
Self-supervised Post-processing Method to Enrich Pretrained Word Vectors

Hwiyeol Jo
NAVER, Search US
hwiyeolj@gmail.com

Abstract

Retrofitting techniques, which inject external
resources into word representations, have com-
pensated for the weakness of distributed rep-
resentations in semantic and relational knowl-
edge between words. However, the previous
methods require additional external resources
and strongly depend on the lexicon. To ad-
dress the issues, we propose a simple extension
of extrofitting, self-supervised extrofitting: ex-
trofitting by its own word vector distribution.
Our methods improve the vanilla embeddings
on all of word similarity tasks without any ex-
ternal resources. Moreover, the method is also
effective in various languages, which implies
that our method will be useful in lexicon-scarce
languages. As downstream tasks, we show its
benefits in dialogue state tracking and text clas-
sification tasks, reporting better and general-
ized results compared to other word vector spe-
cialization methods.1

1 Introduction

Static word vectors are still widely used in natural
language tasks despite the recent trends of contex-
tualized models. For example, in a wide study of
Dialogue State Tracking (DST) (Feng et al., 2021),
contextualized models performed worse than static
word embeddings. It seems reasonable that the con-
textualized models do not perform well in such a
lack of context, which implies that static embed-
dings are still useful.

To make better word vectors, we focus on
retrofitting ideas (also called word vector post-
processing), which injects the semantic information
from external resources by modifying the values
of pretrained word vectors (Faruqui et al. (2015);
Mrkšić et al. (2016a); inter alia). The benefits of
post-processing methods are that (1) the methods
can reflect additional resources into the word vec-
tors without re-training, (2) the methods can be

1http://github.com/hwiyeoljo/SelfExtro

applied to any kinds of pretrained word vectors,
and (3) retrofitting can make word vectors special-
ize in a specific task.

The previous studies focusing on explicit
retrofitting have used manually defined or learned
functions to make synonyms close and antonyms
distant (see the details in §4). As a result, their
approaches strongly rely on external resources.

Furthermore, we agree that making synonyms
close together is somewhat reasonable, even though
the synonyms have different nuances in some con-
texts. However, other kinds of relations, such as
antonyms, should be further investigated. For in-
stance, love and hate are generally grouped as
antonyms. Most of the previous studies have made
the words distant from each other, but the words
definitely share the meaning of emotion in their rep-
resentations. We thus conjecture that the methods
are not generalized well.

In this paper, we propose word vector enrich-
ment based on extrofitting (Jo and Choi, 2018):

• Self-supervised extrofitting that extends ex-
trofitting for enriching word vectors without
using external semantic lexicons. This method
can resolve a limitation of post-processing ap-
proaches, which requires well-defined seman-
tic lexicons. We highlight its usefulness in
(relatively) lexicon-scarce languages.
• We report the effects of word vector post-

processing on several downstream tasks to
show the generalization of the word vectors.
Our methods consistently improve model per-
formances in the fundamental tasks. In con-
trast, other post-processing methods degrade
the performance.

2 Preliminary

Extrofitting Extrofitting (Jo and Choi, 2018) ex-
pands word embedding matrix W by concatenating

http://github.com/hwiyeoljo/SelfExtro


W with rw:

Expand(W, c)

= W ⊕ rw

{
meanw∈c(µw) if w ∈ L

µw otherwise

where µw is the mean value of elements in word
vector w. L denotes semantic lexicons, and c de-
notes the same class (synonym pairs). In other
words, Expand makes an additional dimension per
the word vector, and fill it with the same value if
the pairs are synonym.

Next, Trans calculates transform matrix given
the matrix W:

Trans(W, c)

= argmaxU
|UT ∑

c(µc − µ)(µc − µ)T U |
|UT ∑

c
∑

i(xi − µc)(xi − µc)T U |

where x is a word vector, c is a class. The overall
average of x is µ, and the class average in class i
is denoted by µi. This formula finds a transform
matrix U, which minimizes the variance within the
same class and maximizes the variance between
different classes. Each class is defined as the index
of synonym pairs.

In the end, Extrofitting is formulated as follows:

Extro(W, c)

= Trans(Expand(W, c), c)T Expand(W, c)

Latent Semantic Analysis (LSA) LSA (Lan-
dauer and Dumais, 1997) has been used to extract
the relation of data through latent variables. LSA
is based on Singular Value Decomposition (SVD),
which decomposes a matrix as follows:

A = US VT ,

where S is a diagonal matrix with singular values,
and U and V are the orthogonal eigenvectors. We
can select top-k singular values to represent matrix
A in k-dimensional latent space. Then U and V
are re-defined as Uk ∈ R

N×k and VT
k ∈ R

k×N , re-
spectively, with diagonal matrix S k ∈ R

k×k. When
we use LSA for topic modeling, A is defined as a
term-document matrix. Then, UkS k and S kVT

k are
considered as term vectors and document vectors
in the k-dimensional latent space, respectively.

