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ABSTRACT

Graph transformers have been competitive on graph classification tasks, but they
fail to outperform Graph Neural Networks (GNNs) on node classification, which
is a common task performed on large-scale graphs for industrial applications.
Meanwhile, existing GNN architectures are limited in their ability to perform
equally well on both homophilious and heterophilious graphs as their inductive
biases are generally tailored to only one setting. To address these issues, we propose
GOAT, a scalable global graph transformer. In GOAT, each node conceptually
attends to all the nodes in the graph and homophily/heterophily relationships can
be learnt adaptively from the data. We provide theoretical justification for our
approximate global self-attention scheme, and show it to be scalable to large-scale
graphs. We demonstrate the competitiveness of GOAT on both heterophilious and
homophilious graphs with millions of nodes.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have demonstrated efficacy in many domains including language
understanding and computer vision (Devlin et al., 2018; Dosovitskiy et al., 2020), and this has spurred
interest in applying transformers to the graph domain. However, the success of transformers for
graphs has been more modest, and has mostly been in the fairly narrow regime of graph classification
tasks like molecule classification (Ying et al., 2021; Mialon et al., 2021; Hussain et al., 2021; Dwivedi
& Bresson, 2020; Rong et al., 2020; Kreuzer et al., 2021; Maziarka et al., 2021). The success of
transformers in this regime is largely a result of the small size of each problem instance; the mean
node count of graphs from the ogbg-molhiv dataset of the Open Graph Benchmark (Hu et al.,
2020a) is only 25.5. This tiny size enables self-attention across a larger percent of the graph, enabling
long-range or even global self-attention. Despite a recent surge in interest in attention-based networks,
standard Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017) are still the
de-facto model of choice for broader applications involving node classification or large industrial
graphs.

Research in other domains suggests that a transformer’s ability to utilize long-range signals that were
previously inaccessible in more constrained sequential models are its key success factor. However,
it is well-known that this self-attention is expensive, with time and memory overhead growing
quadratically with the length of the input. To address this issue for language transformers, a range of
efficient variants have been proposed (Wang et al., 2020; Kitaev et al., 2020; Zaheer et al., 2020; Zhu
et al., 2021; Choromanski et al., 2020) and have demonstrated competitive performance.

When applying transformers to graphs, sequence length is akin to the size k of the k-hop neighborhood,
but the size grows exponentially instead of linearly. For large enough k, the model becomes global
and attends to the entire graph. Tasks such as node classification are usually done on large-scale
graphs such as ogbn-products (2.4M nodes). Attending to the entirety of this graph in a naive
way would require 24TB GPU memory (Geisler et al., 2021). It is an open and pressing challenge to
design efficient graph transformer models that scale to graphs of this size. Existing works on graph
transformers for node classification never go beyond recursive 1-hop-neighbor message passing (Shi
et al., 2020; Zhao et al., 2021; Hu et al., 2020b) so they fail to learn from larger context and perhaps
fail to achieve the full potential demonstrated in other domains.
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At the same time, an established limitation of GNNs is their over-reliance on the homophily principle
(McPherson et al., 2001) causing them to perform poorly on heterophilious graphs. Homophily (or
heterophily) means that a node’s neighbors are likely (unlikely) to be of the same class. Standard
GNNs are built on the message passing scheme (Gilmer et al., 2017), where features are aggregated
recursively between 1-hop neighbors. This scheme has strong inductive bias towards homophilious
graphs and does not tolerate heterophily well. To address this, researchers have proposed various
heterophily-centered GNN models (Lim et al., 2021; Abu-El-Haija et al., 2019; Pei et al., 2020; Zhu
et al., 2020). These models usually involve specialized message passing schemes that do not work for
homophilious graphs. GPR-GNN (Chien et al., 2020) can adapt to different homophily/heterophily
profiles, but this model uses the entire graph for each training update (“full-batch” training) and thus
cannot scale to huge problems. While it is reasonable to have specialized model designs for different
kinds of graphs, this practice can be problematic when the homophily or heterophily characteristics
of the target dataset are unknown, or the graph has mixed behavior.

Present work. We view a global transformer which makes each node attend to all the nodes in
the graph as a universal architecture towards both homophilious and heterophilious graphs. We
propose GOAT, a global transformer for large-scale node classification tasks. To implement the
intractable O(n2) global self-attention on large-scale graphs, we leverage a dimensionality reduction
algorithm and reduce memory complexity from quadratic to linear. Using a K-Means based projection
algorithm, we theoretically show that our scalable global attention method has bounded error relative
to graph attention without dimensionality reduction. Besides the global design, we also strengthen
the model by a novel scalable local attention module. For each node, we sample its k-hop neighbors
and make it directly attend to them, unlike the recursive smoothing pattern of GNNs. Empirically,
GOAT shows strong performance on both homophilious and heterophilious datasets as large as
ogbn-products (2.4M nodes) (Hu et al., 2020a) and snap-patents (2.9M nodes) (Lim et al.,
2021). We summarize our contributions as follows:

1. We propose GOAT, a scalable global graph transformer model where each node is able to
attend to all nodes in the graph.

2. We develop a novel local attention module that enables GOAT to absorb rich local informa-
tion.

3. We demonstrate the strong performance of GOAT on both large-scale homophilous and
heterophilious node classification benchmarks.

4. We provide theoretical justification to show our scalable global attention scheme has bounded
error relative to unscalable standard attention.

