
Self-Supervised Vertical Federated Learning

Timothy Castiglia
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
castit@rpi.edu

Shiqiang Wang
IBM Research

Thomas J. Watson Research Center
Yorktown Heights, NY
wangshiq@us.ibm.com

Stacy Patterson
Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY 12180
sep@cs.rpi.edu

Abstract

We consider a system where parties store vertically-partitioned data with a par-
tially overlapping sample space, and a server stores labels on a subset of data
samples. Supervised Vertical Federated Learning (VFL) algorithms are limited
to training models using only overlapping labeled data, which can lead to poor
model performance or bias. Self-supervised learning has been shown to be effec-
tive for training on unlabeled data, but the current methods do not generalize to
the vertically-partitioned setting. We propose a novel extension of self-supervised
learning to VFL (SS-VFL), where unlabeled data is used to train representation
networks and labeled data is used to train a downstream prediction network. We
present two SS-VFL algorithms: SS-VFL-I is a two-phase algorithm which re-
quires only one round of communication, while SS-VFL-C adds communication
rounds to improve model generalization. We show that both SS-VFL algorithms
can achieve up to 2× higher accuracy than supervised VFL when labeled data is
scarce at a significantly reduced communication cost.

1 Introduction

Federated learning has become of recent interest to the research community [1, 2, 3] and has shown
promise in several applications such as personalized healthcare, smart transportation, and predictive
energy systems [4]. Federated learning algorithms allows a set of distributed parties to train a model
without the need to directly share local data. Vertical Federated Learning (VFL) [5] algorithms are
an important class of federated learning algorithms. In VFL scenarios, there are typically a small
number of institutions that store data with the same sample space but different feature spaces. For
example, a bank, a hospital, and an insurance firm may seek to predict a value of common interest,
such as credit score. Each institution may have information on the same individuals but will hold
different feature information (e.g., financial transactions, medical history, and vehicle accident re-
ports). In VFL, each party typically trains a local representation network while the server combines
the outputs of all parties’ networks, known as representations, to train a final prediction model. We
illustrate the VFL model in Figure 1a. VFL is in contrast to horizontal federated learning (HFL),
where parties share a feature space but not the sample space. There has been much recent interest in
VFL algorithms [6, 7, 8, 9, 10, 11] though there are still many open problems.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.



(a) System Model (b) Data Partitioning

Figure 1: a) Example VFL system model Θ. b) Example data partitioning. Overlapping labeled
data for party m is denoted by Xm, and unlabeled data is denoted by Um.
VFL algorithms are typically supervised: models are updated based on how well their predictions
compare to ground-truth labels. However, collecting labels can be a manual, time-consuming, and
costly process. Often, only a small fraction of data is labeled. A major concern is that the labeled
data does not represent the true underlying data distribution, and training on only labeled data can
lead to model bias and poor model generalization [12]. Therefore, there is a need for incorporating
self-supervised methods. Self-supervised learning (SSL) methods typically pre-train a model using
unlabeled data followed by downstream supervised training [13]. Although there is a large body of
work in SSL for HFL applications [14, 15, 16, 17], it has yet to be applied to the VFL setting.

Applying SSL to vertically-partitioned settings comes with a variety of unique challenges. SSL
methods typically require full feature set access. However, each party in VFL only stores a subset of
the total features for each sample. Sharing features in a VFL setting is often impossible due to data
privacy or communication constraints. Additionally, in VFL settings, it is common that institutions
have data for different individuals. This is illustrated in Figure 1b. These non-overlapping datasets
can be very large, and it is necessary to integrate into the training process to avoid model bias and
improve performance. Finally, many SSL algorithms assume parties have label access, which is
not the case in VFL settings. Our work seeks to answer the following: how can we conduct self-
supervised learning on vertically-partitioned and potentially non-overlapping data?

To answer this question, we propose two self-supervised VFL (SS-VFL) algorithms. Our first al-
gorithm, SS-VFL Independent (SS-VFL-I), is a two-phase algorithm that requires only one round
of communication between parties and the server, while the second, SS-VFL Coupled (SS-VFL-
C), adds communication rounds to improve model generalization. In both algorithms, parties in-
dependently utilize contrastive learning for pre-training representation networks. Parties produce
low-dimensional representations of local data without communication or access to labels. A major
benefit of this approach is that parties’ unlabeled datasets need not overlap. After unsupervised train-
ing, both algorithms are followed by downstream supervised training. SS-VFL-I proceeds by send-
ing frozen representations to the server for final training, while SS-VFL-C updates representations
during supervised training for stronger model performance at the cost of increased communication.