3 Self-supervised Extrofitting

We consider the word embedding matrix as the
term-document matrix; The x-axis of the matrix

is vocabulary and the y-axis is (unknown) seman-
tic dimension. Thus, as researchers have use the
decomposition of the term-document matrix to
get the term-vectors in LSA, the decomposition
of the term-semantic matrix can be considered to
represent term-vectors (US ) and semantic-vectors
(S VT ). This intuition corresponds to the traditional
methods in vector embedding, verified in Levy and
Goldberg (2014); Allen et al. (2019).

With the idea, we first decompose word embed-
dings matrix W to make latent representations as
follows:

Wk = UkS kVT
k

As described above, we can get term-vectors, which
are word representations in k-dimensional latent
space, by computing UkS k. Adjusting the dimen-
sion of latent space (k in §2), we calculate seman-
tically related words using cosine similarity. For
every word, we calculate its cosine similarity to
all other words in the vocabulary. If the similarity
exceeds a predetermined threshold, we group the
words. Note that a group can contain only a single
word. This process is repeated iteratively for each
ungrouped word until all words are clustered.

We use the set of semantically related words
(c’) as the class (synonym pairs, c) of extrofitting
instead of semantic lexicons:

SelfExtro(W, c′)

= Trans(Expand(W, c′), c′)T Expand(W, c′)

To sum up, we use the principle of vanilla ex-
trofitting (Jo and Choi, 2018), which utilizes LDA
algorithms to group in-domain instances (in this
case, word vectors). Simultaneously, the algorithm
pushes out-domain instances apart. Instead of us-
ing pre-defined lexicons for extrofitting, we use
the idea of LSA to get semantically related words.
Even if the number of extracted word pairs are
small or the words are not meaningful, the pro-
cess of making out-domain instances far can make
better representations.

In the experiments, we start with pretrained
GloVe (Pennington et al., 2014) (if we do not men-
tion it explicitly) and set a threshold that determines
whether a pair of words are semantically related.
We use a high threshold (0.9 of cosine similarity)
since type II error is rather better than type I error.

4 Related Works

The first successful post-processing approach was
Retrofitting (Faruqui et al., 2015), which modi-



GloVe (glove.42B) fastText (wiki-news)
W(s) W(r) RW ME SE SL SV W(s) W(r) RW ME SE SL SV

Raw .70 .57 .39 .74 .57 .37 .22 .82 .62 .51 .80 .64 .44 .35
SelfExtro, k=100 .80 .73 .50 .84 .66 .51 .39 .81 .70 .56 .82 .66 .50 .41
SelfExtro, k=200 .79 .72 .49 .84 .66 .51 .39 .81 .70 .57 .82 .65 .51 .42
SelfExtro, k=300 .78 .69 .48 .84 .64 .50 .37 .81 .71 .57 .83 .64 .51 .42
+WordNet(=Extro) .80 .74 .49 .83 .66 .49 .36 .78 .67 .51 .80 .63 .50 .40

vecmap .67 .53 .31 .72 .52 .35 .20 .81 .62 .49 .80 .59 .44 .34

Table 1: Spearman’s correlation of self-supervised extrofitted pretrained word embeddings. k denotes the dimension
of latent space that is used to extract semantically related words (see §3). Ablation studies in threshold are presented
in Appendix A.4.

fied word vectors by weighted averaging the word
vectors with semantic lexicons. Extending from
the simple idea, Counter-fitting (Mrkšić et al.,
2016a) used both synonym pairs to collect word
vectors and antonym pairs to make word vec-
tors the gene from one another. Next, Para-
gram embeddings (Wieting et al., 2015) used
synonyms and negative sampling to collect the
word vectors. Borrowing attract-terms from the
Paragram embeddings and adding repel-terms,
Attract-Repel (Mrkšić et al., 2017) injected lin-
guistic constraints into word vectors through prede-
fined cost function with mono-/cross-lingual lin-
guistic constraints. Explicit Retrofitting (ER-
CNT) (Glavaš and Vulić, 2018) directly learned
mapping functions of linguistic constraints with
deep neural network architectures. They then used
the functions to retrofit the word vectors. Post-
Specialization (Vulić et al., 2018; Ponti et al.,
2018) resolved the problem of the previous mod-
els that only updates words in external lexicons.
Some works have used cross-lingual resources to
get further semantic information (Vulić et al., 2019;
Kamath et al., 2019).

While the previous methods utilized text-level
resources, vecmap (Artetxe et al., 2018) used other
word embeddings as external resources.2 For fair
comparisons, we input the same word vectors for
source and target embeddings of the method.

Recently, BERT-based model LexFit (Vulić et al.,
2021) was derived, but the method requires external
resources.

5 Experiment 1: Word Similarity Tasks

Settings. Word similarity datasets consist of
word pairs with human-rated similarity scores be-
tween the words and models calculate Spearman’s
correlation (Daniel, 1990) between the similarity

2We selected unsupervised version of vecmap because it
performs better than identical version.

scores and the cosine similarity of the word vector
pairs.