2 PRELIMINARIES

In this section we introduce the preliminaries of GNNs, transformers, and homophily.

Graph Neural Networks (GNNs). We represent a graph as G(V, E). GNNs are often built with
recursive message-passing schemes, where features are passed and shared directly between 1-hop
neighbors. Formally the k-th iteration of message passing, or the forward propogation of the k-th
layer of GNNs, is defined as follows:

message(k)v = AGGREGATE(k)
({(

h(k−1)
v , h(k−1)

u , euv

)
,∀u ∈ N (v)

})
,

h(k)
v = COMBINE(k)

(
h(k−1)
v ,message(k)v

)
,

(1)

where h
(k)
v is the hidden feature of node v at the k-th layer, euv is the edge feature between node

u and v, N (v) is node v’s 1-hop neighbor set. AGGREGATE(·) and COMBINE(·) are functions
parameterized by neural networks.

Transformers. The key component of a transformer model is the self-attention scheme, which allows
each element of a set or token to attend to information of other tokens at various locations. The
forward pass of a self-attention module is defined as:
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Attn(H) = Softmax

(
HWQ (HWK)

⊤
√
d

)
HWV , (2)

where H ∈ Rn×f is the hidden feature matrix. WQ,WK ,WV ∈ Rf×d are linear projection matrices
with trainable weights. Here the Equation 2 denotes the single-head self-attention module, which can
straightforwardly generalize to multi-head attention. Note that in practice multi-headed self-attention
is widely used. It is easy to see that attention is expensive. The time and memory complexity is
O(n2), which leads to low efficiency and is a bottleneck for transformers. In this work, we call the
output of the Softmax function the “attention matrix.”

Homophily indicates connected nodes are likely to share common labels. We follow Lim et al. (2021)
to focus on edge homophily in this work. The edge homophily is defined as the proportion of edges
that link two nodes with the same label as below:

h =
|{(u, v) ∈ E : yu = yv}|

|E|
, (3)

where E is the edge set and y is the node label. Non-homophily (or heterophily) graph indicates the
dataset with dissimilar labels/features sharing edges.

3 METHOD

Intuition. Existing GNNs usually have hardcoded message-passing patterns and will only work on
either homophilious or heterophilious graphs. A global attention scheme makes each node attend to
all the nodes in the graph and does not explicitly have inductive bias towards either one. Instead of
one specially tailored or fixed message passing and aggregating pattern, the attention scheme freely
learn to adapt to different priors. In addition, intuitions from the NLP literature make it clear that
long-range self-attention derives much of its efficacy from the larger and more informative contexts it
incorporates. Thus, faithfully we have reason to believe that global transformer increases expressive
power by modeling long-range interactions over the whole graph and can be a universal architecture
which makes accurate predictions on both homophilious and heterophilious graphs. However, for
applications in industry where large graphs with millions of nodes are ubiquitous, it is not possible to
train and deploy a fully global transformer due to the quadratic overhead.

Given that, we propose GOAT, the scalable global transformer. GOAT uses an approximate global
attention which reduces complexity from quadratic to linear and supports mini-batch training. GOAT
also has a local attention module to process information from the local neighborhood for better
prediction. Fig 1 illustrates the local sampling procedure and the whole attention module. In this
section, we describe our methodological designs in detail.

Global. To realize the idea of global attention, we intuitively propose to use a codebook µ ∈ Rk×f

with constant scale k, which is the outcome of dimensionality reduction of hidden node features, to
represent all the nodes in the graph. During the forward pass, each node will only be attending to
features stored in the codebook to approximate the attention computed by authentically attending to
the whole graph. Then we have the complexity relaxation from O(n2) to O(nk). Remember that the
codebook needs to reflect the hidden neural node features which are evolving with the progress of
training. So a novel dimensionality reduction scheme that can handle dynamic features is required.

Technically, we leverage the Exponential Moving Average (EMA) K-Means algorithm for dimension
reduction on the fly during the model training process. The algorithm is summmarized in Algorithm
2. The codebook represents the centroids of the K-Means algorithm and is consistently materialized
and updated in GPU. Each node is assigned to a specific centroid and such mapping is determined
by finding the nearest centroid with respect to each node. Instead of hardcoding the new centroids
as the mean vector of all the node features belonging to each centroid as in the plain K-Means, we
update them in the EMA manner. Such practice is necessary because the momentum of the centroid
needs to be kept to represent the nodes that belong to the centroid but is not updated in the current
iteration due to mini-batch sampling. Hyperparameter γ is used to control the momentum. One
further improvement we have is using a batch norm module to whiten the data. Also, before returning
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Figure 1: The local sampling procedure and forward propogation of the GOAT model. bk denotes the trainable
positional bias for neighbors at a distance of k.

Algorithm 1 Global Transformer mini-batch forward propogation algorithm
Require: Graph G = (V, E); MLPa and MLPb are two independent MLPs; PE is the precomputed positional

encoding based on the structure of graph G; µx, µpe are the centroids computed by the K-Means algorithm;
P is the centroid assignment index for each node; WQ,WK ,WV are trainable parameters.

1 for v ∈ V do
2 x← MLPa(Xv)

3 pe← PEv

4 q ← Concat(x, pe)WQ

5 K ← Concat(µx, µpe)WK

6 V ← µxWV

7 xout ← Softmax
(

qK⊤
√
d

+ log (1nP )
)
V

8 xout ← MLPb(xout)

9 Update µx, µpe by x, pe using the EMA K-Means algorithm as in Algorithm 2.

the centroids for use, they will be mapped back into the original space using the running mean and
std values of batch norm. We find this technique stablizes the training of model.