Our contributions are summarized as follows: 1) In Section 2, we formulate a self-supervised frame-
work for training a model in a distributed system with a partially labeled vertically-partitioned
dataset. 2) In Section 3, we propose SS-VFL-I, which improves performance over supervised VFL
when labeled data is scarce, and has equivalent communication cost to only a single epoch of super-
vised VFL over the labeled data. 3) We propose SS-VFL-C, which trades communication savings
for improving model performance by updating representation networks during downstream super-
vised training. SS-VFL-C has the same communication cost as supervised VFL. 4) In Section 4, we
compare the SS-VFL algorithms with supervised VFL in a thorough set of experiments and show
the SS-VFL algorithms can achieve up to 2× the test accuracy of supervised VFL when labeled data
is scarce, as well as significantly reduce communication cost to reach target accuracies.

Related work: Federated learning was first proposed by [18] with the goal of training a global
model when participants store private data and the communication network faces high latency. Early
works in Federated Learning have targeted the horizontally partitioned data scenario [1, 19, 20].
Self-supervised algorithms that utilize unlabeled data have been proposed in the past for the HFL
setting [17, 14]. However, HFL algorithms rely on distributed gradient descent methods and share
model parameter updates, while most VFL algorithms utilize distributed coordinate descent methods
and share feature representations [7, 10, 11]. Thus, VFL algorithms are fundamentally different

2



from HFL algorithms. A few proposed VFL algorithms utilize unlabeled data. FedMVT, proposed
by Kang et al. [21], uses a simple pseudo-labeling scheme that may be vulnerable to confirmation
bias [22] and only applies to a two-party scenario. Cha et al. [23] propose a VFL algorithm that uses
unsupervised learning with autoencoders as a pre-training step for supervised learning. Their work
uses overcomplete autoencoders, which increase the dimensionality of raw data, causing the cost of
communication to greatly increase over other VFL algorithms. Our proposed VFL algorithms use a
method contrastive learning shown to avoid confirmation bias via data augmentation [22], apply to
an arbitrary number of parties, and reduce communication cost.

2 Problem Formulation and Preliminaries

We present our problem formulation and provide background on related algorithms.

Problem formulation: We consider a network with M parties and a server. Each party stores a set
of features of a labeled dataset consisting of N l data samples. We let Xm denote the labeled data
partition held by party m, and we let xi

m ∈ Xm correspond to the data features that party m stores
on the i-th labeled data sample. The entire labeled data set is denoted by X = [X1, . . . ,XM ], and
y is the set of labels that corresponds to the data samples in X. We assume that y is only present
at the server. Each party m also stores a set of features Um corresponding to Nu

m unlabeled data
samples. We assume that Xm and Um share the same feature dimension. Note, however, that we do
not assume the parties necessarily store features for the same set of unlabeled samples. Thus, Nu

m
may not equal Nu

j for parties m ̸= j. Figure 1b illustrates the data partitioning among the parties.

The model consists of M representation networks and a server prediction model. Each party m
stores its own representation network hm(·), parameterized by θm, that maps its local features to
a representation space. The server’s prediction model f(·), parameterized by θ0, combines rep-
resentations from each party to make a prediction. An example of the model architecture is pro-
vided in Figure 1a. Let the model parameters be Θ = [θ0, . . . , θM ], and let D be the distribu-
tion from which all data samples are drawn. The goal in training is to minimize the expected loss:
E(x,y)∼Df(θ0, h1(θ1;x1), . . . , hM (θM ;xM ); y). We next present existing methods for training over
labeled and unlabeled data. We leverage these methods to develop our SS-VFL algorithms.