We use 6 datasets in English: WordSim353
(W(s) for similarity and W(r) for relation) (Finkel-
stein et al., 2001), RareWord (RW) (Luong et al.,
2013), MEN-3k (ME) (Bruni et al., 2014), SemEval
(SE) (Camacho-Collados et al., 2017), SimLex-
999 (SL) (Hill et al., 2015), and SimVerb-3500
(SV) (Gerz et al., 2016).

Results. In Table 1, self-supervised extrofitting
(SelfExtro) improves the performance on all the
word similarity datasets when compared with the
popular pretrained word vectors, GloVe (Penning-
ton et al., 2014) and fastText (Bojanowski et al.,
2016)3. The result implies the pretrained word vec-
tors can be enriched by our method, which means
it does not require any semantic lexicons to make
better embeddings. In addition, SelfExtro shows
better performances with the original extrofitting
(+WordNet) on most of the evaluations.

We also investigate the extracted semantic in-
formation (see Appendix A.2). The extracted in-
formation hardly seems synonyms, but we can
see that some similar words are grouped. As ex-
trofitting affects all the word vectors, every word
can benefit from the other words being enriched.
In other words, although the number of extracted
information is small, this simple extension makes
extrofitting fully utilize its advantages.

Qualitative examples of self-supervised ex-
trofitting are presented in Table 2. Although the
representations lose similarity scores, the similar
words become diverse and reasonable. Additional
qualitative examples are shown in Appendix A.5.

Our proposed SelfExtro is also potentially use-
ful when semantic lexicon resources are scarce,
such as in many non-English languages. In Ta-

3word2vec could also be considered as a base model, but
it takes too much time due to its large vocabulary size.



Cue Word Method Top-10 Nearest Words(Cosine Similarity Score)

love
Vanilla

loved(.7745), i(.7338), loves(.7311), know(.7286), loving(.7263),
really(.7196), always(.7193), want(.7192), hope(.7127), think(.7110)

+SelfExtro
loved(.7152), loving(.6734), loves(.6489), adore(.6348), passion(.6333),

luv(.6326), hope(.6256), i(.6250), want(.6209), hate(.6181)

hate
Vanilla

dont(.7318), stupid(.7193), hates(.7190), think(.7063), why(.6943),
love(.6928), hating(.6927), hated(.6861), shit(.6847), know(.6825)

+SelfExtro
hating(.6707), hatred(.6650), dont(.6580), hates(.6529),

dislike(.6447), despise(.6309), hated(.6306), stupid(.6266), think(.6249), love(.6181)

forever
Vanilla

alive(.6478), gone(.6450), love(.6381), never(.6267), again(.6249),
yours(.6238), life(.6171), alone(.6153), anymore(.6129), always(.6093)

+SelfExtro
eternally(.6297), alive(.5814), yours(.5717), life(.5532), anymore(.5524),

eternity(.5488), eternal(.5474), gone(.5447), permanently(.5446), again(.5414)

life
Vanilla

lives(.8053), living(.7134), things(.6869), way(.6852), mind(.6844),
what(.6779), much(.6723), love(.6719), because(.6716), work(.6706)

+SelfExtro
lives(.7801), living(.6538), journey(.6048), everyday(.6038), mind(.5922),
things(.5920), lifetime(.5892), happiness(.5749), love(.5743), way(.5728)

Table 2: List of top-10 nearest words of cue words in different post-processing methods. We report cosine similarity
scores of words–love, hate, forever, and life. Underline and bold indicate the difference between the list from
vanilla vectors and self-supervised extrofitted vectors, respectively.

CZ IT(s/r) RU(s/r) GE(s/r)
fastText .240 .377 .188 .428 .275 .335 .169
k=100 .450 .453 .370 .525 .411 .425 .261
k=200 .443 .444 .359 .545 .426 .431 .261
k=300 .451 .456 .359 .539 .426 .449 .271

Table 3: Spearman’s correlation of self-supervised ex-
trofitting on WordSim datasets in 4 languages: Czech
(CZ), Italian (IT), Russian (RU), and German (GE). k
denotes extracted semantic information from fastText in
k-dimensional latent space.

CY ET FI FR HE PL RU ES
fT .187 .213 .455 .314 .371 .283 .305 .385
k=100 .201 .223 .475 .340 .400 .306 .334 .425
k=200 .209 .215 .463 .339 .399 .299 .306 .423
k=300 .214 .219 .464 .338 .402 .305 .308 .421

Table 4: Spearman’s correlation of self-supervised ex-
trofitting on Multi-SimLex datasets in 8 languages:
Welsh (CY), Estonian (ET), Finnish (FI), French (FR),
Hebrew (HE), Polish (PL), Russian (RU), and Spanish
(ES). Other languages cannot be found in fastText.

ble 3 and Table 4, we use pretrained fastText
for WordSim datasets in 4 languages and Multi-
SimLex (Vulić et al., 2020) in 8 languages, respec-
tively. SelfExtro significantly increases the per-
formance in all the languages.