In addition, it is well established in the literature that good positional encodings are required to make
transformers work effectively. In our global attention scheme, only absolute positional encodings are
feasible because the hidden features and positional encodings must be concatenated. We argue that the
design of positional encoding on graphs is still an open question for the community (Dwivedi et al.,
2021; Kreuzer et al., 2021) and detailed discussion for such design is beyond the scope of this work.
To simplify the setup of the experiments, we use pretrained node2vec (Grover & Leskovec, 2016)
node embeddings as our positional embeddings. We summarize the forward pass computation of the
global module in Algorithm 1. Note that the key attention computation in Algorithm 1 is formulated
as xout = Softmax

(
qK⊤
√
d

+ log (1nP )
)
V, where log (1nP ) is used to adjust the attention scores

according to the size of different clusters. In Section 4, we provide in-depth theoretical justifications
to show the solidity of our global module and prove that the approximated global attention has
bounded estimation error compared with the fully global attention.

Local. Along with the design of our global transformer, we propose a novel local attention module,
which allows each node to directly attend to its k-hop neighbors to attain rich local information.
Empirically, we find that the local attention module effectively helps the model learn better representa-
tions. Although this module is responsible for aggregating information from the local neighborhood as
in normal message passing feature aggregation, unlike the standard GNNs’ recursive 1-hop neighbor
smoothing pattern, our local module provides flexible attention weights for neighbors at different hop
distances. We believe the module provides increased capacity to learn the inductive biases required
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Algorithm 2 EMA K-Means update algorithm
Require: Inputs are the hidden features X and positional encodings PE for a batch. bn(·) is the batch norm

module. FindNearest(·) finds the nearest centroid for each feature.
1 function UPDATE(X,PE)
2 F ← Concat(X,PE)

3 F ← bn(F ) ▷ data whitening using batch norm
4 µ← Concat(µx, µpe)

5 P ← FindNearest(F, µ) ▷ compute cluster assignment
6 c← c · γ + P⊤1 · (1− γ) ▷ EMA accumulation
7 v ← v · γ + P⊤F · (1− γ) ▷ EMA accumulation
8 v ← v/c

9 µ← v · bn. running_std+bn. running_mean ▷ project the centroids back
10 µx, µpe ← µ

for accurate predictions beyond the hardcoded structures of existing GNNs. To support mini-batch
training, we adopt the widely-used neighbor sampling (NS) method (Hamilton et al., 2017) to sample
all k-hop neighbors. We make each node directly attend to the sampled neighbors. We refer readers to
Fig 1 for a clear view of the local module. For this module we select the relative positional encoding
scheme to distinguish neighbors at diverse distances from the source node. Our attention scores
inside the Softmax function is: Sij = XiWQ (XjWK)

⊤
/
√
d+ bD(i,j), where bD(i,j) is a trainable

bias parameter indexed by D(i, j), the shortest distance between node i and j. Since we leverage
different positional encodings for the global and local modules, we have separate attention functions,
after which the respective sets of node features and positional encodings are concatenated and fed
into subsequent layers.

4 THEORETICAL JUSTIFICATION

Our global module addresses expensive quadratic complexity issue of global attention. We formulate
the usage of codebook in the global module as dimensionality reduction. Specifically, we want to find
a projection matrix P that can reduce the feature matrices into a low-dimensional space so the cost of
computing their product is reduced. At the same time we also expect such dimensionality reduction
will not overly degrade the quality of the outcome. Below, we provide theoretical analysis on the
existence of such a P matrix. Note that in the demonstration process below, we assume positional
information is already fused into node features for simplicity.
Proposition 1. There exists a distribution of random projection matrices P ∈ Rn×k such that for
any linear weight matrices WK ,WQ,WV ∈ Rf×d, node feature matrix X ∈ Rn×f , mini-batch of
nodes XB ∈ Rb×f , column vector v ∈ Rn of XWV , and any choice of ε > 0,

Pr
(
∥ABPP⊤v −ABv∥F < ε∥ABv∥F

)
> 1−O(1/n), (4)

with AB = Softmax
(
XBWQ (XWK)

⊤
/
√
d
)

and k = O
(
log(n)/ε2

)
.

Our goal here is to find a projection matrix P to project both the attention matrix AB and features
v into some low dimension space, enabling us to replace the attention matrix AB ∈ Rb×n with
ÃB = ABP ∈ Rb×k and v ∈ Rn with ṽ = PT v ∈ Rk. Despite the existence of such P matrix,
we argue that it is impractical to apply Proposition 1 in practice. The reason is that it is hard to
materialize ÃB in memory so the explicit computation of AB is inevitable, which does not help
improve scalability as calculating all attention matrices batch-by-batch is still O(n2). Below, we
describe a route to escape this problem.
Theorem 1. For any linear weight matrices WK ,WQ,WV ∈ Rf×d, node feature matrix X ∈ Rn×f ,
mini-batch of nodes XB ∈ Rb×f , row vector x ∈ R1×n of X , and ε > 0, there exists projection
matrices PA, PV ∈ Rn×k, such that

Pr
(∥∥∥Softmax (SPA)P

⊤
V XWV − Softmax(S)XWV

∥∥∥
F
⩽ ε∥Softmax(S)∥F ∥XWV ∥F

)
> 1−O(1/n),

(5)
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with S = XBWQ (XWK)
⊤
/
√
d and k = O

(
log(n)/ε2

)
.

