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Abstract

Any-scale image synthesis offers an efficient and scal-
able solution to synthesize photo-realistic images at any
scale, even going beyond 2K resolution. However, exist-
ing GAN-based solutions depend excessively on convolu-
tions and a hierarchical architecture, which introduce in-
consistency and the “texture sticking” issue when scal-
ing the output resolution. From another perspective, INR-
based generators are scale-equivariant by design, but their
huge memory footprint and slow inference hinder these net-
works from being adopted in large-scale or real-time sys-
tems. In this work, we propose Column-Row Entangled
Pixel Synthesis (CREPS), a new generative model that is
both efficient and scale-equivariant without using any spa-
tial convolutions or coarse-to-fine design. To save memory
footprint and make the system scalable, we employ a novel
bi-line representation that decomposes layer-wise feature
maps into separate “thick” column and row encodings. Ex-
periments on various datasets, including FFHQ, LSUN-
Church, MetFaces, and Flickr-Scenery, confirm CREPS’
ability to synthesize scale-consistent and alias-free images
at any arbitrary resolution with proper training and infer-
ence speed. Code is available at https://github.
com/VinAIResearch/CREPS.

1. Introduction

Generative Adversarial Networks (GANs) [8] are one

of the most widely used structures for image generation

and manipulation [2, 28]. Previously, a GAN model could

only generate images with a fixed scale and layout as de-

fined in the training dataset. However, natural images come

with varying resolutions and contain unstructured objects

at diverse poses. Therefore, designing a generative model

that can handle more flexible geometric configurations is

gaining more attention in the machine-learning community.

StyleGAN3 [13] already supports out-of-the-box transla-

tion and rotation with consistent and artifact-free outputs.

*Equal contribution.

Figure 1. Previous any-scale image synthesis networks, including

AnyresGAN [4] and ScaleParty [18], produce inconsistent image

details when changing the output scale (see zoomed-in patches).

In contrast, our proposed network can produce the same details

but sharper when increasing the scale. Check the supplemental

video for a clearer comparison.

Any-scale synthesis, however, remains under-explored.

In this paper, we are interested in the task of arbitrary-

scale image synthesis where a single generator can effort-

lessly synthesize images at many different scales while

strongly preserving detail consistency. Such a model can be

a promising research direction and bring many benefits. It

enables synthesizing a high-resolution image from a lower-

resolution training dataset. Hence, it eliminates the need for

collecting and training models on high-resolution images,

which is costly in storage, time, and computation resources.

The output resolution can be ultra-high, e.g., 2048 × 2048,

which is impossible for standard GAN models due to the

limit of GPU memory. Any-scale image synthesis also al-

lows geometric interactions like zooming in and out. De-

spite promising results, previous works on this topic, such

as AnyresGAN [4] and ScaleParty [18], show strong incon-

sistency when scaling the output resolution (see Fig. 1).

We investigate the GAN structures to find the poten-

tial cause of the inconsistency at image scaling. Tradi-

tional GAN models are based on convolutional generators
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[3,15,20], which introduce an implicit spatial bias that helps

the model to produce high-quality images. Recently, Xu et

al. [29] and Karras et al. [13] discovered that these posi-

tional priors can hamper the model’s consistency when ap-

plying translations, rotations, or scalings. In order to com-

bat this issue, many works introduce non-trivial changes

such as sophisticated architecture re-design [13] or opt for a

better training strategy and input positional encoding [4,18].

However, these are only partial remedies as the output pix-

els still depend on their surroundings, making it impossible

for these models to produce consistent attributes of an ob-

ject regardless of positions and scales.

In contrast to the traditional GANs, some recent meth-

ods are based on Implicit Neural Representation (INR)

[1, 23]. By predicting the color of each pixel separately,

INR-based GANs can, in theory, synthesize objects in a

spatial-arbitrary manner and still achieve comparable qual-

ity at small to medium resolution compared to convolution-

based approach. However, these models’ memory usage

grows quadratically with the input resolution since all pixels

have to be queried. Thus, there has been no existing work

that can efficiently scale INR-GANs to resolutions higher

than 1024. To reduce training complexity, Anokhin et al. [1]

employs a simple patch-based strategy where only a portion

of pixels is generated and passed through the discriminator

at a time. However, this approach unsurprisingly leads to

poor results and inconsistency between patches.