Supervised VFL: When data is labeled, one can use supervised VFL to train the model by mini-
mizing the objective: F (Θ;X, y) := 1

N l

∑N l

i=1 f(θ0, h1(θ1;x
i
1), . . . , hM (θM ;xi

M ); yi). We provide
pseudocode for supervised VFL [7, 24] in Appendix A. To summarize, each round starts with the
parties agreeing on a randomly sampled mini-batch Bt from the labeled dataset. Each party inputs
its corresponding features XBt

m into its local representation network hm(·) and sends the resulting
representations to the server. The server then updates its model: θt+1

0 = θt0 − ηt∇0FB(Φ
t; yBt

),
where Φt is the set of all embeddings for Bt, yB are the labels for batch Bt, and ηt is the step
size at iteration t. Next, the server computes the partial derivative ∇hm(θt

m;XBt
m )FB(Φ

t; yB
t

) for all
m ∈ M. The server sends each partial derivative to its respective party. Each party then can com-
pute the gradient update: ∇mFB(Φ

t; yBt

) = hm(θtm;XBt

m )⊤∇hm(θt
m;XBt

m )FB(Φ
t; yB

t

), and update

its model: θt+1
m = θtm − ηt∇mFB(Φ

t; yBt

).

Unsupervised representation learning: Contrastive learning is a centralized SSL solution to train-
ing with unlabeled data. In contrastive learning, it is assumed that for each data sample, there is
access to a set of positive samples that share the same underlying structure as the original sample, as
well as a set of negative samples that have a different underlying structure. In practice, these pairs
are typically generated by creating data augmentations [25, 26, 27, 28]. The goal of contrastive
learning is to train a representation network that maps data to a representation space where positive
pairs are "close" to each other, and negative samples are "far" apart. This leads to representations
clustered by their underlying features, making downstream supervised learning a simpler task.

For each class c, we let Dc be the probability distribution over X , where X is the set of all possible
data points. Dc(u) captures how relevant a sample u is for a class c. Let u and u+ be data samples
chosen i.i.d. from the same class, and let u− be a data sample chosen i.i.d. from a random class.
We define D+(u, u+) as the distribution of positive pairs, and let D−(u−) be the distribution of
negative samples. We define a similarity measure sim(z1, z2) := exp(z⊤1 z2/τ) where τ is a tunable
temperature parameter. Contrastive learning trains a representation function h(·) on an unlabeled

3



Algorithm 1 Communication-Efficient Self-Supervised Vertical Federated Learning
1: Initialize: θ0m for all parties m and server model θ00
2: for m← 1, . . . ,M in parallel do
3: θTun

m ← LOCALCL(θ0m,Um, Tun)
4: Send representations hm(θTun

m ;Xm) to server
5: end for
6: for t← 0, . . . , Tsup − 1 do
7: Randomly sample labeled mini-batch: Bt ∈ {X, y}
8: Φt ← {θ0, h1(θ

t
1;XBt

1 ), . . . , hM (θtM ;XBt

M )}
9: θt+1

0 = θt0 − ηt∇0FB(Φ
t; yB

t

)
10: end for

dataset U by minimizing the objective [26]:

L(θ;U) := E (u,u+)∼D+

[u−
i ]Ki=1∼(D−)K

[
− ln

sim(h(u), h(u+))

sim(h(u), h(u+)) +
∑

i sim(h(u), h(u−
i ))

]
(1)

where K is the number of negative samples. The numerator in (1) is maximized when the cosine
similarity of positive pair representations is largest, while the denominator is minimized when the
cosine similarity of negative samples is smallest. Contrastive learning has been proven to reduce the
sample complexity of downstream supervised tasks [29].

3 Self-Supervised Vertical Federated Learning

We now present our algorithms for VFL with both labeled and unlabeled data. In both SS-VFL
algorithms, each party m independently runs contrastive learning to train its representation network.
Similar to centralized contrastive learning, each party m has a local class probability distribution
Dc

m(u) over X that captures the relevancy of a sample u to a class c. The goal of each party is to
minimize (1) for its local class distribution Dc

m. A party approximately minimizes (1) by randomly
selecting a mini-batch B of samples, and updating its model using the gradient of the following:

LB(θm;Um) :=
1

B

∑
u,u+∈B

[
− ln

sim(hm(u), hm(u+))∑
i∈B \{u} sim(hm(u), hm(ui))

]
(2)

The formal pseudocode of LocalCL is provided in Appendix A.