We argue that the scheme provided by Theorem 1 makes global attention possible on large graphs.
The expression SPA =

(
XBWQ (XWK)

⊤
/
√
d
)
PA inside the Softmax function can be computed

as a product between QB = XBWQ and K̃ = P⊤
A XWK , which is only O(bk) work. Note that the

new value feature matrix Ṽ = P⊤
V XWV is also low dimensional. Then we see that the problem

comes to how we materialize K̃, Ṽ without explicitly computing the multiplication of (XWK)⊤PA

or P⊤
V XWV which is O(nfd + nkd) and not scalable when the graph is large. In our global

module, diag−1(1nP )P⊤X is the codebook. Projection matrix P is computed by the K-Means
algorithm as the sparse indexing matrix. Each row of P ∈ Rn×k is a one-hot vector representing
the clustering centroid the node is assigned to. In this way, K̃ = diag−1(1nP )P⊤XWK and
Ṽ = diag−1(1nP )P⊤XWV . Note that we do not explicitly compute K̃, Ṽ on each iteration but
instead cache and update the codebook on the fly in the EMA manner using batch statistics. P is
stored sparsely to save memory. Now we go back to show that the forward pass under such a scheme
yields a bounded-error approximation compared with the authentic output. We start off with two
definitions for clearer demonstration. We define X̃ = Pdiag−1(1nP )P⊤X , as the approximate X
using the codebook. We define the attention matrix for a batch XB computed by parameterized
function fW as fW (X) = Softmax

(
XBWQ (XWK)

⊤
/
√
d
)

.

Theorem 2. If the function fW has Lipschitz constant upper-bounded by lip (fW ) and the quantiza-
tion error is ε, the estimation error is bounded as,∥∥∥X̃out

B −Xout
B

∥∥∥
F
≤ ε · [1 +O (lip (fW ))] ∥AB∥F · ∥X∥F · ∥WV ∥F , (6)

with X̃out
B = ÃBX̃WV , Xout

B = ABXWV , AB = fW (X) = Softmax
(
XBWQ (XWK)

⊤
/
√
d
)

,

and ÃB = fW (X̃) = Softmax
(
XBWQ(X̃WK)⊤/

√
d
)

. Quantization error ε is defined as ∥X −

X̃∥F ≤ ε∥X∥F .

Note that the computation of ÃB denoted in Theorem 2 is expensive because it requires the multi-
plication of XBWQ and X̃WK and the cost is O(bn). We articulate it in this way for the simplicity
of theoretical proof. Notice that X̃out

B can be reformulated as ÃBPK̃. K̃ is low dimensional. P
here works to sum the same Softmax weights belonging to the same centroid. We intend to put the
summation operation inside the Softmax function and we can achieve for any row vector x of X ,

Softmax
(
xWQ

(
diag−1 (1nP )P⊤XWK

)⊤
/
√
d+ log (1nP )

)
= Softmax

(
xWQ

(
P diag−1 (1nP )P⊤XWK

)⊤
/
√
d
)
P = ÃBP, (7)

where log (1nP ) stores the size of each cluster and the log function will be canceled during exp
calculation in Softmax. In that way the summation is done inside Softmax and we have x̃out =

Softmax
(
xWQK̃

⊤/
√
d+ log (1nP )

)
Ṽ , where x gets to directly attends to K̃ instead of X̃ . As

we have discussed, both K̃ and Ṽ will be materialized in memory and updated in the EMA way. The
computation for the feature of a node x̃out is O(k) and thus scalable. All the proofs are deferred to
the Appendix A.1.

5 EXPERIMENTS

In this section, we detail the empirical evaluation of our GOAT model.

Datasets. We select four datasets to evaluate. To represent homophilious graph problems we
choose two datasets, ogbn-arxiv and ogbn-products, from the well-known Open Graph
Benchmark (OGB) (Hu et al., 2020a). For heterophilious examples we utilize the arxiv-year
and snap-patents datasets curated by Lim et al. (2021). These are all large-scale (multi-million)
node classification datasets. For the train and validation splits, we use the official splits from OGB
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Table 1: Dataset statistics.

Dataset # Nodes # Edges # Feat. # Class Class type Split Edge hom.

ogbn-arxiv 169,343 1,166,243 128 40 product category official .66

ogbn-products 2,449,029 61,859,140 100 47 subject area official .81

arxiv-year 169,343 1,166,243 128 5 pub year random .222

snap-patents 2,923,922 13,975,788 269 5 time granted random .073

for both ogbn-arxiv and ogbn-products and for arxiv-year and snap-patents we
follow the practice of Lim et al. (2021) and randomly sample the train and validation sets. As there
are no official splits or train set ratios for these two datasets, we experiment with training sets that
comprise 10%, 20%, and 50% of the data while fixing validation set ratio at 25%, and report separate
results for each split. We refer readers to Table 1 for detailed statistics of the datasets.