Inspired by the latter approach, we aim to tackle the task

of scale-consistent image generation with essential changes

to StyleGAN2 [15]. Similar to Anokhin et al. [1], we

change the 3×3 convolutions to 1×1 ones and add a Fourier

feature embedding [25] at the input layer. Although these

two changes alone already achieve our goal, it is still expen-

sive to train in high-resolution settings. Thus, instead of us-

ing dense 2D features, our model relies on a novel thick bi-

line representation, which largely reduces the training and

inference complexity by using two low-rank features for

row and column. Our network first regresses these row and

column embeddings, then composes layer-wise intermedi-

ate 2D features, and finally fuses these maps to produce the

final output. We name this novel structure Column-Row

Entangled Pixel Synthesis, or CREPS for short.

We run a series of experiments on four datasets, includ-

ing FFHQ, MetFaces, LSUN-Church, and Flickr-Scenery,

to confirm the effectiveness of our proposed CREPS struc-

ture. Our model can synthesize images with quality compa-

rable to the previous generative models like CIPS or Style-

GAN2. While CIPS has trouble in training on images of res-

olutions more than 256× 256, CREPS can sufficiently han-

dle training data at resolutions 512× 512 and 1024× 1024.

CREPS produces scale-equivariant images and keeps the

object details unchanged when scaling the output resolu-

tion, unlike previous any-scale GANs such as AnyresGAN

and ScaleParty. Using a CREPS model trained on 512×512
images, we still can generate near-realistic images at higher

resolution. Finally, we demonstrate CREPS’s ability to syn-

thesize images with complex geometric transformations and

distortions while preserving attribute consistency.

To summarize our contributions:

• We propose a simple and elegant network equipped

with only modulated linear layers and no upsampling

layers in-between. It supports scale-consistent outputs

for any-scale image synthesis.

• To further improve efficiency, we introduce a thick

bi-line representation, which decomposes 2D network

features into two light-weight row and column embed-

dings. It significantly saves memory and computation

costs compared with the full 2D-feature counterparts.

• We demonstrate competitive results for unconditional

image synthesis on the FFHQ, LSUN-Church, Met-

Faces, and Flickr-Scenery datasets, along with the abil-

ity to generate each image at arbitrary scales with con-

sistent details.

• Our CREPS models support complex geometric trans-

formations and distortions.

2. Related Work

Generative Adversarial Networks. Prior to denoising dif-

fusion models [10, 24], GANs [8] hold state-of-the-art re-

sults for image synthesis tasks. The popular GAN mod-

els can generate realistic images at a high resolution, com-

monly up to 1024 × 1024 [3, 12–15]. The promising re-

sults obtained by GANs have motivated several applica-

tions of computer graphics and visual content generation.

However, these networks are only capable of generating

images with same geometric configurations, e.g., center-

located and face-forward objects. Recently, an exciting

work StyleGAN3 [13] aimed to generalize GAN to arbitrary

translation and rotation with consistent details, or Anycost

GAN [16] with multi-resolution generation. In the same

vein, ScaleParty [18] and AnyresGAN [4] extended Style-

GAN2 and StyleGAN3 to support scaling and other geo-

metric transformations by replacing learned input constant

with suitable positional encoding and multi-scale training

strategy. However, these works did not consider the scale

consistency, and their images showed varied details as the

output scale increases, illustrated in Fig. 1.

Implicit Neural Representation. Typically, images are

represented by a series of 2D arrays of values. However,

it can be viewed as a continuous mapping from a 2D co-

ordinate (x, y) ∈ R2 to the corresponding RGB value

(r, g, b) ∈ R3 and the mapping can be parameterized as a
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black-box model. This coordinate-wise modeling has been

used in a wide range of neural rendering tasks [5,17,22,26],

where neural networks are used to provide an efficient and

continuous representation of data compared with traditional

methods. In the literature, implicit neural networks mainly

utilize fully-connected layers as their building blocks. Un-

like convolution or self-attention, such layers’ receptive

field size is exactly one; in other words, the output at ev-

ery coordinate is independent of each other.