SS-VFL-I: We now introduce SS-VFL-Independent (SS-VFL-I), a natural extension of contrastive
learning to VFL. The pseudocode for SS-VFL-I is presented in Algorithm 1. At the start of training,
the parties independently perform LocalCL to train their representation networks for Tun iterations.
Then, each party computes the representations for labeled data and sends these representations to
the server. The server trains its prediction model on these representations without communication.
SS-VFL-I only requires sending representations for all labeled data once; its communication is
equivalent to a single epoch of supervised VFL, which can be immensely beneficial in situations
where bandwidth is limited or costly. SS-VFL-I also provides inherent label privacy. It has been
shown that supervised VFL can potentially leak label information through the sharing of partial
derivatives [30, 31]. In SS-VFL-I, the server never communicates partial derivatives with the parties.

SS-VFL-C: Next, we present SS-VFL Coupled (SS-VFL-C), an SS-VFL algorithm that improves
representation networks during downstream supervised training while maintaining the same commu-
nication cost as supervised VFL. SS-VFL-C trades the communication savings of SS-VFL-I in or-
der to update representation networks, improving downstream supervised model performance. The
pseudocode for SS-VFL-C is presented in Algorithm 2. Just as in SS-VFL-I, each party uses local
contrastive learning to train its representation network for Tun iterations. However, the representa-
tion networks are not frozen at this point. In the second stage of SS-VFL-C, the same procedure as
supervised VFL is followed. The parties share representations with the server, which trains a down-
stream prediction model. Then the server shares partial derivatives with the parties, and the parties
update their representation networks. SS-VFL-C has the same communication cost as supervised
VFL, but with the benefit of representation networks bein pre-trained using unlabeled data.

4



Algorithm 2 Self-Supervised Vertical Federated Learning with Representation Updates
1: Initialize: θ0m for all parties m and server model θ00
2: for m← 1, . . . ,M in parallel do
3: θTun

m ← LOCALCL(θ0m,Um, Tun)
4: end for
5: for t← 0, . . . , Tsup − 1 do
6: Parties choose randomly sampled mini-batch: Bt.
7: for m← 1, . . . ,M in parallel do
8: Party sends representation hm(θtm;XBt

m ) to server
9: end for

10: Φt ← {θ0, h1(θ
t
1;XBt

1 ), . . . , hM (θtM ;XBt

M )}
11: θt+1

0 = θt0 − ηt∇0FB(Φ
t; yB

t

)

12: Server sends∇hm(θt
m;XBt

m )FB(Φ
t; yB

t

) to each party m

13: for m← 1, . . . ,M in parallel do
14: ∇mFB(Φ

t; yBt

) = hm(θtm;XBt

m )⊤∇hm(θt
m;XBt

m )FB(Φ
t; yB

t

)

15: θt+1
m = θtm − ηt∇mFB(Φ

t; yBt

)
16: end for
17: end for

(a) CL with all features (b) CL with partial features (c) After supervised training

Figure 2: Kernel density expectation maps of ImageNet representations reduced to two dimensions.

LocalCL: When is LocalCL sufficient to create representations that can be easily classified during
downstream supervised training? In Figure 2, we give an example of when LocalCL fails to produce
representations that are well-separable. We compare representations generated by running central-
ized contrastive learning with a full feature set and representations generated by running LocalCL
with a partial feature set. Here, we plot a kernel density map of representations from the ImageNet
dataset after being reduced to two dimensions (using PCA) and normalized to the unit circle. We
show representations from two classes marked in red and blue. Ideally, the representations should
be separated into distinct clusters without any overlap. For LocalCL, we consider a case where only
half of each image is available. In Figure 2a, when all features are available for constrastive learning,
we can see that representations from the different classes are correctly mapped into separate clus-
ters. In Figure 2b, we can see that LocalCL produces clusters that overlap. Since local contrastive
learning only has access to a partial feature set, two label classes may be indistinguishable with the
available features, making downstream supervised training more difficult. In Figure 2c, we show the
representations of two different classes at a single party after running SS-VFL-C. For cases when
LocalCL produces overlapping representations, SS-VFL-C can be run to refine the representations.
Formally, the difference between local and centralized contrastive learning manifests in the differ-
ence between Dc

m, the relevance score of a sample based on locally available features and Dc, the
relevance score based on all features. For example, if a party only stores the lower half of an image
for a table, it may be difficult to discern if the image are of the legs of a table or a chair. In cases
where Dc and Dc

m are similar, then SS-VFL-I can provide strong representations for downstream
training without high communication cost. Otherwise, SS-VFL-C provides a means of updating
representation networks during downstream training at the cost of additional communication.