Setup. We focus on the transductive node classification task, where we see all the nodes at training
time, but only the train set has labels. Our baseline models include GCNJK (Xu et al., 2018), GAT
(Veličković et al., 2017), LINKX (Lim et al., 2021), and MixHop (Abu-El-Haija et al., 2019). All of
our training procedures use pure empirical risk minimization (ERM) and we do not use techniques like
data augmentation (Kong et al., 2020), label propogation (Huang et al., 2020), powerful embeddings
(Chien et al., 2021), or other tricks, as these additional regularizers have not been uniformly studied
for all model types, and this simple setting enables fair comparisons across model architectures. For
the baseline models, we perform a hyperparameter sweep and select the best performing settings and
report the corresponding results for each model and dataset pairing (full details in the Appendix).
For GOAT, the attention function is multi-headed but we only implement a single layer of attention
module. We leave the discussion of a multi-layer variant to future work. For the local attention, we
sample neighbors that live within 3-hops. For each node we sample [20, 10, 5] neighbors recursively.
The size of the codebook is fixed at 4, 096 and the dimensionality is 64. We always use a dropout
rate of 0.5 and also use batch norm. Each experiment is carried out on a either a single GeForce RTX
2080 Ti (11GB memory) or RTX A4000 (16GB memory).

Results. Table 2 reveals the competitive performance of our GOAT model compared with baselines.
GCNJK and GAT intuitively register strong performances on ogbn-arxiv and ogbn-products
as they resonate with the inductive bias of the two homophilious datasets. In contrast, on the
arxiv-year and snap-patents datasets, their scores are poor. LINKX and MixHop are archi-
tectures designed for heterophilious graphs, a specialization validated by their strong performances
in Table 2 on those datasets. However, GOAT constantly achieves competitive results on all four
datasets, which reveals the adaptive ability of the attention functions. We highlight that our goal is
not to beat GNNs universally; specific priors can still be useful factors when designing architectures.
Further, in accordance with the no-free-lunch theorem, winning all comparisons on datasets with
diverse properties is expected to be difficult. Rather, our intention is to develop a model that can learn
different inductive biases as required, adapting seamlessly to different use cases. This flexibility is
an important quality in practice as practitioners may encounter datasets for which knowledge about
appropriate priors is scarce.

6 ABLATION STUDIES & ANALYSIS

GOAT vs. GOAT-Local-only. In Fig 2a & 2b we ablate to only use the local module to analyze
our architecture design. On the ogbn-arxiv dataset where homophily is prevalent, the local-only
model is as strong as the complete GOAT. While on the arxiv-year dataset there shows clear
discrepancy between the two, where the global module brings a salient 3% boost. The results provide
a strong validatioin towards our main intuition, that the global module increases expressive power
by modeling long-range interactions. And such ability is especially effective towards heterophilious
graphs, which is intuitive as many other successful heterophilious GNN architectures aimed at
broadening the range of message passing as well as learning from long-range interactions.

Batch norm vs. Layer norm. Normalization is important to transformers. We ablate on the
normalization technique selection in Fig 2c & 2d. We see that layer norm can be as good as batch
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Table 2: Experimental results. Note that the “Overall performance average” is the mean value of the two
“Performance avgerage” values in the upper and lower tables. The darker blue marks the best result in each
row, while the lighter shade marks the runner-up. Evaluation metric is prediction accuracy on the test set. Test
accuracies are reported based on the hyperparameter setting yielding the highest validation accuracies. Where
possible, we validate our baselines against the results in Lim et al. (2021).

General GNN Heterophilious GNN Ours

Dataset Train ratio GCNJK GAT LINKX MixHop GOAT

ogbn-arxiv official 54% 69.57 ± 0.20 71.95 ± 0.36 66.18 ± 0.33 71.29 ± 0.29 72.41 ± 0.40

ogbn-products official 8% 72.84 ± 0.36 79.45 ± 0.59 71.59 ± 0.71 73.48 ± 0.29 82.00 ± 0.43

Performance average 71 76 69 72 77

arxiv-year random 10% 43.34 ± 0.08 38.34 ± 0.10 46.22 ± 0.24 45.13 ± 0.25 49.44 ± 0.11

arxiv-year random 20% 44.77 ± 0.10 39.19 ± 0.12 49.16 ± 0.42 47.18 ± 0.24 51.21 ± 0.44

arxiv-year random 50% 47.74 ± 0.23 40.27 ± 0.20 53.53 ± 0.36 50.37 ± 0.25 53.57 ± 0.18

snap-patents random 10% 32.50 ± 0.10 32.72 ± 0.10 49.74 ± 0.46 33.57 ± 0.06 44.31 ± 0.43

snap-patents random 20% 32.97 ± 0.06 32.96 ± 0.09 54.32 ± 0.50 33.96 ± 0.06 49.55 ± 0.31

snap-patents random 50% 33.52 ± 0.05 33.10 ± 0.09 60.12 ± 0.23 34.28 ± 0.07* 54.97 ± 0.23

Performance average 39 36 52 41 51

Overall performance average 55 56 61 57 64

For ∗ we show performance of MixHop with GraphSAINT sampling (Zeng et al., 2019) on snap-patents
despite Lim et al. (2021) reporting 46.82± 0.11 for MixHop with ClusterGCN sampling (Chiang et al., 2019)
as their runner-up to LINKX on this dataset. This setting was OOM/T on our hardware, but as it is weaker than
LINKX and GOAT in either case, reporting the stronger numbers would not have changed the results or analysis
of average model performance.
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Figure 2: Ablation studies.

norm in our model but converges much slower, and evidently “no normalization” is not a good choice
for our architecture.