6 Experiment 2: Dialogue State Tracking

Settings. Previous works (Mrkšić et al., 2016a,
2017; Vulić et al., 2019) showed that word vector
post-processing is useful for dialogue state tracking
(DST) (Young et al., 2010). Using Neural Belief
Tracker (NBT) (Mrkšić et al., 2016b), they have

Model(Resource)
JGA with
WordNet

JGA with
A-R Lexicon

GloVe .798(.03)
Retrofitting(Syn) .792(.03) .793(.01)
Paragram(Syn) .670(.05) .657(.03)
Extro(Syn) .821(.03) .820(.01)
Counter-fit(Syn+Ant) .625(.01) .630(.03)
Att-Repel(Syn+Ant) .671(.04) .675(.03)
vecmap(-) .772(.01)
SelfExtro(-) .825(.02)

Table 5: Joint goal accuracy and its standard deviation
in WOZ 2.0 datasets. Despite the fact that we used the
original Github code and data, the result is different from
their report. Furthermore, our settings show different
trends from what they reported.

claimed that the performance on the task is related
to word vector specialization in that the model has
to identify the flow of dialogue with only a few
words, which seems reasonable. Thus, we use the
NBT4 and check the model performances with our
post-processed embeddings. Refer to the papers
cited above for the details of DST.

Results. Table 5 shows the performance of DST
in Wizard-of-Oz 2.0 dataset (Wen et al., 2017). The
results show that the semantic specialization (e.g.,
Attract-Repel) does not increase the performance.
In contrast, Extro and SelfExtro show better
performance than vanilla GloVe.

We additionally experiment with the lexicons
(both synonyms and antonyms) included in the
Github of Attract-Repel5. It shows only a little

4https://github.com/nmrksic/
neural-belief-tracker

5https://github.com/nmrksic/attract-repel

https://github.com/nmrksic/neural-belief-tracker
https://github.com/nmrksic/neural-belief-tracker
https://github.com/nmrksic/attract-repel


Freezed Vectors DBpedia Yahoo(Up) Yahoo(Low) Yelp AGNews IMDB
GloVe 98.31±0.12 71.97±0.76 49.35±0.51 61.55±0.35 90.66±0.79 87.47±1.93
Retrofit(Syn) 81.92±5.11 44.72±2.77 22.31±0.63 48.87±0.40 82.04±1.49 63.40±3.53
Paragram(Syn) 86.88±0.36 62.37±0.36 40.25±0.19 50.04±0.20 80.16±0.14 74.77±0.43
Extro(Syn) 98.52±0.05 72.94±0.10 50.01±0.39 62.70±0.06 91.36±0.29 89.40±0.20
Counter-fit(Syn+Ant) 73.26±1.29 59.70±0.19 37.80±0.08 47.97±0.45 76.47±1.45 66.54±0.48
Att-Repel(Syn+Ant) 87.52±0.12 62.51±0.41 39.75±1.15 50.08±0.29 79.80±0.93 74.71±0.37
PostSpec(Syn+Ant) 76.78±0.79 59.45±0.15 37.16±0.35 49.16±0.64 76.06±0.62 66.11±0.79
vecmap(-) 98.01±0.27 68.99±0.68 44.57±1.14 62.22±0.25 89.87±0.88 83.80±1.33
SelfExtro(-) 98.44±0.05 72.41±0.26 49.79±0.37 62.97±0.18 90.93±0.11 89.36±0.41

Trainable Vectors DBpedia Yahoo(Up) Yahoo(Low) Yelp AGNews IMDB
GloVe 98.61±0.05 73.45±0.70 49.30±0.61 63.01±0.42 91.54±0.45 88.82±0.55
Retrofit(Syn) 98.16±0.05 67.15±1.73 43.14±1.31 61.74±0.33 89.21±1.61 82.77±1.27
Paragram(Syn) 98.14±0.04 66.32±0.27 42.85±0.43 61.96±0.22 89.91±0.19 83.14±1.15
Extro(Syn) 98.61±0.06 73.50±0.19 50.43±0.30 63.22±0.19 91.78±0.29 89.74±0.28
Counter-fit(Syn+Ant) 98.07±0.10 63.74±0.53 40.83±0.20 61.89±0.17 90.09±1.23 83.78±1.84
Att-Repel(Syn+Ant) 98.11±0.07 66.05±0.42 42.68±0.43 61.80±0.21 90.05±0.18 83.74±1.30
PostSpec(Syn+Ant) 98.10±0.05 63.88±0.36 40.49±0.51 61.84±0.13 90.48±0.38 84.54±0.38
vecmap(-) 98.01±0.27 68.99±0.68 44.57±1.14 62.22±0.25 89.87±0.88 83.80±1.33
SelfExtro(-) 98.58±0.02 73.02±0.15 50.05±0.23 63.25±0.25 91.61±0.08 89.98±0.26

Table 6: 10 times average accuracy initialized with the post-processed word vectors. We experiment with our
methods in 2 different settings: fixed word vectors and trainable word vectors.

performance gain; we thus guess that the difference
in DST performance comes from lexical resources
or fine-tuning of NBT rather than specialization.