4 Experiments

We now present experiments comparing SS-VFL-I and SS-VFL-C with supervised VFL. The parties
train their models on two datasets: ModelNet10 [32] and ImageNet [33]. ModelNet10 is a set of 2D
images of 3D CAD models from different camera views. For this dataset, there are 12 parties, each

5



(a) ModelNet 1% labeled (b) ModelNet 5% labeled (c) ModelNet 10% labeled (d) ModelNet 25% labeled

(e) ImageNet 1% labeled (f) ImageNet 5% labeled (g) ImageNet 10% labeled (h) ImageNet 25% labeled

Figure 3: Top-5 test accuracy after running supervised VFL, SS-VFL-I and SS-VFL-C on the Mod-
elNet10 and ImageNet100 datasets with 1%, 5%, 10%, and 25% of the training dataset labeled. The
solid lines are the mean of 5 runs, while the shaded region represents the standard deviation.

Table 1: Communication cost in MB of VFL, SS-VFL-I, and SS-VFL-C on the ImageNet100 and
ModelNet10 datasets to reach a target test accuracy with different fractions of labeled data. For
ImageNet100, we use top-5 accuracy, and for ModelNet10, we use top-1 accuracy. The value shown
is the mean of 5 runs ± the standard deviation.

Labeled
Fraction

Target
Accuracy

Communication Cost (MB) to reach target

ImageNet100 dataset ModelNet10 dataset

VFL SS-VFL-I SS-VFL-C VFL SS-VFL-I SS-VFL-C

1% 70% – 1.24 143.63 ± 9.40 – 0.23 23.02 ± 2.27
5% 75% 1023.96 ± 43.88 6.19 153.53 ± 2.48 175.55 ± 31.34 1.17 37.03 ± 8.17
10% 80% 1857.25 ± 0.00 12.38 210.49 ± 13.56 225.47 ± 52.77 2.34 55.31 ± 5.05
25% 85% 3089.22 ± 111.43 30.95 396.21 ± 49.53 330.47 ± 83.90 5.86 104.30 ± 8.61

with one view of every CAD model. Each party trains ResNet18 as a representation model, while the
server trains a fully connected layer. ImageNet is a set of images of different objects and animals.
For our experiments, we choose a random set of 100 classes from ImageNet (ImageNet100). For
ImageNet100, there are two parties, and each party stores half of each image. Each party uses
ResNet50, while the server trains a fully connected layer. For SS-VFL-I and SS-VFL-C, parties run
LocalCL for 200 epochs. Then, all algorithms train on the labeled data for 500 epochs. We consider
cases where the training set of each dataset has only 1%, 5%, 10%, or 25% of its data labeled. We
run each algorithm on both datasets with each of these labeled fractions.

The results of the experiments are shown in Figure 3, where we plot the test accuracy for each
dataset and labeled data fraction. The solid lines are the mean of 5 runs, while the shaded regions
represent the standard deviation. For the ModelNet10 dataset, we can see at 1% and 5% labeled
data, both SS-VFL algorithms outperform supervised VFL. Only at 10% labeled data and more is
supervised VFL able to reach similar accuracies to the SS-VFL algorithms. We can see that SS-
VFL-I and SS-VFL-C perform similarly in all cases, indicating that LocalCL was able to produce
well-separable representations during unsupervised training. For the ImageNet100 dataset, both
SS-VFL algorithms perform similarly when 1% of the data is labeled, reaching up to double the
accuracy of supervised VFL. As the amount of labeled data increases, we can see that SS-VFL-
C continues to reach higher test accuracy than the other two algorithms, providing the best model
generalization by utilizing both labeled and unlabeled data to train party representation networks.
In the case of ImageNet100, LocalCL has more difficulty distinguishing between similar classes.
SS-VFL-C outperforms SS-VFL-I here by utilizing additional communication during downstream
supervised training, allowing it to refine the representations and improve performance.