Depth. We constantly have 1 layer of attention modules in our model, for both the global and local
part. In fact it is challenging to extend our GOAT model to multi-layer attention computation like
common transformers. Note that our attention modules are not strict self-attention modules, whose
input and output are of the same length. As denoted in Fig 1, our input includes the predictive node,
sampled neighbors, and the codebook, but only the the predictive node attends to others and gets
aggregated features. So after the attention function the state of feature for sampled neighbors and the
codebook is behind that of the predictive node, where future rounds of attention computation is less
intuitive. A straightforward strategy to address this conundrum is to recursively sample neighbors
of neighbors and add more codebooks by each layer, but apparently this will greatly adds to the
overhead and renders the model less efficient. Due to computational limitation we do not carry out
the experiments, but how to make the model deeper is an interesting research opportunity.

Limitations. The neighbor sampling bottleneck is the major limitation of our method. Note that
although the local module intuitively helps learn better representations, the neighbor sampling (NS)
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algorithm does introduce a small scalability concern. It is well-known that the neighborhood explosion
problem for NS has complexity O(dk) for k-hop neighborhoods, where d is the average degree. Our
sampling method in the local module is a plain adaptation of NS so that GOAT will share efficiency
issues of NS.

7 RELATED WORK

Scalability. The poor scalability of GNNs to large graphs remains a major obstacle to deploying
GNNs for enterprise-scale applications. Scalable GNN algorithms mainly involve node-, layer-, and
graph-wise sampling methods. Hamilton et al. (2017) proposed neighbor sampling (NS) to repeatedly
sample neighbors for message passing, but this approach leads to the exponential neighborhood
explosion problem mentioned at the end of Section 3. One technique to address this issue is the layer-
wise sampling proposed in Huang et al. (2018). ClusterGCN (Chiang et al., 2019) and GraphSAINT
(Zeng et al., 2019) both perform subgraph sampling so that GNNs can be run in a “full-batch” manner
but on tractable subgraphs that hopefully approximate the global graph semantics - we employ the
latter of the two for training our baseline GCNJK, GAT, and MixHop models. A recent method,
GAS (Fey et al., 2021), stores historical node features to help both training and inference process.
Finally, it is also established that transformers suffer from inherent scalability issues. In response, a
plethora of efficient transformers have been proposed that employ different techniques to improve
their complexity including sparse attention maps (Zaheer et al., 2020; Beltagy et al., 2020), clustering-
based schemes (Kitaev et al., 2020; Tay et al., 2020), and low-rank projections of the attention matrix
(Wang et al., 2020; Tay et al., 2021).

Graph transformers. Most successful applications of transformers to graphs problems have only
considered graph classification. Graphormer (Ying et al., 2021) is the representative global transformer
on small graphs with customized centrality, edge, and spatial encodings. Other strong architectures
include Kreuzer et al. (2021); Maziarka et al. (2021); Dwivedi & Bresson (2020); Rong et al. (2020).
Existing graph transformers (Shi et al., 2020; Hu et al., 2020b; Dwivedi & Bresson, 2020) for node
classification use the same recursive message passing scheme as traditional GNNs. The attention
module computes attention scores as the weights for 1-hop neighborhood smoothing, similar to
the attention mechanism in GATs (Veličković et al., 2017). These models fail to demonstrate the
ability to learn from larger contexts and generally do not outperform traditional GNNs. An example
architecture that does implement a form of global attention, GraphBERT (Zhang et al., 2020), fails to
solve scalabilty issues due to requiring full-batch training.

Heterophily. Recently a body of work has focused on adapting GNNs to heterophilious graphs.
LINKX (Lim et al., 2021) is a simple model that coerces 2-hop (but not 1-hop) neighbors to have
the similar labels. H2GCN (Zhu et al., 2020) aggregates features from 1-hop and 2-hop neighbors
separately. MixHop (Abu-El-Haija et al., 2019) aggregates information from diverse degrees of
smoothed features. GPR-GNN (Chien et al., 2020) is similar to MixHop, but uses a more complex
adaptive aggregation operation. GPR-GNN works well on some kinds of data but does not scale
to large graphs. One closely related work is Non-local GNN (Liu et al., 2021), which does an
approximate global attention leveraging attention-based sorting. The model successfully reduces
time complexity from O(n2) to O(nlog(n)), but cannot support mini-batch training, so its scalability
is limited.

While progress has certainly been made towards more effective graph transformers and models specif-
ically suited to heterophilious graphs, to date, no graph transformer has emerged that simultaneously
relaxes the restriction of a homophilious inductive bias (whilst remaining performant in that setting)
and easily handles large-scale node classification tasks.

8 CONCLUSION

We propose GOAT, a global transformer that works on both homophilious and heterophilious node
classification tasks. Our model makes global attention possible by dimensionality reduction and
we prove our approximate approach has bounded error compared with the true global mechanism.
Experiments reveal GOAT’s strong performances on large-scale graphs. We hope our work can spur
more research into universal graph neural architecture who can adapt to different inductive biases.

9



Under review as a conference paper at ICLR 2023

9 ETHICS STATEMENT

Regarding the potential negative social impact, our model is potentially useful in anomaly detection
since graphs comprising attackers and threats are typically heterophilious. Our method could be
studied by malicious actors to subvert transformer based detectors.

10 REPRODUCIBILITY

We list our contributions towards reproducibility as below:

• Implementation open source. We include our implementation of the GOAT model in the
supplement materials.