7 Experiment 3: Text Classification

Settings. We experiment with our methods in 2
different settings: fixed word vectors and trainable
word vectors. When the word vectors are fixed, we
can evaluate the usefulness of the word vectors per
se. When the word vectors are trainable, we can
see the improvement of the model performance in
a conventional training setting. The dataset and
classifier are described in Appendix A.3.

Results. We report the performances in Table 6.
The classifier initialized with SelfExtro outper-
forms the vanilla GloVe and performs on par with
the original extrofitting. On the other hand, al-
though the previous word vector post-processing
methods specialize well on a domain-specific task,
the approaches failed to be generalized; they show
large performance deterioration despite the added
general semantic information.

8 Discussion

The specialized word vectors do not warrant bet-
ter performance. We conjecture that the methods
trade off catastrophic forgetting against semantic
specialization even though the previous methods
successfully specialize their vectors into given lexi-
cons, losing the pretrained information encoded in

the original GloVe. It affects the performance of
the fundamental tasks, which are largely degraded.
On the other hand, our method enriches the word
vector in general, resulting in marginal but certain
improvements.

Contextual representations provide substantial
improvements in NLP tasks, but the representa-
tions lack semantic information due to their nature.
Since the context and the semantics are different
types of information that can enrich representations,
we believe our approaches might further improve
the contextual representations.

9 Conclusion

We develop a self-supervised retrofitting model
that enriches word vectors without semantic lex-
icons. The method utilizes its own distribution
of word vectors to get better representations. In
the Exp. 1, we show that our method can im-
prove the performance on word similarity tasks
and present qualitative examples. It can be ap-
plied to other pretrained word vectors, resulting
in better performances on all the word similar-
ity datasets. SelfExtro also has potential advan-
tages in lexicon-scarce languages. In the Exp. 2
and 3, we presented the effect of post-processing
methods on downstream tasks. Our method shows
marginal but certain improvements, while other
post-processed word vectors largely degrade the
performances, which seems the result of losing
generalization.



10 Limitations

Usefulness compared with contextual embed-
dings Contextual embeddings are recently domi-
nant in NLP tasks, whereas static word embeddings
have become less frequently used. However, it does
not mean static word embeddings are not useful.
Although we can assume that the amount of pre-
training dataset and training resources are similar,
the cost of inference is much cheaper at static word
embeddings. Furthermore, static word embeddings
perform better when a task lacks enough context
(e.g., word similarity tasks). It will be interesting
future work to retrofit contextual embeddings, but
it is out of scope in this paper.

The use of antonyms Although we believe that
there are no definitely opposite meanings of the
word (e.g., love and hate share the sense of emo-
tion), previous works (see §4) that utilize antonyms
showed significant improvement in word similar-
ity tasks. However, compared to the methods,
self-supervised extrofitting explicitly considers syn-
onyms only, but implicitly expects antonyms to
be distant while maximizing the variances of in-
class/out-of-class word vectors. Also, the process
of self-supervised extrofitting makes it hard to in-
corporate other kinds of word relations.

The method is only a simple linear projection
Both extrofitting and self-supervised extrofitting
use linear projections in enriching vectors, follow-
ing a traditional NLP method. The linear model
might not be the best to reflect word relations in
vector spaces, but we believe that it is a simple yet
effective method, as we still calculate lots of things
(e.g., distance) in a linear way.

Acknowledgement

The author would like to thank all the reviewers
in several rounds of submission, a total of 5 years.
Lastly, I am grateful to Alice Lee for her help in
qualitative analysis.

References
Carl Allen, Ivana Balazevic, and Timothy Hospedales.

2019. What the vec? towards probabilistically
grounded embeddings. In Advances in Neural In-
formation Processing Systems, pages 7465–7475.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised

cross-lingual mappings of word embeddings. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 789–798.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Elia Bruni, N Tram, Marco Baroni, et al. 2014. Multi-
modal distributional semantics. The Journal of Artifi-
cial Intelligence Research, 49:1–47.

Jose Camacho-Collados, Mohammad Taher Pilehvar,
Nigel Collier, and Roberto Navigli. 2017. Semeval-
2017 task 2: Multilingual and cross-lingual semantic
word similarity. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 15–26.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and
Vivek Srikumar. 2008. Importance of semantic repre-
sentation: Dataless classification. In AAAI, volume 2,
pages 830–835.

Wayne W Daniel. 1990. Spearman rank correlation
coefficient. Applied nonparametric statistics, pages
358–365.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1606–1615.

Yue Feng, Yang Wang, and Hang Li. 2021. A sequence-
to-sequence approach to dialogue state tracking. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1714–
1725.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th in-
ternational conference on World Wide Web, pages
406–414. ACM.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. Simverb-3500: A large-scale
evaluation set of verb similarity. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2173–2182.