INR-based GANs. As the number of research increased,

INR started to be used for generative tasks. These mod-

els soon inherited the success of GANs by employing the

adversarial training manner. Generative radiance fields

[6, 9, 19, 21] attempt to learn a view-consistent representa-

tion of 3D objects using implicit GAN. Despite all the suc-

cess of INRs in 3D GANs, limited attention has been paid

to utilizing the equivariance capability of fully-connected

layers in 2D counterparts. The closest to our work are INR-

GAN [23] and CIPS [1]. Both these works use a grid of

the target pixel coordinates as input for batch processing

instead of passing each point individually. INR-GAN em-

ploys a multi-scale structure, which we will discuss later

as a cause of scale inconsistency, while its uniform-scale

versions have poor generation outputs. Meanwhile, CIPS

does not need the multi-scale design thanks to its efficient

weight modulation and expressive input embedding. The

uniform-scale INR-GAN and CIPS disregard spatial convo-

lutions in the generator and synthesize each pixel indepen-

dently. However, their main goal is to investigate an alterna-

tive architecture that can compete with fully-convolutional

GANs rather than paying attention to the equivariance char-

acteristic of such models. They also struggle with expensive

computation costs and memory usage using full-resolution

2D feature maps in processing.

3. Proposed method

This section describes our proposed CREPS structure.

First, we recall the concept of any-scale image synthesis

(Sec. 3.1). Then, we revise two existing GAN structures that

support scale-equivariant image synthesis (Sec. 3.2). Next,

we discuss how to reduce computation cost via the novel

thick bi-line representation (Sec. 3.3). Finally, we describe

the layer-wise feature composition scheme for improving

the synthesis quality (Sec. 3.4).

3.1. Any-scale image synthesis

In this section, we introduce any-scale image synthesis

as the task of generating images while enforcing consis-

tency at different scales given a single model. One way

we naturally come up with is generating an image at many

scales altogether. MSG-GAN [11] is one of the earliest

works in this approach. Instead of producing single output,

MSG-GAN outputs an RGB image at each block of the gen-

erator, resulting in a mipmap representation [27]. However,

this approach can only output pre-defined discrete scales,

and there is no mechanism to guarantee scale consistency.

As such, we should consider injecting positional encod-

ing e as an additional input alongside the latent code into

the generator. This approach is employed in some previous

works [1, 4, 18, 23], in which e is a 2D grid of normalized

(x, y) coordinates. If e is a regular grid, we can decom-

pose it into two vectors for the row and column coordinates

denoted as er and ec, respectively. The image generation

process now becomes:

I = G(z, er, ec), (1)

with G is the generative model and z is the latent input.

The decomposition from e to er and ec is more suitable to

our thick bi-line representation, as later discussed. Doing

so allows us to easily control the output’s scale and other

spatial properties via appropriate input encoding. However,

naively adding positional input into an existing generator

does not guarantee that the output image is equivariant to

the change in the input coordinates. For example, when

Karras et al. [13] replace the learnable constant in Style-

GAN2’s input layer with Fourier features (Config B), the

“texture sticking”’ issue still occurs. Therefore, proper net-

work design and training strategy should be examined to

alleviate the output’s geometric inconsistency.

3.2. Removing coarse-to-fine design and spatial con-
volution

We investigate two network structures that support any

resolution image generation, including AnyresGAN [4] and

CIPS [1], when keeping the same latent input but gradually

increasing the output resolution. The former is built upon

StyleGAN3 [13] with additional scale information concate-

nated with the latent code and a multi-scale training scheme.

In contrast, the latter changes the 3x3 convolution of Style-

GAN2 with a point-wise one and adds learnable Fourier

features at the beginning. Both models are capable of multi-

scale generation, but they have different behaviors that we

will discuss below.