In Table 1, we show the communication cost between the parties and the server for supervised VFL,
SS-VFL-I, and SS-VFL-C to reach a target test accuracy. We can see in Table 1 that SS-VFL-I has
a much smaller communication cost than both other algorithms, regardless of the fraction of labeled
data. SS-VFL-C, although requiring more communication, still reduces overall communication cost
to reach target accuracies over supervised VFL in both datasets. For scenarios where labeled data is
limited, both SS-VFL algorithms provide immense benefits in communication reduction.

6



References
[1] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia

Smith. Federated optimization in heterogeneous networks. Proc. of Machine Learn. Sys.,
2020.

[2] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He,
and Kevin Chan. Adaptive federated learning in resource constrained edge computing systems.
IEEE J. Sel. Areas Commun., 37(6):1205–1221, 2019.

[3] Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B. Letaief. Client-edge-cloud hierarchical
federated learning. IEEE Int. Conf. on Comm., 2020.

[4] Jiehan Zhou, Shouhua Zhang, Qinghua Lu, Wenbin Dai, Min Chen, Xin Liu, Susanna Pirt-
tikangas, Yang Shi, Weishan Zhang, and Enrique Herrera-Viedma. A survey on federated
learning and its applications for accelerating industrial internet of things. arXiv, 2021.

[5] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh
Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,
Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin
Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Fari-
naz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri,
Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mari-
ana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning.
Found. Trends Mach. Learn., 14(1-2):1–210, 2021.

[6] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume
Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity
resolution and additively homomorphic encryption. arXiv:1711.10677, 2017.

[7] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. FDML: A collaborative machine
learning framework for distributed features. Proc. 25th ACM Int. Conf. Knowl. Discov. Data
Min., pages 2232–2240, 2019.

[8] Kuihe Yang, Ziying Song, Yingchao Zhang, Yufan Zhou, Xiaohan Sun, and Jianxuan Wang.
Model optimization method based on vertical federated learning. IEEE Int. Symp. on Circuits
Syst., pages 1–5, 2021.

[9] M. Li, Y. Chen, Y. Wang, and Y. Pan. Efficient asynchronous vertical federated learning via
gradient prediction and double-end sparse compression. 16th Int. Conf. on Control Autom.
Robot. Vis., pages 291–296, 2020.

[10] Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and
Qiang Yang. A communication efficient vertical federated learning framework. Adv. Neural
Inf. Process. Syst., Workshop on Federated Learning for Data Privacy and Confidentiality,
2019.

[11] Bin Gu, An Xu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Privacy-preserving asyn-
chronous vertical federated learning algorithms for multiparty collaborative learning. IEEE
Trans. on Neural Netw. Learn. Syst., pages 1–13, 2021.

[12] Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, and Bernhard
Schölkopf. Correcting sample selection bias by unlabeled data. In Advances in Neural Infor-
mation Processing Systems, 2006.

[13] Saleh Albelwi. Survey on self-supervised learning: Auxiliary pretext tasks and contrastive
learning methods in imaging. Entropy, 24(4):551, 2022.

[14] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In IEEE
Conference on Computer Vision and Pattern Recognition, 2021.

7



[15] Haowen Lin, Jian Lou, Li Xiong, and Cyrus Shahabi. Semifed: Semi-supervised federated
learning with consistency and pseudo-labeling. arXiv, 2021.

[16] Zhengming Zhang, Zhewei Yao, Yaoqing Yang, Yujun Yan, Joseph E. Gonzalez, and
Michael W. Mahoney. Benchmarking semi-supervised federated learning. arXiv, 2020.

[17] Enmao Diao, Jie Ding, and Vahid Tarokh. Semifl: Communication efficient semi-supervised
federated learning with unlabeled clients. arXiv, 2021.

[18] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. Proc. 20th Int.
Conf. on Artif. Intell., pages 1273–1282, 2017.

[19] Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Ti-
mon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated
learning at scale: System design. Proc. of Machine Learn. Sys., 2019.

[20] Nir Shlezinger, Mingzhe Chen, Yonina C. Eldar, H. Vincent Poor, and Shuguang Cui. Uveqfed:
Universal vector quantization for federated learning. IEEE Trans. on Signal Process., 2021.