Goran Glavaš and Ivan Vulić. 2018. Explicit retrofitting
of distributional word vectors. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 34–45.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Ma-
howald, Rodney J Douglas, and H Sebastian Seung.
2000. Digital selection and analogue amplification
coexist in a cortex-inspired silicon circuit. Nature,
405(6789):947.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Hwiyeol Jo and Stanley Jungkyu Choi. 2018. Ex-
trofitting: Enriching word representation and its vec-
tor space with semantic lexicons. arXiv preprint
arXiv:1804.07946.

Aishwarya Kamath, Jonas Pfeiffer, Edoardo Maria
Ponti, Goran Glavaš, and Ivan Vulić. 2019. Special-
izing distributional vectors of all words for lexical
entailment. In Proceedings of the 4th Workshop on
Representation Learning for NLP (RepL4NLP-2019),
pages 72–83.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas K Landauer and Susan T Dumais. 1997. A solu-
tion to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation
of knowledge. Psychological review, 104(2):211.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic Web, 6(2):167–195.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 302–
308.

Minh-Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with re-
cursive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 104–113.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In

Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies-volume 1, pages 142–150. Association
for Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao Su,
David Vandyke, Tsung-Hsien Wen, and Steve Young.
2016a. Counter-fitting word vectors to linguistic con-
straints. arXiv preprint arXiv:1603.00892.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2016b. Neu-
ral belief tracker: Data-driven dialogue state tracking.
arXiv preprint arXiv:1606.03777.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korhonen,
and Steve Young. 2017. Semantic specialization of
distributional word vector spaces using monolingual
and cross-lingual constraints. Transactions of the
Association for Computational Linguistics, 5:309–
324.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belnet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Edoardo Maria Ponti, Roi Reichart, Anna Korhonen,
and Ivan Vulić. 2018. Isomorphic transfer of syn-
tactic structures in cross-lingual nlp. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1531–1542.

Ivan Vulić, Simon Baker, Edoardo Maria Ponti, Ulla
Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden
Bar, Matt Malone, Thierry Poibeau, et al. 2020.
Multi-simlex: A large-scale evaluation of multi-
lingual and crosslingual lexical semantic similarity.
Computational Linguistics, 46(4):847–897.

Ivan Vulić, Goran Glavaš, Nikola Mrkšić, and Anna
Korhonen. 2018. Post-specialisation: Retrofitting
vectors of words unseen in lexical resources. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 516–527.

Ivan Vulić, Edoardo Maria Ponti, Anna Korhonen, and
Goran Glavaš. 2021. LexFit: Lexical fine-tuning of
pretrained language models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

https://doi.org/10.18653/v1/2021.acl-long.410
https://doi.org/10.18653/v1/2021.acl-long.410


Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5269–5283, Online. As-
sociation for Computational Linguistics.

Ivan Vulić, Simone Paolo Ponzetto, and Goran Glavaš.
2019. Multilingual and cross-lingual graded lexical
entailment. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, pages
4963–4974.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Mil-
ica Gasic, Lina M Rojas Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 438–449.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. Transactions of the Association for Compu-
tational Linguistics, 3:345–358.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2010. The hidden information state model:
A practical framework for pomdp-based spoken dia-
logue management. Computer Speech & Language,
24(2):150–174.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.



A Appendix

A.1 Data Resources
A.1.1 Pretrained word vectors
Pretrained word vectors include words composed
of n-dimensional float vectors. One of the major
pretrained word vectors we used is GloVe (Pen-
nington et al., 2014) glove.42B.300d. Even though
many word embedding algorithms and pretrained
word vectors have been suggested, GloVe is still
being used as a strong baseline on word similarity
tasks (Cer et al., 2017; Camacho-Collados et al.,
2017). We also use fastText (Bojanowski et al.,
2016), and Paragram (Wieting et al., 2015) as re-
sources and baseline of self-supervised extrofitting.

A.1.2 Semantic Lexicon
As an external semantic lexicon, we use Word-
Net (Miller, 1995), which consists of approxi-
mately 150,000 words and 115,000 synsets pairs.
We use Faruqui et al.’s WordNetall lexicon, com-
prised of synonyms, hypernyms, and hyponyms.
Some recent works built their own or used large lex-
icons like BabelNet (Navigli and Ponzetto, 2012),
but in order to observe the effect of post-processing
algorithm rather than the power of lexicons, we use
the (relatively) small lexicon.

For fair comparisons, we replace the previous
works’ lexicon with WordNetall lexicon. If the
models require antonyms, we use the antonyms
pairs, which are uploaded in their Github.

A.2 Example of Extracted Relation

Threshold Grouped Words

≥ .90

points225 points203 points166 points253 · · ·
17:20:18 09:22:30 10:22:49 07:33:04 · · ·

review10/15/2012 review3/31/2013
review11/30/2012 review12/18/2012 · · ·

≥ .99
!!! !!

january february
range emailicon linkicon

Table 7: Examples of extracted related word groups.
This results are extracted from 100 dimensional latent
space in GloVe.