As illustrated in Fig. 1, while having good photo-realism,

AnyresGAN produces different image details at different

scales. This can be explained by the fact that AnyresGAN,

similar to most other GAN-based works, relies on spatial

convolutions, such as 2D convolution with kernel size 3× 3
and upsample layers. When changing the output resolution,

the neighbor pixels at each location change, greatly varying

the output of this spatial-convolution-based network.

On the other hand, CIPS keeps the output image’s details

nearly same regardless of resolution, thanks to its spatial-

free building operators. CIPS, however, is very compu-

tationally expensive; this can be clearly shown in Tab. 1.
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(a) Network structure

(b) Thick bi-line composition

(c) Refinement block

Figure 2. Our proposed CREPS structure

Resolution Batch size
Memory Usage Running time

StyleGAN2 CIPS Ours StyleGAN2 CIPS Ours

256× 256
1 1.5GB 3.3GB 2.3GB 0.04s 0.06s 0.03s

4 2.5GB 10.2GB 5.2GB 0.05s 0.23s 0.06s

512× 512
1 1.7GB 10.4GB 4.5GB 0.04s 0.21s 0.05s

4 3.4GB OOM 14.6GB 0.06s OOM 0.16s

Table 1. Memory usage and running time comparison between StyleGAN2, CIPS and our method. OOM means out-of-memory.

When measured on a single NVIDIA V100 GPU (32 GB)

and all models have comparable number of parameters, it

runs slower than StyleGAN2 as well as requires much more

memory or even gets an out-of-memory (OOM) error when

running at 512× 512 resolution. This makes CIPS inappli-

cable to use for learning fine details from high-resolution

datasets. Moreover, it is worth noting that our method

achieve the best trade-off between speed and memory.

Based on the above observations, we implement CREPS

without any spatial convolutions or coarse-to-fine design.

Starting with StyleGAN2 [15], which consists of a mapping

network and a generator, we remove all upsampling opera-

tors and replace all spatial convolutions with 1 × 1 convo-

lutions, which are equivalent to pixel-wise fully-connected

layers. Next, we replace the constant in the first synthesis

block with Fourier encodings of the input coordinate row

and column er and ec. This design is quite similar to CIPS,

with only two minor differences. Firstly, the dense 2D grid

input is now split into two vectors representing the row and

column. Secondly, we do not combine learned input con-

stant with the Fourier feature like CIPS did, making our

model simpler and more memory-friendly. While this initial

network guarantees any-scale image synthesis with consis-

tent image details, it faces the same memory issue as CIPS.

We will discuss next how to solve this issue effectively.

3.3. Thick bi-line representation

Inspired by the tri-plane representation in [6], we pro-

pose to decompose each feature with 2D spatial dimensions

into a column and a row embedding for a memory-efficient

representation. For simplicity, let us drop the first two di-

mensions for the batch size B and the number of channel

C, which are the same and element-wise processed for both

the feature map and the mentioned embeddings. Let us de-

note the feature map as F ∈ R
H×W , with H and W as the

height and width, respectively. We can decompose F to a

row embedding fr and a column embedding f c. In the sim-

plest form, fr and f c are 1D vectors with the lengths H and

W , respectively. Each pixel in the feature map Fij , with i
and j as the row and the column indices, can be computed

as the product of the corresponding elements in fr and f c:

Fij = fr
i f

c
j . (2)
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Figure 3. Fitting an input image to the thick bi-line representation

in the image space.

We call this representation “bi-line”, which significantly re-

duces the memory usage and computation cost and allows

the network to learn with high-resolution data. However,

we found that this simple representation had a limited ca-

pacity and could not define complex structures. To enrich

its representation power, we “thicken” the embeddings by

adding an extra, short dimension. The revised fr and f c

now have the shapes H × D and W × D, respectively,

where D � min(H,W ) is a uniform embedding “thick-

ness”. The composing feature element Fij is now the dot

product of the corresponding elements in fr and f c:

Fij = fr
i · f c

j =

D∑

d=1

fr
idf

c
jd. (3)

This composition process is illustrated in Fig. 2b. In another

perspective, this can be considered as sum of D different bi-

line compositions. We call it “thick bi-line” representation.