[21] Yan Kang, Yang Liu, and Tianjian Chen. Fedmvt: Semi-supervised vertical federated learning
with multiview training. arXiv, 2020.

[22] Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In International Joint Con-
ference on Neural Networks, 2020.

[23] Dongchul Cha, MinDong Sung, and Yu-Rang Park. Implementing vertical federated learning
using autoencoders: Practical application, generalizability, and utility study. JMIR Medical
Informatics, 9(6):e26598, 2021.

[24] Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Roman, Praneeth
Vepakomma, and Ramesh Raskar. Splitnn-driven vertical partitioning. arXiv:2008.04137,
2020.

[25] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In Advances in Neural Infor-
mation Processing Systems, 2016.

[26] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Int. Conf. Machine Learn., 2020.

[27] Kristoffer Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, and Robert Jenssen.
Mixing up contrastive learning: Self-supervised representation learning for time series. Pattern
Recognition Letters, 2022.

[28] Takeru Miyato, Andrew M. Dai, and Ian J. Goodfellow. Adversarial training methods for semi-
supervised text classification. In 5th International Conference on Learning Representations,
2017.

[29] Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khande-
parkar. A theoretical analysis of contrastive unsupervised representation learning. In Proceed-
ings of the 36th International Conference on Machine Learning, 2019.

[30] Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia Cordero, Ephraim
Zimmer, Tim Grube, Kristian Kersting, and Max Mühlhäuser. User label leakage from gradi-
ents in federated learning. arXiv, 2021.

[31] Chong Fu, Xuhong Zhang, Shouling Ji, Jinyin Chen, Jingzheng Wu, Shanqing Guo, Jun Zhou,
Alex X Liu, and Ting Wang. Label inference attacks against vertical federated learning. In
USENIX Security Symposium, 2022.

8



[32] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3D shapenets: A deep representation for volumetric shapes. Proc. IEEE Int.
Conf. Comput. Vis., pages 1912–1920, 2015.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009.

9



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We discuss the limitations of

LocalCL in Section 4.2.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Discus-

sion of potential negative societal impacts are included in the appendix.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

10



A Algorithm Pseudocode

Algorithm 3 Supervised Vertical Federated Learning
1: Initialize: θ0m for all parties m and server model θ00
2: for t← 0, . . . , T − 1 do
3: Parties choose randomly sampled mini-batch: Bt.
4: for m← 1, . . . ,M in parallel do
5: Party sends representation hm(θtm;XBt

m ) to server
6: end for
7: Φt ← {θ0, h1(θ

t
1;XBt

1 ), . . . , hM (θtM ;XBt

M )}
8: θt+1

0 = θt0 − ηt∇0FB(Φ
t; yB

t

)

9: Server sends∇hm(θt
m;XBt

m )FB(Φ
t; yB

t

) to each party m

10: for m← 1, . . . ,M in parallel do
11: ∇mFB(Φ

t; yBt

) = hm(θtm;XBt

m )⊤∇hm(θt
m;XBt

m )FB(Φ
t; yB

t

)

12: θt+1
m = θtm − ηt∇mFB(Φ

t; yBt

)
13: end for
14: end for

In Algorithm 3, we provide the pseudocode of Supervised Vertical Federated Learning, as described
in Section 2.

Algorithm 4 Local Contrastive Learning
1: procedure LOCALCL(θ,Um, T )
2: for t← 0, . . . , T − 1 do
3: Randomly sample unlabeled mini-batch: Bt ∈ Um

4: θt+1 = θt − ηt∇LB(θ
t;Bt)

5: end for
6: end procedure

In Algorithm 4, we provide the pseudocode of local constrastive representation learning, as de-
scribed in Section 3.

B Societal/Ethical impacts

With any machine learning task, there is the concern of the resulting model learning a bias that
may discriminate against groups of people unfairly. Although utilizing SS-VFL can mitigate model
bias by including unlabeled data, biased data collection can still lead to model bias. Additionally,
a “protected" feature, such as race, may play a large role in the prediction model. Researchers and
developers must be aware of the potential for bias in the datasets and take steps to ensure that these
biases do not lead to discriminatory practices. Several techniques to correct for bias in datasets exist
and can be applied to SS-VFL. For example, one can apply weighting to the data samples to correct
for a known bias in the dataset.

11