A.3 Further Details in Experiment 3
Datasets. We use 5 classification datasets; DB-
pedia ontology (Lehmann et al., 2015), Ya-
hoo!Answers (Chang et al., 2008)6, YelpRe-

6https://cogcomp.seas.upenn.edu/page/
resource_view/89 Note that Chang et al. (2008) said
the dataset has 20 top-level categories but actually it has 3

views (Zhang et al., 2015), AGNews, and
IMDB (Maas et al., 2011). We utilize Ya-
hoo!Answer dataset for 2 different tasks, which
are classifying upper-level categories and classify-
ing lower-level categories, respectively. We use all
the words tokenized by space as inputs. The data
information is described in Table 8.

Classifier. We build TextCNN (Kim, 2014) rather
than use a classifier based on Bag-of-Words (BoW),
as Faruqui et al. did, in order to process word se-
quences. The classifier consists of 2 convolutional
layers with the channel size of 32 and 16, respec-
tively. We adopt the multi-channel approach, im-
plementing 4 different sizes of kernels–2, 3, 4, and
5. We concatenate them after every max-pooling
layer. The learned kernels go through an activa-
tion function, ReLU (Hahnloser et al., 2000), and
max-pooling. We set the dimension of word em-
bedding to 300, optimizer to Adam (Kingma and
Ba, 2014) with learning rate 0.001, and use early-
stopping if validation accuracy does not increase
over 5 epochs.

A.4 Ablation Study in Threshold
When the latent dimension is 300, following the
best performance:

A.5 Qualitative Examples
The additional qualitative examples are presented
in Table 12.

duplicated top-level categories because of errors.

 https://cogcomp.seas.upenn.edu/page/resource_view/89
 https://cogcomp.seas.upenn.edu/page/resource_view/89


DBpedia Yahoo(Up) Yahoo(Low) AGNews Yelp IMDB
#Train 560,000 133,703 133,703 120,000 650,000 25,000
#Test 70,000 23,595 23,595 7,600 50,000 25,000
#Class 14 17 280 4 5 2
#Vocab 626,717 154,142 154,142 66,049 198,625 47,113

Table 8: The data information used in text classification. YahooAnswer dataset is used for 2 different tasks, which
are to classify upper-level categories and to classify lower-level categories, respectively. The vocabulary size can be
slightly different due to the predefined special tokens such as none and out-of-vocabulary

Word Similarity Task
W(s) W(r) RW ME SE SL SV

GloVe .70 .57 .39 .74 .57 .37 .28
threshold=.95 .72 .60 .39 .76 .58 .42 .28
threshold=.90 .78 .69 .48 .84 .64 .50 .37
threshold=.50 .71 .59 .38 .75 .56 .39 .23

Table 9: Spearman’s correlation of self-supervised extrofitted pretrained word embeddings according to threshold.

Model(threshold) DST
GloVe .798
SelfExtro(threshold=.95) .800
SelfExtro(threshold=.90) .825
SelfExtro(threshold=.50) .811

Table 10: Joint goal accuracy according to threshold

Freezed Vectors DBpedia Yahoo(Up) Yahoo(Low) Yelp AGNews IMDB
GloVe 98.31 71.97 49.35 61.55 90.66 87.47
SelfExtro(thr=.95) 98.35 71.61 49.07 61.01 90.78 87.23
SelfExtro(thr=.90) 98.44 72.41 49.79 62.97 90.93 89.36
SelfExtro(thr=.50) 98.49 72.74 50.80 62.10 90.94 88.33
Trainable Vectors DBpedia Yahoo(Up) Yahoo(Low) Yelp AGNews IMDB
GloVe 98.61 73.45 49.30 63.01 91.54 88.82
SelfExtro(thr=.95) 98.42 72.08 49.17 61.83 91.03 86.80
SelfExtro(thr=.90) 98.58 73.02 50.05 63.25 91.61 89.98
SelfExtro(thr=.50) 98.58 73.35 50.66 62.64 91.67 88.64

Table 11: Text classification accuracy according to threshold



Cue Word Method Top-10 Nearest Words(Cosine Similarity Score)

soo

Vanilla
sooo(.8394), soooo(.7938), sooooo(.7715), soooooo(.7359), sooooooo(.6844),

haha(.6574), hahah(.6320), damn(.6247), omg(.6244), hahaha(.6219)

+SelfExtro
sooo(.8196), soooo(.7743), sooooo(.7576), soooooo(.7304), sooooooo(.6852),

soooooooo(.6342), sooooooooo(.6314), soooooooooo(.6003)
tooo(.5967), sooooooooooo(.5869)

elaborate

Vanilla

intricate(.7244), elaborately(.6238), extravagant(.6223), complicated(.6089),
lavish(.5714), formal(.5643), sophisticated(.5639),

detailed(.5623), ornate(.5619), simple(.5566)

+SelfExtro
intricate(.7002), elaborately(.6329), extravagant(.6109), complicated(.5651),

ornate(.5586), lavish(.5533), grandiose(.5452),
formal(.5326), detailed(.5235), fanciful(.5225)

gratitude

Vanilla
thankfulness(.7113), generosity(.6967), kindness(.6917), appreciation(.6860)

compassion(.6695), admiration(.6672), grateful(.6420),
thankful(.6385), heartfelt(.6368), sympathy(.6211)