In Fig. 3, we provide a toy example illustrating the ca-

pacity of the proposed thick bi-line representation. Given

an input image at resolution 512× 512× 3, we fit it into the

proposed bi-line representation in the image space by opti-

mizing a row and a column embedding of shape 512×D×3.

Note that each channel is optimized independently. As can

be seen, with the naive bi-linear composition (D = 1), the

reconstructed image is just a simple, incomprehensible grid.

By adding just a small thickness D = 8, we can capture

the essential image content, recover the subject’s identity,

and reduce the MSE almost 6 times. When using D = 32,

we nearly recover the original image with only subtle pixel

noise. Note that the row and column embeddings only take

1.56% of the original image size when D = 8 and 12.5%

when D = 32. This experiment confirms the efficacy of

our proposed thick bi-line decomposition. Also, while this

representation does not capture all details of the complex

input image, it is more sufficient when modeling the over-

parameterized feature space.

3.4. Layer-wise feature composition

In CREPS, we assume the target output is square, i.e.,

H = W . Hence, we can concatenate the row and column

embeddings to a single tensor f = [fr, f c] ∈ R
H×2D. Ini-

tially, we implement CREPS by revising StyleGAN2’s code

to predict f from the latent input w via N synthesis blocks.

The network then splits f to get the row and column codes,

perform the feature composition defined in Eq. (3) to get a

feature map F . This feature map will be passed to a simple

refinement module (Fig. 2c) with 2 synthesis blocks to pro-

duce the output image. For efficient memory and computa-

tion cost, we only employ a small thickness value D = 8.

We found this initial design needed to be more efficient

to catch up with the generation quality of StyleGAN and

CIPS. It performed feature composition once near the end

of the image synthesis process; thus, the model power was

bounded by the capacity of the thick bi-line representation.

Instead, we revise our solution by employing a layer-wise

feature composition scheme. Specially, at each layer with

index l ∈ [1..N ], we extract the intermediate row and col-

umn embedding f (l). We can split f (l) and compose an

intermediate feature map F (l), following Eq. (3). Then,

the intermediate maps across layers are fused to get the fi-

nal map F . This scheme enriches the representation power,

similar to when increasing D while using less memory.

The fusion scheme is also important. Intuitively, we can

set F as the sum of the intermediate maps {F (l)}l=1,N .

However, this formulation treats the maps equally, and we

find it undesirable. Let us call back the StyleGAN models’

behavior. Thanks to the coarse-to-fine design, their early

layers learn to capture the global shape, while the later lay-

ers learn to synthesize fine details. Since CREPS has no

coarse-to-fine structure, it is hard to control which aspect of

the output image each layer can learn. Hence, we propose

adding asymmetry to the feature map fusion process: the

feature maps at earlier layers are processed “deeper” than

those at later layers. We hope it implicitly guides the layers

to learn information from global to regional order, similar

to StyleGAN. To do so, we introduce at each layer with in-

dex l a narrow decoder, denoted as π(l). The process to fuse

the intermediate maps {F (l)}l=1,N is defined as following:

E(1) = F (1), (4)

E(l+1) = π(l)(E(l)) + F (l+1) ∀l ∈ [1, N − 1], (5)

F = πN (EN ), (6)

with E(l) records the fused feature map at the lth layer.

In our implementation, each decoder consists of pixel-

wise fully-connected layers with Leaky-RELU activations.

Fig. 2a illustrates our proposed network structure, while

Tab. 1 illustrates the efficiency of our proposed structure in

memory usage and running time.

4. Experiments
4.1. Experimental setup

Datasets. We conduct experiments on the common datasets

when benchmarking CREPS, including FFHQ, MetFaces,
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Figure 4. Sample images with our models trained on FFHQ

(upper-left), LSUN-Church (upper-right), MetFace (bottom-left),

and Flickr-Scenery (bottom-right).

LSUN-Church, and Flickr-Scenery. FFHQ dataset contains

70k high-quality, diverse human faces collected from Flickr.

We will use the FFHQ images with resolution 512 × 512.

