ")and W5« %
o("Y):

We also have
D E
B0 =r W xit 1 W x o+
p ro1 D E
=r Wj;i +  logN \Nj;i V-\lj;:; X + t}

O(1);
D E
where we usepVN;i j  O( ); W o(" Hand W;.; « o("Y:

Therefore, we have

Qa0 o0 (W) ow:

D ADDITIONAL EXPERIMENTS

In this section, we describe the detailed setting of our experiments and also include additional
experiment results.

MNIST & Fashion-MNIST.  Unless speci ed otherwise, we use a depth-10 and width-1024
fully-connected ReLU neural network (FCN10) for MNIST and Fashion-MNIST. We use Kaiming
initialization for the weights and set all bias terms as zero. We use a small initialization by scaling the
weights of each layer b§0:001)!" so the output is scaled /001; whereh is the network depth.

We train the network using SGD with learning r&81 and momentun®:9 for 100epochs.

CIFAR-10 & CIFAR-100 We use VGG-16 (without batch normalization) for CIFAR-10 and
CIFAR-100. We use Kaiming initialization for the weights and set all bias terms as zero. We run
SGD with momentun®:9 and weight decage 4 for 100epochs. For the learning rate, we start
from 0:01 and reduce it by a factor @1 at the60-th epoch an®0-th epoch.

We linearly interpolate using0 evenly spaced points between the network at initialization and the
network at the end of training. We evaluate error and loss on the train set. For each setting, we repeat
the experiments three times from different random seeds and plot the mean and deviation.

Note in Figure 1, to contrast the convex curve and plateau curve, we have used FCN4 with standard
initialization on MNIST, and VGG-16 witl®:001initialization on CIFAR-10.

Our code is based on the implementation from Lucas et al. (2021). Each trial of our experiment can
be nished on an Nvidia Tesla P100 within one hour.
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D.1 ALL BIAS V.S. LAST BIAS V.S. NO BIAS

Figure 9: Comparison between networks with all bias, last bias and no bias on Fashion-MNIST and
CIFAR-10.

Figure 9 shows that on both Fashion-MNIST and CIFAR-10, having bias on the last layer or on all
layers can create longer plateau in error curve, while does not signi cantly affect the loss curve.

D.2 NORMAL INTERPOLATION V.S. HOMOGENEOUS INTERPOLATION

Figure 10: Comparison between networks with normal interpolation and homogeneous interpolation
on bias on Fashion-MNIST and CIFAR-10.

Figure 10 shows that on both Fashion-MNIST and CIFAR-10, applying homogeneous interpolation
on biases can signi cantly reduce the plateau on error interpolation curve.

D.3 DIFFERENT INITIALIZATIONS

Figure 11: Comparison between networks with different initialization scales on MNIST and CIFAR-
100 with last bias.

Figure 12: Comparison between networks with different initialization scales on Fashion-MNIST and
CIFAR-10 with all bias.
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Loss Interpolation, CIFAR-10

Loss Interpolation, Fashion-MNIST Error Interpolation, Fashion-MNIST Error Interpolation, CIFAR-10
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Figure 13: Comparison between networks with different initialization scales on Fashion-MNIST and
CIFAR-10 with last bias.

Smaller initialization creates longer plateau in both error and loss curves. See Figure 11 for MNIST,
CIFAR-100 with last bias; see Figure 12 for Fashion-MNIST, CIFAR-10 with all bias; see Figure 13
for Fashion-MNIST, CIFAR-10 with last bias.

D.4 DIFFERENT DEPTHS

Loss Interpolation, CIFAR-100

Loss Interpolation, MNIST Error Interpolation, MNIST Error Interpolation, CIFAR-100
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Figure 14: Comparison between networks with different depth on MNIST and CIFAR-100 with last
bias.
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Figure 15: Comparison between networks with different depth on Fashion-MNIST and CIFAR-10
with all bias. We use 0.001 initialization scale for VGG-16 on CIFAR-10.
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Figure 16: Comparison between networks with different depth on Fashion-MNIST and CIFAR-10
with last bias. We use 0.001 initialization scale for VGG-16 on CIFAR-10.

Deeper networks create longer plateau in both error and loss curves. See Figure 14 for MNIST,
CIFAR-100 with last bias; see Figure 15 for Fashion-MNIST, CIFAR-10 with all bias; see Figure 16
for Fashion-MNIST, CIFAR-10 with last bias.
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D.5 BIAS DYNAMICS

Train Loss, 2-Class MNIST Bias, 2-Class MNIST Train Loss, 2-Class MNIST Bias, 2-Class MNIST
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Figure 17: Train loss for each class and bias term dynamics on MNISTT1; 2g and MNISTT2; 3.

In Figure 17, we give two more examples on two-class MNIST in which the later learned class has
larger bias.
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Figure 18: Train loss for each class and bias term dynamics on MNIST¥7; 8; 9g.
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In Figure 18, although class 9 is learned last, class 7 gets the largest bias after training. Let S be
the set of all samples for number 7,8,9 p-nd let S7; So; Sg be the set of samples for each class. For
convenience, we use Uj;j to denote ﬁ XS5 Ui (X); where u;j(x) is the softmax output for class i

under input X: Then, we can write down the derivative on three bias terms:

1

by = 3 Ur7 Uzs  Ure
1

bg = 3 Ug;7 Ug;s Usg;o
— 1 .

o = 3 Ug;7 Ug;g Ug;g:

P P
According to the per-claﬁg,loss, we know tl}g xes, 100(U7(X)) < ,cs, 109 (Ug(X)) ; which
intuitively implies that g U7(X) > ;g Uo(X) that is U7;7 > Ug;9. This tends to drive b7

smaller than bg: However, because Ug.g = U7.g; we actually have bg < b7: So eventually bg becomes
smaller than b7: Intuitively, class 9 is more correlated with class 8; so Ug.g > U7:s:
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