+SelfExtro
thankfulness(.7648), generosity(.7001), kindness(.6975), appreciation(.6934),

admiration(.6830), compassion(.6738), gratefulness(.6444),
reverence(.6361), thankful(.6313), sympathy(.6304)

jubilate
Vanilla

exsultate(.5262), deum(.4763), exultate(.4545), motet(.4054), excelsis(.3777),
deo(.3721), cantata(.3651), alleluia(.3625), stabat(.3558), laudamus(.3485)

+SelfExtro
exsultate(.5111), exultate(.4449), deum(.4269), motet(.4093), deo(.3703),

choir(.3670), excelsis(.3626), mozart(.3594), stabat(.3591), cantata(.3532)

elated

Vanilla
overjoyed(.7712), ecstatic(.7045), thrilled(.6576), exhilarated(.6533),

gratified(.6431), enthused(.6214), saddened(.6075),
flabbergasted(.6060), disheartened(.5989), giddy(.5984)

+SelfExtro
overjoyed(.8018), ecstatic(.7424), thrilled(.7320), excited(.6894),

exhilarated(.6758), delighted(.6733), gratified(.6690),
relieved(.6569), enthused(.6564), dismayed(.6342)

mono-
saccharide

Vanilla
disaccharide(.6470), monosaccharides(.5152), oligosaccharide(.4911),

galactose(.4686), 5-carbon(.4609), n-acetylglucosamine(.4282),
saccharide(.4223), sucrose(.4215), mannose(.4196), disaccharides(.4107)

+SelfExtro
disaccharide(.6329), monosaccharides(.4888), oligosaccharide(.4844),

5-carbon(.4617), galactose(.4414), n-acetylglucosamine(.4227),
sucrose(.4206), disaccharides(.4050), carbohydrate(.4045), moieties(.4033)

outlook

Vanilla
excel(.5686), recovery(.5457), export(.5368), forecast(.5229), forecasts(.5060),

contacts(.5025), powerpoint(.5025), exchange(.5011), microsoft(.4944), import(.4816)

+SelfExtro
excel(.5145), mapssevere(.5054), icalendargoogle(.4955), export(.4883),

contacts(.4877), recovery(.4753), advisorieshourly(.4673),
mailbox(.4661), vcard(.4612), thunderbird(.4599)

vain

Vanilla
foolish(.6229), futile(.6104), selfish(.5340), vainly(.5242), fruitless(.5133),
thy(.4981), arrogant(.4976), useless(.4844), righteous(.4833), thou(.4830)

+SelfExtro
futile(.6273), foolish(.6079), vainly(.5454), fruitless(.5338),

selfish(.5143), useless(.5044), pointless(.4910),
hopeless(.4846), attempt(.4797), presumptuous(.4780)

prioritize

Vanilla
prioritise(.8064), prioritizing(.7426), priorities(.6323), prioritising(.5995),

evaluate(.5950), strategize(.5933), proactively(.5862),
analyze(.5800), assess(.5764), identify(.5633)

+SelfExtro
prioritise(.8322), prioritizing(.7415), priorities(.6390), prioritising(.6225),

proactively(.6075), strategize(.5990), evaluate(.5946),
analyze(.5919), prioritized(.5880), manage(.5783)

nomad
Vanilla

nomads(.4911), drifter(.4735), nomadic(.4574), vagabond(.4233), zen(.4161),
muvo2(.4054), gypsy(.4054), jukebox(.3997), vulcan(.3906), adventurer(.3869)

+SelfExtro
nomads(.5254), drifter(.4916), nomadic(.4841), muvo2(.4631), vagabond(.4422),
traveler(.4246), traveller(.4216), zen(.4150), jukebox(.4110), wanderer(.4073)

junction
Vanilla

junctions(.5729), near(.4985), road(.4936), intersection(.4923), creek(.4911),
highway(.4878), exit(.4853), bridge(.4811), rd(.4779), jct(.4772)

+SelfExtro
junctions(.5822), jct(.5099), highway(.4787), motorway(.4781), road(.4744),

exit(.4738),hwy(.4710), rd(.4667), intersection(.4628), heafford(.4596)

moss
Vanilla

peat(.5360), brady(.5090), reed(.4998), brown(.4963), fern(.4945),
green(.4920), woods(.4872), pine(.4856), jones(.4840), campbell(.4824),

+SelfExtro
lichen(.5628), sphagnum(.5463), spagnum(.5457), peat(.5323), lichens(.5264),

mosses(.5224), fern(.4934), welker(.4852), pine(.4846), ferns(.4805),

Table 12: List of top-10 nearest words of cue words in different post-processing methods. We report cosine similarity
scores of random words. Underline and bold indicate the difference between the list from vanilla vectors and
self-supervised extrofitted vectors, respectively.