MetFaces is a small dataset of face drawings extracted from

the collection of the Metropolitan Museum of Art, with a

total of 1336 images at resolution 1024 × 1024. LSUN-

Church consists of 126k outdoor photographs of churches

at the resolution 256 × 256. Finally, Flickr-Scenery [7] is

a landscape-centric dataset collected on Flickr with 50k im-

ages at resolution 256× 256.

Implementation. We use StyleGAN2 network design as a

reference to implement CREPS. Except for the refinement

module, our generator consists of 6 (for the target resolu-

tion 256) to 8 synthesis blocks (for the resolution 1024)

and the same number of decoder blocks. We replace all

modulated convolution layers in StyleGAN2 with modu-

lated fully-connected ones. Unlike StyleGAN2, the output

of each block is not an RGB image but a 32-channel bi-line

feature with thickness D = 8. Each decoder is a stack of

P = 4 pixel-wise fully-connected layers, with the channel

widths ranging from 32 to 128. This setting is applied for

all experiments, except for our ablation study. Similar to

StyleGAN3 and CIPS, we turn off style mixing regulariza-

tion. Besides that, we kept most of the other components

unchanged, including the mapping network, discriminator,

path length regularization, and R1 gradient penalty.

Training. For FFHQ and LSUN-Church, our networks

were trained from scratch until convergence. To verify

the flexibility and scale consistency of CREPS on higher-

resolution image synthesis, we increase the length of its co-

ordinate input to generate images at resolution 1024×1024
on the FFHQ dataset. We also test the adaptability of our

network on domain shift by applying transfer learning from

the weights trained on FFHQ to MetFaces. Our networks

were trained by Adam optimizer with learning rate 2×10−3

and hyperparameters β0 = 0, β1 = 0.99, and ε = 10−8. We

use 4 NVIDIA A100 40GB GPUs for training all models.

4.2. Image generation

Tab. 2 compares the quality of images generated by our

CREPS models with the standard spatial-convolution-based

StyleGAN2 and the only scale-consistent any-scale image

generation technique CIPS, using the Frechet Inception Dis-

tance (FID) score.

At resolution 512 × 512 on FFHQ, our model achieves

the FID score of 4.43, which is much better than the score

from CIPS (6.18) and not far from StyleGAN2 (3.41). We

can also use this model to generate images at resolution

1024 × 1024 without retraining and achieve a better FID

score (4.09). We found that CIPS cannot be trained for this

resolution due to its expensive memory usage, even with

training batch size 1, when using its official code. However,

the authors provided a pretrained model for FFHQ-1024 us-

ing a progressive training scheme (no released code). This

CIPS model has an FID score of 10.07, much worse than

ours. This confirms the superiority of our method over its

scale-consistent image generation counterpart.

On the MetFaces dataset, CREPS’s FID score is 20.52,

which is quite close to the score of StyleGAN2-Ada (18.22).

As mentioned, CIPS fails to train on this 1024× 1024 reso-

lution using its official code. It confirms that bi-line repre-

sentation does not constrain the adaptability of our model.

On LSUN-Church and Flickr-Scenery, although the un-

structured and diverse images in these datasets are intu-

itively adverse to column and row decomposition, CREPS

obtains good results with only a small gap compared with

StyleGAN2’s ones. Note that CIPS achieves a surprisingly

good result on LSUN-Church; it surpasses not only CREPS

but also StyleGAN2 in this setting.

Fig. 4 provides some samples synthesized by our net-

works on the benchmark datasets. As can be seen, CREPS

produces highly realistic images in all cases.

4.3. Generate arbitrary-scale images

While our models are trained on images with resolutions

from 256×256 to 1024×1024, they can generate images at

any scale. One way is that we simply scale the length of er

and ec, and the output size is changed accordingly, thanks to

our network design. With a V100 GPU (32GB), our models

can generate an image up to resolution 3687×3687 in a sin-

gle run. Or we can generate an image patch-by-patch with

suitable coordinate inputs, then combine them together into
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Generator FFHQ-512 FFHQ-1024 LSUN Church-256 MetFaces-1024 Scenery-256

StyleGANv2 3.41 2.84 3.86 18.22∗ 6.40

CIPS 6.18 10.07 † 2.92 OOM 8.49

CREPS (ours) 4.43 4.09‡ 5.50 20.52 7.21

Table 2. Comparison of our method against other works in FID metric. OOM means out-of-memory. ‘∗’ means the result is taken from

StyleGAN2-Ada paper [12]. ‘†’ means the model is provided without releasing its progressive training code. ‘‡’ means the result is

obtained by scaling the output resolution of the FFHQ-512 model.