• Hyperparameter. The hyperparameter settings for both GOAT and baselines are discussed in
Appendix A.2.

• Datasets. Ways to download datasets are shown in Appendix A.2.

• Proofs. Theoretical proofs of our proposition and theorems can be found in the Appendix
A.1.
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Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. Advances in Neural Information
Processing Systems, 34, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pp. 2704–2710, 2020b.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining label propa-
gation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993,
2020.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Edge-augmented graph
transformers: Global self-attention is enough for graphs. arXiv preprint arXiv:2108.03348, 2021.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space
26. Contemporary mathematics, 26:28, 1984.

Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal of the ACM
(JACM), 61(1):1–23, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor, and
Tom Goldstein. Flag: Adversarial data augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2020.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34, 2021.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34, 2021.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

11



Under review as a conference paper at ICLR 2023

Łukasz Maziarka, Dawid Majchrowski, Tomasz Danel, Piotr Gaiński, Jacek Tabor, Igor Podolak,
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A APPENDIX

A.1 PROOFS

This section lists theoretical proofs of our propositions and theorems.

A.1.1 PROOF OF PROPOSITION 1

Proof. To help build the proof, we utilize the Johnson–Lindenstrauss (JL) Lemma from Johnson &
Lindenstrauss (1984); Kane & Nelson (2014).

Lemma 1. For any integer d > 0, and any 0 < ε, δ < 1/2, there exists a probability distribution on
k × d real matrices for k = Θ(ε−2 log(1/δ)) such that for any x ∈ Rd,

P
P
((1− ε)∥x∥2 ≤ ∥Px∥2 ≤ (1 + ε)∥x∥2) > 1− δ. (8)

Using Lemma 1 and Boole’s inequality, for any x, y ∈ R1×n, we have

Pr(∥xPP⊤y⊤ − xy⊤∥F ≤ ε∥xy⊤∥F ) > 1− 2δ.

Now we choose to swap x with any row vector a out of AB and y with v so we have

Pr(∥aPP⊤v⊤ − av⊤∥F ≤ ε∥av⊤∥F ) > 1− 2δ.

Leveraging Boole’s inequality, we get

Pr(∥ABPP⊤v⊤ −ABv
⊤∥F ≤ ε∥ABv

⊤∥F ) > 1− 2bδ > 1− 2nδ.

By choosing δ to be O(1/n2) we finally get

Pr(∥ABPP⊤v⊤ −ABv
⊤∥F ≤ ε∥ABv

⊤∥F ) > 1−O(1/n),

with k = O
(
log(n)/ε2

)
.

A.1.2 PROOF OF THEOREM 1

Proof. We follow the techniques in Wang et al. (2020) to provide the proof. We define PA = δP and
PV = e−δP , δ is a constant. We aim to prove

Pr
(∥∥exp (SP )P⊤XV − exp(S)XV

∥∥
F
≤ ε∥ exp(S)∥F ∥XV ∥F

)
> 1−O(1/n), (9)

where XV = XWV for simplicity. Using triangle inequality, we have

∥∥exp (SP )P⊤XV − exp(S)XV

∥∥
F
≤
∥∥exp(S)PP⊤XV − exp(S)XV

∥∥
F︸ ︷︷ ︸

a

+
∥∥exp (SP )P⊤XV − exp(S)PP⊤XV

∥∥
F︸ ︷︷ ︸

b

.

For part a, based on Proposition 1, we have

a ≤ ε∥ exp(S)∥F ∥XV ∥F .

For part b, we have
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b ≤ ∥exp (SP )− exp(S)P∥F ∥P⊤XV ∥F .

Given that the exponential function is Lipschitz continuous in a compact region, and also based on
the Equation 1, we have

b ≤ o(∥ exp(S)∥F ∥XV ∥F ).

Based on part a and part b, we finally attain

Pr
(∥∥exp (SP )P⊤XV − exp(S)XV

∥∥
F
≤ ε∥ exp(S)∥F ∥XV ∥F

)
> 1−O(1/n).

A.1.3 PROOF OF THEOREM 2

Proof. This proof is built upon the usage of Lipschitz constant and quantization error.

∥∥∥X̃out
B −Xout

B

∥∥∥
F
= ∥ÃBX̃WV −ABXWV ∥F

= ∥fW (X̃)X̃WV − fW (X)XWV ∥F
≤ ∥fW (X̃)X̃ − fW (X)X∥F︸ ︷︷ ︸

a

∥WV ∥F ,

where for the part a, we have

a = ∥fW (X̃)X̃ − fW (X)X̃ + fW (X)X̃ − fW (X)X∥F
≤ ∥fW (X̃)− fW (X)∥F ∥X̃∥F + ∥fW (X)∥F ∥X̃ −X∥F .

Note that

∥X̃∥F ≤ ∥Pdiag−1(1nP )P⊤∥F ∥X∥F ≤
√
k∥X∥F ,

∥X − X̃∥F ≤ ε∥X∥F ,

∥fW (X̃)− fW (X)∥F ≤ lip (fW ) ∥X − X̃∥F .

When we assume ∥X∥F = O(∥AB∥F ), we have

∥∥∥X̃out
B −Xout

B

∥∥∥
F
≤ ε · [1 +O (lip (fW ))] ∥AB∥F · ∥X∥F · ∥WV ∥F .