PSNR ↑ SSIM ↑ LPIPS ↓
AnyresGAN 24.19 0.73 0.07

ScaleParty 24.50 0.70 0.08

CIPS 33.33 0.93 0.05

CREPS 34.65 0.96 0.01
Table 3. Scale consistency comparison of our method against three

other works on PSNR, SSIM and LPIP. The best scores are bold.

Figure 5. Qualitative results for the scale consistency experiment.

For each method, we provide a sample generated 256×256 image

(top) and the magnified (×10) residual map between it and the

512× 512 rescaled version (bottom).

a single gigantic image with no upper limit in the output

size. We provide in the Supplementary some images gener-

ated at 6K resolution. While these images are not as sharp

as real-world ultra-high-resolution images, they are much

sharper than the ones generated at resolution 512× 512 and

then upscaled with Lanczos resampling.

4.4. Image scaling consistency

In this section, we evaluate the scale consistency of im-

ages produced by CREPS and other methods, including

AnyresGAN [4], ScaleParty [18], and CIPS [1]. We run

this experiment using models trained on the FFHQ dataset.

For each model, we first randomly generate 10k images at

resolution 256 × 256 (first set). We then generate images

with the same latent codes but at resolution 512 × 512 and

downsample them to 256×256 (second set). The images in

two sets are expected to be the same. Hence, we can com-

pare two sets, with standard metrics such as PSNR, SSIM,

and LPIPS, to measure each model’s scale equivariance.

Note that for ScaleParty and AnyresGAN, the pretrained

weights are already trained with different resolutions at

once, so we directly use their provided version. CIPS, how-

Configuration FID Memory Time

CREP-NB 5.98 2.7GB 0.13s

+ bi-line and d=1 11.37 1.5GB 0.02s

+ bi-line and d=8 8.23 1.6GB 0.03s

+ multiple decoders and d=4 6.46 1.6GB 0.03s

+ multiple decoders and d=8 4.66 1.7GB 0.04s

CIPS 7.08 3.5GB 0.05s

Table 4. Effects of the modifications of CREPS on the FFHQ

dataset in terms of FID score, memory usage, and running time.

ever, is trained in a single-scale setting, so we use the avail-

able weights trained at the highest resolution (1024×1024)

but pass the input coordinate with size 512× 512 to synthe-

sis image at resolution 512. As for CREPS, we simply use

the weight trained at resolution 512× 512.

We report the qualitative and quantitative results in Fig. 5

and Tab. 3. As can be seen, it is clear that CREPS achieves

the best scale consistency, while convolution-based models

like ScaleParty and AnyresGAN perform poorly.

4.5. Ablation studies

To better understand our proposed techniques, we ana-

lyze the effect of different parts of CREPS on the FFHQ

datasets. We first consider a no-bi-line version of CREPS

as a baseline (referred to as CREPS-NB), with dense 2D

input and the decoder layers removed. We then apply bi-

line decomposition but fuse the bi-line features only once at

the end, with gradually increased thickness. Lastly, we add

multiple decoders for layer-wise feature composition as in-

troduced in Sec. 3.4. Because of limited time and computa-

tional resources, we only evaluate on 128 × 128 resolution

and all of our models were trained for maximum of 2 days.

As the results in Tab. 4 show, CIPS performs worst in all

three aspects compared with most of our models. Simply

adding the bi-line with a single decoder at the end nearly

halves the memory costs, but the FID score is still behind

CREPS-NB even when the thickness is increased to d = 8.