A.2 EXPERIMENTAL DETAILS

This section describes in more detail the experimental setup for the empirical results presented in
Section 4.

A.2.1 DATASET DOWNLOADING

We refer readers to Hu et al. (2020a) and Lim et al. (2021) and their official repos for dataset
downloading.
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Table 3: Proposed Model Dataset-Specific Hyperparameter Settings

Model Dataset # Heads # Hidden Channels

GOAT

ogbn-arxiv 4 128

ogbn-products 2 256

arxiv-year 4 128

snap-patents 2 128

A.2.2 GOAT

For the hyperparameter selections of our GOAT model, besides what we have covered in the setup
part of the experiment section that datasets share in common, we list other settings in Table 3. Each
experiment is repeated four times to get the mean value and error bar. We use Adam optimizer with lr
1e-3.

A.2.3 BASELINE MODELS

Since the heterophilius datasets on which we benchmark the GOAT model are derived from Lim
et al. (2021), in order to facilitate as fair a comparison as possible, especially against the LINKX
model proposed in the same work, we utilize their implementation provided at the official repo1. This
library also provides reference implementations of other GNN architectures, and we utilize those
as well. Following the procedure described both in the paper and implicitly by their codebase, we
run a hyperaparameter sweep for each model on each dataset. For each combination of parameters,
5 models are trained using different initialization seeds to determine a mean value and error bars,
and then the final hyperparameters are selected based on accuracy on the validation set. These final
parameters correspond to the settings used to realize the “official train split” numbers in Table 2
in the main work for ogbn-arxiv and ogbn-products and the 50% train split numbers for
arxiv-year and snap-patents. These same parameters are also used when performing the
sample complexity experiments with train splits of 10% and 20% for the latter two datasets.

For the baseline GNNs we chose a Graph Convolutional Network with Jumping Knowledge (GCNJK)
and a Graph Attention Network (GAT), and for a second heterophily-specific model to complement
LINKX, we consider MixHop. As described in Section 4 of the main work, we use ERM to train
all models including the baselines. We also focus on the minibatch setting rather than “full-batch”
training as a primary feature of the GOAT model is its native scalability through minibatch training.
The batching algorithm we use for the GCNJK, GAT, and MixHop models is the GraphSAINT
Random Walk based sampler (LINKX uses its own adjacency row-wise sampling scheme, see Lim
et al. (2021) for details). In the spirit of fair evaluation, we make the model and sampler choices
based on the fact that according to Lim et al. (2021), each of these are the most performant two
models in the homophily and heterophily-specific design categories on the datasets under evaluation.

Hyperparameter Settings: For all four baseline models we tune two main parameters: the number of
layers, and the number of hidden channels (dimension) of each layer. We also evaluate two subgraph
sizes, or batch sizes, for the SAINT sampler (number of roots used for the random walk). For the
GAT model only, we also tune the number of attention heads. We evaluate the same parameter ranges
described in Lim et al. (2021) and defined by their codebase, and simply report the final parameters
selected in Table 4. Selected parameters that are shared amongst all model and dataset pairs include
training for 500 epochs, using the AdamW optimizer with a learning rate of 0.01, and creating 5
SAINT subgraphs per epoch. Model specific selected parameters include using 8 heads for the GAT,
concatenative jumping knowledge for the GCNJK model, and the 2 hop setting for MixHop. For all
settings that we choose as final, if possible, we verify that the accuracy is within ±1% of the value
reported in Lim et al. (2021) as “best” for each model on each dataset.

There are two details of particular note concerning Table 4 (and corresponding results in Table 2
in the main work). First, for the snap-patents dataset we do not use the ClusterGCN sampler
for the MixHop architecture as it proved too time and memory intensive for our hardware. We

1https://github.com/CUAI/Non-Homophily-Large-Scale
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Table 4: Baseline Model Dataset-Specific Hyperparameter Settings

Model Dataset # Layers # Hidden Channels SAINT Batch Size

GAT

ogbn-arxiv 2 32 10,000

ogbn-products ∗ – – –

arxiv-year 2 32 10,000

snap-patents 2 32 10,000

GCNJK

ogbn-arxiv 2 128 10,000

ogbn-products 4 256 5,000

arxiv-year 4 256 10,000

snap-patents 2 256 10,000

MixHop

ogbn-arxiv 2 128 10,000

ogbn-products 3 128 5,000

arxiv-year 4 128 10,000

snap-patents 2 128 10,000

LINKX

ogbn-arxiv 1 64

N/A
ogbn-products 1 128

arxiv-year 1 256

snap-patents 1 16

ground this choice in the fact that according to the performance reported in Lim et al. (2021), the
performance of MixHop with cluster sampling would still have been below the performance of GOAT
by approximately 8 accuracy points. As an additional comment, the computational costliness of this
method was also a challenge in their work, precluding it from parts of their evaluation. In the spirit of
scalability, overall, we see GraphSAINT as being a more relevant choice for our comparison due to
its more favorable scaling characteristics.

Second, also in service of a competitive evaluation, we chose to report performance of the GAT
model on ogbn-products ∗ pulled from the Open Graph Benchmark’s official leaderboard2 for
this dataset since the minibatch performance we achieved with the SAINT sampler was significantly
lower than the reference result (as well as that of our GOAT model). The result from the leaderboard
was trained using the neighbor sampling algorithm.

2https://ogb.stanford.edu/docs/leader_nodeprop/
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