However, multiple decoders can help bring the image qual-

ity back to the level of CREPS-NB and even better with

d = 8. In all settings, it can be clearly seen that we easily

boost the FID score when increasing the thickness. These

observations prove the importance and effectiveness of our

proposed techniques. Remarkably, while the decoders seem

compute-intensive, they are actually lightweight due to their
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Figure 6. Geometric transformations on the same target image

(FFHQ-512 model) by changing the input coordinates. We mark

the original image boundary using a red rectangle.

Figure 7. Visualization of the feature maps extracted from our

FFHQ-512 model. Each feature map is averaged over all channels.

narrow width compared with other layers, causing only

small increases in memory and time.

4.6. Simple and complex geometric transformation

Our CREPS model can support various geometric trans-

formations on the same target image by keeping the input

latent code z but changing the input coordinates er and ec.

We can translate the image by adding coordinate shifts δy
and δx to the row and column input coordinates, respec-

tively. We can also multiply these input coordinates by the

same constant s > 1 for zooming out or divide them by s
for zooming in. As can be seen in the first three column

in Fig. 6, CREPS can perform those simple transformations

with consistent details. Notably, CREPS can extrapolate the

points outside the original image boundary, although it has

never been trained on such input coordinates.

It is tricky for CREPS to handle complex transformations

such as rotation or distortion since CREPS only takes in a

row and a column coordinate input. Instead of producing

the target image in one run, we can execute CREPS multiple

times to generate different parts of the output image, then

combine them. The simplest algorithm is to sample each

target pixel per run by setting a single value for er and ec.

However, that algorithm is too slow, which requires 262k

runs to produce a single 512 × 512 image. A faster way is

to sample the target image row-by-row. Assuming we need

to generate an image I with the input latent z and the tar-

get pixels’ normalized coordinates {(rij , cij)}i=1,H,j=1,W .

We can produce each row Ii of the target image by gener-

ating an intermediate image I’ using the input coordinates

er = [rij ]j=1,W and ec = [cij ]j=1,W and sample its diago-

nal Ii = diag(I ′). We provide two examples with rotation

and elastic distortion in the last two columns of Fig. 6. Both

images are correctly transformed with unchanged content.

Figure 8. Samples of the most common kinds of artifacts on differ-

ent datasets. They are best described as repeating/wavy patterns,

vertical symmetry, and glowing blobs. Left-most image is cropped

and zoomed-in from a full-face image.

4.7. Feature analysis

We visualize the key feature maps inside our FFHQ-512

model when generating a facial image and provide them

in Fig. 7. The maps include the layer-wise composed fea-

tures {F (l)}l=1,N , the corresponding layer-wise fused maps

{E(l)}l=1,N , and the final feature map F (see Eq. 4-6).

Thanks to the asymmetric fusion scheme, the model seems

to synthesize the output in a coarse-to-fine manner. The

early composed feature maps are smooth and focus on the

global structure, while the later ones focus on sharp details.

Although each composed feature map F (l) is quite simple,

the network can represent complex content by fusion.

4.8. Limitation

Being a fully-connected generator, CREPS shares the

same limitation with other similar work, which is the lack

of spatial bias since each pixel is independently generated.

Hence, some spatial-related artifacts occasionally occur in

our generated images (Fig. 8). A potential cause is the

sine activation at the beginning, producing repeating pat-

terns and vertical symmetry of the output. We also note that

some samples contain a noticeable blob that is completely

out-of-domain. We found CIPS facing the same problem,

and the root cause can be the missing spatial guidance from

neighboring pixels and the effect of Leaky-RELU activa-

tions which strengthens the isolation of some pixel regions.

5. Conclusion
In this paper, we present a new architecture named

CREPS, a cost-effective and scale-equivariant generator

that can synthesize images with any target resolution. Our

key contributions are an INR-based design, a thick bi-

line representation, and a layer-wise feature composition

scheme. While being more memory-efficient, our CREPS

models can produce highly realistic images and surpass the

INR-based model CIPS in most cases. CREPS also of-

fers the best scale consistency by keeping image details un-

changed when varying the output resolution. We conducted

several experiments to explore some attractive properties of

this fully-connected generator and discussed CREPS’s ap-

plications in various scenarios. Future development of our

approach can be eliminating artifacts mentioned in Sec. 4.8

and further improving the quality of our samples.
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